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Centro de Matemática Computação e Cognição9

Universidade Federal do ABC10

Rua Arcturus, 03. Bairro Jardim Antares. São Bernardo do Campo - SP - Brasil. CEP 09606-070.11

E-mail: andre.cravo@ufabc.edu.br12

Abbreviated title: A common representation of time across modalities13

Author contributions statement: L.C.B., M.S.C, P.M.E.C and A.M.C. conceived the experiment. L.C.B. performed the14

experiments. All authors analysed the data, wrote and reviewed the manuscript.15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2018. ; https://doi.org/10.1101/183426doi: bioRxiv preprint 

https://doi.org/10.1101/183426
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract16

Humans’ and non-human animals’ ability to process time on the scale of milliseconds and seconds is essential for adaptive17

behaviour. A central question of how brains keep track of time is how specific temporal information across different sensory18

modalities is. In the present study, we show that encoding of temporal intervals in auditory and visual modalities are qualitatively19

similar. Human participants were instructed to reproduce intervals in the range from 750 ms to 1500 ms marked by auditory or20

visual stimuli. Our behavioural results suggest that, although participants were more accurate in reproducing intervals marked21

by auditory stimuli, there was a strong correlation in performance between modalities. Using multivariate pattern analysis in22

scalp EEG, we show that activity during late periods of the intervals was similar within and between modalities. Critically, we23

show that a multivariate pattern classifier was able to accurately predict the elapsed interval, even when trained on an interval24

marked by a stimulus of a different sensory modality. Taken together, our results suggest that, while there are differences in the25

processing of intervals marked by auditory and visual stimuli, they also share a common neural representation.26
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Introduction28

The ability to estimate time is essential for humans and non-human animals to interact with their environment (Buhusi29

and Meck, 2005; Mauk and Buonomano, 2004; Merchant et al., 2013a). Intervals in the range of hundreds of milliseconds to30

seconds are critical for sensory and motor processing, learning, and cognition (Buhusi and Meck, 2005; Mauk and Buonomano,31

2004; Merchant et al., 2013a). However, the mechanisms underlying temporal processing in this range are still largely discussed.32

A central unanswered question is whether temporal processing depends on dedicated or intrinsic circuits (Ivry and Schlerf,33

2008). Dedicated models propose that temporal perception depends on central specialised mechanisms, as an internal clock,34

that create a unified perception of time (Ivry and Schlerf, 2008). This class of models can account for behavioural findings such35

as correlations in performance for some temporal tasks (Keele et al., 1985) and the observation that learning to discriminate a36

temporal interval in one sensory modality can sometimes be transferred to other modalities (Bueti and Buonomano, 2014).37

Intrinsic models of time propose that a variety of neural circuits distributed across the brain are capable of temporal38

processing. One of the most known examples is the state-dependent network - SDN (Mauk and Buonomano, 2004). Within this39

framework, neural circuits can take advantage of the natural temporal evolution of its states to keep track of time (Mauk and40

Buonomano, 2004). One of the main advantages of such models is that they can explain the known differences of temporal41

processing across sensory modalities (van Wassenhove, 2009) and that learning a specific interval does not commonly improve42

temporal performance in other intervals (Bueti and Buonomano, 2014).43

Given that both dedicated and intrinsic views can account for some results while not explaining others, there has been an44

increase in interest in hybrid models, according to which local task-dependent areas interact with a higher central timing system45

(Merchant et al., 2013a; Wiener et al., 2011). The main advantage of hybrid models is that they can explain why performance46

in some timing tasks seems to be correlated across participants, while still exhibiting modality and task-related differences47

(Merchant et al., 2008b,a).48

In humans, studies that investigate these different models employ a variety of methods, such as behavioural, neuroimaging49

and neuropharmacological manipulations, on healthy participants and neurological patients (Coull et al., 2011; Ivry and Schlerf,50

2008; Kononowicz et al., 2016; Merchant et al., 2013a; Wiener et al., 2011). Although the high temporal resolution of EEG51

should in principle be optimal to track neural processing during temporal tasks, the contribution of these methods has been52

controversial. One of the main difficulties is the absence of a clear electrophysiological correlate of temporal processing (for a53

recent review see (Kononowicz et al., 2016)). This lack of electrophysiological markers makes it hard to judge, for example,54

whether temporal processing in different modalities share a common representation (N’Diaye et al., 2004).55

In a recent study, we have shown that multivariate pattern analysis (MVPA) can reveal spatiotemporal dynamics of brain56

activity related to temporal processing (Bueno et al., 2017). Multivariate approaches can take advantage of small differences in57

the signal across electrodes that might not be detectable using classical EEG methods. These pattern recognition methods allow58

the assessment of whether brain states evoked by different tasks, stimuli and sensory modalities are qualitatively similar.59

In the present study, we investigated whether encoding of temporal intervals in different sensory modalities is qualitatively60
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similar. Our behavioural results suggest that, although participants are more accurate in reproducing intervals marked by61

auditory stimuli, there is a strong correlation over observers in performance between modalities. Critically, we show that a62

multivariate pattern classifier based on EEG activity can predict the elapsed interval, even when trained on an interval marked by63

a different sensory modality. Taken together, our results suggest that, while there are differences in the processing of intervals64

marked by auditory and visual stimuli, they also share a common neural representation.65

Materials & Methods66

Participants67

Twenty volunteers (age range, 18-30 years; 11 female) gave informed consent to participate in this study. All of them had68

normal or corrected-to-normal vision and were free from psychological or neurological diseases. The experimental protocol was69

approved by The Research Ethics Committee of the Federal University of ABC. All experiments were performed in accordance70

with the approved guidelines and regulations.71

Experimental Design72

The experiment consisted of a temporal reproduction task. The stimuli were presented using the Psychtoolbox v.3.0 package73

(Brainard, 1997) on a 20-inch CRT monitor with a vertical refresh rate of 60 Hz, placed 50 cm in front of the participant.74

Each trial started with a fixation point that participants fixated throughout the trial. After a delay (1.5 s), two flashes or tones75

were presented, separated by a sample interval (measured between tone or flash onsets). After a random delay (1.5 to 2.5 s),76

volunteers were re-exposed to the same interval. After another random delay (1.5 to 2.5 s), a ready stimulus was presented to77

the participant, indicating the beginning of the reproduction task 1. Volunteers had to reproduce the exposed interval, initiated78

by the ready stimulus (RS) and ended by a stimulus caused by a button press (R1).79

In auditory blocks, the tones consisted of 1000 Hz tones (100 ms duration), while the ready and end stimuli consisted of80

500 Hz tones. In visual blocks, the flashes that marked the interval consisted of yellow 0.5 degrees of visual angle discs (10081

ms duration), while the ready and end stimuli consisted of magenta flashes of the same size. No direct feedback was given.82

The sample intervals ranged between 750 ms and 1500 ms and were uniformly distributed. Each block (visual or auditory)83

consisted of 120 trials. Half of the participants performed the visual block first, while the other half performed the auditory84

block first.85

Behavioural analysis86

Events in which intervals were reproduced as longer than double the sample interval or shorter than half the sample87

interval were considered errors and excluded from further analyses. The proportion of errors was low for both modalities88

(auditory: 0.0042±0.0011; maximum proportion of rejected trials per participant= 0.0167; visual: 0.0092±0.0031; maximum89

proportion of rejected trials per participant= 0.0583)90
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Figure 1. Temporal reproduction task. (A) Sequence of events during a trial. Each trial consisted of two equal empty intervals
(between 750 ms and 1500 ms), marked by two stimuli. In auditory blocks, the interval was marked by two brief tones (1000
Hz, 100 ms), while in visual blocks the interval was marked by two flashes (0.5 degrees of visual angle, 100 ms). Participants
were instructed to reproduce the interval at the end of each trial.

Similarly to previous studies (Cicchini et al., 2012; Jazayeri and Shadlen, 2010), the total error in the reproduction task was91

partitioned into two components: the average bias (BIAS) and the average variance (VAR). These two metrics are directly92

related to the overall mean squared error (MSE). To calculate these components, sample intervals were first binned into six93

equally sized bins and, for each bin, an estimate of both measures were calculated. The BIAS for each bin was calculated as94

the average difference between the reproduced interval and the sample intervals. The VAR for each bin was calculated as the95

variance of the difference between reproduced and real intervals. The final estimate of the BIAS was calculated as the root96

mean square of the BIAS across bins and of the VAR as the average VAR across bins (Jazayeri and Shadlen, 2010). For ease of97

interpretation and comparison with previous studies, the VAR values were plotted using its square root
√

VAR.98

We further calculated a regression index (RI) to index the tendency of reproduced intervals to regress towards the mean99

sample. This index was calculated as the difference in slope between the best linear fit on the reproduced interval and perfect100

performance (Cicchini et al., 2012). This measure varies from 0 (perfect performance) to 1 (complete regression to the101

mean, after allowing for a constant bias). The same linear fit between real and reproduced intervals was used to calculate the102

indifference points for both modalities. This point refers to the physical interval where durations are reproduced veridically.103

To analyse the scalar property of time, we computed the slope of the generalised Weber function (Garcı́a-Garibay et al.,104

2016; Getty, 1975; Ivry and Hazeltine, 1995). A linear regression between the variance of the reproduced intervals and the105

mean subjective duration squared was performed as follows:106

σ
2 = k2T 2 +σ

2
indep (1)

where k is the slope that approximates the Weber fraction and σ2
indep is a constant representing the time-independent107

component of the variability. To account for the systematic bias found in the reproduced intervals, we used an approach similar108

to Garcı́a-Garibay et al. (2016) in which T 2 was computed based on the linear fit between real and reproduced intervals.109

All measures were calculated separately for each participant and condition (auditory and visual). At the group level,110
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comparisons between the calculated parameters were done using paired t-tests (two-sided). To investigate correlations across111

participants for all three measures, Pearson correlations were calculated between the values of each measure in visual and112

auditory conditions.113

EEG recordings and pre-processing114

EEG was recorded continuously from 64 ActiCap Electrodes (Brain Products) at 1000 Hz by a QuickAmp amplifier (Brain115

Products). All sites were referenced to FCz and grounded to AFz. The electrodes were positioned according to the International116

10-10 system. Additional bipolar electrodes registered the electrooculogram (EOG).117

EEG pre-processing was carried out using BrainVision Analyzer (Brain Products). All data were down-sampled to 250 Hz118

and re-referenced to the average activity across electrodes. For eye movement artefact rejection, an independent component119

analysis (ICA) was performed on filtered (Butterworth Zero Phase Filter between 0.05 Hz to 30 Hz) and segmented (-200120

ms to 2000 ms relative to S1) data. For the ICA, epochs were baselined based on the average activity of the entire trial. Eye121

related components were identified by comparing individual ICA components with EOG channels and by visual inspection.122

The average proportion of rejected trials for each participant corresponded to 0.0613. For all further analyses, epochs were123

baseline corrected based on the period between -200 ms to 0 ms relative to S1 presentation.124

Multivariate pattern analysis - MVPA125

Similarity between different trials and modalities126

To calculate the similarity across trials we used a bootstrap approach. For each participant and comparison of interest, data127

from all intervals that lasted at least 1.125 seconds were divided into two groups of trials and averaged across trials per group128

(Bueno et al., 2017). Then, for each time point, data from each split (two-row vectors with the averaged amplitude values of all129

62 electrodes) were compared using a Pearson correlation. This procedure was repeated 5000 times for each participant and130

Fisher transformed coefficients were averaged across permutations for each participant and comparison of interest.131

At the group level, EEG-analyses were implemented non-parametrically (Maris and Oostenveld, 2007; Wolff et al., 2015)132

with sign-permutation tests. For each time-point, the Fisher transformed coefficients for a random half of the participants133

were multiplied by −1. The resulting distribution was used to calculate the p-value of the null-hypothesis that the mean value134

was equal to 0. Cluster-based permutation tests were then used to correct for multiple comparisons across time using 5000135

permutations, with a cluster-forming threshold of p < 0.05 (Maris and Oostenveld, 2007). The sum of the values within a136

cluster was used as the cluster-level statistic. The significance threshold was set at p < 0.05; all tests were one-sided.137

Decoding the elapsed interval138

To investigate whether information about the elapsed interval could be decoded from activity across electrodes, we used a139

Naive Bayes classifier to perform a multiclass classification (Grootswagers et al., 2017). For all classifications, activity from140

the last 125 ms of the elapsed interval (-125 ms to 0 relative to S2) was averaged for each electrode. Data for each exposure (E1141

and E2) were analysed separately. Intervals were divided into six equally sized bins (125 ms each).142
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Within modality classification143

The pre-processing and decoding procedures followed standard guidelines (Grootswagers et al., 2017; Lemm et al., 2011).144

A leave-one-out method was used, although similar results were obtained when using a 10-fold cross-validation. For each145

test trial, data from all other trials were used as the training set. A principal component analysis (PCA) was used to reduce146

the dimensionality of the data (Grootswagers et al., 2017). The PCA transformation was computed on the training data and147

the components that accounted for 99% of the variance were retained. The estimated coefficients from the training data were148

applied to the test data. On average, the number of components used was of 37.17 ± 1.43 (mean ± s.e.m., maximum number of149

components=47, minimum number of components=17).150

Decoding performance was summarised with Cohen’s quadratic weighted kappa coefficient (Cohen, 1968). The weighted151

kappa gives more weight to disagreements for categories that are further apart. It assumes values from -1 to 1, with 1 indicating152

perfect agreement between predicted and decoded label and 0 indicating chance (Cohen, 1968).153

Between modalities classification154

The between modality decoding (training the classifier on data from one modality and testing on the other) followed a155

similar structure as the within-modality decoding. Given that participants performed the first half of the experiment with one156

modality and the second with the other, the effects of non-stationarity are low (Lemm et al., 2011). Thus, data from all trials of157

one modality were used as the training set and tested against all trials of the other modality.158

Correlation of decoding and behaviour159

Similarly to our previous decoding analysis, activity from the last 125 ms of the elapsed interval (-125 ms to 0 relative to160

S2) was used. For each test trial, a Naive Bayes classifier was trained on trials that were shorter (at least 25 ms and up to 125161

ms shorter) and longer (at least 25 ms and up to 125 ms longer) than that the physical duration of that given test trial. This162

classification was applied to all trials between 875 ms and 1375 ms, so that all trials had a similar number of training trials.163

Based on this classification, trials were further classified into three categories: (S/S) when in both presentations (E1 and E2)164

the trial was classified as shorter; (S/L or L/S) when in only one of the two presentations the trial was classified as longer and165

(L/L) when in both presentation the trials were classified as longer.166

To test whether classification might explain participants’ performance, we first fitted, for each participant, a linear function167

relating the physical interval and participants’ reproduced interval. The residuals from this linear fit were stored and separated168

as a function of the three decoding categories mentioned above. Notice that the linear fit on the behavioural results naturally169

takes into account participants tendency to regress towards the mean. Thus, this analysis allows isolating if trials that were170

encoded as shorter or longer were reproduced as shorter or longer than participants’ average reproduction for that interval171

duration.172

Statistical analysis173

All t-tests, correlations, ANOVAs and effect sizes (Cohen’s d for t-tests and omega-squared for ANOVAs) were calculated174
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using JASP (JASP Team, 2017). The p-values were adjusted, whenever appropriate, for violations of the sphericity assumption175

using the Greenhouse–Geisser correction.176

Results177

Behaviour178

Following previous studies (Cicchini et al., 2012; Jazayeri and Shadlen, 2010), temporal errors were partioned into two179

components: the average difference between the reproduction times and the sample interval, henceforth called BIAS, and the180

corresponding variance of the difference between reproduced and sample intervals, abbreviated below as VAR. Our results181

showed that participants had similar BIAS for both modalities (BIASauditory = 0.115±0.009s, BIASvisual = 0.121±0.010s,182

mean±s.e.m., paired t-test, t19 =−0.634, p = 0.534, d=0.142). However, variance was smaller for intervals marked by auditory183

targets (
√

VARauditory = 0.148±0.010s,
√

VARvisual = 0.170±0.011s, paired t-test, t19 =−2.789, p = 0.012, d=0.624).184

As can be seen in Figure 2B, in both modalities there was a strong central tendency effect, characterised by long intervals185

being underestimated and short durations being overestimated (Cicchini et al., 2012; Jazayeri and Shadlen, 2010; Lejeune186

and Wearden, 2009; Pérez and Merchant, 2018). To measure the strength of this effect, we calculated a regression index (RI)187

(Cicchini et al., 2012). This index is calculated as the difference in slope between the best linear fit on the reproduced interval188

and perfect performance. It varies from 0 (perfect performance) to 1 (complete regression to the mean, after allowing for a189

constant bias). The estimated RIs suggest that participants had a stronger central tendency effect in visual blocks, as shown by190

higher RIs (RIauditory = 0.346±0.036, RIvisual = 0.430±0.032, paired t-test, t19 =−3.152, p = 0.005, d=0.705).191

We further calculated the indifference points for both modalities. As can be seen in Figure 2B, indifference points were192

shorter for auditory intervals than for visual intervals (Indi f f erencePointauditory = 0.854±0.059, Indi f f erencePointvisual =193

1.07±0.044, paired t-test, t19 =−3.648, p = 0.002, d=0.816).194

We used a slope analysis to analyse the scalar property of time (Garcı́a-Garibay et al., 2016; Getty, 1975; Ivry and195

Hazeltine, 1995). A linear regression between the variance of the reproduced intervals and the mean subjective duration was196

used to calculate the generalised Weber function (Garcı́a-Garibay et al., 2016; Getty, 1975; Ivry and Hazeltine, 1995). We197

found a lower slope for auditory than for visual intervals (k2
auditory = 0.0059±0.0058, k2

visual = 0.022±0.0085, paired t-test,198

t19 =−2.082, p = 0.051, d=0.465)199

Although participants were, in general, more accurate for auditorily marked compared to visually marked intervals, there was200

also a strong correlation in how well participants performed for both modalities, in agreement with previous findings (Merchant201

et al., 2008b; Stauffer et al., 2012). As shown in Figure 2B, there was a strong correlation between performance in auditory and202

visual blocks across participants as measured in their BIAS (Pearson product-moment correlation: r20 = 0.545, p = 0.013),203

√
VAR (r20 = 0.722, p < 0.001), Regression Index (r20 = 0.701, p < 0.001) and slopes (r20 = 0.475, p = 0.034). Indifference204

points were not significantly correlated across participants (r20 = 0.339, p = 0.144).205
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Figure 2. Behavioural performance (A) Average reproduction times across different intervals and conditions. Sample
intervals were binned into six equally sized (125 ms) categories. Violin plots show the probability density across participants
for each bin. Markers represent the median. Participants showed a central tendency effect with shorter intervals being
overestimated and longer intervals being underestimated. (B) Summary statistics for performance. The BIAS (upper left panel)
represents the average difference between the reproduction times and the sample interval. The VAR (upper central panel)
represents the variance of the reproduced intervals. The Regression Index (upper right panel) shows the strength of the
tendency to regress to the mean. The indifference points (lower left panel) represents the estimated physical interval in which
participants reproduce the intervals veridically. The slope of the generalised Weber function (lower right panel) approximates
the Weber fraction. Participants were, in general, better in reproducing auditory than visual intervals. There was also a
correlation between visual and auditory modalities across participants for the majority of measures.

EEG recordings206

Similarity of the evoked activity for intervals of similar modalities207

The evoked ERPs resembled classical results from temporal processing studies, with a strong contigent negative variation208

(CNV) in frontocentral electrodes for both modalities (auditory/visual) and exposures (E1/E2, Figure 3). If a given pattern of209

activity carries information about time, its sequence of activation must be consistent across different trials. Thus, in a first step,210
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we investigated whether the temporal pattern of EEG activity was similar in different trials within the same modality (auditory211

or visual). To have a sufficient number of trials, EEG activity was epoched relative to S1 for all trials that had an interval212

equal or longer than 1125 ms. These trials were then randomly divided into two groups of trials and averaged per group. The213

similarity of activity across sensors for the different splits was quantified by means of a Pearson correlation coefficient. This214

procedure was repeated 5000 times for each participant and Fisher transformed coefficients were averaged across permutations215

for each participant.216

Figure 3. (A) Topographies for intervals longer than 1.125 seconds for both modalities and exposures. Each topography shows
the average activity in 125 ms temporal bins, from 0 s to 1.125 s relative to S1 (B) Event-related potentials (mean ±s.e.m.) in
fronto-central electrodes (FC2,FCz,FC1,C1,Cz,C2) for each of the six binned tested durations (bin edges:750ms-875ms;
875ms-1000ms; 1000ms-1125ms; 1125ms-1250ms; 1250ms-1375ms and 1375ms-1500ms). Both panels show epochs
segmented relative to S1, in both exposures (E1 and E2). Darker (lighter) colours represent longer (shorter) intervals.

As shown in Figure 4A, for trials of the same modality, there was strong similarity across trials that started shortly after the217

first stimuli that marked the interval (S1). In auditory blocks, a statistically significant temporal cluster emerged 85 ms after S1218

for the first exposure (E1, cluster-p < 0.001) and after 120 ms for the second (E2, cluster p < 0.001). In both conditions, the219

cluster remained throughout the interval (Figure 4A, left panel). In visual blocks, a statistically significant cluster emerged 96220

ms after S1 for E1 (cluster p < 0.001) and after 84 ms for E2 (cluster p < 0.001). Similarly to auditory blocks, the clusters also221

remained significant throughout the interval (Figure 4A, middle panel).222
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In a next step, we investigated whether similarity was modulated by sensory modality (auditory/visual) or exposure within the223

trial (E1/E2). Similarity indexes over the final 400-ms period of the selected trials (725 ms to 1125 ms) were averaged for each224

modality (visual/auditory) and exposure (E1/E2) and submitted to a repeated measures ANOVA (Figure 4B, left panel). There225

was no significant modulation by modality (F1,19 = 0.004, p = 0.948,ω2 = 0), exposure (F1,19 = 1.973, p = 0.176,ω2 = 0.044)226

or interaction (F1,19 = 0.118, p = 0.735,ω2 = 0).227

Figure 4. Pattern similarity across trials of same or different modalities. (A) The similarity index (mean ±s.e.m. of estimated
Pearson correlation) shows the consistency of the pattern of activity across trials within auditory blocks (left panel), visual
blocks (middle panel) and across modalities (right panel). In all panels, lighter/darker lines represent similarity for the first (E1)
and second exposure (E2) in each trial. Continuous lines at the bottom of each panel indicate periods of significant similarity
across trials. (B) Comparison of pattern similarity for trials of the same (left panel) or different (right panel) modalities. Violin
plots show the probability density across participants. Line markers represent the median and interquartile range. Circles inside
the violin plots show data from all participants.

Similarity of the evoked activity for intervals across modalities228

As expected, the pattern of activity during the interval was similar for trials of the same sensory modality. However, if there229

is a common representation of time across different modalities, the pattern of activity for intervals of different modalities should230

also be consistent. To test this possibility, a similar analysis as described above was performed with EEG activity from intervals231

marked by different modalities. Similarity across trials emerged later for these comparisons. Significant clusters emerged at232

256 ms after for E1 trials (cluster p < 0.001) and at 232 ms after S1 for E2 trials (cluster p < 0.001, Figure 2A, right panel).233

Thus, although the pattern of EEG activation was similar across visual and auditory intervals, this similarity started at later234

moments than for within-modality comparisons.235

In a next step, the magnitude of the similarity when comparing trials of same and different modalities was tested. Similarity236
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indexes over the last 400 ms of the investigated intervals (725 ms to 1125 ms) were averaged for each exposure (E1/E2) and237

modality (within/across) and submitted to a repeated measures ANOVA (Figure 2B, right panel). Similarity for intervals of238

the same modality was significantly stronger than for different modalities (F1,19 = 28.443, p < 0.001,ω2 = .567). There was239

no significant effect of exposure (F1,19 = 1.824, p = 0.193,ω2 = 0.038) or of the interaction of factors (F1,19 = 0.057, p =240

0.813,ω2 = 0).241

Decoding time from EEG signals242

Given the strong consistency of activity for intervals within and across modalities, we further investigated whether this243

pattern might carry information about the elapsed time. In a first analysis, we focused on intervals of the same sensory modality.244

Activity from the final period of each interval (-125ms to 0 relative to S2) was binned into six equally spaced periods (bin245

edges: 750ms-875ms; 875ms-1000ms; 1000ms-1125ms; 1125ms-1250ms; 1250ms-1375ms and 1375ms-1500ms). A Naive246

Bayes classifier was used to decode from which of the six binned intervals activity from each trial came from (Gouvêa et al.,247

2015; Grootswagers et al., 2017). A weighted Kappa coefficient was used to quantify the agreement between decoded and real248

interval. This coefficient ranges from 1 (perfect agreement) to -1 (complete disagreement), where 0 indicates chance levels249

(Cohen, 1968).250

As shown in Figure 5, there was a strong and statistically significant agreement between predicted and real intervals in251

both auditory (E1: Kappaauditory = 0.217±0.026, t-test against zero, t19 = 8.480, p< 0.001, d=1.896; E2: Kappaauditory =252

0.237±0.024, t-test against zero, t19 = 9.887, p< 0.001, d=2.211) and visual blocks (E1: Kappavisual = 0.225±0.021, t-test253

against zero, t19 = 10.623, p< 0.001, d=2.375; E2: Kappavisual = 0.224±0.026, t-test against zero, t19 = 8.598, p< 0.001,254

d=1.923).255

Given that the elapsed interval could be decoded from EEG activity and that this activity was similar across different sensory256

modalities, we investigated whether similar decoding performance could be achieved across sensory modalities. A similar257

Naive Bayes classifier was used as described above. However, to test whether decoding could be generalised across sensory258

modalities, each test trial was classified based on the activity of intervals of the other modality.259

Once again, there was strong agreement between predicted and real intervals, as measured by weighted Kappa coefficients.260

This was true when auditory intervals were decoded using visual intervals as training sets (E1: Kappaauditory = 0.185±0.030,261

t-test against zero, t19 = 6.137, p< 0.001, d=1.372; E2: Kappaauditory = 0.199± 0.022, t-test against zero, t19 = 9.0627,262

p< 0.001, d=2.026) as well as for when visual intervals were decoded using auditory intervals as training sets (E1: Kappavisual =263

0.216± 0.024, t-test against zero, t19 = 9.020, p< 0.001, d=2.017; E2: Kappavisual = 0.190± 0.033, t-test against zero,264

t19 = 5.800, p< 0.001, d=1.297).265

A repeated measures ANOVA was used on the estimated Kappas to test whether decoding performance depended on266

the modality to be predicted (auditory or visual), on the exposure (E1 or E2) and on whether it was trained on the same267

or different modality (within modality/across modalities). There was a trend of decoding performance being higher when268

trained within rather than between modalities (F1,19 = 3.502, p = .077,ω2 = 0.106). There were no significant effects269
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Figure 5. MVPA performance for interval classification within and between sensory modalities. (A) Observed versus
predicted intervals by the Naive Bayes classifier across exposures and modalities. Each circle shows, for each participant and
tested bin, the most common output of the classifier (mode). The continuous line shows the median across participants and
error bars show the lower quartile (25th percentile) and upper quartile (75th percentile) across participants. (B) Classification
performance of the Naive Bayes classifier when trained within the same sensory modality (upper panels) or between sensory
modalities (lower panels). Each plot shows the proportion of trials in which the classifier was able to decode the interval
correctly (when the error in the x-axis equals zero) and the proportion of trials in which different levels of errors were observed.
The black dashed line represents the expected pattern of errors if the classifier were at chance levels. Left/right panels show
accuracy for the first/second exposure (E1/E2) in each trial. Error bars and continuous lines show mean error (mean ±s.e.m.)
across participants. Each circle shows data from one participant. (C) Agreement between decoded and real interval indexed by
Cohen’s kappa. The left panel shows classification performance when test trials were of the same modality as the training trials
while right panels show performance when the test trials were of a different modality than the training trials. Violin plots show
the probability density across participants; line markers represent the median. Circles inside the violin plots show data from
each participant.
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of modality to be predicted (F1,19 = 0.131, p = .721,ω2 = 0) or of exposure (F1,19 = 0.013, p = .909,ω2 = 0). None of270

the interactions were significant (modality to be predicted*exposure: F1,19 = 1.814, p = .194,ω2 = 0.037; modality to be271

predicted*trained modality: F1,19 = 0.132, p = .721,ω2 = 0; trained modality*exposure:F1,19 = 0.224, p = .642,ω2 = 0;272

trained modality*exposure*modality to be predicted:F1,19 = 0.114, p = .739,ω2 = 0).273

Decoded interval and behavioural performance274

We further investigated whether the pattern of EEG activity during the encoding of intervals was associated with the275

reproduced interval. Specifically, we tested if trials in which activity during encoding was more similar to intervals that were276

shorter/longer than its real duration were followed by systematic under/overestimation of the reproduced interval.277

Similarly to our previous analysis, the activity of the end of each interval (-125ms to 0 relative to S2) was used. For each278

test trial, the Naive Bayes classifier was trained exclusively in intervals that were physically longer or shorter than the interval279

presented in that trial. The output of the classifier for each trial can be thought of as a forced judgement of whether, in a given280

trial, the EEG activity is more similar to intervals longer or shorter than that interval. Because each interval was presented twice281

during encoding (E1 and E2), this procedure was performed for each presentation separately. Based on the classifier outputs,282

trials were classified into three categories: (S/S) when in both exposures (E1 and E2) the trial was classified as shorter, (S/L283

or L/S) when in one of the two exposures the trial was classified as longer, and (L/L) when in both exposures the trials were284

classified as longer.285

To test whether these categories were correlated with performance, we focused on the residuals of the linear regression286

between presented and reproduced interval. These residuals reflect fluctuations in the reproduced interval that were above or287

below participants’ mean reproduced interval for that given duration. Residual behaviour for each participant was separated288

according to the three categories and submitted to a repeated measures ANOVA with category (S/S; S/L or L/S; L/L),289

modality (auditory or visual) and trained modality (within or across) as factors. There was a main effect of category290

(F1,19 = 7.231, p = .003,ω2 = .233). A post-hoc analysis showed a linear trend between predicted category and residual291

behaviour (F1,19 = 10.898, p = .004), suggesting an association between whether the interval was classified as shorter or longer292

and the reproduced interval (Figure 6). The other main effects were not significant (modality: F1,19 = 0.018, p = 0.893,ω2 = 0;293

trained modality: F1,19 = 0.204, p = 0.657,ω2 = 0), nor the interactions (category*modality: F1,19 = 0.373, p = 0.691,ω2 = 0;294

category*trained modality:F1,19 = 0.183, p = 0.777,ω2 = 0; trained modality*modality: F1,19 = 0.066, p = 0.799,ω2 = 0;295

category*trained modality*modality: F1,19 = 0.104, p = 0.857,ω2 = 0).296

Discussion297

In this study, we investigated whether there is a common representation of time for auditory and visual modalities. The298

behavioural results showed that, although performance was better for auditory intervals than for visual intervals, there was299

a strong correlation in performance across participants. The electrophysiological findings showed that activity elicited by300
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Figure 6. Correlation between MVPA classification and performance. Both panels show the residual reproduced interval as a
function of test trials being classified as short in both E1 and E2 (S/S); as short in one of the exposures and as long in the other
(S/L or L/S) or as long in both E1 and E2 (L/L). Each circle shows data from one participant and continuous lines show mean
residual across participants.The left panel shows results when the test data were classified based on trials of the same modality.
The right panel shows results from when the test data were classified based on trials of a different modality.

intervals was consistent shortly after its onset when of the same modality, and later when of different modalities. Finally, a301

classifier based on multivariate activity across electrodes was able to decode temporal intervals within and between modalities302

and was correlated with behavioural performance.303

Our behavioural results are in agreement with the general finding that temporal acuity is better for auditory than for visual304

intervals (Merchant et al., 2008b,a; van Wassenhove, 2009). Differences in performance between sensory modalities have305

usually been considered as evidence for distributed temporal processing. On the other hand, and also in agreement with previous306

behavioural findings, we found a strong correlation in performance between modalities (Merchant et al., 2008b,a; Stauffer307

et al., 2012). In our specific experiment, one could argue that the behavioural correlations between performances in different308

modalities are being driven by the motor task and not by a common encoding of time across modalities. However, given that309

performance differed between auditory and visual intervals, it seems unlikely that the observed correlations are due exclusively310

to the motor output of the task. Moreover, previous behavioural studies that found correlations across different modalities and311

tasks have used a wide variety of tasks, including purely perceptual judgements (Merchant et al., 2008b,a; Stauffer et al., 2012).312

Thus, our results suggest that the encoding of these intervals might being taking place in a common representation across visual313

and auditory modalities. Nevertheless, it would be interesting for future studies to address whether this common representation314

of time is also task-dependent.315

Associations in performance across modalities and temporal tasks have been used as evidence for the hypothesis that316

different modalities share a central mechanism for temporal processing (Merchant et al., 2013a). An influential view is that,317

while temporal processing of short intervals (on the scale of a few hundred milliseconds) can be mediated by perceptual318

mechanisms, longer intervals (on the scale of seconds and minutes) might depend on later, cognition-based mechanisms (Lewis319

and Miall, 2003; Rammsayer et al., 2015; Stauffer et al., 2012). In the specific case of different sensory modalities, it has been320

suggested, based on behavioural findings, that temporal processing goes through a gradual transition of a modality-specific321

to a cognitive amodal timing mechanism(Rammsayer et al., 2015; Stauffer et al., 2012). We provide electrophysiological322
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evidence that is consistent with this view. In our findings, the pattern of electrophysiological activity was consistent for the323

early moments when comparing intervals of the same modality. For intervals of different modalities, there was also a consistent324

pattern of activity that emerged later in the interval. While the existence of a hard boundary between a local, modality-specific,325

and a shared representation of time is unlikely (Buonomano et al., 2009), our results are in agreement with recent findings that326

suggest that this transition might take place in the range of hundreds of milliseconds (Buonomano et al., 2009; Karmarkar and327

Buonomano, 2007; Merchant et al., 2013a) and not in the range of seconds as has previously been suggested. Although we328

found a common representation of time in later intervals, this finding does not necessarily suggest that temporal processing is329

not going on in modal regions. Rather, modality-specific timing information could be processed locally and passed to common330

shared regions.331

The transition of a local sensory-dependent pattern of activity to a commonly shared representation of time is consistent332

with hybrid models of temporal processing, in which there is a transition between sensory encoding of timing information and a333

later representation of time in the motor system to control behaviour (Merchant et al., 2013a; Merchant and Yarrow, 2016;334

Wiener et al., 2011). Based on neuroimaging and invasive electrophysiological recordings in non-human animals, it has been335

proposed that this higher core-timing network depends on structures of the cortico-thalamic-basal ganglia circuit (Buhusi and336

Meck, 2005; Coull et al., 2011; Merchant et al., 2013a), such as the supplementary motor area (SMA) (Merchant et al., 2013a,337

2015). Recent studies have suggested that in several of these regions time is encoded by means of a population code (Bakhurin338

et al., 2016; Crowe et al., 2014; Gouvêa et al., 2015; Merchant et al., 2013b; Matell et al., 2011). As previously mentioned, how339

this population code is translated to different EEG signals is a topic of discussion. However, here we show that multivariate340

decoding analysis might overcome these limitations and reveal important properties of temporal processing. In our results, a341

multivariate classifier was able to decode the elapsed interval when it was marked by the same or by a different modality as the342

training data. This results suggests that, at least for this late period, the representation of time is qualitatively similar in different343

sensory modalities.344

In a previous study, we have already shown that using multivariate pattern analysis on the EEG signal can reveal activity345

related to temporal processing (Bueno et al., 2017). However, in that experiment, MVPA was applied while participants346

performed a temporal categorisation task in which they had to judge whether a certain duration was shorter, equal or longer347

than a reference. Thus, it was possible that the pattern analysis was picking up activity related to decisional processing or to348

particular strategies adopted by the participants (Bueno et al., 2017). Similarly, a study that also investigated whether the pattern349

of EEG activity during temporal judgements was consistent across vision and audition focused its analysis during the interval to350

be judged (N’Diaye et al., 2004). Here, on the other hand, the classifier was trained during the encoding of an interval that had351

to be reproduced later, reducing the possibility of a motor or decisional contamination of the signal. Nevertheless, the pattern of352

activity during the encoding was correlated with the reproduced interval, suggesting, once again, that this activity is related to353

temporal processing.354

Taken together, our results suggest that, while there are differences in the processing of intervals marked by auditory and355
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visual stimuli, they also share a common late neural representation. In addition, they show how the analysis of multivariate356

patterns can bring about important advances in our understanding of temporal processing.357
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