Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo

Jonathan A. N. Fisher, Iryna Gumenchuk
doi: https://doi.org/10.1101/183905
Jonathan A. N. Fisher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Iryna Gumenchuk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Compared with other noninvasive neuromodulation approaches, key technical advantages include high lateral resolution of stimulation and deep penetration depth. However, empirically observed effects in vivo are diverse; for example, variations in sonication location and waveform can alternatively elicit putatively inhibitory or excitatory effects. At a fundamental level, it is unclear how FUS alters the function of neural circuits at the site of sonication. To address this knowledge gap, we developed an approach to optically interrogate the spatiotemporal patterns of neural activity in the cortex directly at the acoustic focus, thereby offering a glimpse into the local effects of FUS on distributed populations of neurons in vivo. Our experiments probed electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic GCaMP6f mice, monitored associated Ca2+ responses. Our results directly demonstrate that low-intensity FUS adjusts both the kinetics and spatial patterns of sensory receptive fields at the acoustic focus in vivo. Although our experimental configuration limits interpretation to population activity, the use of VSDs ensures that the detected alterations reflect activity in cortical neurons, unobscured by signals in subcortical or laterally distant cortical regions. More generally, this optical measurement paradigm can be implemented to observe FUS-induced alterations in cortical representation with higher lateral resolution spatial versatility than is practical through more conventional electrodebased measurements. Our findings suggest that reports of FUS-induced sensory modulation in human studies may partly reflect alterations cortical representation and reactivity.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted September 04, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo
Jonathan A. N. Fisher, Iryna Gumenchuk
bioRxiv 183905; doi: https://doi.org/10.1101/183905
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo
Jonathan A. N. Fisher, Iryna Gumenchuk
bioRxiv 183905; doi: https://doi.org/10.1101/183905

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4235)
  • Biochemistry (9140)
  • Bioengineering (6784)
  • Bioinformatics (24004)
  • Biophysics (12131)
  • Cancer Biology (9537)
  • Cell Biology (13781)
  • Clinical Trials (138)
  • Developmental Biology (7638)
  • Ecology (11703)
  • Epidemiology (2066)
  • Evolutionary Biology (15513)
  • Genetics (10647)
  • Genomics (14327)
  • Immunology (9484)
  • Microbiology (22848)
  • Molecular Biology (9095)
  • Neuroscience (49002)
  • Paleontology (355)
  • Pathology (1483)
  • Pharmacology and Toxicology (2570)
  • Physiology (3848)
  • Plant Biology (8331)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6193)
  • Zoology (1301)