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Abstract	

	

A	structural-bioinformatics-based	 computational	methodology	and	 framework	have	been	
developed	for	the	design	of	antibodies	to	targets	of	interest.	RosettaAntibodyDesign	(RAbD)	
samples	the	diverse	sequence,	structure,	and	binding	space	of	an	antibody	to	an	antigen	in	
highly	customizable	protocols	for	the	design	of	antibodies	in	a	broad	range	of	applications.	
The	 program	 samples	 antibody	 sequences	 and	 structures	 by	 grafting	 structures	 from	 a	
widely	accepted	set	of	the	canonical	clusters	of	CDRs	(North	et	al.,	J.	Mol.	Biol.,	406:228-256,	
2011).	It	then	performs	sequence	design	according	to	amino	acid	sequence	profiles	of	each	
cluster,	 and	 samples	 CDR	 backbones	 using	 a	 flexible-backbone	 design	 protocol	
incorporating	 cluster-based	 CDR	 constraints.	 Starting	 from	 an	 existing	 experimental	 or	
computationally	 modeled	 antigen-antibody	 structure,	 RAbD	 can	 be	 used	 to	 redesign	 a	
single	CDR	or	multiple	CDRs	with	loops	of	different	length,	conformation,	and	sequence.	We	
rigorously	benchmarked	RAbD	on	a	 set	of	60	diverse	antibody–antigen	 complexes,	using	
two	 design	 strategies	 --	 optimizing	 total	 Rosetta	 energy	 and	 optimizing	 interface	 energy	
alone.	 We	 utilized	 two	 novel	 metrics	 for	 measuring	 success	 in	 computational	 protein	
design.	 The	 design	 risk	 ratio	 (DRR)	 is	 equal	 to	 the	 frequency	 of	 recovery	 of	 native	 CDR	
lengths	 and	 clusters	 divided	 by	 the	 frequency	 of	 sampling	 of	 those	 features	 during	 the	
Monte	Carlo	design	procedure.	Ratios	greater	 than	1.0	 indicate	 that	 the	design	process	 is	
picking	out	the	native	more	frequently	than	expected	from	their	sampled	rate.	We	achieved	
DRRs	for	the	non-H3	CDRs	of	between	2.4	and	4.0.	The	antigen	risk	ratio	(ARR)	is	the	ratio	
of	 frequencies	 of	 the	 native	 amino	 acid	 types,	 CDR	 lengths,	 and	 clusters	 in	 the	 output	
decoys	for	simulations	performed	in	the	presence	and	absence	of	the	antigen.	For	CDRs,	we	
achieved	cluster	ARRs	as	high	as	2.5	for	L1	and	1.5	for	H2.	For	sequence	design	simulations	
without	CDR	grafting,	the	overall	recovery	for	the	native	amino	acid	types	for	residues	that	
contact	 the	 antigen	 in	 the	 native	 structures	 was	 72%	 in	 simulations	 performed	 in	 the	
presence	of	the	antigen	and	48%	in	simulations	performed	without	the	antigen,	for	an	ARR	
of	1.5.	 For	 the	non-contacting	 residues,	 the	ARR	was	1.08.	This	 shows	 that	 the	 sequence	
profiles	are	able	 to	maintain	 the	amino	acid	 types	of	 these	conserved,	buried	sites,	while	
recovery	of	the	exposed,	contacting	residues	requires	the	presence	of	the	antigen-antibody	
interface.	 Previous	 computational	 antibody	 design	 benchmarking	 has	 ignored	 the	
dominance	of	some	CDR	lengths	and	clusters	in	the	PDB,	and	improperly	taken	recovery	of	
common	CDR	conformations	as	indications	of	success.	We	tested	RAbD	experimentally	on	
both	a	lambda	and	kappa	antibody–antigen	complex,	successfully	improving	their	affinities	
10	to	50	fold	by	replacing	individual	CDRs	of	the	native	antibody	with	new	CDR	lengths	and	
clusters.	
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Introduction	

Antibodies	are	a	key	component	of	the	adaptive	immune	system	and	form	the	basis	

of	 its	 ability	 to	 detect	 and	 respond	 to	 foreign	 pathogens	 through	 binding	 of	 molecular	

epitopes.	Antibodies	are	 increasingly	a	 focus	of	biomedical	research	 for	drug	and	vaccine	

development	 in	 addition	 to	 their	 numerous	 applications	 in	 biotechnology	 by	 private	

companies,	government,	and	academia	[1-7].	Experimentally,	antibodies	may	be	discovered	

and	optimized	through	in	vitro	phage	and	yeast	display	[8,9],	screening	with	large	antibody	

libraries	 [10-13]	 and/or	 affinity	maturation	 through	 error-prone	PCR	 [14-16].	 They	may	

also	 be	 derived	 in	 vivo	 through	 a	 combination	 of	 animal	 immunization	 and	 antibody	

screening	through	ELISA	or	Western	blots,	and	humanization	of	the	animal	antibody	[17-

19].	

Although	 these	methods	 have	 been	 successfully	 applied	 to	 create	 new	 antibodies,	

they	can	take	many	months	to	complete	and	can	be	prohibitively	expensive.	In	addition,	for	

many	 targets,	 these	 methods	 may	 not	 produce	 antibodies	 with	 desirable	 properties,	

because	the	antigen	is	difficult	to	target	[20-22]	or	because	the	antibody	is	required	to	bind	

to	 a	 specific	 epitope	 for	 various	 functional	 reasons	 such	 as	 the	neutralization	of	 a	 target	

pathogen	 [23],	 initialization	of	a	downstream	signaling	cascade	 [24],	or	 the	blocking	of	a	

binding	 protein	 from	 being	 able	 to	 engage	 the	 site	 [25].	We	 believe	 that	 computational	

design	methods	developed	specifically	for	antibodies	can	be	used	in	tandem	with	state-of-

the-art	 experimental	methods	 to	 save	 time,	money,	 and	 increase	 our	 ability	 to	 design	 or	

enhance	antibodies	to	many	different	targets.		

Various	computational	methods	 including	rational,	structure-based	design,	protein	

design	 algorithms,	 and	 antibody-specific	 modeling	 techniques	 can	 aid	 in	 the	 design	 of	
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antibodies	 [26-28].	 General	 protein	 design	 methods	 have	 been	 applied	 to	 affinity	

maturation	 [29-31],	 improving	 stability	 [32-34],	 humanization	 [35,36],	 and	 the	design	of	

phage/yeast	display	libraries	[37-40],	while	three	software	programs	have	been	developed	

specifically	for	antibody	computational	design.	Maranas	and	colleagues	have	developed	the	

OptCDR	 [41]	 and	 OptMAVEn	 [42]	 methods,	 which	 sample	 and	 combine	 elements	 of	

antibody	 structure	 in	 an	effort	 to	 assemble	antibodies	 to	bind	 to	novel	 epitopes.	OptCDR	

samples	 from	clusters	of	 the	 six	CDRs	 in	 the	presence	of	 a	 fixed	antigen	position.	This	 is	

followed	 by	 placement	 of	 side	 chains	 according	 to	 sequence	 preferences	 within	 each	

cluster,	 a	 rotamer	 search	 from	 a	 backbone-dependent	 rotamer	 library	 [43],	 and	 a	

CHARMM-based	 energy	 function.	 The	 method	 has	 not	 been	 experimentally	 tested.	

OptMAVEn	 divides	 antibody	 structures	 in	 a	 manner	 inspired	 by	 V(D)J	 recombination:	

antibody	heavy-	and	light-chain	V	regions,	CDR3s,	and	post-CDR3	segments	from	the	MAPS	

database	 [44].	 OptMAVEn	 has	 been	 tested	 experimentally	 and	 was	 used	 to	 design	

antibodies	 against	 a	 very	 hydrophobic	 heptamer	 peptide	 antigen	 with	 a	 repetitive	

sequence	 (FYPYPYA),	 starting	 from	 the	 structure	 of	 an	 existing	 antibody	 bound	 to	 a	

dodecamer	 peptide	 containing	 this	 sequence	 (PDB	 4HOH	 [45];	 only	 the	 heptamer	 has	

coordinates	and	was	used	in	the	design	process)	[46].		

Lapidoth	et	al.	have	presented	AbDesign	[47]	that	follows	a	similar	methodology	to	

OptMAVEn,	 breaking	 up	 antibodies	 into	 V	 regions	 and	 CDR3	 by	 analogy	 to	 V(D)J	

recombination.	They	clustered	V	region	structures	purely	by	length	of	the	CDR1	and	CDR2	

segments	in	VH	and	VL,	grouping	sequences	from	distantly	related	germlines	and	different	

CDR	 conformations	 into	 clusters	 from	 which	 sequence	 profiles	 were	 derived.	 As	

implemented	in	the	Rosetta	Software	Suite,	AbDesign	combinatorially	builds	antibodies	and	
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performs	 sequence	 design	 from	 position-specific	 scoring	 matrices	 of	 aligned	 antibody	

sequences	of	their	 length-based	clusters	of	the	V	regions	and	CDR3	regions.	AbDesign	has	

limited	 flexibility	 in	 terms	 of	 setting	 which	 CDRs	 to	 design,	 what	 CDR	 lengths	 or	

conformations	 to	 sample,	 and	 which	 protocols	 to	 use	 to	 optimize	 the	 structure.	 Their	

benchmarking	 consisted	 of	 reporting	 the	 Cα	 RMSD	 from	 native	 for	 each	 CDR	 of	 the	 top	

design	 for	 each	 of	 9	 antibodies.	 Only	 the	 CDRs	 with	 the	 most	 common	 canonical	

conformations	 were	 reproduced;	 those	 with	 less	 common	 conformations	 were	 poorly	

predicted,	making	it	difficult	to	evaluate	the	statistical	significance	of	their	results.	

AbDesign	 was	 used	 recently	 to	 create	 lead	 antibodies	 against	 insulin	 and	

mycobacterial	 acyl-carrier	 protein,	 which	 were	 then	 synthesized	 and	 tested	 for	 binding	

[48].	Three	weak	binders	were	 then	 subjected	 to	 random	mutagenesis	 in	a	yeast-display	

library	screen	 followed	by	manually	chosen	mutations,	which	resulted	 in	antibodies	with	

affinity	in	the	50-100	nM	range.	Two	residues	in	the	epitope	of	each	of	the	two	ACP-binding	

antibodies	were	mutated	to	test	the	designs.	Only	one	of	these	four	reduced	binding.	One	

drastic	 mutation	 from	 valine	 to	 glutamic	 acid	 actually	 increased	 binding.	 Two	 residues	

outside	 the	 epitope	 of	 each	 of	 the	 two	 ACP	 designs	 were	 also	 mutated;	 three	 of	 these	

mutations	 increased	 binding	 of	 their	 respective	 antibodies	 2	 to	 5	 fold	 and	 one	 of	 them	

surprisingly	abrogated	binding.	Thus,	only	1	of	8	mutations	behaved	as	predicted	by	 the	

computational	designs,	 indicating	that	 instead	the	antibodies	may	be	a	result	of	the	yeast	

display	 screen	 alone.	 The	 computational	 benchmarking	 and	 experimental	 results	 for	

AbDesign	suggest	that	further	development	of	antibody	computational	design	is	warranted.	

Taking	 advantage	 of	 the	 influx	 of	 new	 structures	 of	 antibodies	 in	 the	 PDB,	 we	

presented	a	new	clustering	of	all	CDR	structures	in	the	Protein	Data	Bank	(PDB)	in	2011,	
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updating	 the	 Chothia	 classification	 developed	 in	 the	 1980s	 and	 1990s	 [49-52].	 Our	

clustering	 was	 performed	 with	 a	 dihedral	 angle	 metric	 and	 an	 affinity-propagation	

clustering	 algorithm,	 and	 was	 presented	 with	 a	 systematic	 nomenclature	 [53],	 which	 is	

now	in	common	use.	From	this	classification,	we	developed	the	PyIgClassify	database	[54],	

which	 is	updated	monthly	 and	 contains	CDR	sequences	 and	 cluster	 identifications	 for	 all	

antibodies	in	the	PDB.	PyIgClassify	includes	identification	of	species	and	IMGT	germline	V	

regions	 [55],	 and	 is	 provided	 as	 a	 relational	 database	 for	 use	 in	 antibody	 structure	

prediction	and	design.		

We	 hypothesized	 that	 the	 clusters	 in	 PyIgClassify	 could	 form	 the	 core	 of	 a	

knowledge-based	 approach	 to	 antibody	 design.	 In	 this	 paper,	 we	 test	 this	 hypothesis	

through	 a	 computational	 benchmark	 and	 experimental	 validation	 on	 two	 separate	

antibodies.	Using	the	data	from	PyIgClassify,	our	main	approach	to	design	is	to	graft	CDRs	

from	populated	clusters	onto	the	antibody	and	to	sample	the	sequence	and	structure	space	

of	that	CDR	according	to	the	observed	variation	in	sequence	and	structure	of	that	cluster	in	

the	database.	Our	goal	was	to	create	a	flexible,	generalized	antibody	design	framework	and	

program	that	can	be	applied	 to	numerous	 types	of	antibody	design	projects	 from	affinity	

maturation	to	de	novo	design.		

To	create	a	reliable	antibody	design	framework	from	our	structural	bioinformatics	

efforts,	 we	 leveraged	 the	 Rosetta	 Software	 Suite	 [56],	 a	 collaborative	 research	 project	

across	many	independent	labs	around	the	world.	Rosetta	has	been	developed	and	used	for	

a	 variety	 of	 modeling	 and	 design	 tasks,	 such	 as	 loop	 modeling	 [57,58],	 protein–protein	

docking	[59,60],	structure	refinement	[61-64],	de	novo	protein	design	[65],	enzyme	design	

[66-68],	 and	 interface	 design	 [69-71].	 Rosetta	 provides	 frameworks	 for	 sampling	 and	
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optimizing	 the	 conformations	 of	 the	 backbone	 and	 side	 chains	 of	 a	 protein–protein	

complex	while	simultaneously	changing	the	sequence	at	specified	positions	in	the	interface	

(in	 this	 case,	 primarily	 in	 the	CDRs)	 in	 order	 to	 optimize	 the	 total	 energy	 of	 the	 system.	

Alternatively,	 the	 program	 can	 optimize	 the	 interface	 energy,	 which	 is	 the	 difference	

between	the	energy	of	 the	relaxed	complex	and	 the	sum	of	 the	energies	of	 the	separated	

components	after	relaxation.		

The	program	and	methodology	we	have	developed	is	called	RosettaAntibodyDesign	

or	 RAbD.	 In	 this	 paper,	 we	 describe	 RAbD	 and	 both	 experimental	 testing	 and	 extensive	

computational	 benchmarking.	 To	 develop	 RAbD:	 (1)	 we	 created	 a	 database	 of	 CDR	

structures	annotated	according	to	our	CDR	cluster	nomenclature	and	added	this	database	

to	Rosetta;	(2)	implemented	user-controlled	sampling	of	CDR	structures	from	this	database	

for	 antibody	 design	 in	 Rosetta;	 (3)	 developed	 new	 grafting	 methods	 using	 the	 cyclic	

coordinate	descent	algorithm	[72]	 in	Rosetta;	 (4)	 implemented	an	algorithm	 that	utilizes	

sequence	profiles	 for	our	CDR	clusters	 for	 sampling	amino	acid	 changes	during	antibody	

design	 and	 exploits	 existing	 structure	 optimization	 and	Monte	 Carlo	 design	 strategies	 in	

Rosetta;	and	(5)	added	antibody-specific	Feature	Reporters	to	Rosetta	to	provide	data	that	

can	be	used	in	selecting	antibody	designs	for	synthesis	and	testing.	The	RAbD	Framework	

consists	 of	 around	50	 new	Rosetta	 classes	 and	 over	 20,000	 lines	 of	 code,	 all	 of	which	 is	

used	by	the	RAbD	program	and	available	in	RosettaScripts.	

A	 common	method	 for	 computational	 benchmarking	of	 protein	design	methods	 is	

the	 use	 of	 the	 concept	 of	 sequence	 recovery	 [73].	 Sequence	 recovery	 tests	 how	 the	

sequences	 in	 the	 final	 design	 models	 match	 the	 native	 sequence,	 calculated	 as	 percent	

sequence	 identity	 for	 all	 or	 the	 subset	 of	 the	 designable	 residues.	 Rosetta’s	 sequence	
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recovery	tends	to	be	in	the	35–40%	range	for	full	design	of	monomeric	proteins	[74],	since	

many	 surface	 positions	 are	 tolerant	 to	 amino	 acid	 substitution,	 and	 the	 benchmark	

protocols	 do	 not	 include	 functional	 interactions	 with	 other	 proteins,	 nucleic	 acids,	 or	

ligands.		

However,	 since	 our	 antibody	 design	 protocol	 includes	 potential	 changes	 in	 the	

overall	structure	of	the	CDRs	(by	sampling	different	CDR	lengths,	clusters,	and	sequences),	

the	 standard	 sequence	 recovery	metric	 is	 inadequate	 for	 testing	 computational	 antibody	

design.	We	have	therefore	expanded	the	concept	of	sequence	recovery	to	include	recovery	

of	 structural	 features	of	 the	designed	antibodies.	Although	antibodies	 in	 the	PDB	are	not	

likely	to	be	the	highest	affinity	possible	to	a	given	epitope,	 they	bind	strongly	enough	for	

crystallography.	Thus,	maximizing	the	recovery	of	CDR	lengths,	clusters,	and	sequences	is	a	

strategy	to	optimize	sampling	and	scoring	strategies	for	antibody	design.		

We	 have	 developed	 a	 novel	 way	 of	 assessing	 the	 statistical	 significance	 of	 these	

recovery	metrics,	which	may	be	used	in	any	protein	design	scenario.	We	have	defined	two	

design	metrics	–	 the	design	risk	ratio	 and	 the	antigen	risk	ratio.	We	define	 the	design	risk	

ratio	as	 the	ratio	of	 the	 frequency	of	native	CDR	clusters,	 lengths,	or	residue	 identities	 in	

the	 top	 scoring	 designs	 divided	 by	 the	 frequency	 of	 the	 same	 native	 features	 sampled	

during	 the	design	 trajectory.	 In	 this	way,	we	can	account	 for	any	uneven	sampling	of	 the	

native	structure	and	sequence	during	the	design	process.	The	antigen	risk	ratio	is	the	ratio	

of	the	frequency	of	the	native	CDR	length,	cluster,	or	residue	identities	achieved	in	the	top	

scoring	decoys	in	independent	antigen-present	and	antigen-absent	simulations.	This	metric	

accounts	 for	 any	 bias	 Rosetta	may	 have	 for	 the	 native	 CDRs	 even	 in	 the	 absence	 of	 the	

antigen,	 possibly	 because	 of	 favorable	 framework–CDR	 or	 CDR–CDR	 interactions.	 In	 this	
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paper,	we	utilize	 a	 benchmark	 of	 60	 antigen-antibody	 complexes	 that	we	 chose	 to	 be	 as	

diverse	in	CDR	lengths	and	clusters	as	possible.	We	show	that	RAbD	is	able	to	achieve	risk	

ratios	greater	 than	1.0	 for	each	CDR,	and	we	show	statistical	significance	of	 these	results	

with	95%	confidence	intervals.	

To	 enable	 repeatable	 analysis	 and	 comparison	 of	 native,	 modeled,	 and	 designed	

antibody	 structures	 output	 by	 RAbD,	 we	 developed	 a	 set	 of	 antibody-specific	

FeatureReporters	 and	Features	R	Scripts	within	 the	Rosetta	Features	Reporter	 framework	

[74-76].	 These	 have	 enabled	 comparison	 of	 antibody	 design	 strategies	 and	 benchmarks,	

were	 used	 in	 the	 design	 of	 the	 antibodies	 in	 this	 paper,	 and	 have	 aided	 in	 the	 general	

optimization	of	the	antibody	design	framework.		

Finally,	we	show	results	where	RAbD	and	the	feature	analysis	reporters	were	used	

to	 experimentally	 improve	 binding	 affinity	 of	 antibodies	 from	 two	 different	 antibody–

antigen	complexes.	

	

RESULTS	

Antibody	Design	Framework	and	Program	

We	created	a	generalized	framework	and	application	for	antibody	design	within	the	

Rosetta	 software	 suite	 written	 in	 C++.	 This	 highly	 customizable	 framework	 enables	 the	

tailored	 design	 of	 antibody	 CDRs,	 frameworks,	 and	 antigens	 using	 highly	 expanded	 core	

components	of	 the	RosettaAntibody	 framework	[77-79]	and	our	PyIgClassify	clustering	of	

antibody	 CDRs	 [53,54]	 as	 its	 base.	 As	 with	 other	 Rosetta	 design	 protocols,	

RosettaAntibodyDesign	 depends	 on	 a	 “Monte	 Carlo	 plus	minimization”	 (MCM)	 procedure	
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[80].	 This	 means	 that	 at	 each	 stage	 of	 the	 simulation,	 a	 change	 in	 sequence	 and/or	

structure	is	sampled	randomly,	followed	by	energy	minimization	within	the	Rosetta	energy	

function.	 If	 the	 resulting	 minimized	 structure	 (a	 “decoy”)	 has	 lower	 energy	 than	 the	

previous	decoy	in	the	protocol,	then	the	new	structure	is	accepted.	If	the	energy	of	the	new	

design	is	higher	than	the	previous	decoy,	the	new	design	is	accepted	with	probability	exp(-

ΔE/RT)	where	ΔE	is	the	change	in	energy.	This	energy	can	be	either	the	total	energy	or	the	

calculated	interface	energy,	which	is	the	energy	of	the	complex	minus	the	energies	of	the	

separated	antigen	and	antibody	after	side-chain	repacking	[81],	or	a	weighted	combination	

of	both.	The	RAbD	algorithm	samples	the	diverse	sequence,	structure,	and	binding	space	of	

an	antibody-antigen	complex	(Fig.	1;	Figure		S1	in	Supporting	Information).	

The	 protocol	 begins	with	 the	 three-dimensional	 structure	 of	 an	 antibody–antigen	

complex.	 This	 structure	 may	 be	 an	 experimental	 structure	 of	 an	 existing	 antibody	 in	

complex	 with	 its	 antigen	 or	 a	 predicted	 structure	 of	 an	 existing	 antibody	 docked	

computationally	to	 its	antigen.	As	a	prelude	to	de	novo	design,	 the	best	scoring	results	of	

low-resolution	docking	of	a	large	number	of	unrelated	antibodies	to	a	desired	epitope	on	a	

target	 antigen	 structure	 may	 be	 used.	 It	 should	 be	 noted	 that	 design	 on	 predicted	

structures	is	generally	less	reliable	than	design	on	high-resolution	crystal	structures	due	to	

possible	inaccuracies	in	the	model.	The	RosettaAntibodyDesign	protocol	is	driven	by	a	set	of	

command-line	options	and	an	optional	set	of	design	instructions	provided	as	an	input	file	

for	 increased	 control.	 Details	 and	 example	 command	 lines	 and	 instruction	 files	 are	

provided	in	the	Supplemental	Methods	section.		
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Figure 1. Schematic diagrams of RosettaAntibodyDesign. A. The outer loop: The protocol starts by 
(1) Choosing a CDR from those that are set to design [L1, L2, etc.] randomly according to set weights 
(default is equal weighting) and (2) grafting a random structure for that CDR from the CDRSet, a set of 
CDR structures from the PDB that satisfy user-defined input rules. (3) Regional Sequence Design is then 
setup for all designable regions and (4) structural constraints on the CDRs and SiteConstraints on the 
antibody-antigen orientation, if any, are set. (5) N Inner cycles are then completed, followed by (6) the 
application of the Monte Carlo criterion to either accept or reject the preliminary designs.  (7) Finally, the 
lowest energy designs are output. B. The inner loop: (1) The antigen-antibody interface is first optionally 
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optimized by running N cycles of RosettaDock [45]. Interface residues set to undergo sequence design 
will be designed. (2) The inner Monte Carlo criterion is then applied. The conformations of the CDR, its 
stem, and surrounding residues, and CDRs are then optimized according to the instruction file. (3) 
Residues from neighboring regions are designed if enabled (Figure 2 shows this packing/design shell). 
(4) The inner Monte Carlo criterion is then applied again and (5) the lowest energy decoy found in the 
inner loop is returned to the outer loop.  

RAbD	enables	the	grafting	of	CDRs	from	diverse	clusters	of	different	lengths	within	

the	PyIgClassify	database,	sampling	from	the	sequence	and	structural	variation	within	each	

cluster.	 Broadly,	 the	 RAbD	 protocol	 consists	 of	 alternating	 outer	 and	 inner	Monte	 Carlo	

cycles.	Each	outer	cycle	(of	Nouter	cycles)	(Fig.	1A)	consists	of	randomly	choosing	a	CDR	(L1,	

L2,	etc.)	 from	those	CDRs	set	to	design,	randomly	choosing	a	cluster	and	then	a	structure	

from	 that	 cluster	 from	 the	database	according	 to	 the	 input	 instructions.	The	CDR	 is	 then	

grafted	 onto	 the	 antibody	 framework	 in	 place	 of	 the	 existing	 CDR	 (GraftDesign).	 The	

program	 then	performs	Ninner	 rounds	of	 the	 inner	 cycle	 (Fig.	 1B),	 consisting	of	 sequence	

design	 (SeqDesign)	 and	 local	 structure	 optimization.	 Sequence	 design	 is	 performed	 by	

Rosetta’s	side-chain	repacking	algorithm:	a	residue	is	chosen	randomly	and	the	energy	of	

each	 of	 its	 rotamers	 is	 evaluated	 (both	 internal	 energy	 and	 interaction	 with	 the	

environment);	 if	 the	 residue	 is	 set	 to	be	designed,	 then	 the	 rotamers	of	multiple	 residue	

types	are	tested;	the	side	chain	is	then	placed	in	the	rotamer	(and	residue	type)	with	lowest	

energy.	This	is	repeated	for	residues	in	the	grafter	CDR	as	well	as	residues	in	neighboring	

CDRs	and	the	framework	(where	only	the	native	residue	types	are	used).	Once	this	design	

is	 completed,	 local	 structure	 optimization	 is	 performed	 with	 Rosetta’s	 standard	 local	

energy	 minimization	 routines.	 Amino	 acid	 changes	 are	 typically	 sampled	 from	 profiles	

derived	 for	 each	 CDR	 cluster	 in	 PyIgClassify.	 Conservative	 amino	 acid	 substitutions	

(according	 to	 the	 BLOSUM62	 substitution	 matrix)	 may	 be	 performed	 when	 too	 few	

sequences	 are	 available	 to	 produce	 a	 profile	 (e.g.,	 for	 H3).	 Each	 inner	 cycle	 structurally	
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optimizes	the	backbone	and	repacks	side	chains	of	 the	CDR	and	 its	neighbors	 in	order	to	

optimize	 interactions	 of	 the	 CDR	 with	 the	 antigen	 and	 other	 CDRs	 (Fig.	 2).	 Backbone	

dihedral	 angle	 constraints	 derived	 from	 the	 cluster	 data	 are	 applied	 to	 limit	 deleterious	

structural	 perturbations.	 After	 each	 inner	 cycle	 is	 completed,	 the	 new	 sequence	 and	

structure	 are	 accepted	 according	 to	 the	 Metropolis	 Monte	 Carlo	 criterion.	 After	 Ninner	

rounds	of	the	inner	cycle,	the	program	returns	to	the	outer	cycle,	at	which	point	the	energy	

of	 the	 resulting	 design	 is	 compared	 to	 the	 previous	 design	 in	 the	 outer	 cycle.	 The	 new	

design	 is	 accepted	 or	 rejected	 according	 to	 the	 Monte	 Carlo	 criterion.	 After	Nouter	 cycles	

(default	of	25),	the	lowest	energy	design	observed	during	the	run	is	output	by	the	program	

as	the	final	design.	In	practice,	the	whole	procedure	is	performed	in	parallel	on	a	cluster	to	

produce	 100s	 or	 1000s	 of	 output	 structures	 (decoys).	 This	 ensemble	 of	 designs	 is	 then	

analyzed	 to	 choose	 specific	 sequences	 for	 experimental	 testing,	 typically	 based	 on	 both	

total	 energy	 and	 interface	 energy,	which	 are	 reported	 in	 the	 decoys,	 or	 the	 needs	 of	 the	

specific	 project.	 Decoy	 discrimination,	 analysis,	 and	 selection	 are	 critical	 to	 the	

experimental	success	of	the	final	designs.	

RAbD	can	be	tailored	for	a	variety	of	design	projects	and	design	strategies.	This	 is	

accomplished	 through	 the	 use	 of	 a	 set	 of	 command-line	 options	 and	 an	 optional	 CDR	

Instruction	File.	The	CDR	Instruction	File	(Fig.	3)	uses	a	simple	syntax	and	enables	control	

over	 what	 lengths,	 clusters,	 germlines,	 and	 organism	 of	 each	 CDR	 will	 be	 sampled	 (the	

CDRSet)	and	which	structural	optimizations	are	used	to	minimize	the	score	of	each	design.	

Each	instruction	can	be	set	for	all	of	the	CDRs	using	a	specific	keyword,	or	they	can	be	set	

individually.	For	example,	in	a	redesign	project,	we	may	want	to	design	an	antibody	with	a	

particular	CDR	that	is	longer	than	the	existing	CDR	in	order	to	create	new	contacts	with	the	
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antigen	that	are	not	present	in	the	starting	structure.	Alternatively,	we	may	simply	want	to	

optimize	 the	 sequence	of	 a	particular	CDR	or	 set	 of	CDRs	using	 the	 cluster	profiles	 from	

PyIgClassify.	These	examples	can	be	accomplished	easily	through	the	CDR	Instruction	File,	

and	this	flexibility	has	been	used	to	design	the	antibodies	described	below.	

 
Figure 2: During the inner optimization cycle., a packing shell is created (cyan) around the chosen CDR 
(in this case, L1 in yellow), and its neighbors (in this case, L3 and the DE loop (L4) in blue). By default, 6 
Å is used as the packing shell distance.  During the inner loop, all side chains are optimized and amino 
acid changes are made to any CDRs or regions set to sequence. The chosen CDR and its neighbors 
additionally undergo backbone optimization during this stage according to the minimization type chosen. 
 

A	 core	 component	 of	 the	 RAbD	 protocol	 is	 an	 SQLITE3	 antibody	 design	 database	

that	 houses	 all	 structures,	 CDR-clustering	 information,	 species,	 germline,	 and	 sequence	

profile	 data	 used	 for	 design.	 The	 database	 benchmarked	 in	 this	 paper	 comes	 from	 the	

August	2017	release	of	PyIgClassify,	but	up-to-date	versions	that	reflect	the	current	Protein	

Data	 Bank	 (PDB)	 can	 also	 be	 obtained	 from	 the	 PyIgClassify	 website	

(http://dunbrack2.fccc.edu/PyIgClassify).	If	RAbD	uses		non-redundant	databases	without	

outliers	 (the	 default),	 defined	 as	 CDRs	 greater	 than	 40°	 or	 1.5	 Å	 RMSD	 from	 one	 of	 our	

cluster	 centroids	 (not	applied	 to	H3),	 this	database	comprises	657	L1	sequences,	471	L2	
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sequences,	 681	 L3	 sequences,	 805	 H1	 sequences,	 930	 H2	 sequences,	 and	 985	 H3	

sequences.	In	order	to	improve	framework-CDR	compatibility	in	the	final	designs,	λ	and	κ	

type	antibodies	are	designed	by	 limiting	the	resulting	CDRSet	 to	only	those	CDRs	derived	

from	the	same	light	chain	type	as	the	antibody	undergoing	design	(Fig.	2).	

 

Figure 3 – Example CDR Instruction file used for successful 2J88 antibody design L14_7. Lines 
beginning with # are comments and are ignored by the program. Further details are provided in Methods. 
	

Computational	Benchmarking	of	RAbD	

To	develop	metrics	 for	recovery	of	CDR	 lengths	and	clusters,	we	must	account	 for	

the	fact	that	CDR	lengths	and	clusters	are	not	evenly	distributed	in	nature,	the	PDB,	or	in	

the	 PyIgClassify	 database	 and	 are	 not	 necessarily	 sampled	 evenly	 during	RAbD’s	Monte-

Carlo	 trajectories.	 The	 probability	 of	 choosing	 the	 native	 cluster	 and	 length	 during	

sampling	directly	 influences	 the	 statistical	 significance	of	 the	 final	 recovery	of	 the	native	

length	and	cluster.		

To	 account	 for	 this	 phenomenon,	 we	 borrow	 a	 concept	 from	 statistical	
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epidemiology,	the	Risk	Ratio.	The	Risk	Ratio	(RR)	is	defined	as	the	ratio	of	two	frequencies	

(or	proportions):	 the	 frequency	of	 event	X	 in	 situation	A	 (e.g.,	 disease	progression	while	

taking	a	drug)	and	the	frequency	of	event	X	in	situation	B	(e.g.,	disease	progression	with	no	

drug	treatment).	The	Risk	Ratio	is	similar	to	the	odds	ratio,	which	is	simply	the	ratio	of	the	

odds	of	X	 to	not-X	 in	 situation	A	and	 the	odds	of	X	 to	not-X	 in	 situation	B.	However,	 the	

interpretation	of	the	odds	ratio	is	often	misleading	and	used	incorrectly	to	inflate	a	sense	of	

benefit	or	risk	[82].	 In	standard	protein	design	scenarios,	we	may	define	the	risk	ratio	as	

the	 frequency	of	 the	native	structure	(or	sequence)	 in	 the	 top	scoring	designs	divided	by	

the	 frequency	 of	 the	 native	 structure	 (or	 sequence)	 sampled	 during	 the	 protocol.	 If	 we	

perform	 design	 simulations	 on	 an	 existing	 high-affinity	 antibody–antigen	 complex,	 it	 is	

reasonable	 to	 suppose	 that	 a	 successful	 protocol	 will	 recover	 the	 native	 CDR	 lengths,	

conformations,	and	sequences	of	a	high-affinity	antibody	more	often	than	they	are	sampled.	

We	 therefore	 define	 the	 design	 risk	 ratio	 (DRR)	 for	 CDR	 lengths	 and	 clusters	 as	 the	

frequency	 of	 the	 native	 length	 or	 cluster	 in	 the	 top	 scoring	 designs	 (the	 top	decoys,	 one	

from	each	run	of	 the	program)	divided	by	the	 frequency	that	 the	native	 length	or	cluster	

was	sampled	during	the	design	simulations.		

Because	 Rosetta	might	 prefer	 some	 CDR	 conformations	 and	 lengths	 because	 they	

are	 lower	 energy,	 even	 in	 the	 absence	 of	 antigen,	 we	 also	 define,	 the	 antigen	 risk	 ratio	

(ARR),	which	is	the	frequency	of	the	native	CDR	length	or	cluster	in	the	top	scoring	designs	

in	 the	 presence	 of	 the	 antigen	 divided	 by	 the	 frequency	 of	 the	 native	 in	 the	 top	 scoring	

designs	 from	 independent	 simulations	 performed	 in	 the	 absence	 of	 the	 antigen.	 It	 is	

straightforward	to	calculate	confidence	 intervals	 for	the	design	and	antigen	risk	ratios	so	

that	statistical	significance	of	the	results	can	be	assessed	(see	Methods).		
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We	 tested	 two	 types	of	design	methods:	 ‘opt-E’,	which	uses	 the	Metropolis	Monte	

Carlo	criterion	to	optimize	Total	Rosetta	Energy	of	the	antibody-antigen	complex,	and	‘opt-

dG’,	which	optimizes	 the	calculated	 interface	energy.	The	 interface	energy	 is	equal	 to	 the	

Total	 Rosetta	 Energy	 of	 the	 complex	 minus	 the	 Total	 Rosetta	 Energy	 of	 the	 separated	

antigen	and	antibody,	after	side-chain	repacking.	For	the	opt-E	method,	we	calculate	both	

the	 DRR	 and	 ARR	 values.	 Since	 opt-dG	 includes	 a	 step	 of	 separating	 the	 antigen	 and	

antibody,	 an	 antigen-free	 simulation	 is	 not	 relevant	 to	 the	 calculation,	 and	we	 therefore	

only	 calculate	 the	 DRR	 for	 the	 opt-dG	 designs.	 All	 5	 non-H3	 CDRs	 were	 graft-designed,	

while	all	CDR	sequences,	including	H3,	were	sequence-designed	either	preferentially	using	

derived	 CDR	 cluster	 profiles	 or	 conservative	 design	 where	 cluster	 sequence	 data	 were	

sparse.	All	5	non-H3	CDRs	began	each	simulation	with	randomly	 inserted	CDRs	 from	the	

antibody	 design	 database.	 Prior	 to	 design	 calculations,	 the	 structure	 of	 each	 antigen-

antibody	 complex	was	minimized	 into	 the	Rosetta	 energy	 function	with	 tight	 coordinate	

constraints	on	both	backbone	and	side-chain	regions	[63]	(see	Methods	for	protocol).	We	

used	 an	 up-to-date	 version	 of	 the	 antibody	 design	 database	 derived	 from	 the	 PDB	 as	 of	

August,	2017.		It	contains	3,974	CDRs,	while	our	original	clustering	in	North	et	al.	contained	

1,346	CDRs	(http://dunbrack2.fccc.edu/pyigclassify).		

A	 diverse	 set	 of	 46	�	 and	 14	�	 antibody–antigen	 complexes	 were	 used	 for	 the	

computational	benchmarks	 (Table	 1;	more	 details	 on	 the	 benchmark	 antibodies	 are	

provided	 in	Table	 S1).	This	set	of	antibody–antigen	complexes	 includes	a	diverse	set	of	

CDR	 lengths	 and	 clusters,	 with	 many	 of	 the	 clusters	 commonly	 found	 in	 the	 PDB.	 The	

benchmark	complexes	were	selected	to	satisfy	several	criteria:	(1)	resolution	≤	2.5	Å;	(2)	

buried	surface	area	in	the	antigen-antibody	complex	>	700	Å2;	(3)	CDR1	and	CDR2	within	
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40°	of	one	of	our	cluster	centroids;	(4)	contacts	with	CDRs	in	both	the	light	chain	and	the	

heavy	 chain	 variable	 domains;	 (5)	 non-redundancy	 –	 antibodies	 which	 bind	 the	 same	

antigen	were	only	 selected	 if	 they	bound	 to	 completely	different	 sites	 on	 the	 antigen;	 6)	

benchmark	antibodies	were	prioritized	so	as	 to	comprise	as	diverse	a	set	of	CDR	 lengths	

and	 clusters	 given	 the	 distribution	 of	 lengths	 and	 clusters	 present	 in	 the	 PDB.	 The	

benchmark	contains	22	length	classes	and	35	clusters	over	the	5	non-H3	CDRs	and	lengths	

of	H3	from	6	to	24	residues.	

We	 define	 the	 “%Sampled”	 as	 the	 rate	 at	 which	 the	 native	 length	 or	 cluster	 is	

sampled	during	the	design	trajectories.	The	5	non-H3	CDRs	are	very	different	 in	terms	of	

the	 diversity	 of	 lengths	 and	 clusters	 that	 are	 observed	 in	 the	 PDB	 [53],	with	 L2	 and	H1	

having	more	than	90%	of	CDRs	in	the	PDB	with	a	single	length	and	conformation	(clusters	

L2-8-1	and	H1-13-1	respectively),	while	L1,	L3,	and	H2	are	more	diverse	in	both	length	and	

conformation.	 We	 ran	 design	 simulations	 for	 the	 antibodies	 in	 the	 benchmark	 set	 by	

sampling	the	clusters	of	each	CDR	evenly	(regardless	of	length)	of	all	clusters	represented	

in	the	database	by	5	or	more	unique	sequences	from	the	same	antibody	gene	(heavy,	λ,	or	κ	

antibody	CDRs).	Thus,	 the	%Sampled	of	native	CDR	 lengths	 (Fig.	 4A)	 is	only	23%	for	 the	

most	 length-diverse	 CDR,	 L1;	 followed	by	 L3	 (50%)	 and	H2	 and	H1	 (both	66%),	 and	 L2	

(92%),	which	is	the	least	diverse	(a	few	λ	L2	CDRs	are	length	12).	The	%Sampled	of	native	

CDR	clusters	is	only	10-14%	for	L1,	L3,	H1,	and	H2	and	34%	for	L2	(Fig.	4B).	
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Table	1.	Benchmark	antibody	complexes	
 PDB VL H1 H2 H3 L1 L2 L3 AgLength Antigen 

1 1a14 κ H1-13-1 H2-10-1 H3-15 L1-11-2 L2-8-1 L3-9-cis7-1 388 Neuraminidase 

2 1a2y κ H1-13-1 H2-9-1 H3-10 L1-11-2 L2-8-1 L3-9-cis7-2 129 Lysozyme C 

3 1fe8 κ H1-13-1 H2-9-1 H3-9 L1-11-1 L2-8-1 L3-9-cis7-1 196 von Willebrand factor 

4 1ic7 κ H1-13-1 H2-9-1 H3-7 L1-11-1 L2-8-1 L3-9-cis7-1 129 Lysozyme C 

5 1iqd κ H1-13-1 H2-10-1 H3-10 L1-12-1 L2-8-1 L3-9-1 156 Coagulation factor VIII 

6 1n8z κ H1-13-1 H2-10-1 H3-13 L1-11-1 L2-8-1 L3-9-cis7-1 607 ErbB-2 

7 1ncb κ H1-13-1 H2-10-1 H3-13 L1-11-2 L2-8-1 L3-9-cis7-1 389 Neuraminidase 

8 1osp κ H1-13-7 H2-9-3 H3-14 L1-11-2 L2-8-2 L3-9-cis7-1 257 Ozd[ A 

9 1uj3 κ H1-13-1 H2-10-1 H3-10 L1-11-2 L2-8-1 L3-9-cis7-1 205 Tissue factor 

10 1w72 λ H1-13-1 H2-10-2 H3-15 L1-11-3 L2-8-1 L3-11-1 274 HLA-A1,β2-MG,peptide 

11 2adf κ H1-13-1 H2-10-1 H3-11 L1-11-2 L2-8-1 L3-8-1 196 von Willebrand factor 

12 2b2x κ H1-13-1 H2-9-1 H3-12 L1-10-1 L2-8-1 L3-9-cis7-1 223 Integrin alpha-1 

13 2cmr κ H1-13-3 H2-10-1 H3-12 L1-11-1 L2-8-1 L3-9-cis7-1 226 gp41 

14 2dd8 λ H1-13-10 H2-10-1 H3-11 L1-11-3 L2-8-1 L3-10-1 202 Spike glycoprotein 

15 2ghw κ H1-13-1 H2-10-2 H3-10 L1-11-1 L2-8-1 L3-9-cis7-1 203 Spike glycoprotein 

16 2vxt κ H1-13-1 H2-10-1 H3-6 L1-11-1 L2-8-1 L3-9-cis7-1 157 Interleukin-18 

17 2xqy κ H1-13-1 H2-10-1 H3-11 L1-15-1 L2-8-1 L3-9-cis7-1 572 Envelope glycoprotein-H 

18 2xwt λ H1-13-1 H2-10-1 H3-12 L1-13-1 L2-8-2 L3-11-1 239 Thyrotropin receptor 

19 2ypv κ H1-13-1 H2-10-1 H3-12 L1-11-2 L2-8-1 L3-9-cis7-1 253 Lipoprotein 

20 3bn9 κ H1-13-1 H2-10-2 H3-21 L1-11-1 L2-8-1 L3-9-cis7-1 241 MT-SP1 

21 3cx5 κ H1-14-1 H2-9-1 H3-15 L1-11-2 L2-8-1 L3-9-cis7-1 185 Rieske Iron-sulfur protein 

22 3ffd λ H1-13-1 H2-10-2 H3-11 L1-12-3 L2-12-2 L3-13-1 108 PTH-related 

23 3h3b κ H1-13-1 H2-10-1 H3-13 L1-17-1 L2-8-1 L3-9-cis7-1 194 ErbB-2 

24 3hi6 κ H1-13-1 H2-10-2 H3-13 L1-11-1 L2-8-1 L3-8-1 180 Integrin alpha-L 

25 3k2u κ H1-13-1 H2-10-1 H3-11 L1-11-1 L2-8-1 L3-9-cis7-1 257 HGF activator 

26 3l95 κ H1-13-1 H2-10-1 H3-12 L1-11-1 L2-8-1 L3-9-2 244 NOTCH1 

27 3mxw κ H1-13-1 H2-10-1 H3-12 L1-11-1 L2-8-1 L3-9-cis7-1 169 Sonic hedgehog protein 

28 3nid κ H1-13-1 H2-10-1 H3-12 L1-11-2 L2-8-1 L3-9-cis7-1 457 Integrin alpha-IIb 

29 3o2d κ H1-13-1 H2-10-1 H3-15 L1-17-1 L2-8-1 L3-8-1 188 CD4 

30 3rkd κ H1-15-1 H2-9-1 H3-16 L1-11-2 L2-8-1 L3-9-cis7-2 146 Capsid protein 

31 3s35 κ H1-13-1 H2-10-1 H3-10 L1-15-1 L2-8-1 L3-9-cis7-1 122 VGFR2 

32 3uzq κ H1-13-1 H2-10-1 H3-9 L1-15-1 L2-8-1 L3-9-cis7-1 114 Genome polyprotein 

33 3w9e κ H1-13-1 H2-10-1 H3-15 L1-12-1 L2-8-1 L3-8-2 306 Envelope glycoprotein D 

34 4cmh κ H1-13-1 H2-10-1 H3-13 L1-11-1 L2-8-1 L3-9-cis7-1 256 CD38 

35 4dtg κ H1-13-1 H2-10-2 H3-14 L1-16-1 L2-8-1 L3-9-cis7-1 66 TFPI 

36 4dvr κ H1-13-1 H2-10-1 H3-12 L1-11-1 L2-8-1 L3-8-1 313 gp160 

37 4etq κ H1-13-1 H2-10-1 H3-12 L1-10-1 L2-8-1 L3-9-cis7-1 269 IMV membrane protein 

38 4ffv κ H1-13-1 H2-10-1 H3-10 L1-10-1 L2-8-4 L3-9-cis7-1 730 Dipeptidyl peptidase 4 

39 4fqj λ H1-13-1 H2-10-1 H3-18 L1-13-1 L2-8-1 L3-11-1 304 Hemagglutinin 

40 4g6j κ H1-13-1 H2-10-2 H3-11 L1-11-1 L2-8-1 L3-9-cis7-1 158 Interleukin-1 beta 

41 4g6m κ H1-15-1 H2-9-1 H3-12 L1-11-2 L2-8-1 L3-9-cis7-1 150 Interleukin-1 beta 

42 4h8w λ H1-13-1 H2-10-2 H3-12 L1-14-2 L2-8-1 L3-11-1 353 gp160 

43 4ki5 κ H1-13-1 H2-10-1 H3-15 L1-11-2 L2-8-2 L3-9-cis7-1 183 Factor VIII 

44 4lvn κ H1-14-1 H2-9-1 H3-13 L1-12-1 L2-8-1 L3-9-cis7-1 344 Subtilisin-like SP 

45 4ot1 λ H1-13-1 H2-10-1 H3-24 L1-13-1 L2-8-2 L3-10-1 129 Envelope glycoprotein B 

46 4qci λ H1-13-1 H2-10-2 H3-13 L1-11-3 L2-8-1 L3-9-2 110 PDGFR Beta 

47 4xnq λ H1-14-1 H2-9-1 H3-16 L1-11-3 L2-8-1 L3-9-1 212 Hemagglutinin (Fragment) 

48 4ydk κ H1-13-1 H2-10-2 H3-22 L1-11-1 L2-8-1 L3-9-2 353 gp160 

49 5b8c κ H1-13-1 H2-10-1 H3-13 L1-15-1 L2-8-1 L3-9-cis7-1 139 PD1 

50 5bv7 λ H1-13-1 H2-10-2 H3-19 L1-11-3 L2-8-1 L3-10-1 422 PC-sterol acyltransferase 

51 5d93 κ H1-13-1 H2-10-1 H3-9 L1-10-1 L2-8-1 L3-9-cis7-1 244 Sulfhydryl oxidase 1 

52 5d96 κ H1-13-1 H2-9-1 H3-12 L1-11-1 L2-8-1 L3-9-cis7-1 244 Sulfhydryl oxidase 1 

53 5en2 κ H1-13-1 H2-10-1 H3-17 L1-11-1 L2-8-1 L3-9-cis7-1 141 Pre-glycoprotein GP 

54 5f9o κ H1-13-1 H2-10-1 H3-15 L1-11-1 L2-8-1 L3-8-1 352 gp120 core 

55 5ggs κ H1-13-3 H2-10-1 H3-13 L1-15-1 L2-8-1 L3-9-cis7-1 123 PD1 

56 5hi4 λ H1-13-1 H2-10-2 H3-11 L1-13-2 L2-8-1 L3-9-1 132 Interleukin-17A homodimer 

57 5j13 λ H1-13-1 H2-10-2 H3-15 L1-11-3 L2-8-2 L3-11-1 147 Thymic stromal lymphopoietin 

58 5l6y λ H1-13-1 H2-10-1 H3-15 L1-11-3 L2-8-1 L3-11-1 112 Interleukin-13 

59 5mes λ H1-13-1 H2-10-2 H3-12 L1-13-1 L2-8-1 L3-11-1 162 Mcl-1 homolog 

60 5nuz κ H1-13-1 H2-10-1 H3-13 L1-15-1 L2-8-1 L3-9-cis7-1 156 Pre-glycoprotein GP 

For	each	CDR,	the	Pyigclassify	cluster	is	given.	For	H3,	only	the	length	is	given.	VL	provides	the	kappa	or	lambda	identify	
of	the	light	chain	variable	domain	of	the	antibody.	Antibodies	to	the	same	antigen	bind	in	different	locations	and	are	not	
the	same	antibody.	
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For	each	of	the	60	antibodies,	we	ran	100	design	trajectories,	each	with	100	outer	

design	 cycles	 (Fig.	 1A)	 for	 each	 experiment	 (representing	 a	 total	 of	 10,000	 full	 design	

cycles	for	each	antibody)	and	analyzed	the	lengths	and	clusters	of	the	final	decoy	from	each	

of	the	100	Monte	Carlo	simulations.	The	%Recovered	is	then	the	number	of	final	decoys	out	

of	 100	 runs	 that	 contain	 the	 native	 length	 or	 cluster	 (Fig.	 4A)	 for	 any	 given	 CDR.	 The	

%Recovered	 of	 length	 generally	 runs	 parallel	 with	 the	%Sampled	with	 the	 least	 length-

diverse	 CDRs	 (L2	 and	 H1)	 having	 higher	 length	 recovery	 than	 the	 others.	 The	 highest	

cluster	recovery	is	for	L2.		

The	Design	Risk	Ratio	(DRR)	is	then	defined	by	Equation	1:	

DRR = %Recovered
%Sampled

	 	 	 	 (1)	

where	%Recovered	 and	%Sampled	 are	 calculated	 over	 the	 100	 output	 decoys	 for	 all	 60	

antibodies	 (6000	 total).	 A	 DRR	 greater	 than	 1	 indicates	 that	 the	 length	 or	 cluster	 was	

present	in	the	output	decoys	more	frequently	that	it	was	sampled	during	the	trajectories..	

The	 DRRs	 for	 the	 length	 of	 CDRs	 are	 highest	 for	 L1	 and	 H3	 with	 values	 of	 2.5	 and	 1.5	

respectively.	We	do	not	expect	high	DRRs	for	L2,	H2,	and	H1	since	their	length	diversity	in	

the	PDB	is	very	limited	in	the	first	place.		

The	DRRs	for	the	clusters	are	much	higher.	For	the	opt-E	protocol,	the	cluster	risk	

ratios	 are	 above	 2.4	 for	 all	 5	 non-H3	 CDRs,	 and	 over	 3.5	 for	 L3	 and	 H1.	 The	 results	

demonstrate	 the	 utility	 of	 the	 DRR	 in	 accounting	 for	 the	 different	 levels	 of	 diversity	 in	

length	and	cluster	across	the	five	CDRs	in	which	GraftDesign	was	enabled.	This	result	may	

come	 from	both	more	 favorable	 interactions	and	higher	shape	complementarity	with	 the	

antigen–antibody	 interface	 using	 the	 native	 cluster(s),	 as	 well	 as	 local	 CDR–CDR	
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interactions,	which	help	to	enrich	certain	lengths	and	clusters	together.		

Figure 4:  Computational Benchmarking showing recovery metrics on 60 antibodies for the opt-E protocol 
(optimization of total Rosetta energy) for each CDR that underwent GraftDesign in the RAbD design 
protocol. (A) %Recovered and %Sampled for each CDR length and cluster for the opt-E simulations. (B) 
Design risk ratios (DRR) for recovery of CDR length and cluster for the opt-E simulations. 95% confidence 
intervals for the Risk Ratio statistics are calculated as described in Methods. 
 

There	is	a	possibility	that	Rosetta	scores	some	CDR	structures	more	favorably	than	

others	because	of	internal	interactions	within	the	CDR	or	interactions	with	other	CDRs	or	

the	 framework.	 Some	 rare	 clusters	 may	 be	 high	 in	 energy	 or	 even	 artifacts	 of	 highly	

engineered	 antibodies	 or	 errors	 in	 structure	 determination.	 To	 investigate	 this,	 we	

performed	the	opt-E	protocol	without	the	antigen	present	in	the	simulations.	We	calculated	

an	 antigen	 risk	 ratio	 (ARR)	 from	 Equation	 2	 as	 the	 ratio	 of	 the	 frequency	 of	 the	 native	

length	 or	 cluster	 in	 the	 final	 decoys	 from	 the	 antigen-present	 simulations	 and	 the	

frequency	of	the	native	in	the	final	decoys	from	the	antigen-absent	simulations:	

ARR = %Recovered (with antigen)
%Recovered (without antigen)

	

	 	 	 	 (2)
	

where	%Recovered	(with	antigen)	and	%Recovered	(without	antigen)	are	calculated	from	

100	design	decoys	of	60	antibodies	(6000	structures	each).	The	recovery	values	(Fig.	5A)	

in	the	presence	of	antigen	are	all	higher	than	the	recovery	values	in	the	absence	of	antigen,	
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with	the	exception	of	L3	where	they	are	approximately	equal.	This	is	reflected	in	the	ARR	

results	 (Fig.	 5B)	antigen	 risk	 ratios	demonstrate	 that	 the	native	 lengths	and	clusters	are	

enriched	particularly	for	the	L1	and	H2	CDRs	in	the	presence	of	the	antigen.	For	the	other	

CDRs,	 the	 values	 are	 a	 little	 over	 1.0,	 indicating	 that	 Rosetta	 prefers	 some	 of	 the	 more	

common	clusters	in	the	PDB,	even	in	the	absence	of	antigen.	For	the	light-chain	CDRs,	we	

sampled	 only	 from	 lengths	 and	 clusters	 that	 contained	 at	 least	 5	 examples	 of	 structures	

from	the	same	light-chain	type,	either	κ	or	λ.	Especially	for	L3,	this	choice	strongly	restricts	

the	number	of	applicable	lengths	and	clusters,	and	thus	the	antigen	risk	ratios	for	L3,	like	

H1	and	L2,	are	lower	that	one	might	expect	otherwise. 

Figure 5: Risk Ratios of benchmarks showing the enrichment in the recovery of native lengths and 
clusters in the presence of the native antigen compared to simulations performed in its absence. (A) 
%Recovered length and cluster for the simulations in the presence and absence of antigen. (B) Length 
and Cluster Antigen Risk Ratios (ARRs) A risk ratio greater than 1.0 indicates enrichment of the native 
length and cluster in the presence of the antigen over simulations performed in the absence of the 
antigen. 
	

In	 addition	 to	 optimizing	 the	 total	 energy,	 design	 simulations	 in	 RAbD	 can	

alternatively	optimize	the	interface	energy,	which	for	our	purposes	is	defined	as	the	total	

Rosetta	 energy	 of	 the	 antibody-antigen	 complex	 minus	 the	 energy	 of	 the	 separated	

antibody	 and	 antigen	 after	 repacking	 and	 minimizing	 the	 energy	 of	 side-chain	

conformations	of	 the	 interface	 residues.	 	The	%Recovered	 is	 greater	 than	 the	%Sampled	
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(Fig	6A)	for	the	lengths	and	clusters	of	all	5	CDRs,	which	is	reflected	in	the	DRR	values.	The	

cluster	 DRRs	 are	 greater	 than	 1.5	 for	 all	 5	 CDRs,	 while	 the	 length	 DRRs	 are	 only	

significantly	 above	 1.0	 for	 L1	 which	 is	 the	 most	 length-diverse	 CDR	 for	 both	 κ	 and	 λ	

antibodies.	

Figure 6:  Computational Benchmarking showing recovery metrics on 60 antibodies for the opt-dG 
protocol (optimization of Rosetta interface energy) for each CDR that underwent GraftDesign in the RAbD 
design protocol. (A) %Recovered and %Sampled for each CDR length and cluster for the opt-E 
simulations. (B) Design risk ratios (DRR) for recovery of CDR length and cluster for the opt-dG 
simulations. 95% confidence intervals for the Risk Ratio statistics are calculated as described in Methods. 
 

To	further	 investigate	the	effect	of	 the	antigen’s	presence	during	the	design	phase,	

we	performed	sequence	design	on	one	CDR	at	a	time	(6	per	target,	 including	H3)	starting	

from	the	native	sequence	and	structure	with	and	without	the	antigen	present	using	the	opt-

E	protocol	described	above	(the	opt-dG	protocol	does	not	make	sense	in	the	absence	of	the	

antigen	and	 there	 is	no	straightforward	way	 to	calculate	 the	sampling	rate	of	amino	acid	

types	 during	 the	 simulations).	 In	 each	 of	 these	 twelve	simulations	 (6	 CDRs	 with	 and	

without	 antigen),	 we	 produced	 100	 models	 for	 analysis.	 Figure	 7	shows	 the	 sequence	

recovery	and	antigen	risk	ratios	separately	for	residues	in	contact	with	the	antigen	in	the	

starting	 structures	 and	 those	 not	 directly	 in	 contact	 with	 the	 antigen	 in	 the	 starting	

complexes.	The	risk	ratios	were	calculated	from	Eq.	3:		
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	 	 	 	 (3)	

	

where	sPDBid,i	 is	the	fraction	of	100	decoys	that	have	the	native	residue	at	position	 i	of	the	

given	CDR	in	each	PDBid.		

For	the	non-contacting	residues	in	all	of	the	CDRs,	most	of	which	are	part	of	the	CDR	

anchors	or	buried	in	the	hydrophobic	core	of	the	variable	domains,	the	sequence	recovery	

rate	is	73%	during	simulations	in	the	presence	of	the	antigen	and	67%	during	simulations	

in	 the	absence	of	 the	antigen.	This	 is	an	overall	 antigen	risk	 ratio	of	1.084.	The	resulting	

ARR	values	are	near	1.0	for	all	six	CDRs	(Figure	7A).	Many	of	these	residues	are	strongly	

conserved	 in	 the	 PyIgClassify	 profiles,	 and	 their	 recovery	 with	 and	 without	 the	 antigen	

present	is	expected.		

By	sharp	contract,	residues	in	contact	with	the	antigen	have	a	lower	recovery	of	only	

48%	in	the	absence	of	the	antigen	but	a	much	higher	recovery	rate	of	72%	in	the	presence	

of	 the	antigen.	This	 is	 an	overall	 antigen	 risk	 ratio	 for	 the	antigen-contacting	 residues	of	

1.50.	The	contact	residues	ARRs	range	from	1.2	to	1.9	for	the	six	CDRs	(Figure	7B).	Since	

H3	contributes	many	residues	that	contributed	to	binding	free	energy,	it	is	gratifying	that	

the	H3	risk	ratio	is	above	1.5	and	that	H3	has	the	highest	sequence	recovery	rate	with	the	

antigen	(Figure	7A).		

	 We	investigated	the	physical	properties	of	the	designed	antibody-antigen	complexes	

resulting	 from	 the	 opt-E	 and	 opt-dG	 benchmarks.	 As	 expected,	 the	 opt-dG	 simulations	

result	 in	 lower	 interface	 energies	 than	 the	opt-E	 simulations	 and	nearly	 the	 same	as	 the	

native	antigen-antibody	complexes	(Figure	S2).	The	total	energies	of	the	opt-E	and	opt-dG	
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simulations	 are	 relatively	 similar	 to	 each	 other	 and	 somewhat	 higher	 than	 the	 natives	

(Figure	 S3).	 The	 shape	 complementarities	 and	 surface	 areas	 of	 the	 designed	 antibody-

antigen	complexes	are	also	very	close	to	the	native	structures,	with	the	opt-dG	showing	a	

slight	improvement	over	the	opt-E	simulations	(Figure	S4,	S5).		

	

Figure 7. Sequence design with the opt-E protocol on the 60 antibody benchmark. (A) Sequence 
recovery for amino acids in contact with the antigen and those not in contact with the antigen from the 
antigen-present and antigen-absent simulations. (B). Antigen risk ratios (ARRs) for the contacting and 
non-contacting residues. Values greater than 1.0 indicate that the native residue types were present in 
the design simulations in the presence of the antigen more often than they were present in the design 
simulations in the absence of the antigen.	
	
	
Experimental	Validation	

Although	 computational	 benchmarking	 can	 be	 extremely	 useful	 in	 optimizing	 a	

protocol	 and	 its	 parameters	 for	 protein	 design,	 the	 true	measure	 of	 new	 protein	 design	

methodologies	is	to	test	computationally	derived	sequences	experimentally	by	expressing	

and	 purifying	 the	 proteins	 and	 testing	 them	 for	 desired	 functionality,	 including	 binding	

affinity	and	biophysical	properties	of	the	designed	molecules.		

We	tested	a	common	scenario	for	which	RAbD	was	intended	–	improving	the	affinity	

of	an	existing	antigen–antibody	complex	by	grafting	new	CDRs	in	place	of	one	or	more	of	

the	native	CDRs.	To	 this	 end,	we	 tested	 the	ability	of	 the	RAbD	program	 to	 create	viable	
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antibody	designs	that	improve	binding	affinity	in	two	antibody–antigen	complexes:	an	HIV-

neutralizing	antibody	known	as	CH103	(PDB:	4JAN)	[83]	that	binds	to	the	CD4	binding	site	

of	HIV	gp120,	and	an	antibody	that	binds	to	the	enzyme	hyaluronidase,	which	is	the	main	

allergen	 in	 bee	 venom	 (PDB:	 2J88)	 [84].	 These	 antibodies	 are	 not	 dominated	 by	

interactions	of	H3	with	the	antigen	and	use	common	canonical	clusters	for	the	CDRs	at	the	

binding	 interface.	 Using	 this	 knowledge	 and	 the	 general	 knowledge	 of	 CDR	 length	 and	

cluster	variability,	we	designed	both	L1	and	L3	together,	or	H2	in	the	CH103	antibody.	For	

the	2J88	antibody,	we	designed	either	L1	and	the	light	chain	DE	loop,	or	H2.	The	DE	loop	is	

a	 short	 loop	between	strands	D	and	E	of	 the	variable	domain	β	 sheet	 (residues	82-89	 in	

AHo	numbering).	The	ability	of	RAbD	to	treat	both	the	heavy-	and	light-chain	DE	loops	as	

CDRs,	 which	 are	 typically	 considered	 framework	 regions,	 was	 added	 later	 in	 program	

development	 after	 the	 elucidation	 of	 the	 role	 of	 the	 loop	 in	 both	 antigen	 binding	 and	

stabilization,	especially	 in	regard	to	 intra-CDR	contacts	with	L1	[85].	 In	 light	of	 this,	with	

the	L1	design	of	 the	2J88	antibody,	we	enabled	sequence	design	(but	not	graft	design)	of	

this	light	chain	DE	loop,	which	we	call	L4.	

The	 CDRs	 selected	 for	 design	 were	 set	 to	 undergo	 graft-	 and	 sequence-sampling	

with	the	relax	protocol,	allowing	for	new	lengths	and	clusters	in	the	final	antibody	design,	

while	 the	 framework	 residues	 and	 antigen	 residues	 held	 their	 starting	 amino	 acid	

identities.	 The	 crystal	 structures	 2J88	 and	 4JAN	 were	 first	 minimized	 into	 the	 Rosetta	

energy	function	before	being	used	as	starting	points	for	the	designs.	An	instruction	file	was	

given	for	each	CDR	design	strategy	(L1	+	L4,	H2,	and	L1	+	L3)	with	different	algorithms	and	

selection	methods	 used	 to	 choose	 the	 final	 designs.	 Details	 of	 these	 settings,	 instruction	

files,	and	design	and	selection	strategies	can	be	found	in	Methods.	
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Figure 8: Designed antibodies against bee hyaluronidase. (A) Apparent Binding Affinity (KD) of 
expressed and tested antibody designs for bee hyaluronidase (PDB: 2J88), grouped by designed CDR 
cluster, as determined using Surface Plasmon Resonance (SPR) on a Biacore 4000.  The dotted blue line 
represents the binding affinity of the native antibody on the Biacore machine (1.57x10-8 nM). Binding 
affinity is shown for the 26 designs that had detectable binding affinity (out of 30 tested).  The native 
CDRs are L1-11-2 and H2-9-1. (B) Kinetic sensorgrams of WT 2J88 Antibody to Bee Hyaluronidase.  Two 
repeats of XPR (left); Biacore 4000 (right). (C) Kinetic sensorgrams of design L14_7 to Bee 
Hyaluronidase Two repeats of XPR (left); Biacore 4000 (right). (D) Model of the interface changes in 
design L14-7, with designed L1 cluster L1-11-2 (cyan), superimposed onto the WT antibody from PDB ID 
2J88 (gray). (E) Designed Sequences vs WT. 
 

For	 2J88,	 30	 designs	 were	 chosen,	 expressed,	 and	 purified	 with	 no	 detectable	

aggregation.	These	30	were	chosen	with	no	visual	or	manual	inspection,	and	based	purely	

on	a	ranking	of	physical	characteristics	of	each	decoy	determined	by	the	AntibodyFeatures	

reporters	 for	each	design	strategy	and	selection	characteristic	(Methods).	Of	 these	30,	20	

showed	some	degree	of	binding	affinity	through	an	acceptable	kinetic	sensorgram	signal	of	
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at	least	µM	binding	consisting	of	L1	loops	of	length	11,	15,	and	17	residues	(wild-type:	11)	

in	addition	to	a	single	H2	design	of	12	residues	(wild-type:	9)	(Figure	8A,	Table	S2).		

Three	 of	 these	 designs	 had	 improved	 binding	 affinity	 over	 the	 wild-type	 (WT),	

which	binds	at	9.2	nM	(Figure	8B),	with	the	best	design	exhibiting	a	12-fold	improvement	

over	wild-type	with	a	KD	of	770	pM,	as	determined	by	Surface	Plasmon	Resonance	(SPR)	on	

a	ProteOn	XPR	(Figure	8C).	This	design,	designated	as	L14_7,	had	a	different	L1	cluster	(L1-

11-2)	than	the	wild-type	(L1-11-1),	with	six	amino	acid	differences	in	the	L1	sequence,	and	

a	 single	 amino	 acid	 difference	 in	 the	 L4	 loop	 (Figure	 8D,	 8E),	 which	 makes	 important	

contacts	 with	 the	 new	 L1	 loop	 in	 the	 design	 model.	 Of	 the	 L1/L4	 design	 group	 where	

docking	was	enabled,	L14_7	had	the	lowest	computational	ΔG	after	filtering	out	the	worst	

90%	of	the	designs	by	total	Rosetta	energy.	The	other	two	designs	with	better	affinity	than	

the	 native,	 L1_10	 (Figure	 S6)	 and	 L1_5	 (Figure	 S7)	 contained	 the	 same	 cluster	 as	 the	

native,	 but	with	 4	 amino	 acid	 changes	 in	 L1	 out	 of	 11	positions.	Kinetic	 studies	 of	 these	

designs	and	WT	were	done	on	both	a	Biacore	4000	and	an	XPR	for	a	total	of	3	replicates.	

Binding	affinity	was	improved	against	WT	for	each	of	these	designs	in	each	replicate.		

Thermostability	 (Tm)	 of	 WT	 and	 these	 designs	 were	 similar,	 as	 measured	 by	

Differential	Scanning	Calorimetry	(DSC).	While	both	the	WT	and	designs	had	two	Tm	peaks,	

the	major	peak	of	the	WT	2J88	antibody	was	measured	at	75.0	°C,	while	the	designs	L14_7,	

L1_10,	and	L1_5	had	similar	Tm	values	of	71.9,	71.5,	and	72.1	°C	respectively	(Figure	S9).		

Mutational	analysis	was	done	to	delineate	hotspot	residues	at	the	antibody-antigen	

interface.	Rosetta	was	used	to	guide	this	manual	analysis	through	the	use	of	the	PyRosetta	

Toolkit	[86]	and	FoldIt	Standalone	[87]	GUIs.	Residue	7	(Lys)	of	the	L1-11	loop	of	the	L14_7	

design	was	 selected	 for	mutation	 due	 to	 its	 proximity	 to	 the	 antigen	 (making	 hydrogen	
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bonds	to	the	antigen	in	the	design	model	–	Figure	8D)	and	favorable	Rosetta	energy.	This	

position	 was	 mutated	 back	 to	 its	 sequence-aligned	WT	 residue	 (K38Y).	 Binding	 affinity	

worsened	 by	 approximately	 3-4	 fold	 as	 determined	 by	 SPR	 on	 a	 Biacore	 4000	 (Figure	

S10).	The	reverse	experiment	was	done	on	the	WT	antibody	for	position	38	(Y38K)	and	the	

mutant	exhibited	improved	binding	(14.2	nM	to	4.3	nM)	as	expected	(Figure	S11).	Finally,	

as	 a	 proof-of-concept,	 we	 improved	 one	 of	 the	 weaker-binding	 designs	 (L1_4),	 which	

harbors	a	very	long	L1-17-1	loop	by	2.5x,	through	a	single	S->V	mutation	at	position	36	in	

the	L1	loop	(655	nM	->	261	nM)	(Figure	S12).		

We	chose	27	design	variants	of	the	antibody	CH103	to	express	and	test	for	binding	

to	 HIV	 gp120	 by	 using	 the	 AntibodyFeatures	 reporters	 to	 rank	 and	 select	 prospective	

decoys.	 Of	 the	 27	 designs,	 21	 designs	 could	 be	 purified	 and	 tested	 for	 binding	 affinity	

against	a	panel	of	gp120	from	different	strains	of	HIV.	Of	these,	7	designs	could	bind	one	or	

more	of	the	gp120	strains	as	determined	through	SPR	on	a	Biacore	4000	(Figure	9A	and	

Table	S3).	One	of	these	antibodies,	H2-6,	improved	binding	affinity	to	most	of	the	gp120s	

tested,	 with	 a	 54-fold	 improvement	 to	 Core-Bal	 (91	 nM	 to	 1.7	 nM)	 and	 a	 40-fold	

improvement	to	HXB2	(52	nM	to	1.32	nM)	(Figure	9B,	9C,	Figure	S13).	H2-6	had	the	least	

number	of	buried	unsatisfied	hydrogen	bonds	in	the	interface	in	the	H2	design,	profile-only	

group	 (Methods).	 This	 antibody	 design	 had	 a	 longer	H2	 loop	 (cluster	H2-10-6)	 than	 the	

native	(cluster	H2-9-1),	came	 from	the	unrelated	mouse	antibody	 from	PDB	1OAQ[88]	 in	

the	antibody	design	database,	and	 is	significantly	different	than	the	WT	CDR	(Figure	9D,	

9E).		

We	performed	mutational	analysis	on	the	CH103	designs	and	WT	antibodies.	Based	

on	 the	 sequence	 alignment	 of	 the	 H2	 loops	 from	 the	 H2-6	 design	 and	 the	WT	 antibody	
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(Figure	 9E)	 and	 structural	 observation	 using	 the	 Rosetta	 GUIs,	 we	 mutated	 two	

hypothesized	 hotspot	 residues	 within	 the	 H2	 loop	 at	 positions	 3	 and	 8	 of	 the	 designed	

length-10	CDR	in	the	H2-6	design	(AHo	numbering	59	and	67	respectively)	to	the	aligned	

WT	residue	(Y->F	and	Y->E	respectively).	Binding	affinity	was	measured	for	Core	HXB2	and	

Core	Bal	using	SPR	on	a	ProteON	XPR.	Notably,	the	position	67	mutant	decreased	binding	

significantly	 (1.7	 nM	 to	 30.9	 nM	 for	 HXB2;	 8.8	 nM	 to	 212	 nM	 for	 Core	 Bal),	 while	 the	

position	59	mutants	had	a	smaller	effect	(1.7	nM	to	2.2	nM	for	HXB2;	8.8	nM	to	12.8	nM	for	

Core	Bal)	(Figure	S14).	The	reverse	experiment	was	also	done,	where	the	H2-6	residues	at	

the	same	positions	were	placed	into	the	WT	antibody.	This	reverse	experiment	confirmed	

position	67	as	a	hotspot	residue	(Figure	S15);	Kd	for	HXB2	improved	60-fold	from	138	nM	

to	2.3	nM,	and	Kd	for	Core	Bal	improved	93	fold	from	1.1	µM	to	11.7	nM.	

To	investigate	the	role	of	glycans	in	CH103	binding,	we	created	glycan	knockouts	in	

both	the	native	antibody	(Figure	 S16)	and	the	ZM176	strain	gp120	(Figure	 S17).	Native	

antibodies	 do	 not	 usually	 have	 N-linked	 glycosylation	 sites	 near	 the	 paratope	 and	 in	 all	

cases	 except	 AC10,	 the	 glycan-knockout	 antibodies	 did	 not	 affect	 binding	 affinity	

significantly.	 However,	 multiple	 antibody	 designs	 were	 sensitive	 to	 the	 463	 and/or	 386	

glycans	of	gp120,	which	are	 in	structural	proximity	 to	 the	antibody	binding	site.	A	single	

antibody	design	that	 included	L1	and	L3	CDRs	design	together	was	able	to	bind,	but	only	

with	 the	 potential	 386	 glycan	 knocked	 out.	 Meanwhile,	 two	 designs	 bound	 significantly	

better	 to	 ZM176	when	 the	 386	 glycan	was	 knocked	 out.	 These	 glycan	 knockout	 studies	

show	the	importance	of	glycan	considerations	for	some	antigens	and	for	antibody-design	in	

general.		

The	results	shown	here	demonstrate	that	RAbD	can	be	used	to	successfully	improve	
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the	 binding	 affinity	 of	 antibodies,	 and	 that	 those	 designs	 can	 have	 different	 CDR	 lengths	

and	clusters	from	the	starting	antibody.	

	

Figure 
9: Binding of designed antibodies to HIV gp120. (A) Apparent binding affinity (KD) of WT CH103 
antibody and designed antibodies to a panel of gp120 antigens.  Here, 30 designs were expressed and 
tested, where 7 had detectable binding to these gp120s. (B) Binding affinity (KD) of the designed 
antibody, H2-6, versus the wild-type antibody CH103. (C) Kinetic sensograms of CH103 WT and design 
H2-6 to two select GP120s, Core Bal and PVO as determined through a Biacore 4000. (D) Model of the 
interface changes in design H2-6, with designed H2 cluster H2-10-1 (cyan), superimposed onto the WT 
antibody from PDB ID 4JAN (gray) (E) Alignment of H2-6 and the WT antibody CH103 from PDB ID 
4JAN. 
 
	

DISCUSSION	

The	 knowledge-based	 RosettaAntibodyDesign	 framework	 and	 application	 was	

developed	 to	 enable	 reliable,	 customizable	 structure-based	 antibody	 design	 for	 a	 wide	
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variety	of	design	goals	and	strategies	based	on	a	comprehensive	clustering	of	antibody	CDR	

structures	[53].	To	test	the	ability	of	RAbD	to	produce	native-like	antibody	designs	before	it	

was	used	experimentally,	we	performed	rigorous	computational	benchmarking	using	novel	

recovery	 metrics,	 the	 design	 risk	 ratio	 (DRR)	 and	 the	 antigen	 risk	 ratio	 (ARR),	 which	

provided	needed	statistical	significance	 for	recovery	metrics	 	over	random	sampling.	The	

results	showed	that	RAbD	was	able	to	enrich	for	native	lengths	and	clusters	–	even	with	the	

large	 structural	 diversity	 of	 our	 underlying	 antibody	 design	 database	 and	 flat	 sampling	

over	CDR	clusters,	while	recovering	native-like	physical	characteristics	of	the	interface	and	

antibody.	We	applied	RAbD	to	two	different	antigen-antibody	systems	where	the	ability	to	

tailor	the	program	to	a	specific	need	and	the	use	of	our	knowledge-based	approach	to	both	

antibody	design	and	selection,	led	to	successful	experimental	designs	that	improve	binding	

affinity	significantly	using	different	CDR	lengths	and/or	clusters.		

While	RAbD	is	highly	tailorable,	there	are	only	a	few	choices	that	must	be	made	for	

any	 particular	 antibody	 design	 project.	 First,	 after	 examining	 the	 initial	 structure	 of	 the	

antigen-antibody	complex,	the	user	must	choose	which	CDRs	to	design	and	whether	these	

CDRs	should	be	subject	to	graft-design	or	only	sequence-design.	It	may	be	the	case	that	one	

CDR	does	not	contact	the	antigen	at	all	in	the	starting	structure,	and	a	user	may	choose	to	

subject	 only	 that	CDR	 to	 graft-design.	The	other	CDRs	may	or	may	not	 require	 sequence	

design	as	well.	In	other	cases,	where	more	drastic	changes	in	the	starting	antibody	may	be	

desirable.	 For	 example	 in	 ab	 initio	design	 to	 a	new	epitope	or	 in	 redesigning	 an	existing	

antibody	 for	a	homologue	of	 its	antigen,	 the	user	may	choose	 to	perform	graft	design	on	

multiple	CDRs.	The	user	should	also	decide	whether	to	optimize	interface	energy	(opt-dG),	

total	 energy	 (opt-E),	 or	 a	 weighted	 combination	 of	 both	 during	 the	 Monte	 Carlo	 design	
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simulations.	 If	 the	 existing	 antibody	has	 low	affinity,	 then	 interface	dG	may	be	 the	more	

relevant	choice;	however,	if	the	existing	antibody	has	low	stability	but	reasonable	affinity,	

then	total	energy	may	be	more	suitable.	

Second,	 the	 user	may	 select	 different	 optimization	 protocols	 for	 the	 inner	 loop	 of	

RAbD.	This	 includes	whether	 to	perform	docking	 refinements	or	not	 and	whether	 to	use	

more	 computationally	 intensive	 relax	 algorithms.	 For	 design	 against	 a	 native	 antigen	

present	 in	 the	 starting	 structure,	 we	 recommend	 not	 using	 the	 additional	 docking	 step,	

since	local	optimization	will	usually	be	sufficient	for	this	purpose.	It	will	usually	be	better	

to	generate	more	decoy	designs	rather	 than	expending	CPU	time	on	docking.	However,	 if	

the	antigen	is	not	the	same	as	the	one	for	the	starting	antibody,	either	because	it	is	an	ab	

initio	 design	 or	 because	 it	 is	 homologous	 to	 the	 starting	 antigen,	 then	 we	 recommend	

including	the	docking	step	in	the	inner	loop.		

Third,	 the	 user	 can	 determine	 the	 number	 of	 inner	 and	 outer	 loop	 steps	 and	 the	

number	of	 individual	 design	 runs	 to	perform.	The	default	 values	 for	 the	 inner	 and	outer	

loops	 steps	 are	 quite	 reasonable	 and	 usually	 do	 not	 need	 to	 be	 altered.	 The	 number	 of	

design	 runs	 should	 be	 at	 least	 1,000	 and	may	 be	 as	 high	 as	 10,000,	 depending	 on	 CPU	

availability	for	the	final	production	run	(100	was	used	for	benchmarking	purposes).	

Finally,	significant	user	input	is	needed	in	deciding	how	many	and	which	antibodies	

to	 synthesize	 and	 test	 experimentally.	 Our	 rates	 of	 success	 –	 the	 number	 of	 successfully	

improved	binders	out	of	the	number	of	antibodies	expressed	and	tested	in	binding	studies,	

were	3	in	30	for	the	bee	venom	antibodies	and	1	in	27	for	the	HIV	gp120	antibody	redesign,	

which	 successfully	 bound	 better	 to	 gp120	 from	 several	 strains	 of	 HIV.	 	 These	 are	

comparable	 to	 applications	 in	 other	 systems	 in	 the	 literature	 [71,89,90].	 Our	 experience	
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and	that	of	others	 [91]	acts	as	a	guide	 for	employing	computational	design	 techniques	 in	

real-world	applications	of	computational	interface	design.	

We	 recommend	 that	 users	 consider	 both	 the	 total	 energy	 of	 the	 antibody-antigen	

complex	as	well	as	the	interface	dG	of	the	complex,	which	is	reported	in	every	output	decoy	

and	the	associated	score	file.	 In	our	experimental	tests,	we	selected	designs	to	synthesize	

that	had	the	lowest	values	of	both	total	energy	and	interface	dG.	Other	important	features	

may	 include	 shape	 complementarity	 of	 the	 antibody	 and	 antigen	 and	 the	 number	 of	

hydrogen	 bonds	 and	 unsaturated	 hydrogen	 bonds	 within	 the	 interface.	 The	 choice	 of	

criterion	should	be	based	on	the	stability	and	affinity	of	the	starting	antibody	and	the	goals	

of	the	design	project.	

RAbD	 is	 most	 similar	 to	 methods	 previously	 developed	 by	 two	 other	 research	

groups:	 OptCDR	 [92]	 and	 OptMAVEn	 [42],	 developed	 by	 Maranas	 et	 al.,	 and	 AbDesign	

developed	 by	 Fleishman	 et	 al.	 [47]	 These	 authors	 also	 present	 computational	

benchmarking	 of	 their	methods,	 and	 our	 benchmarking	 procedures,	metrics,	 and	 results	

can	 be	 compared	 with	 theirs.	 We	 believe	 our	 benchmarks	 are	 better	 suited	 to	 testing	

computational	 antibody	design	methods	 than	 the	work	of	previous	authors,	 and	 that	 the	

risk	ratios	we	have	used	provided	needed	context	and	statistical	significance	missing	from	

earlier	studies.	

For	OptCDR,	Pantazas	and	Maranas	constructed	100	decoys	for	254	antibodies	with	

CDRs	 borrowed	 from	 other	 antibody	 structures	 and	 used	 a	 simple	 scoring	 system	 that	

penalized	 steric	 conflicts	 of	 CDR	 backbone	 atoms	with	 any	 atom	 of	 the	 antigen,	 favored	

interactions	with	a	flat	score	between	the	sum	of	van	der	Waals	radii	and	8	Å	between	CDR	

backbone	atoms	and	atoms	of	the	antigen,	and	a	zero	score	for	longer	distances.	The	native	
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CDR	 coordinates	 had	 better	 scores	 than	 the	 constructed	 decoys	 on	 average.	 This	 is	 not	

surprising	since	almost	all	of	the	decoys	would	have	at	least	one	non-native	CDR	length	or	

cluster,	 and	 the	 antibody	 as	 a	whole	would	 score	worse	 than	 the	 exact	 native	 structure,	

which	would	have	zero	clash	score	and	a	 favorable	contact	profile.	They	did	not	evaluate	

whether	decoys	with	similar	CDR	lengths	or	clusters	as	the	native	scored	well,	as	we	have	

done	with	the	length	and	cluster	design	risk	ratios.		

In	 a	 second	 computational	 experiment,	 they	 tested	 a	 set	 of	 95	 experimentally	

characterized	mutants	 of	 a	 single	 antibody	 (anti-VLA1,	 PDB:	 1MHP),	 12%	 of	 which	 had	

improved	affinity	experimentally	[93].	They	claim	78%	binary	total	accuracy	(Q2)	on	this	

set,	 and	 a	 50%	positive	 predictive	 value	 (PPV),	which	 is	 the	percentage	 of	 their	 positive	

predictions	 that	 are	 true	 positives	 (improved	 affinities).	 It	 is	 impossible	 to	 discern	 a	

consistent	 and	 complete	 set	 of	 evaluative	 measures	 typically	 used	 in	 binary	 prediction	

methods	(TPR,	TNR,	PPV,	and	NPV,	balanced	accuracy,	etc.)	[94]	from	these	limited	pieces	

of	data.	Finally,	they	performed	a	sequence	design	test	and	found	that	the	native	sequence	

scored	better	than	all	decoy	sequences	 for	two	thirds	of	38	test	cases,	although	this	does	

not	 indicate	 that	 the	method	could	sample	and	 find	 these	native	sequences	 from	scratch,	

which	is	the	typical	sequence	recovery	metric	in	protein	design.	They	did	not	provide	any	

measures	 of	 statistical	 significance	 of	 these	 results,	 as	 we	 have	 done.	 By	 contrast,	 we	

measured	sequence	recovery	of	residues	 in	contact	with	the	antigen	and	achieved	a	72%	

recovery	in	the	presence	of	the	antigen	and	48%	in	simulations	without	the	antigen.	

OptMAVEn	[42]	is	based	on	the	MAPS	database	developed	by	the	same	authors.	For	

the	heavy	chain,	κ	 light	chain,	and	λ	 light	chain,	MAPS	contains	separate	PDB	files	for	the	

structures	of	V	regions	(through	the	beginning	of	CDR3),	CDR3	segments,	and	post-CDR3	
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segments	(“J	regions”).	If	we	count	unique	sequences:	for	the	variable	regions,	there	are	60	

heavy,	34	κ,	and	21	λ	segments	in	MAPS;	for	CDR3,	there	are	413	heavy,	199	κ,	and	39	λ	

sequences;	 and	 for	 the	 J	 regions,	 there	 are	3	heavy,	 4	κ,	 and	6	λ	 sequences.	By	 contrast,	

RAbD	uses	an	updated	and	updateable	database	of	754	non-redundant	sequences	per	CDR	

(on	average	over	6	CDRs)	to	graft	CDRs	in	any	combination	onto	any	starting	framework,	

rather	 than	spending	CPU	on	designing	 the	whole	antibody	variable	domains,	which	may	

have	 already	 been	 optimized	 for	 stability	 or	 other	 properties.	 RAbD	 can	mix	 CDR1s	 and	

CDR2s	 from	different	 sources,	 rather	 than	 restricting	 them	 to	 a	 given	V	 region	 from	 the	

PDB,	as	OptMAVEn	does.	Generally,	this	is	a	positive	feature,	since	it	allows	RAbD	to	sample	

sequences	and	structures	that	are	not	likely	to	be	present	in	an	animal	immune	system	or	

in	 an	 antibody	 display	 library.	 RAbD	 also	 has	 the	 ability	 to	 keep	 CDR	 sampling	within	 a	

particular	germline,	including	that	of	the	starting	antibody.	

In	 their	 computational	 testing	of	OptMAVEn,	 Li	 et	 al.	 demonstrated	 that	 their	 grid	

search	 over	 antigen	positions	 and	 orientations	 is	 able	 to	 sample	 (but	 not	 rank	 or	 score)	

structures	 relatively	 similar	 to	 the	 native	 structure	 for	 120	 antigen-antibody	 complexes	

(antigen	protein	lengths	of	4	to	148	amino	acids)	[42].	This	is	useful	to	know	but	does	not	

represent	a	recovery	metric	of	any	sort.	They	utilized	OptMAVEn	to	produce	designs	for	the	

same	benchmark	set	and	were	able	to	produce	designed	antibodies	with	lower	calculated	

interaction	energies	than	the	native	for	42%	of	the	cases,	but	this	does	not	show	that	such	

antibodies	would	in	fact	bind	better	than	the	native,	nor	does	it	show	that	the	native	CDR	

lengths	 or	 conformations	 or	 sequences	 were	 obtained	 more	 frequently	 than	 one	 would	

expect,	as	our	DRR	does.	For	two	antibodies,	the	authors	were	able	to	show	that	they	could	

recover	 20%	 (HIV	 VRC01)	 and	 35%	 (Influenza	 CH65)	 of	 mutations	 from	 low-affinity	
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antibodies	 to	 high-affinity,	 matured	 antibodies.	 By	 contrast,	 in	 our	 sequence	 design	

benchmark	on	60	antibodies,	sequence	recovery	of	the	native	residues	in	contact	with	the	

antigen	was	72%.	

For	their	AbDesign	method,	Lapidoth	et	al.	clustered	the	V		regions	of	antibodies	(up	

to	 the	beginning	of	CDR3	of	 each	variable	domain)	purely	by	 the	 combination	of	 lengths	

present	at	CDR1	and	CDR2	[47].	They	clustered	CDR3	for	each	domain	by	length	and	RMSD.	

The	input	data	consisted	of	788	heavy-chain	domains	and	785	κ	light-chain	domains	(no	λ	

chains	were	included),	broadly	clustered	into	5	κ	V-regions,	2	L3	conformations,	9	heavy-

chain	V	regions,	and	50	H3	conformations.	By	contrast,	RAbD	uses	the	72	CDR	clusters	of	

North	 et	 al.	 to	 group	 the	 non-H3	 CDRs	 and	 contains	 985	 unique	 H3	 sequences.	 Like	

OptMaven,	AbDesign	combines	fragments	that	comprise	the	entire	variable	domains,	rather	

than	concentrating	CPU	on	the	design	of	 the	CDRs	that	contact	 the	antigen.	Thus	 it	 is	not	

suitable	for	most	design	projects,	which	usually	involve	changing	the	sequences	of	one	or	

more	CDRs	rather	than	a	wholesale	design	of	a	new	antibody,	including	the	frameworks.	

AbDesign	 was	 computationally	 tested	 on	 only	 9	 antibodies	 [47].	 The	 authors	

compared	 features	 such	as	 shape	 complementarity,	 buried	 surface	 areas,	 and	 interaction	

scores	with	the	native	antibodies.	The	average	shape	complementarity	of	their	decoys	was	

approximately	 0.61,	 while	 that	 of	 the	 natives	 was	 0.68.	 Our	 opt-dG	 decoys	 reached	 an	

average	 of	 0.68	 in	 shape	 complementary	 scores	while	 our	natives	 averaged	0.70	 (Figure	

S4).	AbDesign’s	9	designed	antibodies	achieved	an	average	of	-26.1	REU	in	binding	energy,	

while	our	60	designed	antibodies	averaged	-42	REU	in	the	opt-dG	simulations	(Figure	S2).	

In	terms	of	recovery	of	the	native	structure,	they	calculated	Cα	RMSDs	to	native	for	each	of	

the	CDRs	of	the	top	scoring	design	for	each	of	the	9	antibodies.	For	all	of	the	non-H3	CDRs	
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and	6	of	the	H3s,	the	designs	had	CDR	lengths	that	matched	the	native	antibodies.	For	36	of	

the	45	non-H3	CDRs	(80%),	the	Cα	RMSDs	were	better	than	1.0	Å.		

It	is	difficult	to	assess	the	significance	of	these	results,	because	the	source	database	

for	sampling	in	AbDesign	must	be	dominated	by	the	same	CDR	lengths	and	clusters	found	in	

the	native	antibodies	 in	 the	benchmark.	To	 investigate	 this,	we	 searched	PyIgClassify	 for	

the	9	antibodies	in	this	benchmark	for	their	clusters	according	to	our	nomenclature.	Since	

H3	 does	 not	 cluster	 well	 beyond	 length	 8,	 we	 report	 only	 the	 lengths	 of	 H3.	 The	

representation	of	clusters	in	their	benchmark	is	as	follows,	including	the	number	out	of	9	

antibodies	 in	 their	benchmark	set:	L1-11-1	 (4/9);	L1-11-2	 (3/9);	L1-12-1	 (1/9);	L1-16-1	

(1/9);	L2-8-1	(9/9);	L3-9-cis7-1	(7/9);	L3-9-cis7-2	(1/9);	L3-9-1	(1/9);	H1-13-1	(8/9);	H1-

13-3	(1/9);	H2-10-1	(7/9);	H2-10-3	(1/9);	H2-9-1	(1/9);	H3-9	(1/9);	H3-10	(4/9);	H3-11	

(2/9);	H3-12	(2/9).	L1-11-1	and	L1-11-2	are	very	similar	to	each	other	(<0.5	Å	RMSD).	As	it	

turns	out,	the	4	non-H3	CDRs	with	the	largest	RMSDs	to	native	(>1.8	Å)	are	those	with	less	

common	clusters	or	 lengths:	L1-12-1	 (1IQD,	1.85	Å	RMSD),	L3-9-1	 (1IQD,	2.12	Å	RMSD),	

H1-13-3	 (2CMR,	 2.04	 Å	 RMSD),	 and	 H2-10-3	 (1P2C,	 1.90	 Å	 RMSD).	 This	 indicates	 that	

AbDesign	 is	 dominated	 by	 its	 sampling	 database	 in	 a	way	 that	makes	 the	 benchmarking	

data	impossible	to	interpret.		

The	 design	 risk	 ratio	 we	 developed	 in	 this	 work	 solves	 this	 problem	 by	

demonstrating	 the	 increase	 in	 recovery	 over	 the	 sampling	 rate	 of	 any	 particular	

conformation	 in	 the	 database.	 Similarly,	 the	 antigen	 risk	 ratio	 demonstrates	 that	 the	

sampling	and	scoring	is	able	to	choose	native-like	CDRs	when	the	antigen	is	present	in	the	

simulations	more	 frequently	 than	when	 it	 is	 absent,	 indicating	 that	 the	design	process	 is	

choosing	CDR	structures	and	sequences	 likely	 to	bind	 the	antigen.	Finally,	Lapidoth	et	al.	
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achieved	a	 sequence	 identity	of	32%	 for	 residues	 in	 the	binding	 site	of	 the	antibodies	 in	

their	benchmark,	compared	to	RAbD’s	values	of	72%	in	our	opt-E	benchmark	(and	a	risk	

ratio	of	1.50	over	simulations	in	the	absence	of	the	antigen).	

RAbD	and	AbDesign	have	a	number	of	similarities	and	several	important	differences.	

They	both	utilize	structural	clusters	of	fragments	of	antibody	structure	and	their	associated	

sequence	 profiles	 to	 build	 new	 antibodies	 during	 a	 design	 simulation.	 They	 both	 utilize	

Rosetta’s	 docking	 and	 side-chain	 repacking	 routines	 to	 optimize	 the	 structure	 of	 the	

antigen-antibody	complex	during	design.		

The	 clustering	 of	 antibody	 structures	 and	 PSSM	 derivation	 differ	 substantially	

between	 the	 two	 methods.	 AbDesign	 breaks	 up	 each	 domain	 of	 antibodies	 into	 two	

segments	–	the	V	region	up	to	the	beginning	of	CDR3	and	a	segment	containing	CDR3	and	

the	rest	of	the	variable	domain	up	to	its	C-terminus.	AbDesign	clusters	its	V	regions	only	by	

the	 combination	 of	 sequence	 lengths	 of	 CDR1	 and	 CDR2.	 Thus	 it	 samples	 the	 entire	 V	

domain	and	merges	sequence	data	from	different	canonical	structures	of	CDR1	and	CDR2.	

This	can	 lead	to	problems	because	many	CDR	clusters	have	required	residue	types,	often	

glycine	or	proline,	at	certain	positions	in	order	to	form	the	correct	loop	conformation.	The	

strategy	 of	 replacing	 the	 entire	 heavy	 and	 light-chain	 variable	 domains	 with	 different	

fragments	means	that	AbDesign	is	not	suitable	for	optimizing	existing	antibodies,	which	is	a	

very	 common	 task	 in	 antibody	 engineering	 and	 therapeutic	 development	 projects.	 The	

database	 of	 structures	 used	 by	 AbDesign	 only	 includes	 antibody	 structures	 deposited	

through	2014.	

Conversely,	 RAbD	 treats	 each	 CDR	 separately	 and	 samples	 structures	 from	

canonical	 clusters	 and	 their	 individual	 sequence	 profiles	 as	 defined	 in	 our	 PyIgClassify	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2018. ; https://doi.org/10.1101/183350doi: bioRxiv preprint 

https://doi.org/10.1101/183350
http://creativecommons.org/licenses/by-nd/4.0/


database,	which	is	updated	on	a	monthly	basis.	This	allows	mixing	and	matching	of	CDR1	

and	 CDR2,	 while	 our	 PSSMs	 are	more	 closely	 defined	 by	 the	 structural	 requirements	 of	

each	canonical	conformation.	The	CDRs	are	grafted	onto	the	antibody	framework	provided	

by	 the	 user,	which	may	have	 already	 been	 optimized	 for	 specific	 properties,	 rather	 than	

redesigning	the	entire	variable	domains,	as	AbDesign	does.	

RAbD	and	AbDesign	are	implemented	in	quite	different	ways.	AbDesign	depends	on	a	

series	of	Rosetta	scripts,	which	are	xml	files	that	control	Rosetta	functions.	It	depends	on	a	

mover	 called	 splice,	 which	 is	 not	 documented.	 It	 has	 only	 been	 benchmarked	 on	 the	

score12	scoring	function	of	Rosetta,	which	has	not	been	the	default	scoring	function	since	

2013.	Finally,	AbDesign	 is	difficult	 to	 customize	 for	 specific	problems	 in	 antibody	design,	

such	 as	 sampling	 defined	 lengths	 of	 a	 given	 CDR	 or	 sampling	 from	 within	 a	 particular	

germline	or	CDR	cluster	and	the	entire	protocol	has	no	documentation	to	speak	of.	

RAbD	 is	 a	 full-fledged	Rosetta	 application,	 a	 command-line	program	 that	 runs	 the	

simulation	 according	 to	 command	 line	 options	 and	 rules	 provided	 in	 an	 optional	 CDR	

Instruction	File.	The	run	can	be	setup	as	simple	as:		

	

antibody_designer.macosclangrelease -s 2r0l_1_1.pdb -graft_design_cdrs 

L1 -seq_design_cdrs L1 L2 L3 -light_chain kappa -nstruct 100  

	

The	 Instruction	 File	 makes	 RAbD	 highly	 tailorable.	 One	 or	 more	 CDRs	 can	 be	

designed	or	not	designed	and	sampling	of	CDR	structures	for	grafting	can	be	restricted	by	

length,	cluster,	species,	germline,	etc.	All	of	RAbD’s	dependencies	are	available	in	the	public	

release	of	Rosetta.	RAbD	is	also	very	well	documented	so	that	new	users	can	quickly	set	up	
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their	 design	 runs.	 RAbD	 has	 been	 benchmarked	 on	 the	 current	 Rosetta	 energy	 function,	

REF2015	 [95],	 which	 utilizes	 our	 smoothed	 backbone-dependent	 rotamer	 library	 for	

protein	 side	 chains	 [96],	 our	 smoothed	 Ramachandran	 probability	 densities,	 and	 cubic	

splines	for	all	φ,ψ-dependent	scoring	functions,	as	described	by	Leaver-Fay	et	al.	[74]	These	

scoring	 functions	 are	 important	 for	 locally	 minimizing	 the	 Rosetta	 scoring	 function	 by	

altering	 backbone	 and	 side-chain	 dihedral	 angles.	 The	 older	 scoring	 function	 used	 by	

AbDesign	contained	very	rough	surfaces	and	linear	spline	estimates	for	the	Ramachandran	

terms	that	resulted	in	poor	structure	optimization. 

A	major	challenge	moving	forward,	especially	in	regard	to	true	de	novo	design,	is	the	

difficulty	 in	effective	sampling	and	design	of	the	H3	loop,	owing	to	 its	extreme	variability	

and	 lack	 of	 clustering.	 To	 aid	 in	 this,	 H3-specific	 design	 strategies	 in	 the	 program	 can	

include	up-weighting	H3	graft	sampling	from	other	CDRs,	restricting	the	use	of	H3	loops	in	

the	CDRSet	 to	 kinked-only	 (See	Methods)	 [97,98],	 and	 reducing	 the	 search	 space	 to	 only	

short	 loop	 lengths	 that	 cluster	well;	 however,	much	more	work	 is	 needed	 to	 benchmark	

and	 test	H3-specific	 design.	Recently,	we	have	 shown	 that	H3-like	 loops	 can	be	 found	 in	

non-antibody	proteins	[97].	These	loop	structures	could	be	used	to	supplement	existing	H3	

structures	in	our	antibody	database	as	additional	templates	for	H3	GraftDesign.	The	specific	

design	of	antibody	H3	loops	will	be	a	major	challenge	in	the	next	phase	of	antibody	design	

methodology	development,	but	using	the	RAbD	framework	and	new	methods	for	antibody	

design	benchmarking	outlined	here	should	aid	in	this	challenge.		

These	promising	computational	and	experimental	results	show	that	RAbD	is	able	to	

design	 antibodies	 with	 similar	 features	 to	 the	 native	 antibodies	 and	 antibodies	 with	

improved	affinity.	It	can	be	used	for	a	variety	of	antibody	design	tasks	through	the	use	of	its	
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highly	customizable	interface.	RAbD	represents	a	generalized	framework	and	program	for	

antibody	design	and	makes	many	antibody	design	projects	feasible	that	are	either	difficult	

or	prohibitive	using	historical,	traditional	means,	making	computational	antibody	design	a	

tangible	reality.	

	

METHODS	

1.	Experimental	Methods	

Transfection	and	Expression	

All	antibody	designs	were	expressed	as	IgGs	in	293F	cells	using	the	pFUSE	vectors	

(pFUSEss-CHIg-hG1	 (human	 heavy),	 pFUSEss-CLIg-hL2	 (human	 lambda),	 and	 pFUSEss-

CLIg-hk	(human	kappa)).	Bee	Hyaluronidase	and	gp120	antigens	were	expressed	in	293F	

cells	using	pHLsec	vectors.	Opti-Mem	media	and	FreeStyle293	Expression	media	were	first	

warmed	 to	 37	 °C.	 293F	 cells	 were	 checked	 for	 viability	 at	 95%	 and	 at	 a	 concentration	

greater	 than	or	 equal	 to	 2.4x106	 cells/ml.	 6	mls	 of	OptiMem	were	mixed	with	125	µg	of	

heavy	chain	DNA,	and	125	µg	of	light	chain	DNA	in	one	15	ml	conical	tube,	and	250	µg	of	

fectin	in	the	other.	After	a	five	minute	incubation,	the	DNA	tube	was	poured	into	the	fectin	

tube	and	was	left	to	incubate	for	21	minutes.	The	293F	cells	were	then	diluted	to	1.2x106	

cells/ml,	 added	 to	 a	 500	ml	 shaker	 flask,	 and	 the	 fectin/DNA	mixture	was	 added	 to	 the	

flask.	 The	 500	 ml	 flask	 was	 incubated	 in	 a	 37	 °C,	 8.0%	 CO2,	 80%	 humidity	 shaking	

incubator	 for	 four	 days.	 The	 supernatant	 was	 harvested	 on	 the	 fifth	 day	 using	 500	 ml	

centrifuge	 tubes	 and	 spinning	 for	 20	 minutes	 at	 4000	 rpm.	 The	 supernatant	 was	 then	

filtered	in	a	500	ml	filter	unit.	
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Purification	

Antibodies	were	purified	by	first	using	1	ml	of	GE	rProtein	A	Sepharose	Fast	Flow	

resin	in	a	chromatography	column,	and	then	washing	with	10	ml	dH2O	and	10	ml	PBS.	The	

antibody	 supernatant	was	poured	onto	 the	 column	and	 then	washed	with	10	ml	of	PDB,	

followed	by	10	ml	of	0.5	M	NaCl	in	PDB,	and	then	another	10	ml	of	PBS	after	all	supernatant	

had	 passed	 through	 the	 column.	 The	 antibody	 was	 then	 eluted	 with	 6	 ml	 of	 Thermo	

Scientific	 IgG	Elution	Buffer	 into	 a	 50	ml	 conical	 tube	of	 0.5	ml,	 1M	Tris-HCl.	 The	 eluted	

antibody	was	then	placed	into	a	Slide-A-Lyzer	cassette	and	dialyzed	against	PBS	with	three	

changes.	After	dialysis,	the	antibody	solution	was	filtered	using	a	0.22	micron	syringe	filer	

and	the	OD	was	checked	to	obtain	the	final	concentration	of	antibody.		

	

Binding	assays.	

Kinetics	and	affinity	of	antibody-antigen	interactions	were	determined	on	a	Biacore	

4000	(GE	Healthcare)	using	Series	S	Sensor	Chip	CM5	(BR-1005-30,	GE	Healthcare)	and	1x	

HBS-EP+	pH	7.4	 running	buffer	 (20x	 stock	 from	Teknova,	 Cat.	No	H8022)	 supplemented	

with	BSA	at	1	mg/ml.	We	followed	Human	Antibody	Capture	Kit	instructions	(Cat.	No	BR-

1008-39	 from	 GE	 Healthcare)	 to	 prepare	 chip	 surface	 for	 ligands	 capture.	 In	 a	 typical	

experiment	 about	 9000	 RU	 of	 capture	 antibody	 was	 amine-coupled	 in	 appropriate	 flow	

cells	of	CM5	Chip.	3M	Magnesium	Chloride	was	used	as	a	regeneration	solution	with	180	

seconds	 contact	 time	 and	 injected	 once	 per	 each	 cycle.	 Raw	 sensorgrams	were	 analyzed	

using	Evaluation	software	(GE	Healthcare),	double	referencing,	Equilibrium	or	Kinetic	with	

Langmuir	 model	 or	 both	 where	 applicable.	 Analyte	 concentrations	 were	 measured	 on	
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NanoDrop	2000c	Spectrophotometer	using	Absorption	signal	at	280	nm.	

Antibody-Antigen	binding	kinetics	were	 confirmed	on	a	ProteOn	XPR36	 (Bio-Rad)	

using	GLC	Sensor	Chip	(Bio-Rad)	and	1x	HBS-EP+	pH	7.4	running	buffer	 (20x	stock	 from	

Teknova,	 Cat.	 No	 H8022)	 supplemented	 with	 BSA	 at	 1mg/ml.	 We	 followed	 Human	

Antibody	Capture	Kit	 instructions	 (Cat.	No	BR-1008-39	 from	GE)	 to	prepare	chip	surface	

for	ligand	capture.	In	a	typical	experiment,	about	6000	RU	of	capture	antibody	was	amine-

coupled	 in	 all	 6	 flow	 cells	 of	 GLC	 Chip.	 3M	 Magnesium	 Chloride	 was	 our	 regeneration	

solution	 with	 180	 seconds	 contact	 time	 and	 injected	 four	 times	 per	 each	 cycle.	 Raw	

sensorgrams	 were	 analyzed	 using	 ProteOn	 Manager	 software	 (Bio-Rad),	 interspot	 and	

column	 double	 referencing,	 Equilibrium	 or	 Kinetic	 with	 Langmuir	model	 or	 both	where	

applicable.	Analyte	concentrations	were	measured	on	NanoDrop	2000c	Spectrophotometer	

using	Absorption	signal	at	280	nm.	

	

Thermostability	assays	

Differential	scanning	calorimetry	(DSC)	experiments	were	performed	on	a	MicroCal	

VP-Capillary	differential	scanning	calorimeter	(Malvern	Instruments).	The	HEPES	buffered	

saline	(HBS)	buffer	was	used	for	baseline	scans	and	the	protein	samples	were	diluted	into	

HBS	buffer	 to	adjust	 to	0.6	mg/ml.	The	system	was	set	 to	equilibrate	at	20	°C	 for	15	min	

and	then	heat	up	until	a	temperature	of	125	°C	was	reached	at	a	scan	rate	of	90	°C/h.	Buffer	

correction,	normalization,	and	baseline	subtraction	were	applied	during	data	analysis	using	

Origin	7.0	software.	The	non-two-state	model	was	used	for	data	fitting.	
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2.	The	RosettaAntibodyDesign	Program	

The	RAbD	protocol	consists	of	repeated	execution	of	an	outer	loop	and	an	inner	loop	

(Figure	 1).	 Most	 Rosetta	 protocols	 utilize	 Monte	 Carlo	 +	 minimization	 algorithms	 to	

optimize	sequence	and	structure	effectively.	By	allowing	occasional	increases	in	energy,	we	

enable	 structures	 to	 overcome	 energy	 barriers	 to	 escape	 local	 energy	 wells	 in	 order	 to	

drive	the	energy	down	further.	In	order	to	traverse	the	energy	landscape	more	effectively,	

the	Monte	Carlo	 criterion	 is	 applied	during	 the	design	 simulation	 for	both	 the	outer	 and	

inner	loops	of	the	algorithm.		

The	general	RosettaAntibodyDesign	protocol	consists	of	4	major	tasks:		

1. Choosing	a	CDR	structure	to	graft:	In	the	other	loop,	randomly	choosing	a	CDR	from	

those	 CDRs	 set	 to	 design,	 choosing	 a	 CDR	 cluster	 for	 that	 CDR,	 and	 choosing	 a	

structure	from	the	design	database	for	that	CDR	(Fig.	1A).	

2. Grafting	a	CDR:	Grafting	 that	 CDR	 onto	 the	 antibody	 framework.	 This	 structure	 is	

then	passed	to	Ninner	cycles	of	the	inner	loop.	

3. Sequence	 design	 and	 side-chain	 repacking	 in	 the	 inner	 loop:	 Sequence	 design	 in	

Rosetta	consists	of	a	Monte	Carlo	side-chain	repacking	procedure	in	which	residues	

to	be	designed	sample	rotamers	of	multiple	residue	types.	All	residues	in	the	grafted	

CDR	passed	from	the	outer	loop	to	the	inner	loop	can	be	redesigned	in	one	round	of	

the	inner	loop.		

4. Local	 energy	minimization	 and	 application	 of	 the	 inner-loop	Monte	 Carlo	 criterion.	

After	 sequence	 design	 and	 repacking,	 local	 steepest-descent	 energy	minimization	

(or	optionally	Rosetta’s	Relax	algorithm)	is	applied,	which	alters	the	dihedrals	of	the	

backbone	and	 the	side	chains.	The	 inner	cycle	Metropolis	Monte	Carlo	criterion	 is	
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then	applied	 to	 the	resulting	structure	using	either	 the	 total	energy	(opt-E)	or	 the	

interface	energy	(opt-dG)	after	each	cycle	of	the	inner	loop.	

5. Application	of	the	outer-loop	Monte	Carlo	criterion:	Once	a	structure	exits	 the	 inner	

loop	after	Ninner	cycles	(default	1),	the	structure	is	then	passed	back	to	the	outer	loop	

where	 the	 MC	 criterion	 is	 applied,	 and	 the	 algorithm	 continues	 with	 Step	 1.	 The	

outer	loop	Metropolis	Criterion	can	either	be	applied	on	the	Total	Energy	(opt-E)	or	

the	Interface	Energy	(opt-dG).	The	cycle	repeats	(Step	1-5)	for	Nouter	cycles	(default	

25).	The	output	design	is	the	structure	with	the	lowest	energy	observed	during	the	

simulation.	

	

The	entire	procedure	may	be	repeated	many	times	(1,000-10,000)	so	that	an	ensemble	of	

designs	is	produced	from	which	some	number	of	the	top-ranking	sequences	may	be	chosen	

for	synthesis	and	testing.	The	outer	and	inner	loops	of	RAbD	can	be	tailored	for	a	variety	of	

design	 projects	 and	 design	 strategies	 through	 the	 optional	 CDR	 Instruction	 File,	 an	

abundant	 set	 of	 command-line	 options,	 and	 object-oriented	 code	 design,	 which	 enables	

RosettaScript-able	 [99]	 framework	 components.	 Each	 of	 the	 five	 basic	 steps	 is	 described	

below	in	turn.	Further	details	are	provided	in	the	Supplemental	Methods.	

	

(1)	Choosing	a	CDR	structure	to	graft	

The	CDRSet	 instructions	tell	 the	program	which	CDR	lengths,	clusters,	and	specific	

structures	to	include	or	exclude	from	the	antibody	design	database	for	graft-based	design.	

By	default,	every	CDR	length	is	enabled.	The	light	chain	type	(κ	or	λ) can	be	specified	on	the	

command-line	in	order	to	limit	the	CDRSet	to	those	that	originate	from	that	gene,	which	is	
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aimed	 at	 increasing	 stability	 of	 the	 final	 antibody.	No	 light	 chain	 is	 specified	 for	 camelid	

antibody	design.	

There	 are	 three	 simple	 algorithms	 that	 control	 how	 the	 CDR	 structure	 is	 chosen	

from	the	database	during	the	GraftDesign	stage.	The	default	is	to	choose	a	CDR	cluster	from	

the	list	of	available	clusters	and	then	choose	a	structure	from	that	cluster	(even_cluster_mc).	

One	can	also	choose	a	structure	from	all	available	structures,	which	samples	according	to	

the	prevalence	of	 that	 length	and	cluster	 in	 the	database	(gen_mc).	Or	 the	outer	 loop	can	

choose	a	length	randomly	and	then	a	cluster	given	that	length,	and	finally	a	structure	from	

that	cluster	(even_length_cluster_mc).	We	recommend	even_cluster_mc	 	 for	most	purposes.	

Finally,	when	designing	a	single	CDR,	the	deterministic_graft	algorithm	can	be	used	to	graft	

every	structure	available.	The	lengths,	clusters,	and	particular	structures	that	are	sampled	

and	grafted	can	be	controlled	through	the	CDR	Instruction	File.		

RosettaAntibodyDesign	 uses	 an	 SQLITE3	 database	 to	 house	 all	 antibody	 and	 CDR	

data	 needed	 for	 the	 program,	 including	 full	 structural	 coordinates	 of	 CDRs,	 CDR	 length,	

cluster,	species,	and	germline	identifications,	as	well	as	CDR	cluster	sequence	profile	data.	

The	 publicly	 available	 release	 of	 Rosetta	 includes	 a	 smaller	 database	 (about	 30	MBytes)	

that	includes	only	the	structures	in	the	data	analyzed	by	North	et	al	in	2011.	As	with	other	

large	databases	utilized	by	Rosetta,	the	current	database	is	too	large	(about	3	times	larger	

than	 the	 original	 database)	 to	 be	 distributed	with	Rosetta	 by	 default.	 It	 can	 be	 obtained	

from	PyIgClassify	[54],	which	is	typically	updated	every	month	and	reflects	data	from	the	

current	PDB.	All	computational	benchmarking	in	this	paper	utilized	a	recent	version	of	the	

database	 (August	 2017).	 The	 experimental	 tested	 designs	 utilized	 a	 version	 from	

November	2016.	
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	The	 up-to-date	 database	 consists	 of	 only	 non-redundant	 CDR	 data	 at	 a	 2.8	 Å	

resolution	and	0.3	R	factor	cutoff.	CDR	cluster	outliers	are	then	removed	as	described	in	the	

Supplemental	Methods.	 In	 order	 to	 cull	 for	non-redundancy	 in	 the	 remaining	CDR	 loops,	

the	 CDR	 is	 selected	 in	 the	 order	 of:	 highest	 resolution	 -->	 lowest	 R	 factor	 -->	 lowest	

normalized	distance	to	the	cluster	centroid.	These	databases	are	used	in	all	aspects	of	the	

antibody	design	algorithm,	including	the	GraftDesign	step,	which	uses	the	raw	coordinates	

in	 the	 database	 and	 the	 SeqDesign	 step,	 which	 uses	 an	 additional	 table	 for	 CDR	 cluster	

profiles	(residue	probabilities	at	each	position)	created	from	the	non-redundant	sequence	

data.	The	CDR	Instruction	File	helps	enable	additional	culling	during	the	GraftDesign	step,	

controlling	which	lengths,	clusters,	species,	germlines,	and	structures,	are	used	or	left	out.		

The	 majority	 of	 H3	 structures	 contain	 a	 “kink”	 at	 the	 C-terminus	 involving	 a	

Cα-Cα-Cα-Cα	 dihedral	 around	 0°	 for	 the	 last	 three	 residues	 of	 H3	 and	 the	 conserved	

tryptophan	residue	immediately	following	H3.	More	than	80%	of	H3	structures	contain	this	

kink,	whose	function	in	part	is	to	break	the	β	sheet	and	allow	the	H3	CDR	to	form	diverse	

non-β	 structures	 [97].	H3-specific	 control	 is	 available,	 such	 as	 limiting	 the	H3	CDRSet	 to	

kinked-only	structures.	The	kink	option	is	useful	if	H3	is	being	sequence	designed,	as	some	

mutations	in	kinked	H3s	may	make	the	H3	adopt	an	extended	β-strand-like	conformation	

and	vice-versa.	In	addition,	by	default,	we	disable	sequence	design	of	the	H3	stem	region,	

which	is	known	to	influence	the	H3-kink	[97,98].	

The	 span	 of	 framework	 residues	 with	 AHo	 numbering	 82-89	 comprise	 what	 is	

commonly	referred	to	as	the	“DE	loop”.	These	variable	residues	 form	a	 loop	physically	 in	

contact	with	CDR1	and	are	occasionally	observed	making	contacts	with	antigen	[53,85].	In	

RosettaAntibodyDesign,	we	denote	the	DE	loop	region	as	L4	and	H4	for	the	light	and	heavy	
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chains	 respectively.	The	 typical	kappa	L4	 is	different	 in	 sequence	and	conformation	 than	

the	 typical	 lambda	 L4,	 so	 that	 lambda	 L4s	 should	 be	 used	 with	 lambda	 L1	 CDRs	 and	

frameworks	[85]	and	kappa	L4s	should	be	used	with	kappa	L1	CDRs	and	frameworks.	Both	

loops	can	be	considered	CDRs	in	the	application	and	can	be	specified	just	as	any	other	CDR	

except	for	the	GraftDesign	stage.		However,	since	the	conformation	of	L4	and	H4	is	largely	

conserved	 among	 κ,	 λ,	 and	 heavy	 chain	 variable	 domains	 (Kelow	 and	 Dunbrack.,	 in	

preparation),	 and	 these	 loops	do	not	usually	 contact	 the	 antigen,	we	 typically	do	not	 set	

them	to	graft-design	and	in	most	cases	do	not	set	them	to	sequence-design	either. 

	

(2)	Grafting	a	CDR	

In	 order	 to	 sample	 whole	 structures	 of	 CDR	 conformations	 from	 our	 design	

database,	 a	 way	 to	 graft	 them	 onto	 a	 given	 antibody	 was	 needed	 that	 was	 quick	 and	

accurate	 enough	 to	 minimally	 perturb	 the	 CDR	 region	 without	 leaving	 breaks	 in	 the	

structure	 or	 non-realistic	 peptide	 bond	 lengths	 and	 angles.	 Our	 grafting	 algorithm	

(CCDEndsGraftMover)	 first	 superimposes	 three	 residues	 on	 either	 end	 of	 the	 CDR	 to	 be	

grafted	 onto	 the	 template	 framework.	 	 Those	 residues	 are	 then	 	 deleted	 and	 the	 Cyclic	

Coordinate	Descent	(CCD)	algorithm	of	Canutescu	and	Dunbrack	[72]	is	used	to	attach	the	

CDR	to	the	framework	using	two	residues	of	the	framework	and	the	first	residue	of	the	CDR	

(on	both	sides	of	 the	CDR),	while	all	other	residues	are	held	 fixed.	 	Each	closure	attempt	

first	perturbs	 the	backbone	φ	 and	ψ of	 these	residues	and	 the	energy	of	 these	residues	 is	

minimized	after	the	attempted	closure.			

A	graft	is	considered	closed	if	the	peptide	bond	C-N	distance	is	less	than	1.5	Å	and	

both	the	Cα-C-N	and	C-N-Cα	angles	are	less	then	15	degrees	away	from	the	ideal	min	and	
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max	 values	 determined	 by	 Berkholz	 et	 al.	 [100]	 (114.5°,	 119.5°	 and	 120°,	 126°	

respectively).		If	the	graft	is	not	closed	after	a	specific	number	of	cycles,	we	use	the	grafting	

algorithm	from	the	older	Anchored	Design	Protocol	[81]	followed	by	a	minimization	of	the	

CDR	and	connecting	residues	with	tight	dihedral	constraints	on	all	residues.		This	protocol	

is	generally	much	slower	and	can	result	in	larger	perturbations	to	the	overall	structure	of	

the	CDR	loop	relative	to	the	framework,	but	can	close	most	grafts	due	to	the	mobility	of	the	

entire	 insert	 region.	 When	 both	 terminal	 ends	 are	 closed	 during	 the	 protocol	 in	 either	

algorithm,	we	continue	the	design	protocol.			

Using	 this	 combined	grafting	algorithm,	most	CDR	grafts	 can	be	 completed	 in	 less	

than	a	second	and	we	accomplish	100%	of	CDR	graft	closure	while	minimally	perturbing	

the	internal	CDR	structure,	if	at	all.		This	algorithm	is	now	also	used	for	grafting	within	the	

main	 antibody	 application	 of	 RosettaAntibody	 [101],	 fixing	 many	 loop	 closure	

imperfections	of	the	original	application.	

	

(3)	Sequence	Design	and	Side-chain	Optimization	

The	SeqDesign	 options	 control	which	 strategy	 to	use	when	doing	 sequence	design	

(primary	 strategy),	 and	which	 strategy	 to	use	 if	 the	primary	 strategy	 cannot	be	used	 for	

that	CDR	(fallback	strategy),	such	as	conservative	design	or	no	design.		

In	Rosetta,	the	optimization	of	side-chain	conformations	is	referred	to	as	packing	(or	

repacking).	 Packing	 in	 Rosetta	 consists	 of	 traversing	 the	 set	 of	 residues	 to	 be	 optimized	

randomly	 until	 no	 residues	 are	 left	 in	 the	 pool	 and	 selecting	 the	 best	 rotamer	 of	 all	

rotamers	 defined	 for	 the	 given	 residue	 [65].	 Design	 is	 accomplished	 in	 the	 packing	

algorithm	by	sampling	all	rotamers	(using	the	2010	Dunbrack	Rotamer	Library	[96])	of	a	
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specified	set	of	residue	types	allowed	at	a	given	position.		

In	general,	we	use	a	probability	distribution	of	residue	types	for	each	CDR	position,	

embedded	in	the	antibody	design	database.	 In	the	RAbD	framework,	 it	 is	how	we	sample	

from	the	profile	of	a	given	CDR	cluster	type.	Each	time	packing	is	applied,	a	residue	type	for	

each	position	 is	 chosen	based	on	distributions	 from	 the	antibody	design	database.	 If	 this	

residue	is	different	from	the	starting	residue,	it	is	added	to	the	design	types.	This	process	

can	be	performed	repeatedly	to	increase	the	sampling	according	to	the	distributions.	This	

methodology	helps	to	maintain	the	residue	profile	of	a	given	CDR	cluster.	This	is	in	use	in	

the	 Antibody	 Design	 framework	 by	 default	 if	 enough	 statistics	 for	 that	 CDR	 cluster	 are	

present.	

Alternatively,	 we	 use	 a	 set	 of	 conservative	 mutations	 as	 design	 types	 for	 each	

specified	position.	The	conservative	mutations	for	each	residue	type	are	composed	of	the	

substitutions	for	each	residue	which	score	>=	0	in	one	of	the	BLOSUM	matrices	[102].	All	

BLOSUM	matrices	can	be	used	for	conservative	design,	and	are	specified	through	the	use	of	

a	 command-line	 option.	 The	 numbers	 of	 the	 matrix	 (such	 as	 BLOSUM62)	 indicate	 the	

sequence	 similarity	 cutoffs	 used	 to	 derive	 the	 BLOSUM	 matrices,	 with	 higher	 numbers	

being	 a	more	 conservative	 set	 of	mutations.	By	default,	 the	 conservative	mutations	 from	

the	BLOSUM62	matrix	are	used	 to	strike	a	balance	between	variability	and	conservation.	

This	 methodology	 is	 the	 default	 fallback	 sequence	 design	 strategy	 but	 can	 be	 used	

generally	instead	of	profile-based	sequence	design.	

By	 default	we	 disable	 sequence	 design	 for	 prolines,	 cysteine	 residues	 involved	 in	

disulfide	bonds,	and	the	H3	kink-determining	stem	region	(first	2	and	last	3	residues	of	H3)	

[97,98]	in	order	to	limit	large,	unproductive	perturbations	of	the	CDR	loops	from	disruptive	
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sequence	changes.	

Users	may	further	disallow	amino	acid	types	for	all	positions	through	a	command-

line	 option,	 for	 specific	 CDRs	 through	 the	 CDR	 instruction	 file,	 and	 for	 specific	 positions	

through	the	use	of	the	Rosetta	resfile	format.	The	resfile	can	also	be	used	to	disable	specific	

positions	from	design	or	packing	altogether.	

Within	the	protocol,	both	antibody-antigen	interface	residues	and	neighbor	residues	

(Figure	 2)	 that	 are	 computed	 for	 side-chain	 packing	 and	 design	 are	 updated	 on-the-fly	

before	 each	 packing/design	 step.	 This	 allows	 the	 algorithm	 to	 continually	 adapt	 to	 the	

changing	 environment	 and	 is	 accomplished	 through	 Rosetta’s	 graph-based	 neighbor	

detection	algorithms.		

	

(4)	Local	energy	minimization	and	application	of	the	inner-loop	Monte	Carlo	criterion	

Following	sequence	design	via	repacking	(Step	3),	the	conformations	of	the	grafted	

CDR,	 its	 neighboring	 CDRs,	 and	 nearby	 framework	 residues	 are	 optimized.	 The	 type	 of	

minimization	 and	 which	 CDRs	 are	 minimized	 as	 neighbors	 to	 other	 CDRs	 during	 the	

protocol	 can	 be	 specified	 through	 the	MinProtocol	 section	 of	 the	 Instruction	 File.	 Many	

minimization	 types	 are	 implemented.	 The	 default	 is	 the	 standard	

lbfgs_armijo_nonmonotone	minimizer	in	Rosetta	with	a	tolerance	of	0.001	REU.	But	other	

options	 include	 the	 backrub	 motion	 protocol	 [64,103],	 and	 the	 Relax	 algorithm,	 which	

includes	alternating	cycles	of	 reducing	and	 then	ramping	up	 the	repulsive	van	der	Waals	

energy	 term,	 and	 at	 each	 step	 performing	 side-chain	 repacking	 and	 local	 dihedral	 angle	

space	energy	minimization.	

In	order	 to	 achieve	 flexible-backbone	design	 and	environmental	 adaptation	of	 the	
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packing/design	algorithm	as	described	above,	we	updated	the	FastRelax	algorithm	[61]	to	

enable	 sequence	 design	 during	 backbone	 and	 side-chain	 optimization.	 These	 changes	 to	

FastRelax,	which	we	call	RelaxedDesign,	were	used	in	the	optimization	step	of	Jacobs	et	al.	

to	general	success	[104].	This	is	an	optional	alternative	for	the	minimization	step		

One	 further	 option	 is	 in	 the	 inner	 loop	 is	 integrated	 sampling	 of	 the	 antibody-

antigen	orientation	during	design	uses	the	underlying	framework	and	docking	algorithms	

of	RosettaDock	[45,105-108].	A	‘dock	cycle’	consists	of	a	low-resolution	docking	step,	side-

chain	 repacking	of	 the	 interface	 residues	 (defined	as	 residues	of	 the	 antibody	or	 antigen	

that	are	within	 the	set	 interface	distance	of	each	other	 (8	Å	default),	minimization	of	 the	

rigid	 body	 orientation	 (the	 ‘jump’	 in	 Rosetta	 parlance)	 between	 the	 antigen	 and	 the	

antibody,	and	a	shortened	high-resolution	dock	consisting	of	3	outer	cycles	and	10	 inner	

cycles	 as	 opposed	 to	 4	 and	 45,	which	 is	 used	 for	 a	 full	RosettaDock	 high-resolution	 run.	

During	high-resolution	docking,	the	current	interface	side	chains	are	optimized,	while	any	

CDRs	 or	 specific	 residues	 set	 to	 design	 are	 designed.	 In	 this	 way,	 sequence	 design	 and	

antibody-antigen	orientation	optimization	are	coupled	in	the	same	vein	as	sequence	design	

is	accomplished	during	CDR	structural	optimization.		

	

(5)	Application	of	the	outer-loop	Monte	Carlo	criterion:	Once	a	structure	exits	the	inner	loop	

after	Ninner	cycles	(default	1),	the	structure	is	then	passed	back	to	the	outer	loop	where	the	

Monte	Crlo	criterion	is	applied,	comparing	the	structure	that	entered	the	inner	loop	and	the	

structure	 that	 exited	 the	 inner	 loop.	 The	 outer	 loop	 Metropolis	 Criterion	 can	 either	 be	

applied	 on	 the	 Total	 Energy	 (opt-E)	 or	 the	 Interface	 Energy	 (opt-dG)	 or	 some	weighted	

combination	of	the	two.	Once	Nouter	cycles	have	been	completed	(Steps	1-5,	default	25),	the	
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output	design	is	the	structure	with	the	lowest	energy	observed	during	the	simulation.	

	

3.	Computational	Benchmarking	

Setting	up	the	benchmark	

In	order	to	reduce	artifacts,	all	benchmarking	complexes	and	starting	complexes	for	

antibody	design	were	 first	minimized	 into	 the	Rosetta	 energy	 function	using	 the	Pareto-

optimal	 protocol	 of	 Nivon	 et	 al.	 [63],	 which	 relaxes	 [61]	 the	 starting	 structure	 using	

restraints	 on	 the	 backbone	 and	 side-chain	 atoms	 to	 strike	 a	 balance	 between	 deviation	

from	 the	 starting	 structure	 and	minimization	 of	 the	 energy.	 This	 Pareto-optimal	method	

produces	 models	 with	 all-atom	 Root	 Mean	 Square	 Deviations	 (RMSD)	 to	 the	 starting	

structures	at	a	mean	of	0.176	Å	[63].	For	all	starting	structures,	the	lowest-energy	model	of	

ten	decoys	was	used	as	 the	starting	structure.	An	example	command	to	run	this	protocol	

and	the	flags	are	given	in	the	Supplemental	Methods.	

All	 antibodies	 were	 renumbered	 into	 the	 AHo	 numbering	 scheme	 [109]	 using	

PyIgClassify.	 The	 CDRClusterFeatures	 and	 AntibodyFeatures	 reporters	 were	 used	 to	

determine	CDR	 length	 and	 cluster	 information	 and	physical	 characteristics	 of	 the	decoys	

for	 benchmarking	 and	 design	 selection.	 In	 general,	 analysis	 was	 done	 using	 the	 Feature	

Reporters	to	analyze	decoys	and	create	databases	with	physical	data,	and	the	public,	open-

source	 Jade	 repository	 (https://github.com/SchiefLab/Jade)	 was	 used	 for	 benchmarking	

calculations	and	selections.		

	 Antibody-protein	 complexes	 used	 for	 benchmarking	 consist	 of	 46	 kappa	 and	 14	

lambda	structures.	These	complexes	were	chosen	with	the	following	criteria:	1)	resolution	

≤	2.5	Å;	2)	interface	surface	area	of	≥	700	Å2;	3)	CDR1	and	CDR2	within	40°	of	one	of	the	
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cluster	centroids	in	PyIgClassify	(most	L3	CDRs	were	also	within	40°,	Table	S1);	4)	contacts	

with	the	antigen	from	both	the	heavy	and	light-chain	CDRs	with	a	preference	for	contacts	of	

all	6	CDRs;	5)	non-redundant	such	that	no	two	antibodies	in	the	benchmark	contacted	the	

same	antigen	with	overlapping	epitopes;	6)	a	diversity	of	CDR	lengths	and	clusters.		

For	 each	 input	 antibody,	 we	 ran	 a	 total	 of	 100	 simulations,	 and	 the	 best	 decoy	

observed	 during	 each	 design	 run	was	 output.	 The	 benchmarking	was	 run	 on	 a	 compute	

cluster	 in	 parallel	 via	 MPI.	 The	 RunRosettaMPIBenchmarks.py	 script	 of	 the	 Jade	 github	

repository	 was	 used	 to	 help	 launch	 and	 configure	 benchmarks	 on	 the	 cluster	

(https://github.com/SchiefLab/Jade).	The	number	of	outer	cycles	for	each	parallel	run	was	

set	 to	 100,	 so	 each	 input	 antibody	 underwent	 10,000	 total	 design	 cycles	 for	 each	

experimental	group.		

All	 5	 non-H3	 CDRs	 were	 allowed	 to	 undergo	 GraftDesign,	 while	 all	 6	 CDRs	 went	

through	SequenceDesign.	The	starting	CDR	for	each	non-H3	CDR	was	removed	at	the	start	

of	the	program	and	a	random	CDR	from	the	CDRSet	was	grafted	onto	the	starting	antibody	

through	the	option	–random_start.		

	

Average	risk	ratios	and	their	confidence	intervals	

To	 calculate	 the	 risk	 ratios	 over	 the	 entire	 benchmark,	we	 calculated	 the	 percent	

recovered	 and	 the	 percent	 sampled	 over	 the	 100	 decoys	 for	 the	 60	 antibodies	 in	 the	

benchmark.	Thus,	 the	 recovery	 frequency	was	 the	number	of	native	 clusters	observed	 in	

the	6000	decoys	of	 the	benchmark	 for	each	CDR	divided	by	6000.	Similarly,	 the	sampled	

frequency	was	calculated	as	the	number	of	native	cluster	CDRs	grafted	divided	by	the	total	

number	of	grafts	for	a	CDR	during	the	6000	simulations	(for	each	CDR,	(100	outer	loops)	x	
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(1/6	CDRs)	x	100	simulations	x	60	antibodies	=	100,000)	.	For	the	antigen	risk	ratios,	the	

frequencies	of	recovered	CDR	lengths	and	clusters	were	calculated	for	the	final	decoys	from	

the	antigen-present	and	antigen-free	simulations.	

The	confidence	intervals	are	calculated	as	described	by	Gertsman	[110].	If	

RR=pRecovered/pSampled,	then:	

CI = exp lnRR ±1.96
1− pRecovered( )

NRecovered pRecovered
+

1− pSampled( )
NSampled pSampled

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	

Similarly,	for	the	antigen	risk	ratio,	if	RR=pantigen/pnoantigen,	where	p	represents	the	

frequency	of	the	native	cluster,	length,	or	residue	type	in	the	antigen	or	no-antigen	

simulations,	then		

CI = exp lnRR ±1.96
1− pantigen( )
Nantigen pantigen

+
1− pnoantigen( )

Nnoantigen pnoantigen

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
	

	

4.	Designs	for	experimental	testing	of	computational	antibody	design	

2J88	Design	

The	 starting	 antibody	 complex,	was	 obtained	 from	 the	Protein	Data	Bank	with	 ID	

2J88	[111],	renumbered	using	PyIgClassify,	and	minimized	into	the	Rosetta	energy	function	

as	described	above.	To	begin	design,	we	used	a	multiple-strategy	approach	including	with	

and	without	docking	and	the	explicit	use	of	only	CDR	clusters	which	have	cluster	profiles	

(more	than	10	non-redundant	members	in	the	database),	as	well	as	differential	CDR	design	

for	both	graft-based	and	sequence-based	design	(H2	vs.	L1).	When	designing	the	L1	loop,	

we	also	included	a	strategy	in	which	we	allowed	L4	to	undergo	sequence	design,	for	a	total	

of	6	 antibody	design	 strategies.	The	WT	L1	or	H2	CDR	was	 removed	and	a	 random	CDR	
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from	the	database	was	grafted	in	order	to	start	design	with	the	non-native	CDR,	as	well	as	

start	 with	 a	 potentially	 higher-energy	 structure.	 All	 CDR	 structures	 from	 the	 WT	 2J88	

antibody	were	left	out	of	the	CDRSet.	

For	 the	 strategies	 in	 which	 docking	 was	 used,	 automatic	 epitope	 SiteConstraints	

were	enabled	to	constrain	the	antibody	paratope	to	the	starting	epitope.	A	total	of	1000	top	

decoys	were	output	as	separate	Monte	Carlo	trajectories	in	parallel	for	each	design	strategy	

using	a	compute	cluster	via	MPI,	with	100	outer	cycles	for	each	parallel	run,	for	a	total	of	

100,000	design	rounds	per	strategy.	The	RunRosettaMPI	Bio-Jade	python	application	was	

used	 to	aid	 the	cluster	run	(https://bio-jade.readthedocs.io/en/latest/).	The	command	to	

run	the	application,	flags,	and	CDR	Instructions	are	given	in	the	Supplemental	Methods.	

Decoys	were	analyzed	by	the	Rosetta	Feature	reporter	framework	in	the	exact	same	

manner	 as	 the	 benchmarking.	 The	 features	 databases	were	 then	 used	 in	 the	 RAbD	 Jade	

Antibody	Design	GUI	in	order	to	sort	them	for	selection	(Figure	S18).	

For	both	relaxed	and	unrelaxed	sets	of	decoys	and	each	antibody	design	strategy,	we	

sorted	the	models	according	to	their	computed	interface	energy	(dG)	after	culling	to	only	

the	 top	 10%	 of	 the	models	 by	 total	 energy	 (dG_top_p_total),	 or	 by	 the	 lowest	 density	 of	

unsaturated	hydrogen	bonds	per	interface	area	(delta_unsats_per_1000_dSASA)	[91]	for	a	

total	 of	 24	 sorted	 groups	 (6	 design	 strategies	 *	 2	 decoy	 discrimination	 methods	

(relaxed/unrelaxed)	*	2	sorting	methods).		

For	 the	 three	 design	 strategies	 where	 docking	 was	 enabled	 and	 sorted	 by		

unsaturated	hydrogen	bond	density	(3	design	strategies	*	2	decoy	discrimination	methods	

*1	sorting	strategy),	the	best	two	models	had	antibodies	that	were	too	far	from	the	native	

binding	site,	even	with	the	use	of	epitope	SiteConstraints.	This	could	be	due	to	not	using	the	
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constraint	energy	as	a	filter	in	this	case,	only	to	guide	the	design	–i.e.,	not	in	the	sorting	of	

the	total	energy.	Due	to	this,	these	6	groups	were	left	out	for	a	total	of	18	groups.	The	best	

two	models	from	the	sorted,	unrelaxed	groups	(9	groups,	18	designs)	and	the	best	model	of	

the	 sorted,	 relaxed	 groups	 were	 expressed	 (9	 groups,	 9	 designs)	 (i.e.,	 chosen	 with	 no	

human	intervention).	Three	other	models	of	the	sorted	relaxed	groups	for	L1	design	were	

added	 to	 the	 expression	 group,	 as	 these	were	 the	 second-best	 scoring	models	 of	 the	 L1	

relaxed	groups,	for	a	total	of	30	antibodies	selected	for	expression	(Figure	S17).		

L1/dock	off/dG_top_p_total	sort	–	design	L1_4	
L1/dock	off/delta_unsats		sort	–	design	L1-8	
L1/dock	on/dG_top_p_total	sort	–	design	L14-5	
	

Sequences	were	obtained	from	the	decoys	and	processed	for	inclusion	into	the	expression	

vector	sequences	using	the	get_seq	application	of	Jade.		

	

CH103	Design	

The	 starting	 antibody	 complex	was	 obtained	 from	 the	 Protein	Data	 Bank	with	 ID	

4JAN	[83],	renumbered	using	PyIgClassify,	and	minimized	into	the	Rosetta	energy	function	

as	described	above.	A	total	of	four	antibody	design	strategies	were	used	where	either	H2	or	

L1+L3	 were	 designed	 and	 the	 CDRSet	 included	 only	 clusters	 with	 enough	 data	 to	 use	

profiles.	 250	 top	 decoys	were	 output	 for	 parallel	Monte	 Carlo	 trajectories	 in	 parallel	 for	

each	antibody	design	strategy	with	the	outer	cycle	rounds	set	to	200,	for	a	total	of	50,	000	

design	cycles	per	design	strategy.	Commands,	flags,	and	CDR	Instructions	are	given	in	the	

Supplemental	Methods.		

Decoys	were	 analyzed	with	 both	 the	 RosettaFeatures	 reporters	 and	 physical	 data	

and	sorted	as	described	for	2J88.	In	addition	to	sorting	by	the	top	dG	of	the	top	10%	of	total	
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energy	 (dG_top_Ptotal)	 and	 density	 of	 unsaturated	 hydrogen	 bonds	 per	 interface	 area	

(delta_unsats_per_1000_dSASA),	 we	 sorted	 by	 the	 Lawrence	 and	 Colman	 Shape	

Complementarity	 score[112]	 (sc_value)	 through	 the	 Jade	RAbD	GUI.	 Sorts	were	 done	 for	

both	relaxed	and	nonrelaxed	decoys	to	aid	in	decoy	discrimination.	The	sorts	were	done	for	

individual	antibody	design	strategies	and	all	combined	for	a	total	of	28	sorted	groups.	Jade	

was	used	to	output	PyMol	sessions	of	each	group.	The	top	10	designs	from	each	group	were	

visually	analyzed	in	PyMol	and	27	designs	were	selected	based	on	physical	characteristics	

such	as	 good	 shape	 complementarity,	hydrogen	bonding,	 interface,	 and	 total	 energies,	 as	

well	as	cluster	and	sequence	redundancy	in	the	designs.	Generally,	the	top	design	selected	

from	 each	 sort	 was	 expressed,	 unless	 it	 was	 redundant	 or	 the	 structure	 held	 some	

abnormality,	 such	 as	 bad	 shape	 complementarity.	 Sequences	 were	 obtained	 from	 the	

decoys	and	processed	for	inclusion	into	the	expression	vector	sequences	using	the	get_seq	

application	of	Jade.	

	
Availability	
	

RosettaAntibodyDesign	 is	 distributed	 with	 the	 Rosetta	 Software	 Suite	

(www.rosettacommons.org)	 and	 is	 included	 with	 Rosetta	 versions	 starting	 at	 3.8.	 All	

RosettaAntibodyDesign	 framework	 classes	 are	 available	 for	 scripting	 within	 the	

RosettaScripts	 framework	 [99],	 including	 the	 main	 application.	 The	 public	 Rosetta	

distribution	 includes	a	database	of	 the	original	North-Lehmann-Dunbrack	clustering	data	

[53].	 Up-to-date	 antibody	 design	 databases	 for	 use	 with	 RosettaAntibodyDesign	 can	 be	

obtained	 from	 PyIgClassify	 (http://dunbrack2.fccc.edu/PyIgClassify/default.aspx).	

Documentation	 on	 the	 use	 of	 RosettaAntibodyDesign	 can	 be	 found	 with	 the	

RosettaCommons	documentation:	
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https://www.rosettacommons.org/docs/latest/application_documentation/antibody/Ros

ettaAntibodyDesign.		

	

Bio-Jade	is	an	open-source	python	package,	with	scripts	and	modules	created	specifically	

for	RAbD	(https://bio-jade.readthedocs.io/en/latest/)	
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1.	Rosetta	Commands	

For	 the	 benchmarking	 set,	 full	 commands	 and	 CDR	 Instruction	 File	 contents	 are	 given	

below.	Note	that	some	options	for	some	experimental	groups	are	the	default	and	do	not	need	to	be	

specified,	but	are	given	in	the	file	explicitly	anyway.		To	prepare	the	structures	for	design,	they	are	

relaxed	with	the	Rosetta	force	field	using	the	FastRelax	protocol	with	these	commands:	

	

Command	

relax.mpi.linuxgccrelease –l PDBLIST.txt –nstruct 10 
@pareto_optimal_flags.txt 

	

Contents	of	pareto_optimal_flags.txt	file	

-no_optH false 
-flip_HNQ 
-use_input_sc 
-constrain_relax_to_start_coords 
-relax:ramp_constraints false 
-relax:coord_constrain_sidechains 
-ignore_unrecognized_res 
-ignore_zero_occupancy false 
-pdb_comments 
-ex1 
-ex2 
-out:pdb_gz 
-other_pose_to_scorefile 
-scorefile_format json 
-jd2:delete_old_poses 
-load_PDB_components false 

	

The	benchmark	antibodies	are	designed	with	the	following	commands	(with	variations	for	each	

protocol):	
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Command:	

Antibody_designer.mpi.linuxgccrelease @common_flags.txt 
@experimental_flags.txt –l PDBLIST.txt  

	

Contents	of	common_flags.txt	file:	

-graft_design_cdrs L1 L2 L3 H1 H2 
-seq_design_cdrs L1 L2 L3 H1 H2 H3 
 
-output_ab_scheme AHo_Scheme 
-nstruct 100 
-outer_cycle_rounds 100 
-random_start True 
-add_graft_log_to_pdb 
-ignore_zero_occupancy false 
-ignore_unrecognized_res  
-pdb_comments  
-ex1  
-ex2  
-use_input_sc  
-out:pdb_gz  
-other_pose_to_scorefile  
-scorefile_format json 
-flip_HNQ  
-delete_old_poses 
-load_PDB_components false  

	

Contents	of	experimental_flags.txt	file:	

#Lambda/opt-E 
-light_chain lambda 
 

#Lambda/opt-E/No antigen 
-light_chain lambda 
-remove_antigen True 

 
#Lambda/opt-dG 

-light_chain lambda 
-	mc_optimize_dG 
 

#Lambda/opt-dG/No antigen 
-light_chain lambda 
-mc_optimize_dG 
-remove_antigen True 
 

 
#Kappa/opt-E 

-light_chain kappa 
 
#Kappa/opt-E/No antigen 

-light_chain kappa 
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-remove_antigen True 
 
#Kappa/opt-dG 

-light_chain kappa 
-	mc_optimize_dG 

 
#Kappa/opt-dG /No antigen 

-light_chain kappa 
-	mc_optimize_dG 
-remove_antigen True 

 
	
CDR	Instruction	File	contents:	
	
#RAbD Defaults (Used always, unless command override): 
 

L1 MinProtocol Min_Neighbors L2 L3 
L2 MinProtocol Min_Neighbors L1 
L3 MinProtocol Min_Neighbors L1 H3 
H1 MinProtocol Min_Neighbors H2 H3 
H2 MinProtocol Min_Neighbors H1 
H3 MinProtocol Min_Neighbors L1 L3 
ALL MinProtocol MinType min 

 
 
#Experiments	

ALL CDRSet CLUSTER_CUTOFFS 5	
 

	
	
	

For	the	redesign	of	the	2j88	antibody,	the	Rosetta	command	was:	
	

antibody_designer.mpi.linuxgccrelease @common_flags.txt 
@experimental_flags.txt –cdr_instructions cdr_instructions.txt –
s 2j88_pareto_optimal.pdb –nstruct 1000 

 
Contents	of	common_flags.txt	file:	

-output_ab_scheme AHo_Scheme 
-add_graft_log_to_pdb 
-ignore_zero_occupancy false 
-ignore_unrecognized_res  
-pdb_comments  
-ex1  
-ex2  
-use_input_sc  
-out:pdb_gz  
-other_pose_to_scorefile  
-scorefile_format json 
-flip_HNQ  
-delete_old_poses  
-load_PDB_components false 

	
Contents	of	experimental_flags.txt:	Docking	Off	
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-outer_cycle_rounds 100 
-s input_pdbs/pareto_2j88_renum_0002.pdb.gz 
-run_relax 
-random_start 
-design_protocol even_cluster_mc 
-light_chain kappa 
	

Contents	of	experimental_flags.txt:	Docking	On	
-outer_cycle_rounds 100 
-run_relax 
-random_start 
-design_protocol even_cluster_mc 
-light_chain kappa 
-use_epitope_constraints 
-do_dock 
-inner_cycle_rounds 2 

	
Contents	of	cdr_instructions.txt;	H2	Design		

H2 ALLOW 
ALL GraftDesign mintype relax 
H2 MinProtocol Min_Neighbors H1 H3 
H2 CDRSet Cluster_Cutoffs 10 
ALL CDRSET EXCLUDE PDBIDs 2J88 

 
Contents	of	cdr_instructions.txt;	L1	Design		

L1 ALLOW 
ALL GraftDesign mintype relax 
L1 GraftDesign Min_Neighbors L3 L4 
L1 CDRSet Cluster_Cutoffs 10 
ALL CDRSET EXCLUDE PDBIDs 2J88 

 
Contents	of	cdr_instructions.txt;	L1/L4	Design		

L1 ALLOW 
ALL GraftDesign mintype relax 
L1 GraftDesign Min_Neighbors L3 L4 
L1 CDRSet Cluster_Cutoffs 10 
ALL CDRSET EXCLUDE PDBIDs 2J88 
L4 SeqDesign ALLOW 

 

Note	 that	 many	 options,	 such	 as	 which	 CDRs	 to	 design,	 can	 alternatively	 be	 set	 via	 simple	

command-line	options.		

	

For	the	redesign	of	the	4jan	antibody,	the	Rosetta	command	was:	

	
General	Command:	

antibody_designer.mpi.linuxgccrelease @common_flags.txt –
cdr_instructions cdr_instructions.txt –s 4JAN_pareto_optimal.pdb 
–nstruct 250 

	
Contents	of	common_flags.txt	file:	

-outer_cycle_rounds 200 
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-run_relax 
-random_start 
-design_protocol even_cluster_mc 
-light_chain lambda 
-add_graft_log_to_pdb 
-ignore_zero_occupancy false 
-ignore_unrecognized_res  
-pdb_comments  
-ex1  
-ex2  
-use_input_sc  
-out:pdb_gz  
-other_pose_to_scorefile  
-scorefile_format json 
-flip_HNQ  
-delete_old_poses  
-load_PDB_components false 

	
Contents	of	cdr_instructions.txt;	H2	Design,	Profiled	

H2 ALLOW 
H2 MinProtocol Min_Neighbors H1 H3 
H2 CDRSet Cluster_Cutoffs 10 
ALL CDRSet Exclude PDBIDs 4JAN 
	

Contents	of	cdr_instructions.txt;	H2	Design,	All	
H2 ALLOW 
H2 MinProtocol Min_Neighbors H1 H3 
ALL CDRSet Exclude PDBIDs 4JAN 
 

Contents	of	cdr_instructions.txt;	L1/L3	Design,	Profiled	
L1 ALLOW 
L3 ALLOW 
L3 MinProtocol Min_Neighbors L1 H3 
L1 MinProtocol Min_Neighbors L3 H3 
L1 CDRSet Cluster_Cutoffs 10 
L3 CDRSet Cluster_Cutoffs 10 
ALL CDRSet Exclude PDBIDs 4JAN 
	

Contents	of	cdr_instructions.txt;	L1/L3	Design,	All	
L1 ALLOW 
L3 ALLOW 
L3 MinProtocol Min_Neighbors L1 H3 
L1 MinProtocol Min_Neighbors L3 H3 
ALL CDRSet Exclude PDBIDs 4JAN 

	

The	AntibodyFeatures	reporters	(described	below)	were	used	in	the	analysis	of	the	antibodies:	

	

rosetta_scripts.macosxrelease –l DECOYS.txt @common_flags –

parser:protocol features_script.xml 

	

RosettaScript	used	to	obtain	feature	databases:	
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<ROSETTASCRIPTS> 
   <MOVERS> 
      <ReportToDB name='features' database_name='my_db'> 
         <feature name='CDRClusterFeatures' numbering_scheme='AHO_Scheme'/> 
         <feature name='AntibodyFeatures' numbering_scheme='AHO_Scheme' 
cdr_definition='North' interface='LH_A' pack_separated='1' pack_together='1'/> 
         <feature name='ResidueFeatures'/> 
         <feature name='PdbDataFeatures'/> 
         <feature name='ResidueTypesFeatures'/> 
         <feature name='ScoreTypeFeatures'/> 
         <feature name='StructureScoresFeatures'/> 
         <feature name='ResidueSecondaryStructureFeatures'/> 
         <feature name='ResidueScoresFeatures'/> 
         <feature name='ResidueBurialFeatures'/> 
      </ReportToDB> 
   </MOVERS> 
   <PROTOCOLS> 
      <Add mover_name='features'/> 
   </PROTOCOLS> 
</ROSETTASCRIPTS> 
	

Once	each	database	was	created,	extra	output	 in	each	decoy	PDB	file	 (added	through	the	

option	 –add_graft_log_to_pdb),	 was	 used	 to	 calculate	 recoveries	 and	 risk	 ratios	 through	 the	

creation	and	use	the	Bio-Jade	AnalyzeRecovery	module	of	the	RAbD_BM	subpackage.	(https://bio-

jade.readthedocs.io/en/latest/).		

	

2.	Dihedral,	Epitope,	and	Paratope	Constraints	

Several	constraint	types	are	used	by	the	Antibody	Design	framework	to	limit	unproductive	

structural	perturbations	of	 the	CDR	regions	and	 the	relative	orientation	of	 the	antibody-antigen	

interface	while	docking	in	the	program.	There	are	many	constraint	types	with	associated	function	

types	implemented	in	Rosetta.	These	constraints	are	added	to	the	structure	and	are	evaluated	via	

terms	added	to	the	Rosetta	energy	function.	The	Rosetta	energy	minimizer	(which	optimizes	the	

conformation	of	the	structure	by	finding	the	local	energy	minimum)	can	use	these	constraints	to	

find	optimal	values	that	help	to	satisfy	all	the	energy	terms	including	the	constraints.	Within	the	

Rosetta	Antibody	Design	 framework,	 the	weight	of	 these	constraints	can	be	set	 from	command-

line	options.	We	can	set	parameters	 that	govern	whether	 these	constraints	are	used	throughout	
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the	 protocol	 (where	 they	 also	 act	 as	 structural	 filters)	 or	 only	 in	 certain	 situations	 like	

minimization	or	docking	(where	they	act	only	to	guide	the	structure	to	an	optimum	conformation	

that	satisfies	the	constraints).	

The	 set	 of	 general	 Antibody	 constraint	 movers	 that	 were	 implemented	 consist	 of	 the	

CDRDihedralConstraintMover,	 ParatopeSiteConstraintMover,	 and	 the	

ParatopeEpitopeSiteConstraintMover.	These	Movers	 (a	mover	 applies	 some	 change	 to	 a	 Pose	 or	

structure[102])	can	be	fine-tuned	for	specific	design	strategies	using	a	number	of	user-accessible	

options	and	RosettaScripts[90].		

The	 CDRDihedralConstraintMover	 places	 Circular	 Harmonic	 constraints	 on	 each	 φ	 and	ψ	

dihedral	angle	of	a	given	CDR	as	cluster-specific	and	general-use	constraints.	The	equation	for	the	

Circular	Harmonic	constraint	is	as	follows	where	x0	is	the	starting	dihedral	angle,	x	is	the	changed	

dihedral	angle,	and	σ	is	the	standard	deviation	of	x:	

	

		

	

Constraints	are	added	to	help	Rosetta	keep	a	particular	loop	structure	during	any	backbone	

optimization.	Dihedral	constraints	are	used	 instead	of	coordinate	constraints	(which	try	 to	keep	

each	atom	at	a	particular	Cartesian	coordinate)	in	order	to	allow	more	natural,	hinge-like	motion	

of	the	CDR	loops.	Users	of	the	protocol	who	wish	to	design	antibodies	without	these	constraints	

can	set	the	weight	of	the	dihedral	constraint	to	zero	via	a	command-line	option.	

The	 cluster-specific	 constraints	 have	 the	 value	 of	 x0	 and	 standard	 deviation	 for	 each	

backbone	φ	and	ψ	dihedral	angle	at	the	angle	mean	and	standard	deviation	of	the	members	of	the	

cluster.	 These	 constraints	 are	 output	 by	 PyIgClassify	 using	 a	 high-quality	 set	 of	 non-redundant	

f x( ) = NearestAngleRadians x, x0( )− x0
σ

⎛
⎝⎜

⎞
⎠⎟

2
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data,.	 The	 default	 behavior	 of	 the	CDRDihedralConstraintMover	 is	 to	 add	 these	 constraints	 for	 a	

particular	CDR	only	 if	 there	are	enough	members	 in	the	cluster	to	have	reliable	data.	 If	data	are	

scarce,	 then	 general	 dihedral	 constraints	 are	 added,	 with	 means	 at	 the	 current	 angles	 and	 a	

standard	deviation	that	was	originally	compiled	by	taking	the	mean	of	the	standard	deviations	of	

all	 CDR	 clusters.	 These	 angles	 can	 be	 set	 via	 command-line	 options.	 By	 default,	 we	 use	 these	

general	dihedral	constraints	for	H3,	since	it	does	not	cluster	well.		

For	 the	 cluster-specific	 constraints	 (and	other	places	 in	 the	protocol),	we	generally	 filter	

out	outliers	 in	 the	data	as	described	below.	This	can	be	 turned	off	 through	 the	use	of	an	option	

that	 will	 load	 a	 different	 set	 of	 constraints	 compiled	 with	 structures	 that	 are	 not	 filtered	 for	

outliers.	This	can	be	useful	if	using	outliers	elsewhere	in	the	protocol.		

SiteConstraints	are	a	set	of	atom-pair	constraints	that	evaluate	whether	a	residue	interacts	

with	some	other	chain	or	region	--		roughly,	that	it	is	(or	is	not)	in	a	binding	site.	More	specifically,	

if	we	have	a	SiteConstraint	on	a	particular	residue,	that	SiteConstraint	consists	of	a	set	of	distance	

constraints	on	the	Cα	atom	from	that	residue	to	the	Cα	atom	of	all	other	residues	in	a	set,	typically	

the	set	being	specific	residues	on	another	chain	or	chains.	After	each	constraint	is	evaluated,	only	

the	constraint	giving	the	lowest	score	is	used	as	the	SiteConstraint	energy	for	that	residue.	These	

SiteConstraints	use	a	Flat	Harmonic	function	by	default:	f(x)=k(x	–	x0)2	if	|(x	–	x0)|	>	T	with	T	being	

the	tolerance	value;	f(x)	=	0	if	|(x	–	x0)|	<=	T.	Values	of	the	standard	deviation	are	set	at	1	Å,	while	

the	tolerance	is	set	at	the	interface	distance	of	the	protocol	(8	Å	default),	which	means	that	there	is	

no	penalty	for	the	SiteConstraint	except	at	distances	greater	than	this	distance.		

The	ParatopeSiteConstraintMover	adds	SiteConstraints	between	each	CDR	residue	and	the	

antigen.	This	helps	to	keep	the	CDR	paratope	at	the	interface	during	docking;	without	it,	docking	

can	 use	 the	whole	 of	 the	 antibody	 surface	 instead	 of	 just	 the	 paratope	 and	 this	 can	 be	 seen	 in	

resulting	models.	 These	 paratope	 constraints	 are	 added	 automatically	 in	 the	 program,	 and	 the	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2018. ; https://doi.org/10.1101/183350doi: bioRxiv preprint 

https://doi.org/10.1101/183350
http://creativecommons.org/licenses/by-nd/4.0/


CDRs	of	the	paratope	can	be	controlled	through	an	option.	

The	ParatopeEpitopeSiteConstraintMover	adds	SiteConstraints	from	the	epitope	residues	to	

the	 paratope	 residues	 and	 from	 the	 paratope	 to	 the	 epitope.	 Target	 epitope	 residues	 can	 be	

specified	 via	 command-line	 or	 automatically	 detected	 via	 the	 set	 interface	 distance.	 These	

constraints	 are	 off	 by	 default,	 but	 if	 they	 are	 enabled,	 they	 are	 set	 instead	 of	 the	

ParatopeSiteConstraintMover	 and	 help	 to	 keep	 the	 paratope	 and	 the	 epitope	 in	 contact	 during	

design	when	the	docking	component	of	the	algorithm	is	enabled.		

	

3.	Outlier	Control	

In	our	original	clustering	of	the	antibody	CDR	structures,	an	affinity	propagation	clustering	

technique	was	used	on	a	carefully	curated	dataset	of	high-resolution	structures	and	few	outliers4.	

In	order	to	match	new	CDR	structures	with	a	proper	cluster	from	that	original	clustering,	we	use	

the	dihedral	angle	metric	originally	used	 for	 the	affinity	propagation,	but	measure	 it	against	 the	

centroid	(representative	structure)	of	all	clusters	of	the	same	length.	The	cluster	with	the	lowest	

dihedral	distance	is	assigned	as	the	cluster	for	that	structure1.		

While	this	is	useful	to	assign	CDRs	of	known	length	to	a	particular	cluster,	many	structures	

become	outliers	of	 the	particular	 cluster	 and	would	have	 formed	 their	own	cluster	 if	 clustering	

was	repeated	(Kelow	et	al.,	 in	preparation).	To	optimize	our	CDR	profiles,	constraints,	and	other	

aspects	of	the	design	program	for	an	updated	database,	we	needed	to	quantitatively	define	what	

would	be	considered	an	outlier.		

We	used	both	the	dihedral	distance	metric	and	RMSD	of	all	backbone	atoms	to	help	define	

an	outlier.	In	order	to	visualize	the	breadth	of	each	cluster,	we	generated	PyMol	sessions	of	each	of	

the	clusters	using	python	and	PyRosetta5	by	aligning	the	CDRs	to	their	cluster	center	either	using	

all	backbone	heavy	atoms	or	by	aligning	only	the	stem	region	(three	framework	residues	on	either	
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side	of	the	CDR	loop).		

We	also	generated	plots	of	dihedral	distance	versus	RMSD	and	length	versus	RMSD	for	both	

alignment	types	and	for	each	length	and	cluster,	where	high	RMSD	can	be	seen	even	with	lower	

dihedral	distance,	especially	when	only	the	stem	was	aligned.		

We	then	used	these	plots	and	the	PyMol	visualizations	for	each	CDR	cluster	to	define	two	

outlier	definitions	–	one	conservative	and	one	liberal	(used	as	the	default).	We	calculate	the	RMSD	

for	these	definitions	through	the	full	CDR	alignments	as	the	stem	alignment	can	result	in	very	high	

RMSD	for	low	dihedral	angle	distances,	attributable	to	hinge-like	motions	in	the	CDR:	

	

	(Conservative):		

if (DihDis >= 40° OR RMSD >= 1.5 Å) then CDR is Outlier 

	

	(Liberal):		

if (DihDis >= 40° AND RMSD >= 1.5 Å) then CDR is Outlier 

	

Outlier	control	is	handled	as	an	option	in	the	Antibody	Design	framework,	where	each	set	

of	 data	 used	 by	 the	 framework	 is	 first	 generated	with	 and	without	 outliers	 and	 using	 both	 the	

liberal	 and	 conservative	 definition	 of	 an	 outlier.	 For	 smaller	 clusters	 or	H3	 (which	 only	 cluster	

well	 at	 lengths	 ≤	 9),	 outliers	 may	 be	 useful	 in	 the	 design	 search	 and	 an	 option	 will	 switch	 all	

aspects	of	the	framework	to	include	outliers	for	sequence	and	dihedral	constraint	statistics	as	well	

as	graft	sets.	By	default,	outliers	are	left	out,	but	used	for	H3	since	it	does	not	cluster	well.		

	

4.	Antibody	Feature	Analysis	

Three	 FeatureReporters	 were	 developed	 as	 a	 part	 of	 the	 Rosetta	 Features	 Reporter	
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framework1-3	to	aid	in	the	modeling	and	design	of	antibody	structures.	Each	of	these	can	be	used	

through	the	RosettaScript	framework	on	a	list	of	structures.	The	physical	attributes	reported	are	

output	to	a	relational	database,	such	as	SQLITE3,	across	multiple	tables	for	further	analysis.	These	

databases	can	easily	be	converted	into	CSV	files	or	read	by	available	packages	in	R	and	Python.		

The	CDRClusterFeatures	reporter	identifies	all	North/Dunbrack	CDR	clusters	in	an	antibody	

to	 the	 closest	 cluster	 centroid	 using	 the	 same	 metric	 described	 in	 PyIgClassify	 as	 well	 as	

information	pertaining	to	the	dihedral	distances	of	 the	CDRs4.	 It	 is	 the	primary	FeatureReporter	

used	 in	 benchmarking	 length	 and	 cluster	 recovery.	 The	 database	 tables	 output	 by	 the	

CDRClusterFeatures	are	detailed	in	Table	S4.	

The	InterfaceFeatures	Reporter,	detailed	in	Table	S5,	analyzes	protein-protein	and	protein-

ligand	interfaces,	outputting	a	number	of	different	tables	and	physical	data.	Much	of	the	analysis	is	

done	 through	 the	 Rosetta	 InterfaceAnalyzer,5,	 6	 which	 we	 have	 updated.	 The	 InterfaceAnalyzer	

calculates	 differences	 in	 scoring	 (such	 as	 an	 estimate	 of	 the	 interface	 ΔG	 –	 the	 enthalpic	

component	 of	 the	 full	 binding	 free	 energy)	 by	 physically	 separating	 the	 interface	 components	

(such	 as	 antibody	 from	 antigen)	 and	 optimizing	 interface	 residue	 side	 chains	 -	 both	 in	 the	

complexed	 and	 separated	 conformations.	 An	 interface	 distance	 of	 6	 Å	 is	 used	 as	 the	 default	

interface	distance.		

Separate	tables	are	output	for	the	overall	complex,	the	individual	proteins	in	the	complex,	

and	 the	 interface	 residues.	 The	 main	 data	 output	 by	 this	 Reporter	 are	 the	 estimated	 binding	

energy	 (ΔG)	 of	 the	 complex	 in	 Rosetta	 Energy	 Units	 (REU),	 the	 change	 in	 solvent	 accessible	

surface	area	upon	binding	(ΔSASA)	using	 the	Le	Grand	SASA	calculation	method7,	 the	Lawrence	

and	Colman	shape	complementary	of	the	interface	(sc_value)8,	the	packing	quality	(packstat)9,	and	

the	number	of	unsaturated	hydrogen	bonds	in	the	complex6.		

We	 added	 alternative	 SASA	 radius	 sets	 to	 Rosetta,	 with	 the	 standard,	 now-defunct	 radii	
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changing	 from	 the	 default	 to	 ‘legacy’.	 We	 implemented	 a	 variety	 of	 radius	 sets	 found	 in	 the	

literature	 and	 used	 in	 various	 structural	modeling	 programs	 in	which	 they	 either	 implicitly	 or	

explicitly	 include	hydrogen	atoms.	Once	a	particular	radius	set	 is	used,	 the	SASA	machinery	will	

change	its	consideration	of	implicitly	or	explicitly	including	hydrogen	atoms	during	the	calculation	

depending	on	the	set.	

The	atomic	radius	set	with	 implicit	hydrogens	 is	 the	one	used	by	the	program	Naccess,	a	

popular	program	used	for	the	calculation	of	SASA10.	This	set	was	derived	by	Chothia	in	his	seminal	

1976	paper11,	while	explicit	hydrogen	radius	 sets	 include	 the	 legacy	 radii,	 the	Rosetta	Lennard-

Jones	(LJ)	radii	(which	are	mostly	the	same	as	the	LJ	radii	from	the	CHARMM	molecular	dynamics	

program12),	and	the	radii	used	by	the	program	reduce	(a	program	for	the	placement	of	hydrogens	

onto	 molecular	 models	 and	 crystal	 structures)13,	 originating	 from	 physical	 data	 obtained	 from	

Bondi,	196414	and	Gavezzotti,	198315.	The	reduce	radius	set	is	now	the	default	in	Rosetta.		

We	 implemented	 the	 AntibodyFeatures	 Reporter,	 a	 type	 of	 InterfaceFeatures	 Reporter	

specific	 for	 antibody	 and	 antibody-antigen	 interfaces,	 while	 outputting	 a	 number	 of	 additional	

metrics	for	antibodies	and	CDRs.	Some	of	the	main	metrics	 include	CDR,	antibody,	and	paratope	

charge,	ΔG	and	ΔSASA,	H3	kink	statistics,	number	of	contacts,	and	packing	angle	statistics16.	The	

packing	angle	is	a	measure	of	the	relative	orientation	between	the	light	and	heavy	antibody	chains.	

It	 uses	 four	 conserved	 residues	 of	 each	 chain	 in	 the	 framework	 beta-sheets	 at	 the	 VL	 and	 VH	

interface	and	principal	component	analysis	to	define	four	centroid	points	and	a	dihedral	angle	for	

which	to	quantify	the	orientation17.		

A	full	list	of	the	metrics	and	tables	output	by	the	AntibodyFeatures	Reporter	can	be	found	in	

Table	S6.	All	tables	output	by	the	InterfaceFeatures	Reporter	are	output	by	the	AntibodyFeatures	

Reporter	for	specific	antibody	interfaces	specified	where	A	is	the	antigen:	LH-A,	L-H,	L-A,	H-A.	
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5.	Supplementary	Figures	

	
	
Figure	S1:		For	each	region	(Antigen,	Framework,	Each	CDR),	we	first	determine	if	that	region	is	
set	to	design	via	the	program	options	and	CDR	Instructions	File.		If	the	region	is	set	to	design,	we	
disable	design	for	prolines	and	disulfide-bonded	Cysteine	residues	within	the	region	by	default.	If	
it	 is	an	antigen	region,	we	use	basic	design	and	exit	 the	setup.	 If	 it	 is	 the	 framework	region,	we	
disable	 completely	 conserved	 positions,	 such	 as	 the	 tryptophan	 immediately	 after	 the	H3	 loop.	
Currently,	we	either	do	conservative	or	basic	design	for	the	framework	region	if	the	framework	is	
to	be	designed.	 	By	default,	 the	 framework	region	 is	held	 fixed	 in	sequence	space.	Finally,	when	
designing	a	CDR	region,	we	set	up	 the	Primary	Sequence	Design	strategy	 that	 is	 set	by	 the	CDR	
Instructions	File.	If	the	Primary	Sequence	Design	strategy	is	to	use	the	CDR	cluster-based	profiles	
and	there	is	scarce	data,	we	use	the	set	Fallback	Design	Strategy.	After	the	CDR	Sequence	Design	
strategy	is	done,	we	have	completed	the	setup	for	sequence	design.		
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Figure	S2:	Kernel	Density	Estimates	(KDE)	and	averages	of	the	Rosetta	Interface	Energy	(dG)	of	
the	 top	 10%	 of	 the	 decoys	 for	 the	 60	 antibody-antigen	 complexes	 in	 the	 opt-E	 and	 opt-dG	
benchmarks	 as	 well	 as	 the	 natives	 after	 optimization.	 As	 expected,	 opt-dG	 produces	 lower	 dG	
scores	that	are	more	similar	to	native	than	opt-E.	
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Figure	 S3	 –	 Kernel	 Density	 Estimates	 of	 total	 Rosetta	 energy	 (REU)	 of	 the	 opt-E	 vs	 opt-dG	
benchmark	 decoy	 set	 using	 the	 current	 Rosetta	 Energy	 function	 (REF2015).	 Densities	 for	 the	
natives	and	the	top	10%	of	decoys	are	shown.	
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Figure	S4:	Kernel	Density	Estimates	of	the	Lawrence	and	Colman	Shape	Complementarity	value	
(sc_value)	of	the	opt-E	and	opt-dG	benchmark	decoys	for	60	antibody-antigen	complexes	using	the	
Rosetta	AntibodyFeatures	reporter.		
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Figure	 S5:	Kernel	Density	Estimates	and	averages	of	the	buried	Solvent	Accessible	Surface	Area	
(ΔSASA)	 of	 the	 opt-E	 and	 opt-dG	 60	 antibody	 benchmark	 decoy	 set	 at	 the	 antibody/antigen	
interface	compared	to	the	relaxed	native	structures.	
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Figure	S6:	Kinetic	sensorgrams	of	design	L1_10	to	Bee	Hyaluronidase.	(A)	XPR	Repeat	1;	(B)	XPR	
Repeat	2;	(C)	Biacore	4000.	
	
	
	

	
	
Figure	S7:	Kinetic	sensorgrams	of	design	L1_5	to	Bee	Hyaluronidase.	(A)	XPR	Repeat	1;	(B)	XPR	
Repeat	2;	(C)	Biacore	4000.	
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Figure	S8:	Binding	affinity	of	designs	in	the	Bee	Hyaluronidase	antibody	binding	experiment.	
Dotted	line	is	the	Kd	of	the	native	antibody	from	a	Biacore	4000.		All	of	the	designed	antibodies	
which	bound	better	were	chosen	through	unrelaxed	versions	of	the	decoy,	output	directly	from	
the	antibody	design	program	(unrelaxed),	as	opposed	to	using	a	full	dualspace-relax	of	all	of	the	
designs	for	decoy	discrimination	(relaxed).	
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A.	WT	2J88	

	

B.	Design	L14_7	

	
C.	Design	L1_10	

	

D.	Design	L1_5	

	
	
	
Figure	S9:	Thermostability	measurements	of	WT	2J88	antibody	and	designs	by	Differential	
Scanning	Calorimetry	(DSC).	(A)	WT	2J88	thermostability;	(B)	L14_7	design	thermostability;	(C)	
L1_10	design	thermostability;	(D)	L1_5	design	thermostability.	
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Figure	S10:	L14_7	Mutants	with	WT	residue	at	position	38.	(A)	L14_7.	(B)	L14_7	K38Y.	
	
	
	

	
	
Figure	S11:	2J88	WT	Mutants	with	L14_7	residue	at	position	38.	(a)	2J88	WT;	(b)	2J88	Y38K	
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Figure	S12:	2J88	WT	Mutants	with	L14_7	residue	at	position	38.	(a)	2J88	WT;	(b)	L1_4	Design;	
(c)	L1_4	S36V.	
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Figure	 S13:	 Kinetic	 sensorgrams	 of	 CH103	 antibody	 and	 H2_6	 design	 to	 a	 panel	 of	 GP120s.		
Binding	studies	were	performed	on	a	Biacore	4000	(See	Online	Methods).	
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Figure	S14:	Kinetic	Sensorgrams	(ProteON	XPR)	of	CH103,	H2_6	design	mutants	with	residues	
from	CH103	WT.	
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Figure	S15:	Kinetic	Sensorgrams	(ProteON	XPR)	of	CH103	WT	with	H2_6	design	residues	grafted	
on.		
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Figure	S16:	Two	potential	glycan	sites	were	located	in	proximity	to	the	antibody	paratope	for	the	
CH103	 antibody	 (PDB:	 4JAN).	 	 These	 sites	 were	 mutated	 from	 serine	 to	 alanine	 mutations	 at	
position	 69	 and	 71	 in	 the	 heavy	 chain	 (AHo-Numbering).	 Binding	 affinity	 (Kd)	 is	 shown	 from	
Biacore	experiments	to	nine	expressed	GP120s.	
	
	

	
Figure	 S17:	 Potential	 glycan	 sites	 were	 located	 in	 proximity	 to	 the	 GP120-CH103	 epitope	 at	
positions	 386	 and	 463	 of	 Zm176	 (PDB	 ID	 4JAN).	 	 Each	 of	 these	 sites	 were	 knocked	 out	 using	
Serine	 to	 Alanine	 mutations.	 Binding	 affinity	 (Kd)	 is	 shown	 from	 Biacore	 experiments	 to	 nine	
expressed	GP120s.	
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Figure	S18:	Jade	Antibody	Design	analysis	Graphical	User	Interface	(GUI)	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2018. ; https://doi.org/10.1101/183350doi: bioRxiv preprint 

https://doi.org/10.1101/183350
http://creativecommons.org/licenses/by-nd/4.0/


6.	Supplementary	Tables	
	
Table	S1.	Benchmark	antibody	complexes	
 PDB Res Ab VH germline  H1  H2 H3 VL Germline  L1  L2  L3 Ag Len Uniprot Protein name 
1 1a14 2.5 H,L Mo_IGHV1S121 13 H1-13-1 13 H2-10-1 H3-15 Mo_IGKV10-96 14 L1-11-2 14 L2-8-1 8 L3-9-cis7-1 N 388 NRAM_I75A5(83-470) Neuraminidase 
2 1a2y 1.5 B,A Mo_IGHV2-6-7 14 H1-13-1 5 H2-9-1 H3-10 Mo_IGKV12-41 4 L1-11-2 7 L2-8-1 2 L3-9-cis7-2 C 129 LYSC_CHICK(19-147) Lysozyme C 
3 1fe8 2.0 H,L Mo_IGHV2-3 21 H1-13-1 9 H2-9-1 H3-9 Mo_IGKV10-96 13 L1-11-1 4 L2-8-1 12 L3-9-cis7-1 A 196 VWF_HUMAN(1683-1874) von Willebrand factor 
4 1ic7 2.1 H,L Mo_IGHV3-8 20 H1-13-1 9 H2-9-1 H3-7 Mo_IGKV5-43 5 L1-11-1 16 L2-8-1 10 L3-9-cis7-1 Y 129 LYSC_CHICK(19-147) Lysozyme C 
5 1iqd 2.0 B,A Hu_IGHV1-24 15 H1-13-1 5 H2-10-1 H3-10 Hu_IGKV3-20 9 L1-12-1 7 L2-8-1 55 L3-9-1 C 156 FA8_HUMAN(2193-2348) Coagulation factor VIII 
6 1n8z 2.5 B,A Hu_IGHV3-66 

Mo_IGHV14-3 
17 H1-13-1 12 H2-10-1 H3-13 Hu_IGKV1D-39 

Mo_IGKV6-17 
10 L1-11-1 10 L2-8-1 8 L3-9-cis7-1 C 607 ERBB2_HUMAN(23-629) ErbB-2 

7 1ncb 2.5 H,L Mo_IGHV9-3 19 H1-13-1 19 H2-10-1 H3-13 Mo_IGKV6-25 16 L1-11-2 10 L2-8-1 20 L3-9-cis7-1 N 389 NRAM_I75A5(82-470) Neuraminidase 
8 1osp 2.0 H,L Mo_IGHV3-8 13 H1-13-7 0 H2-9-3 H3-14 Mo_IGKV13-84 9 L1-11-2 18 L2-8-2 10 L3-9-cis7-1 O 257 OSPA_BORBU(17-273) Ozd[ A 
9 1uj3 2.1 B,A Hu_IGHV1-69 

Mo_IGHV14-1 
16 H1-13-1 12 H2-10-1 H3-10 Hu_IGKV1D-16 

Mo_IGKV14-126 
5 L1-11-2 7 L2-8-1 12 L3-9-cis7-1 C 205 TF_HUMAN(38-242) Tissue factor 

10 1w72 2.2 H,L Hu_IGHV3-9 9 H1-13-1 11 H2-10-2 H3-15 Hu_IGLV3-21 5 L1-11-3 12 L2-8-1 10 L3-11-1 A 
B 
C 

274 
100 

9 

1A01_HUMAN(25-298) 
B2MG_HUMAN(21-119) 
MAGA1_HUMAN(161-169) 

HLA-A1,β2-MG,peptide 

11 2adf 1.9 H,L Mo_IGHV9-3 10 H1-13-1 13 H2-10-1 H3-11 Mo_IGKV19-93 7 L1-11-2 9 L2-8-1 7 L3-8-1 A 196 VWF_HUMAN(1683-1874) von Willebrand factor 
12 2b2x 2.2 H,L Hu_IGHV3-66 

Mo_IGHV5-6-5 
12 H1-13-1 8 H2-9-1 H3-12 Hu_IGKV1D-13 

Mo_IGKV4-68 
13 L1-10-1 5 L2-8-1 9 L3-9-cis7-1 A 223 ITA1_RAT(151-364) Integrin alpha-1 

13 2cmr 2.0 H,L Hu_IGHV1-69 30 H1-13-3 11 H2-10-1 H3-12 Hu_IGKV1-5 6 L1-11-1 5 L2-8-1 8 L3-9-cis7-1 A 226 D0VWW0_9HIV1(1-226) gp41 
14 2dd8 2.3 H,L Hu_IGHV1-69 18 H1-13-10 18 H2-10-1 H3-11 Hu_IGLV3-21 7 L1-11-3 14 L2-8-1 44 L3-10-1 S 202 SPIKE_CVHSA(317-518) Spike glycoprotein 
15 2ghw 2.3 B,B Hu_IGHV3-30 10 H1-13-1 11 H2-10-2 H3-10 Hu_IGKV3-11 12 L1-11-1 8 L2-8-1 17 L3-9-cis7-1 A 203 SPIKE_CVHSA(317-510) Spike glycoprotein 
16 2vxt 1.5 H,L Mo_IGHV1S135 7 H1-13-1 7 H2-10-1 H3-6 Mo_IGKV9-120 9 L1-11-1 6 L2-8-1 6 L3-9-cis7-1 I 157 IL18_HUMAN(37-193) Interleukin-18 
17 2xqy 2.1 G,L Mo_IGHV1S72 7 H1-13-1 10 H2-10-1 H3-11 Mo_IGKV3-12 10 L1-15-1 8 L2-8-1 11 L3-9-cis7-1 A 572 GH_SUHVK(107-639) Envelope glycoprotein-H 
18 2xwt 1.9 A,B Hu_IGHV5-51 22 H1-13-1 14 H2-10-1 H3-12 Hu_IGLV1-51 9 L1-13-1 12 L2-8-2 21 L3-11-1 C 239 TSHR_HUMAN(22-260) Thyrotropin receptor 
19 2ypv 1.8 H,L Mo_IGHV1-39 7 H1-13-1 8 H2-10-1 H3-12 Mo_IGKV14-111 7 L1-11-2 6 L2-8-1 10 L3-9-cis7-1 A 253 Q9JXV4_NEIMB(69-320) Lipoprotein 
20 3bn9 2.2 C,D Hu_IGHV3-23 11 H1-13-1 9 H2-10-2 H3-21 Hu_IGKV1D-39 9 L1-11-1 8 L2-8-1 19 L3-9-cis7-1 B 241 ST14_HUMAN(615-855) MT-SP1 
21 3cx5 1.9 J,K Mo_IGHV3-6 9 H1-14-1 14 H2-9-1 H3-15 Mo_IGKV10-96 11 L1-11-2 10 L2-8-1 9 L3-9-cis7-1 E 185 UCRI_YEAST(31-215) Rieske Iron-sulfur protein 
22 3ffd 2.0 A,B Mo_IGHV5-6 9 H1-13-1 4 H2-10-2 H3-11 Mo_IGLV3 4 L1-12-3 9 L2-12-2 37 L3-13-1 P 108 PTHR_HUMAN(37-144) PTH-related 
23 3h3b 2.5 C,C Mo_IGHV1S34 12 H1-13-1 18 H2-10-1 H3-13 Mo_IGKV8-30 7 L1-17-1 10 L2-8-1 6 L3-9-cis7-1 A 194 ERBB2_HUMAN(23-214) ErbB-2 
24 3hi6 2.3 X,Y Hu_IGHV3-23 11 H1-13-1 22 H2-10-2 H3-13 Hu_IGKV1D-39 5 L1-11-1 11 L2-8-1 44 L3-8-1 B 180 ITAL_HUMAN(153-332) Integrin alpha-L 
25 3k2u 2.4 H,L Hu_IGHV3-66 

Mo_IGHV14-3 
17 H1-13-1 15 H2-10-1 H3-11 Hu_IGKV1D-39 

Mo_IGKV6-17 
8 L1-11-1 9 L2-8-1 12 L3-9-cis7-1 A 257 HGFA_HUMAN(408-655) HGF activator 

26 3l95 2.2 B,A Hu_IGHV3-74 7 H1-13-1 14 H2-10-1 H3-12 Hu_IGKV1D-39 
Mo_IGKV6-17 

8 L1-11-1 7 L2-8-1 16 L3-9-2 X 244 NOTC1_HUMAN(1448-1728) NOTCH1 

27 3mxw 1.8 H,L Mo_IGHV1S137 9 H1-13-1 10 H2-10-1 H3-12 Mo_IGKV6-32 5 L1-11-1 7 L2-8-1 12 L3-9-cis7-1 A 169 SHH_HUMAN(29-197) Sonic hedgehog protein 
28 3nid 2.3 H,L Mo_IGHV14-3 17 H1-13-1 7 H2-10-1 H3-12 Mo_IGKV14-100 6 L1-11-2 9 L2-8-1 5 L3-9-cis7-1 A 457 ITA2B_HUMAN(32-488) Integrin alpha-IIb 
29 3o2d 2.2 H,L Mo_IGHV1-14 8 H1-13-1 11 H2-10-1 H3-15 Hu_IGKV4-1 

Mo_IGKV8-30 
7 L1-17-1 8 L2-8-1 7 L3-8-1 A 188 CD4_HUMAN(26-207) CD4 

30 3rkd 1.9 H,L Mo_IGHV8-8 9 H1-15-1 13 H2-9-1 H3-16 Mo_IGKV12-46 7 L1-11-2 5 L2-8-1 13 L3-9-cis7-2 A 146 CAPSD_HEVPA(459-603) Capsid protein 
31 3s35 2.2 H,L Mo_IGHV1-71 9 H1-13-1 13 H2-10-1 H3-10 Mo_IGKV3-5 9 L1-15-1 10 L2-8-1 5 L3-9-cis7-1 X 122 VGFR2_HUMAN(220-338) VGFR2 
32 3uzq 1.6 A,A Mo_IGHV14-3 16 H1-13-1 9 H2-10-1 H3-9 Mo_IGKV3-5 8 L1-15-1 7 L2-8-1 26 L3-9-cis7-1 B 114 POLG_DEN1B(576-680) Genome polyprotein 
33 3w9e 2.3 A,B Hu_IGHV1-69 29 H1-13-1 19 H2-10-1 H3-15 Hu_IGKV3-20 12 L1-12-1 11 L2-8-1 38 L3-8-2 C 306 GD_HHV2H(1-300) Envelope glycoprotein D 
34 4cmh 1.5 B,C Mo_IGHV1-87 7 H1-13-1 9 H2-10-1 H3-13 Mo_IGKV6-17 8 L1-11-1 16 L2-8-1 23 L3-9-cis7-1 A 256 CD38_HUMAN(45-300) CD38 
35 4dtg 1.8 H,L Hu_IGHV3-7 

Mo_IGHV5-4 
8 H1-13-1 12 H2-10-2 H3-14 Hu_IGKV2D-29 

Mo_IGKV1-135 
10 L1-16-1 9 L2-8-1 7 L3-9-cis7-1 K 66 TFPI1_HUMAN(119-178) TFPI 

36 4dvr 2.5 H,L Hu_IGHV1-69-2 9 H1-13-1 12 H2-10-1 H3-12 Hu_IGKV1D-12 12 L1-11-1 26 L2-8-1 51 L3-8-1 G 313 ENV_HV1Y2(304-474) gp160 
37 4etq 2.1 H,L Mo_IGHV1S37 7 H1-13-1 11 H2-10-1 H3-12 Mo_IGKV4-55 9 L1-10-1 6 L2-8-1 9 L3-9-cis7-1 C 269 Q1M1K6_9POXV(1-261) IMV membrane protein 
38 4ffv 2.4 D,C Mo_IGHV1-39 12 H1-13-1 9 H2-10-1 H3-10 Mo_IGKV4-72 19 L1-10-1 16 L2-8-4 15 L3-9-cis7-1 B 730 DPP4_RAT(38-767) Dipeptidyl peptidase 4 
39 4fqj 2.5 H,L Hu_IGHV1-18 22 H1-13-1 14 H2-10-1 H3-18 Hu_IGLV1-47 10 L1-13-1 14 L2-8-1 14 L3-11-1 A 304 I0B7N4_9INFB(46-343) Hemagglutinin 
40 4g6j 2.0 H,L Hu_IGHV3-33 9 H1-13-1 10 H2-10-2 H3-11 Hu_IGKV6D-21 10 L1-11-1 10 L2-8-1 8 L3-9-cis7-1 A 158 IL1B_HUMAN(117-269) Interleukin-1 beta 
41 4g6m 1.8 H,L Hu_IGHV4-61 

Mo_IGHV8-8 
7 H1-15-1 15 H2-9-1 H3-12 Hu_IGKV1-NL1 

Mo_IGKV10-94 
6 L1-11-2 6 L2-8-1 7 L3-9-cis7-1 A 150 IL1B_HUMAN(118-267) Interleukin-1 beta 
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42 4h8w 1.8 H,L Hu_IGHV3-23 10 H1-13-1 8 H2-10-2 H3-12 Hu_IGLV2-14 10 L1-14-2 10 L2-8-1 61 L3-11-1 G 353 Q0ED31_9HIV1(43-486) gp160 
43 4ki5 2.4 E,F Mo_IGHV1-55 12 H1-13-1 8 H2-10-1 H3-15 Mo_IGKV9-124 9 L1-11-2 15 L2-8-2 10 L3-9-cis7-1 M 183 FA8_HUMAN(2190-2351) Factor VIII 
44 4lvn 2.3 C,B Mo_IGHV3-1 13 H1-14-1 8 H2-9-1 H3-13 Mo_IGKV4-74 8 L1-12-1 9 L2-8-1 7 L3-9-cis7-1 A 344 Q868D6_PLAFA(330-673) Subtilisin-like SP 
45 4ot1 2.1 H,L Hu_IGHV1-2 9 H1-13-1 11 H2-10-1 H3-24 Hu_IGLV1-51 14 L1-13-1 8 L2-8-2 54 L3-10-1 A 129 GB_HCMVT(344-438) Envelope glycoprotein B 
46 4qci 2.3 B,A Hu_IGHV3-30 9 H1-13-1 11 H2-10-2 H3-13 Hu_IGLV3-1 10 L1-11-3 7 L2-8-1 68 L3-9-2 C 

D 
110 PDGFB_HUMAN(82-190) PDGFR Beta 

47 4xnq 2.0 B,A Hu_IGHV4-4 39 H1-14-1 12 H2-9-1 H3-16 Hu_IGLV3-1 14 L1-11-3 9 L2-8-1 39 L3-9-1 D 212 Q6DQ33_9INFA(64-275) Hemagglutinin (Fragment) 
48 4ydk 2.1 H,L Hu_IGHV3-23 10 H1-13-1 11 H2-10-2 H3-22 Hu_IGKV1D-33 4 L1-11-1 8 L2-8-1 23 L3-9-2 G 353 Q0ED31_9HIV1(323-484) gp160 
49 5b8c 2.1 B,A Hu_IGHV1-18 

Mo_IGHV1S120 
9 H1-13-1 9 H2-10-1 H3-13 Hu_IGKV3-11 

Mo_IGKV3-12 
10 L1-15-1 13 L2-8-1 10 L3-9-cis7-1 C 139 PDCD1_HUMAN(32-160) PD1 

50 5bv7 2.5 C,B Hu_IGHV3-33 16 H1-13-1 29 H2-10-2 H3-19 Hu_IGLV3-1 16 L1-11-3 16 L2-8-1 57 L3-10-1 A 422 LCAT_HUMAN(25-440) PC-sterol acyltransferase 
51 5d93 2.2 C,B Mo_IGHV1-66 9 H1-13-1 10 H2-10-1 H3-9 Mo_IGKV4-61 5 L1-10-1 6 L2-8-1 12 L3-9-cis7-1 A 244 QSOX1_MOUSE(36-275) Sulfhydryl oxidase 1 
52 5d96 2.3 J,I Mo_IGHV2-6-7 17 H1-13-1 7 H2-9-1 H3-12 Mo_IGKV6-17 10 L1-11-1 8 L2-8-1 11 L3-9-cis7-1 A 244 QSOX1_MOUSE(36-275) Sulfhydryl oxidase 1 
53 5en2 1.8 A,B Mo_IGHV1-87 12 H1-13-1 10 H2-10-1 H3-17 Mo_IGKV6-13 6 L1-11-1 6 L2-8-1 8 L3-9-cis7-1 C 141 GLYC_JUNIN(87-227) Pre-glycoprotein GP 
54 5f9o 1.9 H,L Hu_IGHV1-46 8 H1-13-1 7 H2-10-1 H3-15 Hu_IGKV3D-15 4 L1-11-1 5 L2-8-1 9 L3-8-1 G 352 A0A0M3KKW9_9HIV1(1-352) gp120 core 
55 5ggs 2.0 A,B Hu_IGHV1-18 

Mo_IGHV1S120 
33 H1-13-3 12 H2-10-1 H3-13 Hu_IGKV3-11 

Mo_IGKV3-12 
9 L1-15-1 9 L2-8-1 13 L3-9-cis7-1 Z 123 PDCD1_HUMAN(26-148) PD1 

56 5hi4 1.8 H,L Hu_IGHV3-23 9 H1-13-1 8 H2-10-2 H3-11 Hu_IGLV6-57 9 L1-13-2 9 L2-8-1 51 L3-9-1 A,B 
I 

132 IL17_HUMAN(24-155) Interleukin-17A homodimer 
+ peptide inhibitor 

57 5j13 2.3 C,B Hu_IGHV3-33 8 H1-13-1 10 H2-10-2 H3-15 Hu_IGLV3-21 10 L1-11-3 9 L2-8-2 14 L3-11-1 A 147 TSLP_HUMAN(29-159) Thymic stromal lymphopoietin 
58 5l6y 2.0 H,L Hu_IGHV1-18 17 H1-13-1 11 H2-10-1 H3-15 Hu_IGLV3-21 7 L1-11-3 10 L2-8-1 48 L3-11-1 C 112 IL13_HUMAN(35-146) Interleukin-13 
59 5mes 2.2 H,L Hu_IGHV3-21 11 H1-13-1 11 H2-10-2 H3-12 Hu_IGLV1-44 10 L1-13-1 8 L2-8-1 9 L3-11-1 A 162 MCL1_MOUSE(153-308) Mcl-1 homolog 
60 5nuz 1.9 A,B Mo_IGHV1-87 7 H1-13-1 11 H2-10-1 H3-13 Mo_IGKV3-2 9 L1-15-1 8 L2-8-1 6 L3-9-cis7-1 C 156 C1K9J9_JUNIN(87-232) Pre-glycoprotein GP 

When	two	germlines	are	listed,	the	first	is	the	framework	and	the	second	represents	the	CDRs	
For	each	CDR,	the	Pyigclassify	cluster	is	given	preceded	by	the	distance	from	the	cluster	centroid	in	degrees.	For	H3,	only	the	length	is	given.	
Antibodies	to	the	same	antigen	bind	in	different	locations	and	are	not	the	same	antibody.	
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Table	S2:		Binding	affinity	,	CDR	design	identity,	and	selection	strategies	of	the	expressed	and	
tested	2J88	designs	from	the	Biacore	4000	results.	
	

Name	
Binding	Affinity	

(M)	 Dock?	 Relaxed?	 Selection	Method	 CDR	 length	 cluster	 CDR_sequence	
Native	2J88	WT	 1.56E-08	

	 	 	
L1	 11	 L1-11-1	 RASENIYSYLT 

Native	2J88	WT	 1.56E-08	 	 	 	 H2	 9	 H2-9-1	 HIYWDDDKR 
2J88_L14_7	 2.61E-09	 dock_on	 unrelaxed	 dG_top_p_total	 L1	 11	 L1-11-2	 RSSRDIKDYIT 
2J88_L1_10	 3.12E-09	 dock_on	 unrelaxed	 dG_top_p_total	 L1	 11	 L1-11-1	 RASKDISDYLT 
2J88_L1_5	 6.22E-09	 dock_off	 unrelaxed	 delta_unsats_per_1000_dSASA	 L1	 11	 L1-11-1	 RASQDISNYLT 
2J88_H2_8	 Low	Rmax	 dock_on	 unrelaxed	 dG_top_p_total	 H2	 10	 H2-10-1	 AIYPSDGETR 
2J88_L14_3	 Low	Rmax	 dock_off	 relaxed	 dG_top_p_total	 L1	 15	 L1-15-1	 RASESVDSYGTNHIH 
2J88_L14_8	 3.38E-08	 dock_on	 unrelaxed	 dG_top_p_total	 L1	 11	 L1-11-2	 RSSRNIKDFIS 
2J88_H2_4	 Low	Rmax	 dock_off	 unrelaxed	 delta_unsats_per_1000_dSASA	 H2	 10	 H2-10-2	 YISWSGTVTS 
2J88_L14_6	 5.00E-08	 dock_off	 relaxed	 delta_unsats_per_1000_dSASA	 L1	 11	 L1-11-2	 KSSEEIKNFIT 
2J88_H2_9	 5.32E-08	 dock_on	 relaxed	 dG_top_p_total	 H2	 10	 H2-10-2	 EISSDGSRTY 
2J88_L1_7	 5.97E-08	 dock_off	 relaxed	 delta_unsats_per_1000_dSASA	 L1	 11	 L1-11-2	 RASQDIKNNIT 
2J88_L1_2	 6.81E-08	 dock_off	 unrelaxed	 dG_top_p_total	 L1	 15	 L1-15-1	 RASKSVDSYGSSFMS 
2J88_H2_1	 Low	Rmax	 dock_off	 unrelaxed	 dG_top_p_total	 H2	 10	 H2-10-1	 EIYPSDGDTR 
2J88_H2_5	 Low	Rmax	 dock_off	 unrelaxed	 delta_unsats_per_1000_dSASA	 H2	 10	 H2-10-1	 AIYGEDGETR 
2J88_L1_11	 2.02E-07	 dock_on	 relaxed	 dG_top_p_total	 L1	 15	 L1-15-1	 RASKSVDSYGFSFMS 
2J88_L14_9	 2.76E-07	 dock_on	 relaxed	 dG_top_p_total	 L1	 11	 L1-11-2	 RSSEDIKNFIS 
2J88_L1_9	 4.30E-07	 dock_on	 unrelaxed	 dG_top_p_total	 L1	 11	 L1-11-1	 RASKDISKYIA 
2J88_L1_1	 4.45E-07	 dock_off	 unrelaxed	 dG_top_p_total	 L1	 15	 L1-15-1	 RASESVESYGSSFIS 
2J88_L1_6	 7.69E-07	 dock_off	 unrelaxed	 delta_unsats_per_1000_dSASA	 L1	 11	 L1-11-1	 QASQDVGDALT 
2J88_L14_1	 Low	Rmax	 dock_off	 unrelaxed	 dG_top_p_total	 L1	 17	 L1-17-1	 KSSHSLLNSSAQMNYLS 
2J88_L1_4	 1.38E-06	 dock_off	 relaxed	 dG_top_p_total	 L1	 17	 L1-17-1	 KSSQSVLNSRSEKSYLT 
2J88_L1_12	 1.58E-06	 dock_on	 relaxed	 dG_top_p_total	 L1	 15	 L1-15-1	 RASKSVESYGNSFIS 
2J88_L14_4	 1.59E-06	 dock_off	 unrelaxed	 delta_unsats_per_1000_dSASA	 L1	 11	 L1-11-1	 RASQIVSYALS 
2J88_L1_8	 2.19E-06	 dock_off	 relaxed	 delta_unsats_per_1000_dSASA	 L1	 15	 L1-15-1	 RASESVDSYGNSFIS 
2J88_L1_3	 2.38E-06	 dock_off	 relaxed	 dG_top_p_total	 L1	 15	 L1-15-1	 RASESVESYGNSFMH 
2J88_L14_2	 6.21E-06	 dock_off	 unrelaxed	 dG_top_p_total	 L1	 17	 L1-17-1	 KSSQSLLNSNAEKNYLT 
2J88_H2_3	 9.47E-06	 dock_off	 relaxed	 dG_top_p_total	 H2	 12	 H2-12-1	 EIRSKADGSATH 
2J88_L14_5	 0	 dock_off	 unrelaxed	 delta_unsats_per_1000_dSASA	 L1	 11	 L1-11-2	 RSSRDIKNAIS 
2J88_H2_6	 0	 dock_off	 relaxed	 delta_unsats_per_1000_dSASA	 H2	 10	 H2-10-6	 WINLDGGSTS 
2J88_H2_2	 0	 dock_off	 unrelaxed	 dG_top_p_total	 H2	 12	 H2-12-1	 EIGSKSFGGETK 
2J88_H2_7	 0	 dock_on	 unrelaxed	 dG_top_p_total	 H2	 10	 H2-10-1	 MIYPSDGDTR 
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Table	S3:	Binding	affinity	of	expressed	and	purified	CH103	designs	and	their	selection	strategies.			
	

Name	 Antigen	 Binding	Affinity	(M)	 by_score_group	 strategy	
Native	 HXB2	 5.23E-07	

	 	glyKO_S71A	 HXB2	 5.28E-07	
	 	glyKO_S69A	 HXB2	 5.95E-07	
	 	H2-1	 HXB2	 6.70E-06	 dG_top_Ptotal	 ch103_H2_all_p.norm	

H2-2	 HXB2	 3.70E-06	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-3	 HXB2	 3.70E-06	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-4	 HXB2	 0	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-5	 HXB2	 5.16E-07	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-6	 HXB2	 1.32E-08	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-7	 HXB2	 8.92E-07	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-8	 HXB2	 0	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-9	 HXB2	 0	 sc_value	 ch103_H2_all_p.rela	
H2-10	 HXB2	 1.67E-05	 sc_value	 ch103_H2_all.rela	
L13-1	 HXB2	 0	 dG_top_Ptotal	 ch103_L1L3_all_p.norm	
Native	 Core	Bal	 9.15E-07	

	 	glyKO_S71A	 Core	Bal	 8.59E-07	
	 	glyKO_S69A	 Core	Bal	 1.14E-06	
	 	H2-1	 Core	Bal	 1.14E-05	 dG_top_Ptotal	 ch103_H2_all_p.norm	

H2-2	 Core	Bal	 7.00E-06	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-3	 Core	Bal	 6.00E-06	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-4	 Core	Bal	 0.00E+00	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-5	 Core	Bal	 1.20E-06	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-6	 Core	Bal	 1.69E-08	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-7	 Core	Bal	 2.40E-06	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-8	 Core	Bal	 0	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-9	 Core	Bal	 0	 sc_value	 ch103_H2_all_p.rela	
H2-10	 Core	Bal	 5.50E-06	 sc_value	 ch103_H2_all.rela	
L13-1	 Core	Bal	 0	 dG_top_Ptotal	 ch103_L1L3_all_p.norm	
Native	 Yu2	 4.68E-07	

	 	glyKO_S71A	 Yu2	 4.68E-07	
	 	glyKO_S69A	 Yu2	 5.60E-07	
	 	H2-1	 Yu2	 0	 dG_top_Ptotal	 ch103_H2_all_p.norm	

H2-2	 Yu2	 1.18E-05	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-3	 Yu2	 5.30E-06	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-4	 Yu2	 0	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-5	 Yu2	 6.10E-06	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-6	 Yu2	 7.24E-08	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-7	 Yu2	 3.70E-06	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-8	 Yu2	 0	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-9	 Yu2	 0	 sc_value	 ch103_H2_all_p.rela	
H2-10	 Yu2	 6.50E-06	 sc_value	 ch103_H2_all.rela	
L13-1	 Yu2	 0	 dG_top_Ptotal	 ch103_L1L3_all_p.norm	
Native	 PVO	 4.70E-06	

	 	glyKO_S71A	 PVO	 2.40E-06	
	 	glyKO_S69A	 PVO	 3.20E-06	
	 	H2-1	 PVO	 7.70E-05	 dG_top_Ptotal	 ch103_H2_all_p.norm	

H2-2	 PVO	 0	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-3	 PVO	 9.20E-06	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-4	 PVO	 0	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-5	 PVO	 5.80E-06	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-6	 PVO	 3.50E-07	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-7	 PVO	 5.40E-06	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-8	 PVO	 0	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-9	 PVO	 0	 sc_value	 ch103_H2_all_p.rela	
H2-10	 PVO	 0	 sc_value	 ch103_H2_all.rela	
L13-1	 PVO	 0	 dG_top_Ptotal	 ch103_L1L3_all_p.norm	
Native	 GH069	 3.84E-07	

	 	glyKO_S71A	 GH069	 6.54E-07	
	 	glyKO_S69A	 GH069	 4.28E-07	
	 	H2-1	 GH069	 0	 dG_top_Ptotal	 ch103_H2_all_p.norm	

H2-2	 GH069	 1.18E-06	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-3	 GH069	 5.97E-07	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-4	 GH069	 0	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-5	 GH069	 5.98E-07	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-6	 GH069	 1.42E-07	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-7	 GH069	 2.70E-06	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-8	 GH069	 0	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-9	 GH069	 0	 sc_value	 ch103_H2_all_p.rela	
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H2-10	 GH069	 0	 sc_value	 ch103_H2_all.rela	
L13-1	 GH069	 0	 dG_top_Ptotal	 ch103_L1L3_all_p.norm	
Native	 Zm176	 4.00E-06	

	 	glyKO_S71A	 Zm176	 3.50E-06	
	 	glyKO_S69A	 Zm176	 5.60E-06	
	 	H2-1	 Zm176	 6.20E-05	 dG_top_Ptotal	 ch103_H2_all_p.norm	

H2-2	 Zm176	 1.38E-03	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-3	 Zm176	 0	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-4	 Zm176	 0	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-5	 Zm176	 2.55E-05	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-6	 Zm176	 1.65E-05	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-7	 Zm176	 3.23E-05	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-8	 Zm176	 0	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-9	 Zm176	 0	 sc_value	 ch103_H2_all_p.rela	
H2-10	 Zm176	 0	 sc_value	 ch103_H2_all.rela	
L13-1	 Zm176	 0	 dG_top_Ptotal	 ch103_L1L3_all_p.norm	
Native	 Zm176,	463	gKO	 3.20E-06	

	 	glyKO_S71A	 Zm176,	463	gKO	 2.90E-06	
	 	glyKO_S69A	 Zm176,	463	gKO	 4.69E-06	
	 	H2-1	 Zm176,	463	gKO	 4.65E-06	 dG_top_Ptotal	 ch103_H2_all_p.norm	

H2-2	 Zm176,	463	gKO	 5.50E-06	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-3	 Zm176,	463	gKO	 1.40E-05	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-4	 Zm176,	463	gKO	 0	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-5	 Zm176,	463	gKO	 2.15E-05	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-6	 Zm176,	463	gKO	 1.65E-05	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-7	 Zm176,	463	gKO	 1.55E-05	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-8	 Zm176,	463	gKO	 0	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-9	 Zm176,	463	gKO	 0	 sc_value	 ch103_H2_all_p.rela	
H2-10	 Zm176,	463	gKO	 0	 sc_value	 ch103_H2_all.rela	
L13-1	 Zm176,	463	gKO	 0	 dG_top_Ptotal	 ch103_L1L3_all_p.norm	
Native	 Zm176,	386	gKO	 2.30E-06	

	 	glyKO_S71A	 Zm176,	386	gKO	 2.00E-06	
	 	glyKO_S69A	 Zm176,	386	gKO	 3.70E-06	
	 	H2-1	 Zm176,	386	gKO	 6.70E-05	 dG_top_Ptotal	 ch103_H2_all_p.norm	

H2-2	 Zm176,	386	gKO	 6.00E-05	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-3	 Zm176,	386	gKO	 0	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-4	 Zm176,	386	gKO	 0	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-5	 Zm176,	386	gKO	 1.54E-05	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-6	 Zm176,	386	gKO	 8.80E-06	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-7	 Zm176,	386	gKO	 1.91E-05	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-8	 Zm176,	386	gKO	 0	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-9	 Zm176,	386	gKO	 0	 sc_value	 ch103_H2_all_p.rela	
H2-10	 Zm176,	386	gKO	 0	 sc_value	 ch103_H2_all.rela	
L13-1	 Zm176,	386	gKO	 2.64E-05	 dG_top_Ptotal	 ch103_L1L3_all_p.norm	
Native	 AC10	 7.18E-06	

	 	glyKO_S71A	 AC10	 1.25E-06	
	 	glyKO_S69A	 AC10	 5.90E-06	
	 	H2-1	 AC10	 0	 dG_top_Ptotal	 ch103_H2_all_p.norm	

H2-2	 AC10	 0	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-3	 AC10	 0	 dG_top_Ptotal	 ch103_H2_all_p.norm	
H2-4	 AC10	 0	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-5	 AC10	 0	 dG_top_Ptotal	 ch103_H2_all.rela	
H2-6	 AC10	 4.26E-06	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-7	 AC10	 0	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-8	 AC10	 0	 delta_unsats_per_1000_dSASA	 ch103_H2_all_p.rela	
H2-9	 AC10	 0	 sc_value	 ch103_H2_all_p.rela	
H2-10	 AC10	 0	 sc_value	 ch103_H2_all.rela	
L13-1	 AC10	 0	 dG_top_Ptotal	 ch103_L1L3_all_p.norm	
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Table	S4:	CDRClusterFeatures	reporter	tables	
	

Column	 Description	
Table	cdr_clusters	

	
struct_id	 Structure	number	–	used	to	query	other	tables	for	same	loaded	structure	
cdr_start	 Starting	number	of	CDR	
cdr_end	 Ending	number	of	CDR	
chain	 Chain	of	CDR	–	L	or	H	
CDR	 Identity	of	CDR	

length	 Length	of	CDR	
cluster	 Identified	cluster	of	CDR	

dis	 Calculated	Dihedral	Distance	to	cluster	center	
normDis	 Dihedral	Distance	normalized	by	length	(radians)	

normDis_deg	 Dihedral	Distance	normalized	by	length	(degrees)	
sequence	 Amino	acid	sequence	of	the	CDR	
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Table	S5:	InterfaceFeatures	reporter	tables	
	

Column	 Description	
	

Table	interfaces	
	

struct_id	 Structure	number	–	used	to	query	other	tables	for	

same	loaded	structure	

interface	 Interface	ID	–	The	interface	that	is	being	analyzed.	The	

ID	lists	the	chains	that	make	up	the	interface	-	such	as	

L_A	or	LH_A.	Used	to	query	other	tables	

chains_side1	 Interface	Side	1	ID	–	chains	that	make	up	interface	side	

1	such	as	L	or	LH.	Used	to	query	other	tables	

chains_side2	 Same	as	above,	but	for	side	2	

nchains_side1	 Number	of	chains	that	make	up	side	1	

nchains_side2	 Number	of	chains	that	make	up	side	2	

dSASA	 Difference	in	Buried	Solvent	Accessible	Surface	Area	

as	described	above		

(SASA	separated	-	SASA	together)	
	

dSASA_hphobic	 Hydrophobic	component	of	dSASA	

dSASA_polar	 Polar	component	of	dSASA	

dG	 Difference	in	Rosetta	energy	as	described	above		
(E	together	-	E	separated)	
	

dG_cross	 Total	cross	interface	energy	of	pair-wise	terms.	Close	

to	dG.	

dG_dev_dSASAx100	 dG	normalized	by	dSASA.	Roughly	an	energy	density	

calculation.	

dG_cross_dev_dSASAx100	 dG_cross	normalized	by	dSASA.	Roughly	an	energy	
density	calculation.	

hbond_E_fraction	 Fraction	of	dG	attributable	to	cross	interface	hydrogen	
bonds.	

sc_value	 Shape	Complementarity	value	

packstat	 Packing	quality	measure	

nres_int	 Total	interface	residues	

nres_all	 Total	structure	residues	

complex_normalized	 Total	energy/Total	residues	

	
Table	interface_sides	

	
struct_id	 Structure	number	–	used	to	query	other	tables	for	

same	loaded	structure	

interface	 Interface	ID	–	The	interface	that	is	being	analyzed.	The	

ID	lists	the	chains	that	make	up	the	interface	-	such	as	

L_A	or	LH_A.	Used	to	query	other	tables	

side	 The	Side	that	this	data	pertains	to.	side1	or	side2.	

chains_side1	 Interface	Side	1	ID	–	chains	that	make	up	interface	side	

1	such	as	L	or	LH.	Used	to	query	other	tables	

chains_side2	 Same	as	above,	but	for	side	2	

interface_nres	 Total	number	of	residues	for	interface	side	

dSASA	 dSASA	of	interface	side	

dSASA_sc	 dSASA	of	the	side	chains	of	the	interface	side	

dhSASA	 Hydrophobic	dSASA	of	the	interface	side	

dhSASA_sc	 Hydrophobic	dSASA	of	the	side	chains	of	the	interface	

side	

dG	 dG	of	the	interface	side	

energy_int	 Energy	of	the	interface	residues	complexed	

energy_sep	 Energy	of	the	interface	residues	separated	

avg_per_residue_energy_dG	 Average	per-residue	dG	of	the	side	

avg_per_residue_energy_int	 Average	per-residue	energy	of	the	side	while	

complexed	
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avg_per_residue_energy_sep	 Average	per-residue	energy	of	the	side	while	
separated	

avg_per_residue_dSASA	 Average	per-residue	dSASAS	of	the	side	
avg_per_residue_SASA_int	 Average	per-residue	total	SASA	of	the	side	while	

complexed	
avg_per_residue_SASA_sep	 Average	per-residue	total	SASA	of	the	side	while	

separated	
aromatic_fraction	 Fraction	of	total	residues	that	are	aromatic	

aromatic_dSASA_fraction	 Fraction	of	aromatic	dSASA	from	total	dSASA	of	the	
side	

aromatic_dG_fraction	 Fraction	of	aromatic	dG	from	total	dG	of	the	side	
interface_to_surface_fraction	 Fraction	of	side	interface	residues	to	total	surface	

residues	
ss_sheet_fraction	 Fraction	of	side	interface	residues	that	are	identified	

as	beta-sheet	from	DSSP	
ss_helix_fraction	 Fraction	of	side	interface	residues	that	are	identified	

as	helix	from	DSSP	
ss_loop_fraction	 Fraction	of	side	interface	residues	that	are	identified	

as	loop	from	DSSP	
	

Table	interface_residues	
	

struct_id	 Structure	number	–	used	to	query	other	tables	for	
same	loaded	structure	

interface	 Interface	ID	–	The	interface	that	is	being	analyzed.	The	
ID	lists	the	chains	that	make	up	the	interface	-	such	as	
L_A	or	LH_A.	Used	to	query	other	tables	

resNum	 Residue	number	of	particular	residue	for	which	this	
data	reports.		

chains_side1	 Interface	Side	1	ID	–	chains	that	make	up	interface	side	
1	such	as	L	or	LH.	Used	to	query	other	tables	

chains_side2	 Same	as	above,	but	for	side	2	
side	 The	Side	that	this	residue	is	part	of.	Side1	or	side2.	

dSASA	 dSASA	of	the	residue	
dSASA_sc	 dSASA	of	the	side-chain	of	the	residue	
dhSASA	 Hydrophobic	dSASA	of	the	residue	

dhSASA_sc	 Hydrophobic	dSASA	of	the	side-chain	of	the	residue	
SASA_int	 Total	SASA	of	the	residue	while	complexed	
SASA_sep	 Total	SASA	of	the	residue	while	separated	

relative_dSASA_fraction	 Fraction	of	dSASA	of	the	residue	relative	to	the	total	
SASA	separated.	0	indicates	no	burial,	while	1	
indicates	total	burial.	

dG	 dG	of	the	residue	
energy_int	 energy	of	the	residue	while	complexed	
energy_sep	 energy	of	the	residue	while	separated	
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Table	S6:	Additional	AntibodyFeatures	reporter	tables	
	

Column	 Description	
	

Table	ab_metrics	
	

struct_id	 Structure	number	–	used	to	query	other	tables	for	
same	loaded	structure	

numbering_scheme	 The	numbering	scheme	used	to	define	the	antibody	
cdr_definition	 The	CDR	Definition	used	to	define	the	start	and	end	

points	of	the	CDR	
cdr_residues	 The	total	number	of	CDR	residues	

antigen_present	 Is	an	antigen	present?	
antigen_chains	 If	so,	what	are	its	chains?	

net_charge	 Net	charge	of	the	antibody	
paratope_charge	 Net	charge	of	the	paratope	
paratope_SASA	 Total	SASA	of	the	paratope	
paratope_hSASA	 Total	Hydrophobic	SASA	of	the	paratope	
paratope_pSASA	 Total	Polar	SASA	of	the	paratope	

VL_VH_packing_angle	 VH/VL	Packing	Angle	
VL_VH_distance	 VH/VL	Distance	

VL_VH_opening_angle	 VH/VL	Opening	Angle	
VL_VH_opposite_opening_angle	 VH/VL	Opposite	Opening	Angle	

is_camelid	 Is	the	antibody	a	Camelid	antibody?	
	

Table	cdr_metrics	
	

struct_id	 Structure	number	–	used	to	query	other	tables	for	
same	loaded	structure	

CDR	 The	identity	of	the	CDR	
length	 The	length	of	the	CDR	
start	 Starting	resNum	of	the	CDR	
end	 Ending	resNum	of	the	CDR	

ag_ab_contacts_total	 Total	unique	Antigen/Antibody	contacts	from	this	
CDR.	An	atomic	contact	is	defined	as	at	least	5	atoms	of	
the	antigen	that	are	within	5	Angstroms	of	an	antibody	
atom	

ag_ab_contacts_nres	 Total	number	of	residues	making	contact	with	Antigen		
ag_ab_dSASA	 dSASA	of	CDR/Antigen	interface	

ag_ab_dSASA_sc	 dSASA	of	only	sidechains	of	CDR/Antigen	interface	
ag_ab_dhSASA	 Hydrophobic	dSASA	of	CDR/Antigen	interface	

ag_ab_dhSASA_sc	 Hydrophobic	dSASA	of	only	sidechains	of	
CDR/Antigen	interface	

ag_ab_dG	 dG	of	CDR/Antigen	interface	
SASA	 Total	SASA	of	the	CDR	
charge	 Total	charge	of	the	CDR	
energy	 Total	energy	of	the	CDR	

anchor_CN_distance	 Distance	from	C	of	first	residue	to	N	of	last	residue	of	
the	CDR	

aromatic_nres	 Total	aromatic	residues	of	this	CDR	
	

Table	cdr_residues	
	

struct_id	 Structure	number	–	used	to	query	other	tables	for	
same	loaded	structure	

resNum	 Residue	number	of	particular	residue	for	which	this	
data	reports.		

CDR	 The	CDR	for	which	this	residue	belongs	
position	 The	position	(1	–	length)	for	which	this	is	in	the	CDR	

ag_contacts	 The	total	number	of	Antigen	contacts	this	residue	
makes	as	described	above.	
	

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2018. ; https://doi.org/10.1101/183350doi: bioRxiv preprint 

https://doi.org/10.1101/183350
http://creativecommons.org/licenses/by-nd/4.0/


Table	ab_h3_kink_metrics	
	

struct_id	 Structure	number	–	used	to	query	other	tables	for	
same	loaded	structure	

kink_type	 The	identified	Kink	type	–	either	Kinked	or	Extended.	
begin	 Start	of	the	kink	
end	 End	of	the	kink	

anion_res	 Identity	of	the	anion	residue	of	the	Kink	
cation_res	 Identify	of	the	cation	residue	of	the	Kink	

RD_Hbond_dis	 Distance	of	the	sc-sc	Hbond	across	the	strands	at	the	
beginning	of	the	H3	kink	(typically	Asp-Arg)	

bb_Hbond_dis	 Deturns	of	the	bb-bb	Hbond	across	the	strands	at	the	
begining	of	the	kink	(typically	Asp-Arg)	

Trp_Hbond_dis	 Distance	of	the	Trp	sc-bb	Hbond	across	the	H3	kink	
residues	(n-1	to	n+2)	

qdis	 Distance	from	the	four	kink	residues	of	the	H3	C-
terminal	end	that	make	up	the	qdih	below.	

qdih	 Dihedral	angle	from	the	four	kink	residues	of	the	H3	C-
terminal	end	
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