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While genome-wide association studies (GWAS) have discovered
thousands of risk loci for heritable disorders, so far even very large
meta-analyses have recovered only a fraction of the heritability of
most complex traits. Recent work utilizing variance components mod-
els has demonstrated that a larger fraction of the heritability of com-
plex phenotypes is captured by the additive effects of SNPs than
is evident only in loci surpassing genome-wide significance thresh-
olds, typically set at a Bonferroni-inspired p ≤ 5 × 10−8. Procedures
that control false discovery rate can be more powerful, yet these are
still under-powered to detect the majority of non-null effects from
GWAS. The current work proposes a novel Bayesian semi-parametric
two-group mixture model and develops a Markov Chain Monte Carlo
(MCMC) algorithm for a covariate-modulated local false discovery
rate (cmfdr). The probability of being non-null depends on a set of
covariates via a logistic function, and the non-null distribution is ap-
proximated as a linear combination of B-spline densities, where the
weight of each B-spline density depends on a multinomial function
of the covariates. The proposed methods were motivated by work on
a large meta-analysis of schizophrenia GWAS performed by the Psy-
chiatric Genetics Consortium (PGC). We show that the new cmfdr
model fits the PGC schizophrenia GWAS test statistics well, perform-
ing better than our previously proposed parametric gamma model for
estimating the non-null density and substantially improving power
over usual fdr. Using loci declared significant at cmfdr ≤ 0.20, we
perform follow-up pathway analyses using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) homo sapiens pathways database.
We demonstrate that the increased yield from the cmfdr model re-
sults in an improved ability to test for pathways associated with
schizophrenia compared to using those SNPs selected according to
usual fdr.
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1. Introduction. While genome-wide association studies (GWAS) have
discovered thousands of risk loci for heritable disorders, so far even large
meta-analyses have recovered only a fraction of the heritability of most com-
plex traits. Recent work utilizing variance components models Purcell et al.
(2009); Yang et al. (2010); Davies et al. (2011); Yang et al. (2015) has demon-
strated that a much larger fraction of the heritability of complex phenotypes
is captured by the additive effects of common variants than is evident only
in loci surpassing genome-wide significance thresholds. Thus, the emerging
picture is that traits such as these are highly polygenic, and that a large
fraction of the heritability is accounted for by numerous loci each with a
very small effect (Glazier, Nadeau and Aitman, 2002).

An example is given by the motivating application of this paper, a large
meta-analysis of schizophrenia GWAS performed by the Psychiatric Genet-
ics Consortium (PGC, www.med.unc.edu/pgc). Schizophrenia is a complex
disorder with a heritability (total variability in liability of disease due to vari-
ability in genetic factors) estimated from family studies as high as 80%. The
latest PGC analyses (Psychiatric-Genomics-Consortium, 2014) combined
82,315 subjects from 52 sub-studies to identify 108 independent regions (128
significant variants) that explained 3% of risk variability. Predictive models
using liberally selected collections of thousands of variants not reaching the
accepted significance in the PGC study explained as much as 18% of the vari-
ability in an independent sample (Psychiatric-Genomics-Consortium, 2014).
Further, mixed models used to estimate the total variability in schizophrenia
risk explained by all SNP variants tested in the PGC GWAS suggest that
as much as 43% of the variability could, in theory, be explained by the col-
lection of variants used for these studies (Psychiatric-GWAS-Consortium,
2011). Taken together these findings suggest that schizophrenia is highly
polygenic, with many tiny genetic effects yet to be discovered by conven-
tional statistical approaches and significance criteria, even using more liberal
thresholds based on false discovery rate methods (Benjamini and Hochberg,
1995; Efron and Tibshirani, 2002).

Methods for estimating and controlling false discovery rates typically treat
all hypothesis tests as exchangeable, ignoring any auxiliary covariates that
may influence the distribution of test statistics (Benjamini and Hochberg,
1995; Efron and Tibshirani, 2002). For example, the local false discovery rate
(fdr) (Efron and Tibshirani, 2002) rests on a simple two-groups mixture
model for test statistic Z. Letting f0 and f1 be the probability density
functions corresponding to null and non-null tests, respectively, the marginal
pdf of Z is given by

f(z) = (1− π1)f0(z) + π1f1(z),(1.1)
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where π1 is the non-null proportion. The fdr is then defined as the posterior
probability the test is null given the observed test statistic Z = z.

Covariate-modulated fdr (cmfdr) attempts to incorporate the effects of
auxiliary covariates into fdr estimation. Ferkingstad et al. (2008) proposed
a uniform-beta mixture model for f , first stratifying on levels of a scalar
covariate x and then estimating the parameters of the mixture model within
each stratum separately. Lewinger et al. (2007) proposed a noncentral χ2

distribution for f1, where the prior proportion π1 and the non-centrality
parameter are linear combinations of the covariates, passed through non-
linear link functions. Zablocki et al. (2014) proposed a gamma distribution
for f1 where covariates contribute not only to f1, but also to the prior
probability of being non-null. Scott et al. (2015) developed f1 as a location
mixture of null (normal) density and only the prior probability depended on
covariates.

These parametric approaches can be efficient if the model fit is adequate.
However, the assumed parametric distributions may not always provide an
adequate fit to the underlying true non-null distribution, in which case a
more flexible nonparametric alternative is desirable to avoid biases in es-
timating the cmfdr. For example, we found that the gamma distribution
underestimated the tails of f1 in the PGC Schizophrenia GWAS test statis-
tics, leading to elevated estimates of the cmfdr, and hence a loss of power
for some loci. The current paper is an extension of Zablocki et al. (2014)
to incorporate a more flexible model for the non-null density. We take a
semi-parametric approach, modeling the mixture density f as a weighted
combination of a normal null distribution with B-spline densities bounded
away from zero. These non-negative weights are smooth functions of a vec-
tor of locus-specific covariates x, and normalized to sum to unity. From this
mixture model for the density f , we can compute a semi-parametric cmfdr,
or posterior probability that a test is null given the observed test score z
and vector of covariates x. Model inference is performed via a Markov Chain
Monte Carlo (MCMC) sampling algorithm.

Section 2 presents a two-group semi-parametric model for cmfdr incorpo-
rating covariates into the estimation of the non-null proportion and density.
We describe the MCMC sampling algorithm in Supplementary 1. Section 3
presents Monte Carlo simulations and an application to the PGC Schizophre-
nia GWAS data. Here, we show large increases in power utilizing functional
genomic annotations in the cmfdr model, compared with standard fdr and
previous cmfdr methods. The increased yield of SNPs allows for a more pow-
erful pathway analysis of SNPs surpassing a significance threshold of cmfdr
≤ 0.20. Section 4 concludes with a brief discussion and future directions.
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The R code for implementing the methods proposed in this paper may be
found at https://github.com/rongw16/cmfdr_semi-parametric_model.

2. Method.

2.1. Covariate-modulated local false discovery rate. We use as our start-
ing point the simple two-group mixture model as specified by Eq. (1.1). Let
Zi be random variables, i = 1, . . . , N , where Zi denotes the test statistic
for the ith test. We consider the scenario where for each Zi we also have an
(M + 1)-dimensional vector of covariates (including intercept) denoted by
xi = (1, x1i, x2i, ..., xMi)

T . The test statistics Zi are assumed independent,
with marginal density f conditional on x given by

f(z|x) = π0(x)f0(z|0, σ2
0) + π1(x)f1(z|x),(2.1)

where f0(·|0, σ2
0) denotes a normal density with mean 0 and variance σ2

0 and
π0(x) = 1−π1(x). The non-null prior probability π1 and density f1 depend
on the auxiliary covariates x as specified in Section 2.2.

We define the cmfdr as the posterior probability that the test is null given
Z = z and x, which by Bayes’ Rule is given by

(2.2)
cmfdr(z|x) = π0(x)f0(z)

f(z|x)

= π0(x)f0(z)
π0(x)f0(z)+π1(x)f1(z|x) .

The “zero assumption” of Efron (2007) states that tests with z-scores
close to zero are primarily of null cases. This is required to ensure the non-
null distribution is identifiable. As in Efron (2007), the default assumption
in our applications is that any test with |z| ≤ 0.68 (corresponding to the
middle 50% of the standard normal distribution) is considered a null test,
i.e., the non-null density f1(z) = 0 for |z| ≤ 0.68. Martin and Tokdar
(2012) note that identifiability is not guaranteed for a two-group model
with an empirical null involving an unknown variance parameter; however,
since a theoretical (standard normal) null poorly describes the behavior of
the null in many applications, an empirical null is often required (Scott
et al., 2015; Efron, 2004). To solve the problem, Martin and Tokdar (2012)
and Scott et al. (2015) impose a “tail assumption” on their models such
that f1 has heavier tails than f0, where f0 is a normal distribution with
unknown mean and variance and f1 is a location mixture of f0. We show
that our model is identifiable under the zero assumption and other mild
conditions (Supplementary 3). In our application of the model to the PGC
schizophrenia data, we run multiple chains (each with 23000 iterations) with
different random initial values. Figure 1 to 6 in Supplementary 4 depicts
convergence of the parameter estimates.
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2.2. Covariate-modulated mixture density. We first introduce a global
latent indicator vector δ = (δ1, . . . , δN )T , where δi = 1 if the ith test is non-
null and zero otherwise, and N is the total number of tests. It is assumed

that δi
ind∼ Bernoulli{π1(xi)}, where

(2.3) π1(xi) = P (δi = 1|γ,xi) =
exp(xTi γ)

1 + exp(xTi γ)
,

and γ = (γ0, γ1, γ2, ..., γM )T is an (M + 1)-vector of unknown parameters.
Let x denote the (M + 1)×N covariate matrix with columns xi. Then the
joint density of δ given γ and annotations x is given by

(2.4) fδ(δ|x,γ) =
N∏
i=1

{ exp(xi
Tγ)

1 + exp(xiTγ)

}δi {
1

1 + exp(xiTγ)

}1−δi
 .

The marginal density of Z given by Eq. (2.1) is a mixture of a null den-
sity f0 and a non-null density f1, each symmetric around zero. Note, the
assumption that f0 and f1 are symmetric around zero is appropriate for the
GWAS example presented here, but could easily be relaxed for other appli-
cations. We also assume that z scores from null tests are independent and
normally distributed with mean zero, that is Zi|δi = 0 ∼ N(0, σ2

0). Thus, the
likelihood of the null tests is given by

f0(z0 | δ, σ2
0) = (2πσ2

0)−
N0
2 exp

{
−z0Tz0

2σ2
0

}
,(2.5)

where N0 = N −δTδ is the number of tests for which δi = 0 and z0 denotes
the corresponding N0-dimensional vector of z-scores. The parameter σ2

0 is
unknown and estimated from the data (the “empirical null”).

The non-null density f1 is approximated by a finite mixture of B-spline
densities (B-splines normalized to integrate to unity, Lopes and Dias (2012))
with weights that vary smoothly as a function of covariates. B-splines are
basis functions having compact support, defined by their polynomial de-
gree and the number and placement of knots (Eilers and Marx, 1996). In
the remainder of the paper, we use cubic B-spline densities with knots of
multiplicity one fixed by the user, leading to piecewise cubic models with
continuous first and second derivatives. Rather than focus on knot selection,
the strategy here is to include enough knots to allow a flexible fit and to es-
timate variance parameters that control the smoothness of the fit (Ruppert,
2002; Thompson and Rosen, 2008).
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Specifically, the likelihood of the non-null cases is given by

f1(z1|x1, δ,α) =
∏
i:δi=1

{
K∑
k=1

ckigk(zi)

}
,(2.6)

where z1 is the vector of z-scores corresponding to non-null tests of dimen-
sion; let N1 = δTδ and x1 is the corresponding (M + 1) × N1 matrix of
annotations. The gk are cubic B-spline densities and the

cki =
exp(xTi α·k)∑K
l=1 exp(xTi α·l)

are non-negative weights so that
∑K
k=1 cki = 1. Coefficient cki is the proba-

bility that the ith test belongs to the kth B-spline component, given δi = 1
and covariates xi. These coefficients depend on an (M + 1) ×K unknown
parameter matrix

α(M+1)×K =


α01 = 0 α02 α03 · · · α0K

α11 = 0 α12 α13 · · · α1K
...

...
...

...
...

αM1 = 0 αM2 αM3 · · · αMK

 ,

where the kth column α·k corresponds to the kth B-spline component and
αm· denotes the row corresponding to the mth covariate (including inter-
cept), m = 0, 1, 2, . . . ,M . For identifiability, the first column α·1 = 0.

We also introduce a local indicator vector η = (η1, η2, . . . , ηN1)T . The
element ηi ∈ {1, . . . ,K} specifies the B-spline component from which the

ith non-null test statistic zi is generated. The ηi
ind∼ Multinomial(ci), where

ci = (c1i, . . . , cKi)
T . The joint density of η given δ, α, and x1 is given by

fη(η|δ,α,x1) =
∏
i:δi=1

K∏
k=1

{
Pη(ηi = k|xi)I(ηi=k)

}

=
∏
i:δi=1

K∏
k=1

{ exp(xTi α·k)∑K
l=1 exp(xTi α·l)

}I(ηi=k)
 .

(2.7)

In summary, at the global level, the covariates modulate the probability
of the null and non-null status of each test. At the local level (within the
non-null distribution), the covariates modulate the B-spline component as-
signment probability for each non-null test.
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2.2.1. Prior distributions. We specify prior distributions for parameters
σ2

0, γ, and α. The rows of α are assumed independent. Based on Eilers
and Marx (1996), Lang and Brezger (2004), Chib and Jeliazkov (2006), and
Rosen and Thompson (2015) we propose the following prior distribution for
rows αm·. Let[

αm2

αm3

]
∼ N

([
0
0

]
,

[
cτ2
m 0

0 cτ2
m

])
, m = 0, . . . ,M,

where c is a fixed constant and τ 2 = (τ2
0 , τ

2
1 , ..., τ

2
M )T is a (M+1)-vector hy-

perparameter. In our test runs, c=10, 100, or 1000 give similar results; hence
c=100 is taken in the implementation. The remaining αmk, k = 4, 5, ...,K,
are assumed normally distributed with mean 2αm(k−1) − αm(k−2) and vari-
ance τ2

m. The prior distribution on αm· may be expressed in the more com-
pact form as

P (αm·|τ2
m) ∝ (τ2

m)−
K−1

2 exp

{
− 1

2τ2
m

αm(2:K)Ω
∗αTm(2:K)

}
,

where αm(2:K) is a (K − 1)-vector of B-spline components for the mth co-
variate and Ω∗ is a (K − 1)× (K − 1) matrix defined as follows. Let

D(K−3)×(K−1) =


1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · · · · 1 −2 1


and Ω = DTD. We define Ω∗ = Ω, except for Ω∗(1,1) = Ω(1,1) + c−1 and

Ω∗(2,2) = Ω(2,2) + c−1 to ensure that the matrix Ω∗ is positive definite.

We propose Inverse Gamma prior for each τ2
m based on Wand et al.

(2011), Gelman et al. (2006) and Rosen and Thompson (2015),

τ2
m|am ∼ Inverse Gamma(

ν

2
,
ν

am
),

am ∼ Inverse Gamma(
1

2
,

1

A2
),

m = 0, . . . ,M,

where a = (a0, a1, ..., aM )T is a (M+1)-vector hyperparameter and am fol-
lows an Inverse Gamma distribution. Hyper-parameters ν andA are assumed
known; in our experience, values of ν, 10 or 20, and values of A, 10 or 10,000,
yield similar results, as observed in Rosen and Thompson (2015). Therefore,
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we take ν = 10 and A =10 in the implementation. The kernel probability
functions of τ2

m and am take the following forms:

Pτ2m(τ2
m|am) ∝ (τ2

m)(− ν
2
−1)a

− ν
2

m exp(−
ν
am

τ2
)

Pam(am) ∝ a−
1
2
−1

m exp(−
1
A2

am
)

To complete the model, we assume weakly informative priors on the un-
known parameters γ and σ2

0:

• γ ∼ N(0,Σγ)
• σ2

0 ∼ Inverse Gamma(aσ0 , bσ0)

where hyperparameters Σγ , aσ0, and bσ0 are fixed by the user. In the simu-
lations and data application, we set Σγ to be diagonal with variance 10,000
and (aσ0 , bσ0) = (0.001, 0.001). Conditional posterior distributions and the
MCMC sampling algorithm are described in Supplementary 1.

3. Results.

3.1. Simulation study. In these simulation studies, we set the minimum
non-null |z|-score at 1.96, 0.68, and 0.25 to represent high, medium, and
low power scenarios (corresponding to the central 95th, 50th, and 20th per-
centiles of a standard normal distribution, respectively). We set γ = (-5.29,
2.5, -1.5)T , γ = (-3.74, 1.2, -1)T , and γ = (-3.06, 0.5, -0.2)T to represent
large, medium, and small effects, respectively. These choices for γ0 set the
true non-null proportion in all simulations around 5%. The variance param-
eter σ2

0 = 1.2. The values for α , τ 2 and a are drawn from their respective
distributions as described in Section 2.2.1.

Each of the nine combinations of power scenarios and covariate effects in-
cludes 100 datasets, each dataset includes N=50, 000 hypothesis tests where
K = 5. Two covariates are generated, with x1 binomial and x2 standard nor-
mal random variables. We compare the proposed cmfdr model to an inter-
cept only model, which is functionally equivalent to the fdr given in Efron
(2007). For each setting each dataset, the MCMC algorithm was run for
18,000 iterations with 1,400 retained samples.

Table 1 presents the median values of sensitivity, specificity, false dis-
covery proportion (FDP, defined as the proportion of incorrectly identified
non-null nodes) and number of the non-null cases identified, as well as corre-
sponding 95% credible intervals from 100 runs. Significance cutoffs for both
fdr and cmfdr are set to 0.05. Specificity is consistently high and FDP is
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consistently low across all conditions. Sensitivity and the number of iden-
tified non-null cases are consistently higher in cmfdr comparing with fdr
(horizontal comparisons) across all conditions. Increased sensitivity is more
pronounced with low and medium power regardless of covariate effects. For
example, at high power large covariate effect scenario, sensitivity increases
6.9% and 195 more non-null cases are identified by cmfdr comparing to fdr;
where as for the medium power/large covariate effect scenario, sensitivity
is increased by 14.4% and 400 more non-null cases are identified by cmfdr.
These results suggest that in the high power scenario, the null and non-
null distributions tend to be naturally separated, the covariate effects may
become less important.

3.2. Schizophrenia GWAS Application. For this study we used publicly
available (https://www.med.unc.edu/pgc/downloads) results from the PGC
Schizophrenia GWAS meta-analysis (Psychiatric-Genomics-Consortium, 2014).
These data consist of summary statistics for 9,279,485 SNP variants. For
each SNP variant independently, a fixed effects meta-analysis was performed
across the results of 52 sub-studies. Each sub-study used a logistic regression
to test the count of one of the two variant alleles (0, 1 or 2) for association
with schizophrenia (as a case-control outcome), adjusted for nuisance co-
variates.

The allele counts of variants in close proximity on the genome are corre-
lated (termed Linkage Disequilibrium or LD, Reich et al. (2001)) with the
dependence falling off approximately exponentially with distance, although
at variable rates across the genome. As a result, the test statistics from
a GWAS are not independent and have a variable width, approximately
block diagonal correlation structure. To obtain an approximately indepen-
dent subset of test statistics, we compute the pairwise squared correlation
coefficient (r2) between allele counts for all pairs of SNPs within a conser-
vatively large window of 1,000,000 base pairs. Genotype data for the PGC
study were not available, so correlations were estimated in an independent,
but representative, collection of European individuals sequenced as part of
the 1000 genomes project (Genomes-Project-Consortium, 2012). To facili-
tate follow-up pathway analyses, we assigned SNPs with gene annotations
corresponding to genes within 50,000 base pairs for that given SNP. Genes
were selected based on the 242 Kyoto Encyclopedia of Genes and Genomes
(KEGG) homo sapiens pathways (Kanehisa and Goto, 2000; Kanehisa et al.,
2016) SNPs within the major histocompatibility complex (MHC) on chromo-
some 6 were removed due to the extensive and complex correlation structure
within the region. The resulting test statistics were then randomly pruned
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Table 1
Performance comparison between semi-parametric cmfdr and fdr under different

conditions.

Simulation1

N=50000
100 datasets/setting

cmfdr fdr

High power2, Large effect3 Sensitivity (%) 87.8 [86.3, 88.9] 80.9 [79.1, 82.2]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP4 (%) 0.2 [0.1, 0.4] 0.4 [0.3, 0.5]
Number of non-null
identified

2479 [2376, 2568] 2284 [2193, 2378]

Medium effect Sensitivity (%) 85.9 [84.6, 87.6] 80.7 [79.2, 82.4]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 100]
FDP (%) 0.2 [0.1, 0.4] 0.4 [0.2, 0.4]
Number of non-null
identified

2397 [2302, 2468] 2256 [2162, 2327]

Small effect Sensitivity (%) 86.6 [85.1, 87.8] 83.4 [82.1, 84.6]
Specificity (%) 99.9 [99.9, 100] 99.9 [99.9, 99.9]
FDP (%) 0.2 [0.1, 0.4] 0.2 [0.1, 0.3]
Number of non-null
identified

2178 [2113, 2226] 2099 [2035, 2152]

Medium power, Large effect Sensitivity (%) 64.1 [62.0, 65.7] 49.6 [47.4, 51.4]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP (%) 0.6 [0.3, 1.0] 0.7 [0.6, 0.9]
Number of non-null
identified

1816 [1737, 1878] 1407 [1340, 1482]

Medium effect Sensitivity (%) 61.7 [60.0, 63.1] 51.4 [49.7, 53.8]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP (%) 0.5 [0.3, 0.8] 0.6 [0.4, 0.7]
Number of non-null
identified

1724 [1649, 1802] 1446 [1365, 1532]

Small effect Sensitivity (%) 65.3 [63.2, 67.7] 60.8 [58.9, 62.9]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP (%) 0.4 [0.4, 1.2] 0.4 [0.3, 0.5]
Number of non-null
identified

1649 [1580, 1723] 1534 [1471, 1604]

Low power, Large effect Sensitivity (%) 52.8 [50.9, 54.8] 37.7 [35.8, 40.3]
Specificity (%) 99.9 [99.9, 100] 99.9 [99.9, 99.9]
FDP (%) 0.7 [0.2, 0.6] 1.0 [0.7, 1.1]
Number of non-null
identified

1495 [1415, 1583] 1069 [1001, 1154]

Medium effect Sensitivity (%) 51.4 [49.3, 53.3] 41.4 [39.1, 43.4]
Specificity (%) 99.9 [99.9, 99.9] 99.9 [99.9, 99.9]
FDP (%) 0.6 [0.3, 1.0] 0.8 [0.6, 0.9]
Number of non-null
identified

1442 [1361, 1511] 1157 [1084, 1223]

Small effect Sensitivity (%) 57.7 [55.8, 60.2] 52.9 [51.5, 55.1]
π1 (%): 5.0 Specificity (%) 99.9[99.9, 99.9] 99.9 [99.9, 99.9]

FDP (%) 0.4 [0.1, 0.7] 0.3 [0.2, 0.5]
Number of non-null
identified

1453 [1400, 1501] 1332 [1287, 1392]

1True non-null proportion in all simulations is controlled around 5% under sample size 50000.
2Simulated data with minimum non-null |Z| score preset at 1.96, 0.68, and 0.25 to represent
high, medium, and low power scenarios. 3Covariates modulate the probability of being non-null
via parameter γ; preset γ = (-5.29, 2.5, -1.5)T to represent large effect, γ = (-3.74, 1.2, -1)T

to represent medium effect, and γ = (-3.06, 0.5, -0.2)T to represent small effect. 4FDP: False
discovery proportion. All results presented are the median and [95% credible interval] over 100
runs for each setting. Cutoff for cmfdr and fdr is set to be 0.05.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2017. ; https://doi.org/10.1101/183384doi: bioRxiv preprint 

https://doi.org/10.1101/183384
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

for approximate independence, such that the estimated squared correlation
coefficient r2 was less than 0.2 for any pair of SNPs. In order to approximate
the maximum independent set of those SNPs (to minimize the information
loss due to the pruning) our pruning scheme is based on a greedy algorithm
which in each step keeps a node with the minimum number of neighbors
in a complete graph. The final data are composed of N = 74, 800 SNP
summary statistics (z-scores) on n = 82, 315 subjects (35,476 cases). The
meta-analysis z-scores of the 52 sub-studies are calculated based Willer,
Li and Abecasis (2010) and converted to z-test statistics using the inverse
(standard normal) probability transform.

For each SNP, we also computed three covariates: (1) the Total LD score
(TotLD), which is the sum of the squared correlation coefficients between a
given SNP and all others within a 1,000,000 base pairs window, again com-
puted in the representative 1000 genomes sample, a measure of the size of
the correlation block the SNP resides in; (2) heterozygosity (H), which is the
variance of the allele count, or H = 2(p)(1− p), where p is the frequency of
the reference allele; (3) the Total Protein Coding Gene LD score (Protein-
Coding), which sums the squared correlation coefficients between a given
SNP and all others within a 1,000,000 base pairs window that are in a pro-
tein coding gene as annotated on the reference genome (Hsu et al., 2006), a
rough measure of the functional DNA within a SNP’s correlation block. We
have previously shown that these three covariates enrich for non-null SNP as-
sociations across a broad range of complex phenotypes (Schork et al., 2013).
The distributions of TotLD and ProteinCoding are highly skewed and thus
were log-transformed. All three covariates were then standardized to have
mean zero and standard deviation one. The MCMC algorithm was applied
with K=5. Parameter estimates for γ indicate that all three covariates are
positively associated with the prior probability of non-null status in semi-
parametric cmfdr, where coefficient for TotLD is 0.73, 95% credible interval
is [0.61, 0.86]; H: 0.31 [0.24, 0.38] and ProtenCoding: 0.29 [0.22, 0.37]. The
positive association are also observed in gamma cmfdr (Zablocki et al., 2014)
as well as in FDRreg cmfdr (Scott et al., 2015).

Power to detect non-null SNPs in different models is displayed in Figure 1.
This figure compares the number of non-null SNPs rejected under different
models as a function of significance threshold. The increase in power for both
the gamma and semi-parametric cmfdr approaches compared to fdr, across a
range of cut-offs from 0.001 to 0.20, is large. For example, for cut-off 0.20, fdr
rejects 175 null hypotheses, semi-parametric cmfdr with all three covariates
rejects 588, gamma model cmfdr rejects 368, and FDRreg cmfdr rejects 203.
For reference, the commonly-used GWAS threshold of p ≤ 5× 10−8 rejects
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111 null hypotheses.
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Fig 1: Power curve for fdr, cmfdr (FDRreg), cmfdr (gamma model) and
cmfdr (semi-parametric model). The x-axis is the fdr cutoff required to de-
clare a SNP significant. The y-axis is the number of rejected SNPs.

We also investigate the model fits, comparing semi-parametric cmfdr and
the parametric gamma cmfdr. Figure 2 presents stratified Q-Q plots by π0

quantiles. This figure displays the − log10 observed p-values vs. the theoret-
ical − log10 p-values under a standard normal distribution. Each SNP has
been assigned to one of three strata based on π0(xi) = 1− π1(xi) value by
quantiles: [0.00, 0.33], (0.33, 0.66], and (0.66, 1.00]. The predicted − log10

p-values estimated from the models are shown with a solid line, dashed line,
and dotted line, respectively; the observed − log10 p-values are shown with
dots, triangles, and stars. SNPs in the stratum π0 : [0− 33] have the highest
likelihood of being non-null, while SNPs in the stratum π0 : (66− 100] have
the highest probability of being null. The gray dash-dot line indicates where
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the Q-Q curve would lie if all SNPs were null under a standard normal dis-
tribution. The leftward deflection of the − log10 p-values on the Q-Q plots
stratified by π0 quantiles implies an abundance of non-null SNPs versus the
global null hypothesis. The semi-parametric cmfdr displays the best model
fit compared to the data. Of the 588 SNPs rejected by the semi-parametric
cmfdr at the 0.2 cutoff, 578 are from the stratum π0 : [0 − 33], 9 from the
stratum π0 : (33− 66], and only one from the stratum π0 : (66− 100]. Anal-
ogously, of the 368 SNPs rejected by the gamma cmfdr at the 0.2 cutoff, the
numbers of SNPs in corresponding strata are 364, 4, and 0, respectively.

Furthermore, we plot the semi-parametric cmfdr (Figure 3a) and gamma
cmfdr (Figure 3b) versus the observed absolute z-scores stratified by quan-
tiles of π0(xi); fdr is also added as a reference. The gray dotted line is the 0.2
cutoff. For the most enriched sample, the minimum absolute z-scores with
semi-parametric cmfdr ≤ 0.2 is 2.25 and with gamma cmfdr ≤ 0.2 is 2.57.
For fdr, the minimum absolute z-score under this threshold is 4.46, further
demonstrating the increase in power from using cmfdr vs. fdr.

Finally, we compare the non-null densities of semi-parametric (Figure 4a)
and gamma (Figure 4b) covariate-modulated mixture models with different
values of covariates. The model without covariates is also included (solid
lines). Both figures show the non-null densities where all the covariates were
set at their corresponding 33 (dash line), 66 (dot line) and 99 (dash-dot line)
percentiles. With increasing values for the covariates, the densities show pro-
gressively heavier tails. The non-null density of the model without covariates
shifts to the right, as compared to the semi-parametric model with covariates
in Figure 4a. This shift is probably due to the fact that the variance of the
null density (σ2

0) is larger in the model without covariates (median: 1.31, 95%
credible interval: 1.29 - 1.33) than the model with covariates (median: 1.12,
95% credible interval: 1.09 - 1.15). The shift also appears in Figure 4b where
the median of σ2

0 from the gamma model is 1.24 (95% credible interval: 1.22
- 1.26). These results collectively indicate that the enrichment annotation
categories we employ here (TotLD, H, and ProteinCoding) provide useful
information for selecting “interesting” subsets of SNPs for further analysis.

To examine the biological significance of the SNPs, we performed path-
way analyses on the 242 gene sets in the KEGG homo sapiens pathways
database (http://www.kegg.jp/). To perform these pathway analyses, we
implemented the ALIGATOR (Holmans et al., 2009) algorithm, which tests
for overrepresentation of biological pathways in SNP lists. ALIGATOR cor-
rects for LD between SNPs, variable gene size, and multiple testing of non-
independent pathways. Using the 175 SNPs with fdr ≤ 0.20 results in no
pathways with p-value ≤ 0.05 (corrected for multiple testing). On the other
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hand, there were 10 pathways with p-values ≤ 0.05 using 588 SNPs with
semi-parametric cmfdr ≤ 0.20 (Table 2). The p-values using 368 SNPs with
gamma cmfdr are also listed for comparison. Axon Guidance is ranked high-
est in both cmfdr models. The 10 top ranked pathways from semi-parametric
cmfdr given in Table 2 provide interesting insight into the pathogenesis
of schizophrenia, given that the KEGG database is expertly curated with-
out prior emphasis in terms of disease etiology. The top ranked pathways
show abnormal axonal connectivity, lipid metabolizing, and voltage-gated
ion channels, as well as comorbid conditions that have been noted among
patients with schizophrenia in prior research (Greiner and Nicolson, 1965;
Lidow, 2003; Battaglino et al., 2004; Leucht et al., 2007; Putnam, Sun and
Zhao, 2011; Maiti et al., 2011; Buckley, Pillai and Howell, 2011; Gardiner
et al., 2012; Liu et al., 2013). A complete list of the 242 KEGG homo sapien
pathways and their ALIGATOR p-values are given in Supplementary 2.

Table 2
KEGG PATHWAY with ALIGATOR p-values from three models

Pathway semi-parametric cmfdr1 gamma cmfdr2 fdr3

Axon guidance 0.0006 0.002 0.2046
Herpes simplex infection 0.0008 0.027 1
Osteoclast differentiation 0.0062 0.019 1
Pentose phosphate pathway 0.0096 0.521 1
Tuberculosis 0.01 0.0068 0.132
Leishmaniasis 0.0162 0.095 1
Antigen processing and presentation 0.022 0.096 1
Taste transduction 0.033 1 1
Cytokine-cytokine receptor interaction 0.037 0.038 1
Cell adhesion molecules (CAMs) 0.0446 0.131 1

1p values from ALIGATOR based on 588 non-nulls identified by the semi-parametric
model at cmfdr cutoff 0.2; 2p values from ALIGATOR based on 368 non-nulls identified
by the gamma model at cmfdr cutoff 0.2; 3p values from ALIGATOR based on 175
non-nulls identified without covariates at fdr cutoff 0.2.

4. Discussion. GWAS of highly polygenic traits such as schizophre-
nia remain underpowered to detect most genetic variants involved in the
disorder, even with very large sample sizes. By incorporating auxiliary in-
formation, the process of gene discovery can be sped up significantly, along
with the assessment of the role of molecular pathways. Moreover, the exami-
nation of which auxiliary information is useful for predicting non-null status
can be informative of the genetic architecture of polygenic traits.

Using a set of genetic loci (SNPs) pruned for approximate independence,
we demonstrate a large increase in power in the PGC schizophrenia data us-
ing our semi-parametric cmfdr model compared with fdr, as well as previous
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(a) cmfdr (semi-parametric model) (b) cmfdr (gamma model)

Fig 2: Q-Q plot by π0 quantile for the PGC Schizophrenia GWAS data. The
x-axis is the theoretical − log10 p-values under a standard normal distribu-
tion. The y-axis is the − log10 observed or predicted p-value (converted from
z-scores). The gray dash-dot line is the reference line indicating where the
− log10 p-values would lie if all SNPs were null under a standard normal
distribution.
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(a) semi-parametric model (b) gamma model

Fig 3: cmfdr and fdr plotted against observed absolute z-scores.
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(a) semi-parametric model
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(b) gamma model

Fig 4: Non-null densities where all three covariates were set at their corre-
sponding 33, 66 and 99 percentiles.
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models for cmfdr that either use a parametric model (gamma fdr) or a model
that does not incorporate covariate effects (FDRreg) into the estimation of
the non-null density. For example, using a 0.20 cut-off, we reject 588 null
hypotheses with cmfdr compared with only 175 using fdr, or over 3.4 times
as many SNPs as the intercept only model, with a similarly large increase in
power vs. FDRreg, and a smaller but still substantial increase in power over
gamma fdr. This increase in power appears to be driven by a better-fitting
model of the tails of the non-null distribution for highly enriched SNPs.

Our choice of covariates in the PGC schizophrenia application was driven
by scientific considerations based on theory and substantial prior evidence
that these annotations enriched for non-null associations (Schork et al.,
2013). In general, we recommend selection of covariates based on these cri-
teria. However, the model could also be used for exploratory analyses, to
examine whether a given annotation significantly enriches for associations.
For this use, it would be useful to implement a model-selection metric such
as the Watanabe-Akaike Information Criterion (WAIC, Vehtari and Gelman
(2014)).

The proposed cmfdr model assumes independence of the z-scores. To en-
sure this was approximately true in the current data example, we randomly
pruned SNPs so that no two SNPs in the sample were correlated at more
than r2 = 0.20. We thus need to delete many tests to achieve independence.
Our current research considers alternative schemes to explicitly model the
effects of the correlation on the values of the z-scores. We are also developing
an extension of the cmfdr model that also incorporates biological networks
(gene sets with graphical model structure determined by biological interac-
tions).
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SUPPLEMENTARY MATERIAL

Supplementary materials for “Semi-parametric covariate-modulated
local false discovery rate for genome-wide association studies”:
(). The supplement consists of 4 sections. Section 1 presents conditional
posteriors and Gibbs sampling algorithm. Section 2 provides the full list
of KEGG homo sapiens pathways with ALIGATOR p-values from different
models. Section 3 demonstrates identifiability of the mixture model. Section
4 shows convergence diagnosis plots of parameter estimates.
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