Abstract
Biologists establish the existence of experimental effects by applying treatments or interventions to biological entities or units, such as people, animals, slice preparations, or cells. When done appropriately, independent replication of the entity-intervention pair contributes to the sample size (N) and forms the basis of statistical inference. However, sometimes the appropriate entity-intervention pair may not be obvious, and the wrong choice can make an experiment worthless. We surveyed a random sample of published animal experiments from 2011 to 2016 where interventions were applied to parents but effects examined in the offspring, as regulatory authorities have provided clear guidelines on replication with such designs. We found that only 22% of studies (95% CI = 17% to 29%) replicated the correct entity-intervention pair and thus made valid statistical inferences. Approximately half of the studies (46%, 95% CI = 38% to 53%) had pseudoreplication while 32% (95% CI = 26% to 39%) provided insufficient information to make a judgement. Pseudoreplication artificially inflates the sample size, leading to more false positive results and inflating the apparent evidence supporting a scientific claim. It is hard for science to advance when so many experiments are poorly designed and analysed. We argue that distinguishing between biological units, experimental units, and observational units clarifies where replication should occur, describe the criteria for genuine replication, and provide guidelines for designing and analysing in vitro, ex vivo, and in vivo experiments.