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 2 

ABSTRACT 13 

 14 

Evolutionary biologists have long debated the contribution of large-effect mutations to 15 

phenotypic evolution. Although theoretical work suggests that developmental, 16 

demographic, and ecological contexts can have profound and predictable impacts on trait 17 

genetic architectures, there are few empirical tests of these predictions. Here, we test the 18 

hypothesis that, due to differences in pleiotropy in the underlying genetic pathways, the 19 

genetic architecture of overall body color (pigmentation) is predictably simpler (i.e., 20 

large-effect mutations explain proportionally more of the phenotypic variance) than that 21 

of color patterning. To test this prediction, we crossed divergent populations of the 22 

redheaded pine sawfly (Neodiprion lecontei) that differ in larval body color and melanic 23 

spotting pattern and measured these traits in their recombinant haploid male progeny. 24 

Using a combination of interval mapping and polygenic association mapping, we 25 

identified large-effect QTL for both traits. Consistent with the pigmentation/patterning 26 

hypothesis, we found that compared to spotting pattern, body color had a larger 27 

percentage of genetic variance attributable to large-effect loci. Additionally, by 28 

combining mapping results with a linkage group-anchored genome assembly for N. 29 

lecontei, we identified several promising candidate genes for both carotenoid-based 30 

yellow pigmentation and melanin-based spotting pattern. Because few studies have 31 

investigated the genetic basis of naturally occurring variation in larval color and 32 

carotenoid-based pigmentation, our study helps fill a void in the invertebrate 33 

pigmentation literature. Finally, we argue that when leveraged to test explicit a priori 34 

hypotheses regarding trait genetic architectures, polygenic association mapping has the 35 

potential to shed new light on the 150-year-old micromutationist-macromutationist 36 

debate. 37 

 38 

INTRODUCTION 39 

 40 

One of the longest running debates in evolutionary biology—tracing its roots back 41 

to disagreements between Darwin (1859) and Huxley (1860)—centers on the contribution 42 

of large-effect mutations to evolutionary change (Mayr 1982; Orr and Coyne 1992). At 43 

one extreme, “micromutationists” (e.g., Darwin 1859; Pearson 1897; Fisher 1930) have 44 

argued that adaptation results from the accumulation of many alleles of individually small 45 

effect. At the other extreme, “macromutationists” (e.g., Huxley 1860; Bateson 1913; 46 

Morgan 1932; Goldschmidt 1940) have emphasized the role of a small number of large-47 

effect mutations as the primary drivers of evolutionary change. As often happens when 48 

there is a debate between two conceptual extremes, empirical data on trait genetic 49 

architectures point to a continuum rather than a strict dichotomy (Mackay et al. 2009; 50 

Rockman 2012; Remington 2015; Dittmar et al. 2016). These data indicate that it is time 51 

to move beyond extreme caricatures of the evolutionary process. Instead, with the 52 

development of novel theory (Orr 2005; Dittmar et al. 2016) and powerful new tools for 53 

linking genotype to phenotype in non-model organisms (Davey et al. 2011; Gaj et al. 54 

2013; Goodwin et al. 2016; Huang et al. 2016), we can start to make and test explicit 55 

predictions about where on the micromutationist-macromutationist continuum different 56 

traits, organisms, and evolutionary scenarios will fall.  57 
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Evolutionary theory predicts that the developmental pathways that give rise to a 58 

particular trait, the type of selection acting on that trait, and the demography of the 59 

evolving population can all have profound impacts on the expected contribution of large-60 

effect mutations to adaptation (Remington 2015; Dittmar et al. 2016). Collectively, 61 

theoretical work to date suggests that large-effect mutations are more likely to contribute 62 

to adaptation when: pleiotropy is minimal (Fisher 1930; but see Matuszewski et al. 63 

2014), the effective population size is small (Kimura 1983), the population is adapting to 64 

a rapidly moving fitness optimum (Matuszewski et al. 2014), the fitness landscape has 65 

multiple optima (Orr 1998; Matuszewski et al. 2015), the population is far from the 66 

phenotypic optimum (Orr 1998), migration occurs between locally adapted populations 67 

(Griswold 2006; Yeaman and Whitlock 2011), and/or adaptation proceeds via new 68 

mutations (Hermisson and Pennings 2005; Matuszewski et al. 2015). While additional 69 

theoretical work is needed to more fully explore possible evolutionary scenarios, there is 70 

also a dearth of empirical tests of existing theoretical predictions  (but see Baxter et al. 71 

2009; Rogers et al. 2012; Martin et al. 2017). Given the many factors that influence trait 72 

genetic architectures, rigorous tests of these predictions require the integrated study of the 73 

genetic basis of trait variation, the evolutionary history of populations, and the selective 74 

pressures shaping trait variation.  75 

As one of the best studied morphological characteristics in nature—both from an 76 

ecological and a genetic perspective—color features prominently in the adaptation 77 

genetics literature (True 2003; Protas and Patel 2008; Wittkopp and Beldade 2009; 78 

Manceau et al. 2010; Nadeau and Jiggins 2010; Kronforst et al. 2012). For many 79 

organisms, overall color is determined by two different types of color traits: (1) the type 80 

(and amount) of pigment synthesized (“pigmentation”) and (2) the distribution of 81 

pigmentation across the body (“color pattern”) (Manceau et al. 2010). The abundance of 82 

discrete pigmentation phenotypes in nature, coupled with the identification of many 83 

large-effect pigmentation mutations via candidate gene analysis, have led some to argue 84 

that the genetic architecture of pigmentation traits—but not color pattern traits—is 85 

atypically simple (Rockman 2012). This simplicity is thought to arise as a consequence of 86 

relatively small genetic pathways with at least some minimally pleiotropic genes that 87 

would be permissive of large-effect pigmentation mutations (Rockman 2012). 88 

Testing the hypothesis that the genetic basis of pigmentation is predictably 89 

“simpler” (i.e., more likely to fall on the macro- end of the micromutationist-90 

macromutationist continuum) than that of color pattern will require describing the genetic 91 

architecture of both types of traits in many different organisms.  Although some relevant 92 

data exist (e.g., Martin and Orgogozo 2013), experimental and publication biases make it 93 

difficult to draw strong conclusions. For example, good a priori candidates and a focus 94 

on discrete pigmentation phenotypes that are easy to score may have biased identified 95 

pigmentation loci towards those of large effect (Kopp 2009; Manceau et al. 2010; 96 

Rockman 2012). Thus, to better understand consistent differences that may exist between 97 

pigmentation and color pattern traits, more unbiased, genome-wide analyses of 98 

continuously varying color traits are needed (e.g., Signor et al. 2016).  99 

With these considerations in mind, pine sawflies in the genus Neodiprion provide 100 

an excellent empirical system for systematically investigating the genetic architecture of 101 

different color traits. First, there is extensive variation in larval pigmentation and larval 102 

color pattern both within and between species (Figures 1-2). Second, there is information 103 
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available on evolutionary relationships between species and, for some species, 104 

demographic histories of populations within species (Linnen and Farrell 2007, 2008a; b; 105 

Bagley et al. 2017). Third, it is possible to rear and cross many different Neodipirion 106 

species in the lab, making genetic mapping approaches tractable (Knerer and Atwood 107 

1972, 1973; Kraemer and Coppel 1983; Bendall et al. 2017). Fourth, a growing list of 108 

genomic resources for Neodiprion—including an annotated genome and methylome for 109 

N. lecontei (Vertacnik et al. 2016; Glastad et al. 2017)—will facilitate fine-mapping and 110 

identification of causal genes and mutations. And finally, we have some understanding of 111 

the ecological function of color variation in pine sawflies and, more generally, in insects, 112 

which we review briefly before returning to the topic of trait genetic architecture. 113 

Under natural conditions, pine sawfly larvae are attacked by a diverse assemblage 114 

of arthropod and vertebrate predators, by a large community of parasitoid wasps and 115 

flies, and by fungal, bacterial, and viral pathogens (Coppel and Benjamin 1965; Wilson et 116 

al. 1992; Codella and Raffa 1993). To defend against predators and parasites, pine 117 

sawflies have evolved responsive chemical defenses: when threatened, larvae regurgitate 118 

a resinous defensive fluid, which they sequester from the host during feeding in a 119 

specialized pair of esophageal diverticula (Codella and Raffa 1993). This defensive 120 

regurgitation, which is often accompanied by a characteristic “U-bend” posture (Figure 1) 121 

and rhythmic jerking, is an effective repellant against many different predators and 122 

parasitoids (Eisner et al. 1974; Codella and Raffa 1995; Lindstedt et al. 2006, 2011). 123 

Although most Neodiprion species appear to be chemically defended and exhibit similar 124 

defensive displays, they vary from a green striped morph that is cryptic against a 125 

background of pine foliage to highly conspicuous aposematic morphs with dark spots or 126 

stripes overlaid on a bright yellow or white background (Figure 1). Thus, larval color is 127 

likely to confer protection against predators either via preventing detection (crypsis) or 128 

advertising unpalatability (aposematism) (Ruxton et al. 2004). 129 

Beyond contributing to cryptic or aposematic coloration, Neodiprion larval color 130 

traits are likely shaped by several additional abiotic and biotic selection pressures. For 131 

example, coloration plays diverse ecological roles in insects, including thermoregulation, 132 

protection against UV damage, desiccation tolerance, and resistance to abrasion (True 133 

2003; Lindstedt et al. 2009; Wittkopp and Beldade 2009). In addition to acting on 134 

specific color traits, selection may also act on color alleles via their pleiotropic effects on 135 

other traits, such as behavior, immune function, diapause/photoperiodism, fertility, and 136 

developmental timing (True 2003; Wittkopp and Beldade 2009; Heath et al. 2013; 137 

Lindstedt et al. 2016). In short, there are many direct and indirect selection pressures 138 

acting on larval coloration, and temporal and spatial variation in these pressures likely 139 

contribute to the abundant intraspecific and interspecific variation in the genus 140 

Neodiprion.  141 

As a first step to testing the hypothesis that the genetic basis of pigmentation is 142 

predictably simpler than the genetic basis of color pattern (hereafter, the 143 

“pigmentation/pattern hypothesis”), we conducted a quantitative trait locus (QTL) 144 

mapping study of larval pigmentation and larval spotting pattern in the redheaded pine 145 

sawfly, Neodiprion lecontei (Figure 2A). This species is widespread across eastern North 146 

America, where it feeds on multiple pine species. A recent population genomic study 147 

identified three main genetic clusters within N. lecontei that diverged during the 148 

Pleistocene and exhibit consistent differences in larval coloration: (1) a southeastern 149 
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lineage (“South”) with heavily spotted, yellow larvae and dark head capsules in early 150 

instars, (2) a central/mid-Atlantic lineage (“Central”) with heavily spotted larvae that are 151 

predominantly white in some populations and predominantly yellow in others, and (3) a 152 

northern lineage (“North”) with reduced spotting and yellow bodies (Bagley et al. 2017). 153 

We focus here on the genetic basis of color differences between a white, heavily spotted 154 

“Central” population and a yellow, lightly spotted “North” population (Figure 2). 155 

The pigmentation/pattern hypothesis predicts that, compared to the distribution of 156 

effect sizes underlying larval color pattern, the distribution of effect sizes underlying 157 

larval pigmentation will be shifted towards mutations of larger effect. Although detection 158 

limits on small-effect QTL make it impossible to estimate the full effect-size distribution 159 

(Otto and Jones 2000; Mackay et al. 2009; Rockman 2012), we can nevertheless 160 

determine whether there are obvious differences among traits in the number and effect 161 

size of QTL that pass the detection threshold in a single mapping population.  162 

 Here, we use two complimentary approaches to test the prediction that the 163 

genetic architecture of larval pigmentation will be shifted towards large-effect mutations. 164 

First, we perform traditional interval mapping analyses in R/qtl (Broman and Sen 2009). 165 

Using this method, we determine both the number and effect sizes of QTL detected for 166 

each trait. The pigmentation/pattern hypothesis predicts that, compared to larval spotting, 167 

larval body color will have the largest-effect QTL and/or more QTL of moderate to large 168 

effect. Second, to provide a more direct description of genetic architecture, we employ a 169 

Bayesian Sparse Linear mixed model (BSLMM) developed for genome-wide association 170 

(GWA) mapping (Zhou et al. 2013). This approach yields quantitative estimates of trait 171 

genetic architecture, including a parameter that describes the proportion of genetic 172 

variance that is attributable to large-effect (“sparse”) alleles. The pigmentation/pattern 173 

hypothesis predicts that estimates for this parameter will be higher for larval 174 

pigmentation than for larval color pattern. Finally, as a first step to identifying casual 175 

loci, we use our linkage map data to anchor the current N. lecontei genome assembly, 176 

then identify potential candidate genes within each QTL interval.   177 

 178 

MATERIALS AND METHODS 179 

 180 

Cross Design  181 

To investigate the genetic architecture underlying sawfly color traits, we crossed 182 

Neodiprion lecontei females from a white-bodied, dark spotted population (collected 183 

from Valley View, VA; 37°54’47”N, 79°53’46”W) to N. lecontei males from a yellow-184 

bodied, light-spotted population (collected from Bitely, MI; 43°47’46”N, 85°44’24”W). 185 

Both populations had been collected from the field in 2012 and reared on Pinus 186 

banksiana (jack pine) for at least two (VA population) or three (MI population) 187 

generations in the lab via standard rearing protocols (described in more detail in Harper et 188 

al. 2016; Bendall et al. 2017). Our mapping families were derived from four 189 

grandparental pairs, which produced 10 F1 females. Like most hymenopterans, N. lecontei 190 

adults reproduce via arrhenotokous haplodiploidy, in which unfertilized eggs develop 191 

into haploid males and fertilized eggs develop into diploid females (Heimpel and de Boer 192 

2008; Harper et al. 2016). Therefore, to produce an F2 haploid generation, we allowed 193 

virgin F1 females to lay eggs and reared their haploid male progeny on P. banksiana 194 
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foliage until they reached a suitable size for phenotyping. In total, we collected 195 

phenotypic and genotypic data from 429 F2 male progeny for QTL mapping.  196 

 197 

Color phenotyping 198 

N. lecontei larvae pass through five (males) or six (females) feeding instars and a 199 

single non-feeding instar, which are distinguishable on the basis of color pattern and size 200 

(head capsule width and body length) (Benjamin 1955; Coppel and Benjamin 1965; 201 

Wilson et al. 1992). For phenotyping, we chose only mature feeding larvae, which have 202 

an orange-red head capsule with a black ring around each eye and up to four paired rows 203 

of gray to black spots (Wilson et al. 1992). We excluded any individuals that had molted 204 

to the final non-feeding instar, which have a very different head capsule color and 205 

spotting pattern. To generate digital images for phenotyping, we photographed CO2-206 

immobilized larvae (lateral surface) with a Canon EOS Rebel t3i camera equipped with 207 

an Achromat S 1.0X FWD 63mm lens. We then preserved each larva in 100% ethanol for 208 

molecular work. In total, we generated color phenotype data for 30 individuals from the 209 

VA population (mixed sex), 30 individuals from the MI population (mixed sex), 47 F1 210 

females, and 429 F2 males (progeny of 10 virgin F1 females). 211 

 To quantify larval body color from our digital photos, we used Adobe Photoshop 212 

CC 2014 or 2015 (Adobe Systems Incorporated, San Jose, CA) to ascertain the amount of 213 

yellow present, following O’Quin et al. (2013). First, we converted each digital image to 214 

CMYK color mode. Next, we selected the eye dropper tool (set to a size of 5x5 pixels) as 215 

the color sampler tool, which we used to sample three different body locations: the body 216 

just behind the head and parallel to the eye, the first proleg, and the anal proleg. For each 217 

of the three regions, this procedure yielded an estimate of the proportion of the selected 218 

area that was yellow. We then averaged the three measurements to produce a single final 219 

measurement of yellow pigmentation (hereafter referred to as “yellow”).  220 

To quantify larval spotting pattern, we used Adobe Photoshop’s quick-selection 221 

tool to measure the area of the larval body (minus the head capsule) and the area of each 222 

row of lateral black spots. To control for differences in larval size, we divided the 223 

summed area of all lateral black spots by the area of the larval body. We refer to this 224 

phenotypic measure as “spotting”. We also used the larval images to calculate the area of 225 

the head capsule, which we used as a covariate in some analyses to control for larval size 226 

(see below). We used a custom Perl script to process Photoshop measurement output files 227 

in bulk (written by John Terbot II; available upon request).  228 

 To determine whether mean phenotypic values for yellow and spotting differed 229 

between the two populations and among the three generations of our cross, we performed 230 

Welch’s two-tailed t-tests. To determine the extent to which yellow and spotting co-231 

varied in the F2 males, we calculated Pearson’s correlation coefficient (r).  To determine 232 

which covariates to include in our QTL models, we performed ANOVAs to evaluate the 233 

relationship between the two phenotypes in the F2 males (429 total) and their F1 mothers 234 

(10 total) and head capsule sizes (a proxy for larval size/developmental stage). These and 235 

all other statistical analyses were performed in R version 3.3.2 (R Core Team 2013) 236 

 237 

Genotyping 238 

We extracted DNA from ethanol-preserved larvae using a modified CTAB 239 

method (Chen et al. 2010) and prepared barcoded and indexed double-digest RAD 240 
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(ddRAD) libraries using methods described elsewhere (Peterson et al. 2012; Bagley et al. 241 

2017). We chose NlaIII and EcoRI as our restriction enzyme pair based on our previous 242 

experience using this enzyme pair for a population genomic analysis of N. lecontei 243 

(Bagley et al. 2017). We prepared a total of 10 indexed libraries: one consisting of the 244 

eight grandparents and 10 F1 females (18 adults total), and the remaining nine consisting 245 

of F2 haploid male larvae (~48 barcoded males per library). After digestion, adapter 246 

ligation, and pooling, we performed automated size selection of a 376-bp fragment (+/- 247 

38 bp) from each library on a Pippin Prep (Sage Science, Beverly MA). Following size 248 

selection, we performed 12 rounds of high-fidelity PCR amplification using a unique 249 

Illumina multiplex read index for each library (adapter and primer sequences were as 250 

described in Bagley et al. 2017). After verifying library quality using a Bioanalyzer 2100 251 

(Agilent, Santa Clara, CA), we sent all 10 libraries to the University of Illinois Urbana-252 

Champaign Roy J. Carver Biotechnology Center (Urbana, IL), where the libraries were 253 

pooled and sequenced using 100-bp single-end reads on two Illumina HiSeq2500 lanes. 254 

In total, we generated 400,621,900 reads. 255 

 We demultiplexed and quality-filtered raw reads using the protocol described in 256 

Bagley et al. 2017. We then used Samtools v0.1.19 (Li et al. 2009) to map our reads to 257 

our N. lecontei reference genome (Vertacnik et al. 2016) and STACKS v1.37 (Catchen et 258 

al. 2013) to extract loci from our reference alignment and to call SNPs.  We called SNPs 259 

in two different ways. First, for interval mapping analyses, our goal was to recover 260 

markers that represented fixed differences between the grandparental lines. To do so, we 261 

first called SNPs in our eight grandparents and 10 F1 mothers. For these 18 individuals, 262 

which included both haploid males and diploid females, we required that SNPs had a 263 

minimum of 7x coverage and no more than 12% missing data. We then examined the 264 

resulting grandparental and F1 genotypes to compile a list of SNPs that represented fixed 265 

differences between the two populations and, as an additional quality check, confirmed 266 

that all F1 females were heterozygous at these SNPs. We then used STACKS to call SNPs 267 

in the F2 haploid males, requiring that each SNP had a minimum of 5x coverage (we 268 

required a lower coverage for haploid males because we did not need to distinguish 269 

between homozygous and heterozygous genotype calls), no more than 10% missing data, 270 

and was present in the curated list produced from the grandparents. Filtering in STACKs 271 

produced a total of 559 SNPs genotyped in 429 F2 males. 272 

 Second, to maximize the number of SNPs available for GWA mapping analyses 273 

and genome scaffolding, we ran an additional STACKS run using only the F2 haploid 274 

males, requiring that each SNP had a minimum of 4x coverage. By removing the 275 

requirement that SNPs were called in all grandparents, we could recover many more 276 

SNPs. We then filtered the data in VCFtools v0.1.14 (Danecek et al. 2011) to remove 277 

individuals with a mean depth of coverage less than one, retaining 408 F2 males. After 278 

removing low-coverage individuals, we used VCFtools to remove sites with a minor 279 

allele frequency (MAF) less than 0.05 (as these are unlikely to recover significant 280 

genotype-phenotype associations), sites with >5 heterozygotes (in haploid males, high 281 

heterozygosity is a clear indication of genotyping error), and sites with more than 50% 282 

missing data. To examine the impact of data completeness threshold and SNP number on 283 

our GWA mapping results, we also produced MAF- and heterozygote-filtered datasets 284 

with more stringent (0% missing data) and less stringent (<75% missing data) 285 
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completeness filters. In total, our three filtered datasets contained 1205 SNPs (0% 286 

missing data), 3069 SNPs (<50% missing data), and 4162 SNPs (<75% missing data). 287 

 288 

Linkage map construction and genome scaffolding  289 

To construct a linkage map for interval mapping, we started with 559 SNPs 290 

scored in 429 F2 males. After an additional round of filtering in R/qtl (Broman and Sen 291 

2009), we removed 11 haploid males that had >50% missing data, for a total of 418 F2 292 

males. Additionally, after removing SNPs that were genotyped in <70% of individuals, 293 

had identical genotypes to other SNPs, and had distorted segregation ratios, we recovered 294 

a final dataset of 503 SNPs. To assign these markers to linkage groups, we then used the 295 

“formLinkageGroups” function, requiring a minimum logarithm of odds (LOD) score of 296 

6.0 and a maximum recombination frequency of 0.35. To order markers on linkage 297 

groups, we used the “orderMarkers” function, with the Kosambi mapping function to 298 

allow for crossovers.  Following this initial ordering, we performed rippling on each 299 

linkage group to check whether switching marker order could improve LOD scores.  300 

Anchoring genome scaffolds to linkage groups requires that scaffolds contain 301 

markers in the genetic linkage map. Our initial map included 503 SNPs spread across 358 302 

scaffolds (out of 4523 scaffolds; Vertacnik et al. 2016). To increase the number of 303 

scaffolds and bases that we could place on our linkage groups, we therefore performed 304 

additional linkage mapping analyses with a larger SNP dataset that was called in F2 males 305 

without any constraints on parental genotypes (filtered to remove individuals with depth 306 

of coverage < 1 and sites with MAF<0.05%, missing data > 50%, and >5 heterozygotes; 307 

remaining heterozygous sites were then treated as missing data). We then constructed a 308 

linkage map for each of our four grandparental families (N = 54, 73, 120, and 161).  309 

For each grandparental family, we first performed additional data filtering in R/qtl 310 

to remove duplicate SNPs, SNPs with >50% missing data, and SNPs with distorted 311 

segregation ratios (which enabled us to remove SNPs that were monomorphic within 312 

families or that did not segregate in all of the F2 families from a given grandparental 313 

pair). We then used the “formLinkageGroups” command, variable LOD thresholds 314 

(range: 5-15), and a maximum recombination frequency of 0.35. Because SNPs were not 315 

coded according to grandparent of origin, many alleles were “switched”. We therefore 316 

performed an iterative process of linkage group formation, visualization of pairwise 317 

recombination fractions and LOD scores (“plotRF” command), and allele switching 318 

(“switchAlleles” command) until we obtained seven linkage groups (the number of N. 319 

lecontei chromosomes; Smith 1942, Maxwell 1958; Sohi and Ennis 1981) and a 320 

recombination/LOD plot indicative of linkage within, but not between, linkage groups. At 321 

this point, we ran into a second dilemma—with a denser panel of SNPs, allele ordering 322 

and examination of alternative SNP orders became prohibitively slow in R/qtl. To 323 

overcome this limitation, we used the more efficient MSTmap algorithm, implemented in 324 

R/ASMap v0.4-7 (Taylor and Butler 2017), to order our markers along their assigned 325 

linkage groups. 326 

Finally, to order and orient our genome scaffolds along linkage groups 327 

(chromosomes), we used ALLMAPS (Tang et al. 2015) to combine information from our 328 

five maps (initial map with all individuals, but limited markers; plus four additional 329 

maps, each with more markers, but fewer individuals). Because maps constructed from 330 
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larger families are likely to be more accurate than those constructed from small families, 331 

we weighted the maps according to their sample sizes.    332 

 333 

Interval mapping analysis 334 

After linkage map construction, we used R/qtl to map QTL for our two color 335 

traits. Based on our phenotypic analyses, we included F1 mother and head capsule size as 336 

covariates in our analysis of spotting and no covariates in our analysis of yellow. For 337 

each trait, we performed interval mapping using multiple imputation mapping. We first 338 

used the “sim.geno” function with a step size of 0 (i.e., genotypes only drawn at marker 339 

locations) and 64 replicates. We then used the “stepwiseqtl” command to detect QTL and 340 

select the multiple QTL model that optimized the penalized LOD score (Broman, 341 

Manichaikul et al. 2009). To obtain penalties for the penalized LOD scores, we used the 342 

“scantwo” function to perform 1,000 permutations under a two-dimensional, two-QTL 343 

model that allows for interactions between QTL and the “calc.penalties” function to 344 

calculate penalties from these permutation results, using a significance threshold of α = 345 

0.05. Finally, for each QTL retained in the final model, we calculated a 1.5-LOD support 346 

interval. 347 

 348 

Polygenic association mapping analysis 349 

 Although interval mapping has long been the analysis of choice for QTL mapping 350 

in experimental crosses, a growing number of studies are employing regression based 351 

approaches that were originally developed for genome-wide association mapping studies 352 

(Yi and Banerjee 2009; Huang et al. 2015; Li et al. 2017). For example, in a recent study 353 

of the genetic architecture of stickleback brain size, Li and colleagues (2017) 354 

demonstrated that compared to a traditional interval mapping approach, a polygenic 355 

modeling approach had increased statistical power for QTL detection, a reduced false 356 

positive rate, was better able to handle a large number of markers, and provided 357 

parameter estimates describing trait genetic architecture (genomic heritability). Given 358 

that our overall goal is to compare trait genetic architectures, the ability to estimate 359 

parameters describing trait genetic architecture is an especially attractive feature of 360 

polygenic association mapping approaches. 361 

 With these advantages in mind, we used GEMMA v0.94.1 to fit a Bayesian 362 

Sparse Linear Mixed Model (BSLMM) to our data (Zhou et al. 2013). The BSLMM is 363 

essentially a hybrid between a polygenic linear mixed model (LMM) and polygenic 364 

sparse regression model, which make opposing assumptions regarding trait genetic 365 

architecture: whereas LMMs generally assume that all genetic variants impact the 366 

phenotype, with normally distributed effect sizes, sparse regression models assume that 367 

only a small proportion of variants impact the phenotype. In combining these approaches, 368 

the BSLMM enables the genetic architecture to be estimated from the data and, as a 369 

consequence, performs well across a wide range of genetic architectures. This approach 370 

can also control for uneven relatedness among samples (e.g., due to population 371 

stratification or, in our case, different grandparents and mothers) via inclusion of a 372 

relatedness matrix. 373 

 To ensure that our phenotypic data fit the model assumptions, both larval color 374 

traits were normal-quantile transformed in R prior to analysis. Additionally, because 375 

GEMMA cannot include covariates when fitting the BSLMM, we controlled for head 376 
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capsule size via analyzing the residuals of the linear regression between head capsule size 377 

and spotting (variation among mothers was controlled for via inclusion of a relatedness 378 

matrix). The GEMMA algorithm also requires complete (or imputed) genotype data. To 379 

explore the robustness of our genetic architecture results to different SNP numbers and 380 

missingness thresholds, we ran GEMMA analyses for each of the three SNP datasets 381 

generated from our F2 males (no missing data, <50% missing data, and <75% missing 382 

data). For each of the two datasets that contained missing genotypes, we imputed missing 383 

data with BIMBAM v1.0 (Scheet and Stephens 2006) and used the resulting “best guess 384 

genotype” in our GEMMA analyses. File conversion between different input formats was 385 

accomplished via a combination of VCFtools v0.1.14 (Danecek et al. 2011), PLINK 386 

v1.90b3.46 (Purcell et al. 2007), and FCGene v1.0.7 (Roshyara and Scholz 2014). 387 

For both traits and each of the three SNP datasets (six datasets total), we 388 

performed 10 independent GEMMA runs with the “-bslmm 1” option, each consisting of 389 

25 million generations, with the first five million generations discarded as burn-in. To 390 

ensure convergence on the posterior distribution, we confirmed that parameter estimates 391 

were similar across independent runs and that parameter traces did not show any obvious 392 

increasing or decreasing trends. For each dataset, we then averaged posterior inclusion 393 

probabilities (PIP) for each SNP across all 10 runs and used the R package “qqman” 394 

(Turner 2014) to generate Manhattan plots from the averaged PIPs. To identify the most 395 

promising candidate SNPs, we ranked SNPs by their PIP scores and retained the top 1% 396 

for each dataset. We calculated the total effect size for each SNP in each run as: βiγi + αi 397 

(Zhou et al. 2013), then averaged effect size estimates across the 10 independent runs to 398 

obtain a single effect size estimate for each SNP and dataset. 399 

We also summarized parameter estimates describing trait genetic architecture, 400 

including percent variance explained (PVE), percent of genetic variance that is due to 401 

large (or “sparse”) effect alleles (PGE), and the number of SNPs in the polygenic model 402 

(“n_gamma” in GEMMA output). After ensuring that results were similar across 403 

independent runs, we computed medians and 95% credible intervals for the combined 404 

posterior distributions derived from all 10 runs (each consisting of 20 million post-burnin 405 

generations sampled every 1,000 generations, or 20,000 samples per run) for each 406 

parameter and each of our three SNP datasets. 407 

Using our GEMMA results, we evaluated the pigmentation/pattern hypothesis in 408 

two ways. First, we asked whether the magnitudes of the estimated effect sizes for the 409 

largest-effect SNPs were consistently higher for yellow than for spotting. To obtain effect 410 

size magnitudes, we first calculated the absolute value of the average effect size for each 411 

SNP (across 10 independent runs), then used these values to calculate for each dataset the 412 

maximum effect size and median effect size for top 1% SNPs. Then, for each of the three 413 

SNP datasets, we used a nonparametric Wilcoxon rank-sum test to evaluate the null 414 

hypothesis that the effect sizes for the top 1% SNPs are equal across the two traits. 415 

Second, we used the genetic architecture parameter posterior distributions to evaluate the 416 

prediction that the percentage of genetic variance attributable to alleles of non-negligible 417 

effects (PGE) will be higher for yellow than for spotting.  418 

 419 

Candidate gene analysis 420 

 To identify candidate QTL regions, we looked for regions of overlap between 421 

R/qtl and GEMMA analyses. We first identified the 1.5-LOD support interval 422 
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surrounding each QTL identified via interval mapping analyses. Then, we expanded this 423 

interval to include any candidate SNPs identified by GEMMA (i.e., PIP scores in 99th 424 

percentile) that were within 1.5 Mb (which corresponds to ~5cM, see results) of either 425 

end of this QTL interval. Next, we used our anchored genome scaffolds to compile a list 426 

all scaffolds that fell within the physical intervals defined by the combined GEMMA and 427 

R/qtl results. Finally, we compiled a list of all remaining scaffolds with SNPs identified 428 

as candidates in our GEMMA analyses. 429 

 After compiling candidate regions in the N. lecontei genome, we compiled a list 430 

of candidate color genes. For larval spotting, we included genes in the melanin synthesis 431 

pathway and genes that have been implicated in pigment patterning (Wittkopp et al. 432 

2003; Protas and Patel 2008; Wittkopp and Beldade 2009; Sugumaran and Barek 2016). 433 

For larval pigmentation, we included genes implicated in the transport, deposition, and 434 

processing of carotenoid pigments derived from the diet (Palm et al. 2012; Yokoyama et 435 

al. 2013; Tsuchida and Sakudoh 2015; Toews et al. 2017). Although several pigments 436 

can produce yellow coloration in insects (e.g., melanins, pterins, ommochromes, and 437 

carotenoids), we focused on carotenoids because a heated pyridine test (McGraw et al. 438 

2005) was consistent with carotenoid-based coloration in N. lecontei larvae (Figure S1). 439 

Once we had compiled a list of candidate genes, we searched for these genes by 440 

name in the N. lecontei v1.0 genome assembly and NCBI annotation release 100 441 

(Vertacnik et al. 2016). To find missing genes and as an additional quality measure, we 442 

obtained FASTA files corresponding to each candidate protein and/or gene from NCBI 443 

(using Apis, Drosophila melanogaster, or Bombyx mori sequences, depending on 444 

availability). We then used the i5k Workspace@NAL (Poelchau et al. 2014) BLAST 445 

(Altschul et al. 1990) web application to conduct tblastn (for protein sequences) or tblastx 446 

(for gene sequences) searches against the N. lecontei v1.0 genome assembly, using 447 

default search settings. After identifying the top hit for each candidate gene/protein, we 448 

then used the WebApollo (Lee et al. 2013) JBrowse (Skinner et al. 2009) N. lecontei 449 

genome browser to identify the corresponding predicted protein coding genes (from 450 

NCBI annotation release 100) in the N. lecontei genome.  451 

We took additional steps to identify genes in the yellow gene family, all of which 452 

contain a major royal jelly protein (MRJP) domain. First, we used the search string 453 

“major royal jelly protein Neodiprion” to search the NCBI database for all predicted 454 

yellow-like and yellow-MRJP-like N. lecontei genes. We then downloaded FASTA files 455 

for the putative yellow gene sequences (26 total). Next, we used the Hymenoptera 456 

Genome Database (Elsik et al. 2016) to conduct a blastx search of our N. lecontei gene 457 

sequence queries against the Apis mellifera v4.5 genome NCBI RefSeq annotation release 458 

103. Finally, we recorded the top A. mellifera hit for each putative N. lecontei yellow 459 

gene.  460 

Once we identified the location of candidate color genes in the N. lecontei 461 

genome, we asked whether any of these genes were located within scaffolds contained 462 

within our candidate QTL intervals.  463 

 464 

Data availability 465 

 Short-read DNA sequences will be made available via the NCBI SRA (Bioproject 466 

PRJNA#######, Biosample numbers SAMN########-SAMN########). The linkage-467 

group anchored assembly will be submitted to NCBI and i5k to update the existing N. 468 
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lecontei genome assembly and annotations (Vertacnik et al. 2016). All remaining files 469 

(phenotypic data, SNP datasets, and input files for R/qtl and GEMMA) will be submitted 470 

to DRYAD (doi:#######). 471 

 472 

RESULTS AND DISCUSSION 473 

 474 

Phenotypic variation 475 

Lab-reared larvae derived from the two founding populations (white-bodied, dark 476 

spotted VA population and the yellow-bodied, light spotted MI population) differed 477 

significantly from one another in both pigmentation and spotting pattern (Figures 2, 3; 478 

yellow: t42 = 63.52, P < 1 x 10-15; spotting: t41.68 = 23.13, P < 1 x 10-15). Because all 479 

larvae were reared on the same host under the same laboratory conditions (i.e., minimal 480 

environmental variance), these results suggest that genetic variance contributes to 481 

variance in both larval color traits. Crosses between the VA and MI lines produced 482 

diploid F1 females that appeared intermediate in both pigmentation and spotting pattern 483 

(Figure 2), and F1 female larvae differed significantly from both parents for both traits 484 

(Figure 3; yellow MI vs. F1:  t51.65 = 15.41, P < 1 x 10-15; yellow VA vs. F1:  t66.29 = 18.26, 485 

P < 1 x 10-15; spotting MI vs. F1: t52.33 = 10.52, P = 1.63 x 10-14; spotting VA vs. F1: t68.37 486 

= 2.92, P = 0.0047). These results indicate that neither pigmentation phenotype (white vs. 487 

yellow) and neither spotting phenotype (light vs. dark) is completely dominant.  488 

Haploid F2 males produced by virgin F1 mothers varied continuously in both 489 

spotting and pigmentation, and differed significantly from the two founding populations 490 

in both traits (Figure 3; yellow MI vs. F2: t427.06 = 42.55, P < 1 x 10-15; yellow VA vs. F2: 491 

t167.05 = 8.05, P = 1.48 x 10-13; spotting MI vs. F2: t165.28 = 20.85, P < 1 x 10-15; spotting 492 

VA vs F2: t53.49 = 8.20, P = 4.96 x 10-11). F2 males also differed significantly from F1 493 

females in pigmentation, but not spotting (yellow F1 vs. F2: t91.69 = 11.61, P < 1 x 10-15; 494 

spotting F1 vs. F2: t56.79 = 1.87, P = 0.066).  We also found a weak, but significant and 495 

negative correlation between spotting area and percent yellow in F2 males (i.e., yellower 496 

individuals tend to be less heavily spotted; Pearson’s r = -0.12, P =0.013). This 497 

correlation, which could be explained by pleiotropy or physical linkage, suggests that 498 

these two traits do not evolve completely independently of one another. Nevertheless, the 499 

correlation is relatively weak and we observed many different combinations of spotting 500 

and pigmentation in the recombinant F2 males (Figure 2).  501 

Because F2 males are haploid, interactions between alleles at a single locus 502 

(dominance effects) are eliminated. Thus, the range of phenotypic variation observed in 503 

F2 males is determined by the number and effect sizes of color alleles and epistatic 504 

interactions between them. For both color traits, phenotypic variation observed in the F2 505 

males spanned—and even exceeded—the full range of variation observed in the 506 

grandparental populations and F1 females (Figure 3). The observation that grandparental 507 

pigmentation and spotting phenotypes are recapitulated in the F2 males suggests that both 508 

traits are controlled by a relatively small number of loci. There are multiple, non-509 

mutually exclusive explanations for the transgressive color phenotypes in our haploid F2 510 

males, including: variation in the grandparental lines, reduced developmental stability in 511 

hybrids, epistasis, unmasking of recessive alleles in haploid males, and the 512 

complementary action of additive alleles from the two grandparental lines (Rieseberg et 513 

al. 1999). 514 
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 515 

Linkage mapping and genome scaffolding 516 

 For our full F2 SNP dataset, which consisted of 503 fixed differences scored in 517 

429 F2 haploid males, our markers were spread across seven linkage groups (LG), which 518 

matches the number of N. lecontei chromosomes (Smith 1941; Maxwell 1958; Sohi and 519 

Ennis 1981). The total map length was 1169 cM, with an average marker spacing of 2.4 520 

cM and maximum marker spacing of 24.3 cM (Table S1; Figure S2). Together, these 521 

results indicate that this linkage map is of sufficient quality and coverage for interval 522 

mapping. Additionally, with an estimated genome size of 340 Mb (estimated via flow 523 

cytometry; C. Linnen, personal observation), these mapping results yield a recombination 524 

density estimate of 3.43 cM/Mb. This recombination rate is lower than that observed in 525 

social Hymenoptera, which have among the highest rates of recombination in eukaryotes 526 

(Wilfert et al. 2007). Nevertheless, this rate is on par with that reported in other (non-527 

eusocial) hymenopterans, which lends support to the hypothesis that elevated 528 

recombination rates in eusocial hymenopterans species is a derived trait and possibly an 529 

adaptation to a social lifestyle (Gadau et al. 2000; Schmid-Hempel 2000; Crozier and 530 

Fjerdingstad 2001).  531 

 Linkage maps estimated for the four grandparental families, each of which 532 

contained >2000 markers, ranged in length from 1072 cM to 3064 cM (Table S1). This 533 

variation in map length is likely attributable to both decreased mapping accuracy in 534 

smaller families and decreased genotyping accuracy in these less-stringently filtered SNP 535 

datasets. Nevertheless, our scaffolding analysis revealed that marker ordering was highly 536 

consistent across linkage maps (Figures S3-S9). Additionally, via including SNPs that 537 

were variable only in some families, we were able to more than triple the number of 538 

mapped scaffolds (from 358 to 1005) and increase the percentage of mapped bases from 539 

41.2% to 78.9% (Tables S2-S3).  Anchored genome scaffolds, coupled with existing N. 540 

lecontei gene annotations, are a valuable resource for identification of candidate genes 541 

within QTL. 542 

 543 

Detection of color QTL via interval and polygenic association mapping 544 

 Using an interval mapping approach, we obtained significant QTL for both traits. 545 

For yellow, the full stepwise model recovered six QTL, with a significant interaction 546 

between QTL on LGs 3 and 5 (Table 1; Figure 4A). This model, which had a LOD 547 

(logarithm of the odds) score of 182.03, explained 85.8% of the total variance in larval 548 

pigmentation. The two largest-effect QTL (Yellow-4 and Yellow-5) reside on LGs 3 and 549 

5, each explaining ~16% of the variance in larval pigmentation. These QTL also 550 

accounted for a substantial fraction of the phenotypic difference between the 551 

grandparental lines (Yellow-4: 27%; Yellow-5: 52%; Table 1, Figure 4A, Figure 5A-B), 552 

and the interaction between these two QTL was highly significant (P = 6.5 x 10-14, Figure 553 

5C). Examination of the interaction plot reveals that individuals carrying the VA allele 554 

for the Yellow-5 QTL have drastically reduced yellow pigmentation, making the 555 

additional impact of the Yellow-4 QTL less pronounced (Figure 5C). Possible reasons 556 

why the effects of the Yellow-4 “VA-white” allele are most pronounced on the Yellow-5 557 

“MI-yellow” background are considered further in our discussion of candidate genes. 558 

 For spotting, we detected only two QTL via interval mapping, both of which were 559 

located on LG 2 (Table 1, Figure 4C). The first peak (Spot-1) explained 13% of the 560 
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phenotypic variance in F2 males and 35% of the difference in spotting between the 561 

grandparental strains (Figure 5D). The second peak (Spot-2) explained 35% of the 562 

variance in F2 males and 57% of the difference in yellowness between the grandparents 563 

(Figure 5E). The full stepwise model, which included head capsule area and mother as 564 

covariates, had a LOD score of 94.9 and explained 64.0% of the total variance in larval 565 

spotting pattern. This model also included a subtle, but significant (P = 0.0051) 566 

interaction between the two spotting QTL. Specifically, the effects of the dark-spotting 567 

VA allele for the Spot-1 QTL are more pronounced on a genetic background containing 568 

the dark-spotting VA allele for the Spot-2 QTL (Figure 5F). Notably, the 1.5-LOD 569 

support intervals for the two large-effect spotting QTL overlap with those of two small-570 

effect yellow QTL (Yellow-2 and Yellow-3) (Table 1). This co-localization of spotting 571 

and yellow QTL is consistent with the weak phenotypic correlation observed between 572 

these traits in F2 males. 573 

 We also recovered strong associations between genotype and phenotype for both 574 

traits using a polygenic association mapping approach. Because effect sizes, PIP 575 

estimates, and genetic architecture parameter estimates were highly consistent across 576 

independent GEMMA runs (Table S4), we combined results from each set of 10 runs by 577 

(1) averaging per-SNP PIP and effect scores across runs, and (2) combining parameter 578 

posterior distributions into a single distribution for each trait/SNP dataset. Overall, there 579 

was considerable overlap between the location of QTL indicated by the GEMMA 580 

analyses and those implicated by interval mapping analyses (Figure 4, Tables S5-S6). 581 

Specifically, GEMMA analyses recovered candidate SNPs in or in close proximity to 582 

(i.e., within 1.5 million base pairs or < 5 cM) all QTL intervals identified by interval 583 

mapping (Tables S5-S6). Moreover, QTL with high LOD scores had correspondingly 584 

high PIP estimates (PIP > 0.80). That said, the precise location of the QTL peaks (highest 585 

LOD score or PIP value) differed slightly among interval mapping and GEMMA 586 

analyses and among GEMMA analyses utilizing different missing data thresholds. These 587 

differences are likely attributable to differences in the SNPs included in the analysis (e.g., 588 

many SNPs in GEMMA analyses with 50% and 75% missing data were not present in the 589 

0%-missing GEMMA and R/qtl analyses). Additionally, the stringently curated R/qtl and 590 

0% missing GEMMA datasets are less likely to contain genotyping error that may 591 

obscure genotype-phenotype associations. 592 

 In addition to the eight color QTL detected via interval mapping, GEMMA 593 

analyses identified several additional regions of the genome associated with larval color 594 

variation (Tables S5-S6). Although the 99th percentile PIP threshold is somewhat 595 

arbitrary, it is nevertheless quite stringent. Depending on the dataset, our top 1% PIP 596 

scores represented a 3- to 340-fold increase over the genome-wide average PIP value. 597 

Although it is certainly possible that the GEMMA candidate SNPs represent false 598 

positives, identification of plausible candidate genes linked to at least some of these SNPs 599 

suggests that at least some GEMMA candidates may represent true positives (see below). 600 

One possible explanation for why GEMMA picked up regions that were not detected via 601 

interval mapping is that these regions contain genetic variants contributing to phenotypic 602 

variation segregating within one of the grandparental lines. Additionally, compared to the 603 

one- and two-SNP scans implemented in interval mapping analyses, the multi-SNP 604 

association mapping method implemented in GEMMA may have more power to detect 605 

QTL of small effect. This explanation is consistent with the observation that, compared to 606 
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single-SNP GWA mapping approaches, multiple-SNP GWA mapping approaches have 607 

increased power and reduced false positive rates (Hoggart et al. 2008).  608 

 609 

Comparing genetic architectures: testing the pigmentation/patterning hypothesis 610 

 According to the pigmentation/pattern hypothesis, pigmentation loci are less 611 

likely to involve negative pleiotropic consequences and therefore, the distribution of 612 

effect sizes underlying changes in pigmentation (yellow) should be shifted towards large-613 

effect mutations compared to the effect-size distribution of patterning (spotting) (Fisher 614 

1930; Rockman 2012). Although limited power to detect QTL of very small effect 615 

precludes us from estimating the exact number of SNPs and full effect-size distribution, 616 

we can nevertheless ask whether there are any obvious differences between the upper 617 

ends of the effect-size distributions for different traits scored in the same mapping 618 

population. 619 

 Looking first at the interval mapping analyses, the number of QTL of relatively 620 

large effect is the same for both traits: for both yellow and spotting, there are two QTL 621 

with PVE > 10% and phenotypic effect sizes that exceed 25% of phenotypic difference 622 

between the grandparental lines. However, in contrast to our predictions, the QTL with 623 

the largest observed effect size was for spotting (Spot-1), not yellow. Additionally, more 624 

QTL are detected for yellow than for spotting, which could indicate that the genetic 625 

architecture of yellow is more complex (more loci) than that of spotting. These 626 

observations are seemingly at odds with the prediction that the effect-size distribution for 627 

yellow should be shifted towards large-effect QTL. That said, an alternative 628 

interpretation for our finding that fewer QTL were detected for spotting is that most 629 

spotting QTL were not of sufficient effect size for detection. Thus, our observation of 630 

more yellow QTL could be explained by an effect-size distribution that is shifted towards 631 

larger effects (i.e., there more QTL of sufficient size for detection). Taken together, our 632 

interval mapping results are equivocal with respect to the pigmentation/patterning 633 

hypothesis. 634 

In contrast to the interval mapping results, effect size estimates from the GEMMA 635 

analyses are largely consistent with the predictions of the pigmentation/pattern 636 

hypothesis. Across all SNP datasets, the effect size of the largest-effect SNP was always 637 

higher for yellow than for spotting (Table 2). Likewise, the median effect size for SNPs 638 

that fell within the 99th percentile for PIP was consistently higher for yellow than for 639 

spotting. However, none of the Wilcoxon rank-sum tests comparing the distribution of 640 

the top 1% effect sizes were significant (0% missing data: N = 13 SNPs, W = 105, P = 641 

0.31; <50% missing data: N = 31 SNPs, W = 505, P = 0.74; <75% missing data: N = 42 642 

SNPs, W = 1000, P = 0.29). That said, the PIP cutoff was somewhat arbitrary and the 643 

number of SNPs analyzed was relatively small.  644 

By providing parameter estimates that describe trait genetic architecture and are 645 

independent of arbitrary cutoffs, the BSLMM implemented in GEMMA provides a more 646 

straightforward way to compare trait genetic architectures. Despite some dependence on 647 

the SNP dataset analyzed, among-trait differences in PVE and PGE were very consistent 648 

across runs (Figure 6A-B; Table 2). First, the amount of phenotypic variation explained 649 

by genetic variance was consistently higher for yellow, mirroring our interval mapping 650 

results (PVE for full yellow model: 85.8%; PVE for full spotting model: 64.0%). 651 

Moreover, for the 0%-missing dataset, 95% credible intervals for PVE for the two traits 652 
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did not overlap (Table 2). Possible explanations for differences in PVE include a greater 653 

measurement error for spotting and/or a greater contribution of environmental variance to 654 

spotting variance. Second, although estimates of the contribution of large-effect 655 

mutations to total genetic variance were high for both traits (PGE > 0.8), yellow PGE 656 

estimates were uniformly higher than spotting PGE estimates and, for the 0%-missing 657 

dataset, 95% credible intervals for PGE did not overlap (Table 2). Our observed 658 

differences in PGE estimates are consistent with the prediction that, compared to 659 

spotting, the effect-size distribution underlying the yellow trait is shifted towards 660 

mutations of larger effect.  661 

In contrast to PVE and PGE, we did not observe consistent differences in the 662 

estimated number of large-effect SNPs across the three datasets and 95% credible 663 

intervals for this parameter always overlapped. For the 0%-missing and 50%-missing 664 

datasets, yellow had slightly more SNPs than spotting, but spotting had more SNPs than 665 

yellow in the 75%-missing datasets (Table 2). Additionally, for all three SNP datasets, 666 

yellow and spotting had very similar posterior distributions for SNP number (Figure 6C). 667 

Nevertheless, despite some uncertainty in our SNP number estimates, our effect size 668 

estimates and PGE estimates obtained under the BSLMM implemented in GEMMA 669 

provide support for the pigmentation/pattern hypothesis.  670 

 671 

Limitations of our data for testing the pigmentation/pattern hypothesis 672 

Although our genetic architecture parameter estimates are consistent with the 673 

prediction that the effect-size distribution is shifted towards large-effect alleles for 674 

pigmentation, there are three main limitations of our current data that preclude a more 675 

definitive test of the pigmentation/pattern hypothesis. First and foremost, we have 676 

mapped these traits to large genomic regions, each containing many genes (~2 – 3.5 Mb 677 

for the four QTL of largest effect; 2.2 – 7.7 Mb for remaining smaller-effect QTL). It is 678 

therefore possible that individual QTL comprise multiple linked mutations of individually 679 

smaller effect (Stam and Laurie 1996; McGregor et al. 2007; Bickel et al. 2011; Linnen 680 

et al. 2013). With this in mind, our effect sizes and PGE estimates are best interpreted as 681 

maximum values for each trait. Under the pigmentation/pattern hypothesis, we would 682 

predict that spotting QTL are more likely to fractionate than yellow QTL. Moreover, if 683 

patterning traits involve loci that are more likely to exhibit antagonistic pleiotropy than 684 

loci involved in pigmentation traits, we would expect to see a greater contribution of cis-685 

regulatory changes—possibly multiple linked cis-regulatory changes (e.g., Rebeiz et al. 686 

2009; Frankel et al. 2011)—to variation in spotting compared to variation in yellow. 687 

These predictions could be tested via fine-mapping QTL and functional analysis of 688 

candidate genes and mutations (see below). 689 

 A second limitation of our data is that there are many other factors beyond 690 

antagonistic pleiotropy that can impact the expected distribution of mutational effect 691 

sizes, including the demographic and selective history of the phenotypically divergent N. 692 

lecontei populations. In terms of selection, theoretical predictions regarding the expected 693 

distribution of effect sizes are all based on model of adaptation in which beneficial 694 

mutations are fixed as a population moves towards a new phenotypic optimum (Orr 695 

1998). A key assumption, therefore, is that the traits under investigation are adaptive. For 696 

N. lecontei, experimental evidence indicates that both white and yellow larvae are  697 
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highly conspicuous to avian predators when viewed against a background of pine foliage, 698 

and both morphs facilitate rapid avoidance learning in naïve avian predators (Lindstedt 699 

and Linnen, personal observation). Consistent with theoretical predictions that avoidance 700 

learning in predators will result in stabilizing selection on warning coloration (Joron and 701 

Mallet 1998; Kapan 2001; Kronforst and Gilbert 2008), most N. lecontei populations are 702 

fairly uniform in their color and pattern (Linnen, personal observation). Although 703 

stabilizing selection can explain the maintenance of larval color differences between N. 704 

lecontei populations in the face of gene flow, it does not explain the initial divergence in 705 

color. One possibility is that initial color differences arose via genetic drift in small 706 

populations that were isolated in pine refugia during the Pleistocene glaciations (Bagley 707 

et al. 2017). Once a novel morph reached a critical threshold to promote avoidance 708 

learning in the local predator community, it could then increase in frequency via selection 709 

(Mallet and Singer 1987; Turner and Mallet 1996; Kronforst and Gilbert 2008). A non-710 

mutually exclusive explanation is that among-population differences in larval color stem 711 

from geographic variation in other selection pressures, such as climate, host-plant 712 

defenses, and local communities of viruses, parasitoids, and predators (Nokelainen et al. 713 

2014, Amézquita et al. 2017, Willmott et al. 2017).  714 

Beyond demonstrating that a particular trait is adaptive, other details of the 715 

selective history are also important to predicting effect-size distributions. For example, 716 

theoretical work indicates that adaptation to a distant phenotypic optimum, adaptation to 717 

a rapidly moving optimum, adaptation to a multi-peaked fitness surface, and adaptation 718 

from new beneficial mutations can all shift the predicted effect-size distribution towards 719 

mutations of larger effect (Orr 1998; Hermisson and Pennings 2005; Matuszewski et al. 720 

2014, 2015; Dittmar et al. 2016). In short, additional work is needed to test our 721 

assumption that larval color traits are locally adaptive and to more fully explore the 722 

targets, agents, and history of selection on larval color traits. We note, however, that even 723 

if larval color evolution is predominantly neutral, we would still expect pleiotropy to 724 

impact the expected distribution of effect sizes of color mutations fixed under genetic 725 

drift. For example, for a highly pleiotropic gene, large-effect alleles are more likely to be 726 

deleterious than small-effect alleles and therefore less likely to drift to fixation. Thus, if 727 

pigmentation genes are less pleiotropic, on average, than patterning genes, the 728 

pigmentation/patterning hypothesis should apply to both selected and neutrally evolving 729 

traits. 730 

 In terms of demographic history, theoretical work indicates that effect-size 731 

distributions will be shifted towards larger-effect mutations when effective population 732 

size is reduced (Kimura 1983) and when local adaptation is opposed by ongoing gene 733 

flow (Griswold 2006; Yeaman and Whitlock 2011). Based on a demographic analysis of 734 

genome-wide SNP data, Bagley et al. (2017) hypothesized that genetically distinct 735 

“North” (source of the light-spotted, yellow MI population) and “Central” (source of the 736 

dark-spotted, white VA population) lineages diverged from one another during the 737 

Pleistocene, ~25,000 years ago. Prior to this divergence, the North/Central ancestor 738 

diverged from a “South” lineage ~45,000 years ago. Using this early-diverging South 739 

lineage, which is dark-spotted and yellow, to polarize changes in larval color, we 740 

hypothesize that light spotting (MI) and white coloration (VA) are both derived character 741 

states within N. lecontei. 742 
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Compared to the Central lineage, the North lineage has drastically reduced 743 

heterozygosity and an effective population size that is estimated to be ~89% lower than 744 

that the Central Ne estimate (Bagley et al. 2017). Thus, beneficial light-spotting alleles of 745 

small effect would have been more likely to be lost to drift in the North lineage than in 746 

other lineages, thereby shifting the predicted effect-size distribution for spotting towards 747 

larger-effect alleles. That said, the North lineage has experienced much less gene flow 748 

from other lineages than the South and Central lineages (Bagley et al. 2017). The Central 749 

lineage is also polymorphic for larval pigmentation, with a cluster of white-bodied 750 

populations in the mid-Atlantic region, surrounded by genetically similar yellow-bodied 751 

populations in other portions of the Central range (Bagley et al. 2017; Bagley and 752 

Linnen, personal observation). Higher gene flow from yellow populations would have 753 

favored larger-effect loci underlying locally adaptive white pigmentation compared to a 754 

model lacking gene flow (Yeaman and Whitlock 2011). Consistent with these 755 

demographic estimates and theoretical predictions, we found that both spotting and 756 

yellow had high estimates for PGE (Table 2; Figure 6).  757 

 A third and final limitation is that, while a useful test of the a priori hypothesis 758 

that the effect size of alleles contributing to pigmentation are larger, on average, than 759 

those contributing to color pattern, our sample size nevertheless consists of a single 760 

population pair. As the discussion above highlights, many factors can lead to differences 761 

in trait genetic architectures and any one of these could have pushed the distribution of 762 

pigmentation alleles towards larger effects. Because the history of adaptation—and 763 

therefore the expected effect-size distribution of adaptive substitutions—is likely to be 764 

highly idiosyncratic across populations and species, many phylogenetically independent 765 

test cases will be needed to determine whether certain factors (e.g., different levels of 766 

pleiotropy associated with pigmentation and color patterning loci) are consistently 767 

associated with differences in effect-size distributions.  768 

To date, the most tested prediction regarding trait genetic architectures is that the 769 

distribution of effect sizes will be shifted towards large-effect mutations when the 770 

distance to the phenotypic optimum is large. This prediction has been supported in 771 

multiple contexts. For example, Rogers et al. (2012) estimated QTL effect sizes 772 

underlying shape and armor traits in replicate freshwater stickleback populations adapting 773 

to phenotypic optima that were either close to the ancestral phenotype (predatory prickly 774 

sculpin present) or far from the ancestral phenotype (no sculpin present). Consistent with 775 

theory, they found that average effect sizes were larger when populations were adapting 776 

to a more distant phenotypic optimum. Similarly, in specialist pupfish that have evolved 777 

from a generalist ancestor, large-effect QTL contribute more to the enlarged scale-eater 778 

jaw (distant phenotypic optimum) than to the molluscivore nasal protrusion (close 779 

phenotypic optimum) (Martin et al. 2017; McGirr et al. 2017). Extensive intra- and 780 

interspecific variation in larval pigmentation and patterning make Neodiprion an 781 

especially promising system for testing the pigmentation/pattern hypothesis and, more 782 

generally, examining the impact of pleiotropy on trait genetic architecture (Figure 1). 783 

 784 

Candidate genes for larval color traits 785 

Testing the pigmentation/patterning hypothesis will ultimately require identifying 786 

causal genes and mutations and characterizing their phenotypic effects. To this end, we 787 

asked whether our candidate QTL regions contained any genes with known or suspected 788 
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roles in carotenoid-based or melanin-based pigmentation. For larval pigmentation 789 

(“yellow”), we focused on genes known or suspected to be involved in carotenoid 790 

processing or deposition (see Figure S1). Although most animals cannot synthesize their 791 

own carotenoids, many use environmentally acquired carotenoids to produce red, orange, 792 

and yellow colors (Toews et al. 2017). Compared to endogenously produced pigments 793 

such as melanin, however, much less is known about the genetic pathways underlying 794 

carotenoid based pigmentation. Nevertheless, recent progress in identifying genes 795 

involved in carotenoid transport, deposition, and processing provided us with some 796 

candidates for carotenoid-based pigmentation (Table S7). These candidates include genes 797 

encoding carotenoid binding proteins (involved in binding carotenoids in gut and 798 

transporting to hemolymph), lipoproteins (involved in carotenoid transport in 799 

hemolymph), scavenger receptor proteins (involved in carotenoid uptake in specific 800 

tissues), β-carotene oxygenases (involved in carotenoid breakdown), and cytochrome 801 

p450s (possibly involved in carotenoid processing) (Bhosale and Bernstein 2007; Palm et 802 

al. 2012; Yokoyama et al. 2013; Tsuchida and Sakudoh 2015; Toews et al. 2017). 803 

Both of our largest-effect yellow QTL contained promising candidate genes with 804 

known or suspected roles in carotenoid-based pigmentation (Table S7). First, within the 805 

overlapping Yellow-5 and Yellow-6 QTL intervals, we recovered a predicted protein 806 

coding gene in scaffold 164 with a high degree of similarity to the ApoLTP-1 and 807 

ApoLTP-2 protein subunits (encoded by the gene apoLTP-II/I) of the Bombyx mori lipid 808 

transfer particle (LTP) lipoprotein (e-value: 0; bitscore: 391). LTP is one of two major 809 

lipoproteins present in insect hemolymph and appears to be involved in the transport of 810 

lipids (including carotenoids) from the gut to the other major lipoprotein, lipophorin, 811 

which then transports lipids to target tissues (Tsuchida et al. 1998; Palm et al. 2012; 812 

Yokoyama et al. 2013). A second potential candidate in the overlapping Yellow-5 and 813 

Yellow-6 QTL intervals, located on scaffold 386, is a cytochrome P450. Although 814 

cytochrome P450s are best known for their role in detoxification, it is hypothesized that 815 

they serve diverse roles and at least one cytochrome p450 (CYP2J19) has been implicated 816 

in the conversion of yellow carotenoids to red ketocarotenoids in birds (Lopes et al. 817 

2016; Mundy et al. 2016). 818 

Within the Yellow-4 QTL, we found a predicted protein coding region in scaffold 819 

518 with a high degree of similarity to the Bombyx mori Cameo2 scavenger receptor 820 

protein (e-value: 1 x 10-18; bitscore: 92.8). Cameo2 encodes a transmembrane protein 821 

belonging to the CD36 family that has been implicated in the selective transport of the 822 

carotenoid lutein from the hemolymph to specific tissues (Sakudoh et al. 2010; Tsuchida 823 

and Sakudoh 2015). In the silkworm Bombyx mori, Cameo2 is responsible for the “C 824 

mutant” phenotype, which is characterized by a combination of yellow hemolymph and 825 

white cocoons that arises as a consequence of disrupted transport of lutein from the 826 

hemolymph to the middle silk gland (Sakudoh et al. 2010; Tsuchida and Sakudoh 2015). 827 

Based on this previous work, we hypothesize that a loss of function mutation in Cameo2 828 

contributes to the loss of yellow pigmentation in the integument of white-bodied N. 829 

lecontei larvae. 830 

Our most promising yellow candidate genes—apoLTP-II/I and Cameo2—also 831 

provide a potential explanation for the epistatic interaction we detected between the 832 

Yellow-4 and Yellow-5 QTL (Figure 5C). We predict that reduced apoLTP-II/I function 833 

would reduce the amount of yellow carotenoids found in the hemolymph and reduced 834 
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Cameo2 function would reduce yellow carotenoids in the integument. In the transport of 835 

carotenoids from the gut to the integument, Cameo2 therefore acts downstream of 836 

apoLTP-II/I. Thus, once the amount of carotenoids entering the hemolymph is already 837 

reduced via changes in apoLTP-II/I (Yellow-5), the impact of an additional reduction in 838 

the integument via changes in Cameo2 (Yellow-4) would be reduced—this is consistent 839 

with the interaction plot in Figure 5C. 840 

Our top two spotting QTL also yielded very promising candidate genes—this time 841 

in the well-characterized melanin biosynthesis pathway. Specifically, in both peaks, we 842 

found protein-coding genes that appear to belong to the yellow gene family. The yellow 843 

gene family encodes a functionally diverse set of proteins characterized by a shared 844 

major royal jelly protein (MRJP) domain (Ferguson et al. 2011). To date, yellow genes 845 

have been associated with diverse functions, including behavior, reproductive maturation, 846 

caste specification in honeybees, and pigmentation (Wittkopp et al. 2002; Drapeau et al. 847 

2006; Prud’homme et al. 2006; Ferguson et al. 2011). Although much is still unknown 848 

about the function of yellow genes, studies in D. melanogaster suggest that yellow-f and 849 

yellow-f2 have dopachrome-conversion enzymatic function, which is required for the 850 

production of melanic pigment (Han et al. 2002). Additionally, mapping and expression 851 

data indicate that deletions in yellow-e gene are responsible for changes in larval 852 

pigmentation patterning in two mutant strains of the Bombyx mori (Ito et al. 2010). 853 

Among the 11,586 predicted protein coding genes in the N. lecontei v1.0 genome 854 

NCBI annotation release 100, we recovered 26 “yellow-like” or “yellow-MRJP-like” 855 

genes. Notably, this number is equivalent to the number of yellow-like/yellow-MRJP-like 856 

genes found in the genome of the jewel wasp, Nasonia vitripennis, which boasts the 857 

highest reported number of yellow-like genes of any insect to date (Werren et al. 2010). 858 

Of the 26 genes belonging to the yellow family, nine were most similar to Apis yellow-859 

MRJPs. The remaining 17 genes appeared more similar to Apis yellow genes (top BLAST 860 

hits included: four yellow-b, one yellow-e, one yellow-e3, four yellow-g, one yellow-h, 861 

five yellow-x, and one yellow-y). Additionally, 13 of these genes (yellow-e, yellow-e3, 862 

four yellow-g, yellow-h, yellow-x, and five MJRPs) were found in tandem array along 863 

three adjacent scaffolds (548, 170, and 36; ~1 Mbp total) on LG 2. This genomic 864 

organization is consistent with a conserved clustering of yellow-h, -e3, -e, -g2, and –g 865 

observed across Apis, Tribolium, Bombyx, Drosophila, and Nasonia (Drapeau et al. 2006; 866 

Werren et al. 2010; Ferguson et al. 2011). Like Nasonia and Apis, this cluster also 867 

contains MJRPs; like Heliconius, this cluster contains a yellow-x gene.  868 

 The Spot-1 QTL contained 2 yellow-like genes that were most similar to Apis 869 

yellow-x1 (e-value: 1.2 x 10-160; bitscore: 471.47 and e-value: 3.9 x 10-151; bitscore: 870 

448.36). Notably, these genes were located within a scaffold (422) receiving very high 871 

PIP scores (>0.8) in multiple GEMMA analyses. However, there is currently little known 872 

about the function of yellow-x genes, which appear to be highly divergent from other 873 

yellow gene families (Ferguson et al. 2011).  874 

The Spot-2 QTL contained the cluster of 13 yellow genes described above, along 875 

with two additional MRJPs on scaffold 769. Of these, yellow-e is the strongest candidate 876 

for larval spotting pattern. In two different mutant strains of B. mori (“bts” for brown 877 

head and tail spot), mutations in yellow-e produced a truncated gene product that results 878 

in increased reddish-brown pigmentation in the head cuticle and anal plate compared to 879 

wildtype strains (Ito et al. 2010). Quantitative reverse transcriptase analyses also 880 
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demonstrated that in wildtype larvae, yellow-e is most highly expressed in the integument 881 

of the head and the tail (Ito et al. 2010). Based on these observations, one possible 882 

mechanism for the reduced spotting observed in the light-spotted MI population is an 883 

increase in yellow-e expression.  884 

The Spot-2 QTL also contained a predicted protein that was highly similar to 885 

tyrosine hydroxylase (TH) (e-score: 6 x 10-123, bitscore: 406). TH catalyzes the 886 

hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine (DOPA), a precursor to 887 

melanin-based pigments (Wright 1987). Work in the swallowtail butterfly Papilio xuthus 888 

and the armyworm Pseudaletia separata demonstrates that TH and another enzyme, dopa 889 

decarboxylase (DDC), are expressed in larval epithelial cells containing black pigment 890 

(Futahashi and Fujiwara 2005; Ninomiya and Hayakawa 2007).  Furthermore, inhibition 891 

of either enzyme prevented the formation of melanin-based larval pigmentation patterns 892 

(Futahashi and Fujiwara 2005). Thus, a reduction in the regional expression of TH is 893 

another plausible mechanism underlying reduced spotting in the light-spotted MI 894 

population. 895 

 The Spot-1 and Spot-2 QTL also overlap with two minor-effect yellow QTL: 896 

Yellow-2 and Yellow-3 (table, figure). Co-localization of pigmentation and patterning 897 

QTL could be explained either by linkage or pleiotropy. As noted above, spotting and 898 

yellow values are negatively correlated in F2 males. One explanation for this observation 899 

is that the loci in the Spot-1 and Spot-2 cluster that impact spotting area also impact 900 

overall levels of melanin throughout the integument. With increasing melanin content, 901 

larval color would appear less yellow, leading to a negative correlation between melanin 902 

content and percent yellow. 903 

 Of our eight candidate QTL regions, Yellow-1 was the only interval for which we 904 

did not find any hits to candidate pigmentation genes (Tables S5 and S7). Outside of 905 

these candidate regions, we found several additional hits in scaffolds that had high-PIP 906 

SNPs. For yellow, we identified a scaffold containing a predicted protein with a high 907 

degree of similarity to carotenoid isomerooxymerase, encoded by NinaB in Drosophila 908 

(Table S5). Work in Drosophila demonstrates that this protein in required for converting 909 

diet-derived carotenoids into visual pigments (Voolstra et al. 2010). For spotting, we 910 

found several additional candidate genes involved or potentially involved in melanin 911 

patterning, including AbdB, which encodes an Abdominal-B HOX protein that has been 912 

implicated in Drosophila pigmentation (Jeong et al. 2006), and several cytochrome 913 

p450s, one of which has been implicated in insect cuticle formation (Sztal et al. 2012) 914 

(Table S6).  915 

Although all of our candidates require further fine-mapping and functional 916 

testing, we are encouraged to have identified multiple strong candidates for both traits. 917 

Notably, we report the first candidate genes for naturally occurring variation in 918 

carotenoid-based pigmentation in invertebrates. Additionally, some of our most 919 

promising candidate genes (Cameo2, apoLTP-II/I, yellow-e, and ple) fell just outside of 920 

the 1.5-LOD support intervals, but were included in the expanded candidate region on the 921 

basis of GEMMA and ALLMAPS results (Tables S5-S6). Should these candidates hold 922 

up to further experimental scrutiny, our findings suggest that combining QTL mapping 923 

and polygenic association mapping may be a fruitful approach for defining candidate 924 

regions. 925 

 926 
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 927 

 928 

Summary and Conclusions 929 

 In this study, we applied a combination of interval mapping and polygenic 930 

association mapping to describe the genetic architecture of two larval color traits: yellow 931 

pigmentation and spotting pattern. Both sets of analyses detect large-effect loci for both 932 

traits. Although we cannot yet rule out linked mutations of individually smaller effect, we 933 

discuss details of the demographic histories of these populations that may have favored 934 

the fixation of large-effect color alleles. Additionally, genetic architecture parameter 935 

estimates derived under the BSLMM implemented in GEMMA suggest that compared to 936 

the effect-size distribution underlying variation in spotting, the effect-size distribution for 937 

yellow is shifted towards alleles of larger effect. These findings are consistent with the 938 

pigmentation/patterning hypothesis, which argues that the genetic architecture of 939 

pigmentation should be “simpler” than that of patterning because pigmentation genes 940 

tend to be less pleiotropic than patterning genes. Verifying this hypothesis will require 941 

identifying quantitative trait nucleotides (QTNs) and assessing additional populations and 942 

species. 943 

 In addition to contrasting the genetic architecture of two color traits, we also 944 

identified several promising candidate genes that may contribute to natural variation in 945 

larval color. Although there are a growing number of studies of naturally occurring 946 

melanin-based pigmentation in adult insects (e.g., Hof et al. 2016; Nadeau et al. 2016; 947 

Signor et al. 2016; Yassin et al. 2016), studies of naturally occurring larval color 948 

variation are sparse. Additionally, although carotenoids contribute to adaptive 949 

pigmentation in diverse animal taxa (Heath et al. 2013; Toews et al. 2017), ours is the 950 

first genetic study of naturally occurring variation in carotenoid-based pigmentation in a 951 

non-vertebrate. Thus, extensive intra- and interspecific variation in larval body color 952 

across the genus Neodiprion (Fig. 1) has the potential to provide novel insights into the 953 

molecular mechanisms underlying carotenoid-based pigmentation. 954 

Finally, our study demonstrates the power of combining traditional interval 955 

mapping approaches with polygenic association mapping. Our combined approach not 956 

only enabled us to identify a surprisingly large number of promising candidate genes 957 

residing both within and outside of linkage-mapping-identified QTL, but also provided an 958 

intuitive way to describe and compare trait genetic architectures. We believe that this 959 

approach will prove valuable for testing additional theoretical predictions regarding trait 960 

genetic architectures. Ultimately, such studies will provide us with a more comprehensive 961 

understanding of the contribution of large-effect mutations to phenotypic evolution under 962 

different evolutionary scenarios.  963 
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 1316 
 1317 

Figure 1. Interspecific variation in Neodiprion larval color. Top row (left to right): 1318 

Neodiprion nigroscutum, N. rugifrons, N. virginianus. Middle row (left to right): N. 1319 

pinetum, N. lecontei, N. merkeli. Bottom row (left to right): N. pratti, N. compar, N. 1320 

swainei. Larvae in the first and last columns are exhibiting a defensive “U-bend” posture 1321 

(a resinous regurgitant is visible in N. virginianus, top right). N. pratti photo is by K. 1322 

Vertacnik, all others are by R. Bagley. 1323 

 1324 
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 1326 

Figure 2. Intraspecific variation in Neodiprion lecontei larval color and cross design. 1327 

We crossed white, dark-spotted diploid females from Virginia to yellow, light-spotted 1328 

haploid males from Michigan. This produced haploid males with the VA genotype and 1329 

phenotype (not shown) and diploid females (F1) with intermediate spotting and color. 1330 

Virgin F1 females produced recombinant haploid males (F2) with a wide range of body 1331 

color and spotting pattern (a representative sample is shown). 1332 

 1333 

 1334 
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 1335 
 1336 

Figure 3. Larval color variation across generations. Variation in larval body color (A; 1337 

higher yellow scores indicate more yellow pigment) and spotting pattern (B; higher 1338 

spotting scores indicate more melanic spotting), both measured from digital images as 1339 

described in the text. Boxes represent interquartile ranges (median ± 2 s.d.), with outliers 1340 

indicated as points. All comparisons were significantly different after correction for 1341 

multiple testing (adjusted α = 0.0042) except F1 female vs. F2 male spotting score (see 1342 

text). 1343 
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 1345 
Figure 4. Linkage mapping and polygenic association mapping results. Linkage 1346 

mapping analyses recovered QTL for larval body color (Yellow) on linkage groups (LGs) 1347 

1, 2,3, and 5 (A) and QTL for spotting pattern (Spotting) on LG 2 (B). These same 1348 

regions were recovered in polygenic association mapping analyses as SNPs with high 1349 

posterior inclusion probabilities (PIPs) (B and D; results shown are for the SNP dataset 1350 

with <50% missing data). Polygenic association mapping also recovered additional high-1351 

PIP SNPs (99th percentile threshold is indicated as a horizontal line in B and D). 1352 
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 1353 
Figure 5. Effect and interaction plots for larval body color and spotting pattern. For 1354 

each trait, phenotypic effect plots are given for the SNPs closest to the QTL peak for each 1355 

of the two largest-effect QTL (names are as in Table 1). Yellow-4 (A) and Yellow-5 (B) 1356 

are from LG 3 and LG 5, respectively. Spot-1 (D) and Spot-2 (E) are from LG 2. For both 1357 

traits, the two largest-effect QTL also have a significant interaction term (Table 1). In 1358 

both cases (C and F), the magnitude (but not the direction) of the allelic effects at one 1359 

locus depends on the genotype of the interacting locus.  1360 
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 1361 

Figure 6. Genetic architecture parameter estimates for larval pigmentation (yellow) 1362 

and larval color pattern (spotting). Violin plots display posterior probability 1363 

distributions for genetic architecture parameters estimated under the BSLMM 1364 

implemented in GEMMA. Genetic architecture parameters include: (A) PVE= total 1365 

proportion of phenotypic variance explained by genetic variance; (B) PGE = total 1366 

proportion of genetic variance explained by sparse (major) effects; and (C) # SNPS 1367 

(“n_gamma” in GEMMA output) = number of sparse (major) effect SNPs. SNP dataset 1368 

refers to the maximum percent missing data in the SNP dataset analyzed (0%: 1205 1369 

SNPs; 50% 3070 SNPs; 75%: 4162 SNPs). Distributions are combined across 10 1370 

independent runs, each consisting of 20 million post-burnin generations sampled every 1371 

1,000 generations. Violin plots depict probability densities (colored area), medians (white 1372 

dot), interquartile ranges (thick black line), and 95% confidence intervals (thin black 1373 

lines). For all datasets, PVE and PGE are consistently higher for yellow than for spotting 1374 

(see also Table 2). 1375 
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Table 1. QTL locations and effect sizes for larval pigmentation (Yellow) and larval color pattern (Spotting). 
Trait QTL name LG* Position (interval)† Marker‡ LOD PVE Effect size§ (SE) % difference** 

Yellow Yellow-1 1 105.9 (84.4-112.5) 5744 8.29 1.32 -0.025 (0.0043) 8.06 
Yellow Yellow-2 2 28.2 (16.2-55.1) 19162 2.92 0.45 -0.014 (0.0043) 4.63 
Yellow Yellow-3 2 179.9 (140.8-194.0) 15279 3.51 0.54 -0.016 (0.0043) 5.13 
Yellow Yellow-4 3 181.9 (179.8-181.9) 1882 71.23 16.27 -0.084 (0.0043) 27.19 
Yellow Yellow-5 5 140.6 (139.9-149.6) 3222 71.17 16.25 -0.16 (0.0081) 51.64 
Yellow Yellow-6 5 149.6 (140.6-154.8) 19661 4.37 0.68 -0.035 (0.0082) 11.43 
Yellow 

 
Interaction Yellow-3 x Yellow-5 

 
12.45 2.03 0.061 (0.0086) 19.58 

Spotting Spot-1 2 55.1 (48.0-57.6) 9282 28.62 12.99 0.029 (0.0025) 34.86 
Spotting Spot-2 2 179.9 (169.1-187.5) 15279 63.73 35.47 0.048 (0.0024) 57.04 
Spotting   Interaction Spot-1 x Spot-2   1.76 0.69 0.014 (0.0049) 16.49 
 

                                                       
* Linkage group number 
† Position in cM (1.5-LOD support intervals) 
‡ Marker closest to QTL peak 
§ Effect sizes as the difference in the phenotypic averages of among F2 males carrying a VA allele and F2 males carrying a MI allele (± 
standard error).  
** Effect sizes as a percentage of the difference between average trait values for the two grandparental lines (VA and MI). 
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Table 2. Effect size and genetic architecture parameter estimates for larval 
pigmentation (Yellow) and larval color pattern (Spotting).      
 

Parameter* % miss.† Yellow‡ Spotting‡ 

effect size (maximum) 0% 0.69 0.37 

effect size (top 1%) 0% 0.023 (±0.088) 0.013 (±0.014) 

PVE 0% 0.80 (0.77,0.83) 0.67 (0.60,0.73) 

PGE 0% 0.94 (0.90,0.98) 0.82 (0.72,0.89) 

# SNPs 0% 5 (3,10) 3 (2,9) 

effect size (maximum) 50% 0.45 0.33 

effect size (top 1%) 50% 0.042 (±0.15) 0.03 (±0.055) 

PVE 50% 0.73 (0.67,0.79) 0.58 (0.47,0.70) 

PGE 50% 0.93 (0.82,1) 0.87 (0.66,0.99) 

# SNPs 50% 25 (12,52) 24 (8,75) 

effect size (maximum) 75% 0.57 0.37 

effect size (top 1%) 75% 0.015 (±0.031) 0.013 (±0.016) 

PVE 75% 0.70 (0.63,0.78) 0.58 (0.47,0.69) 

PGE 75% 0.88 (0.76,0.98) 0.83 (0.65,0.99) 

# SNPs 75% 14 (6,35) 17 (4,56) 

 

 

 
                                                       

* Genetic architecture parameter estimates for the BSLMM implemented in GEMMA are 
as follows: PVE= total proportion of phenotypic variance explained by genetic variance; 
PGE = total proportion of genetic variance explained by sparse (major) effects; # SNPS 
(“n_gamma” in GEMMA output) = number of sparse (major) effect SNPs. 
† Maximum percent missing data in the SNP dataset (0%: 1205 SNPs; 50% 3070 SNPs; 
75%: 4162 SNPs). 
‡ For PVE, PGE, and # SNPS, medians (and 95% credible intervals) are reported for the 
combined posterior distributions of 10 independent GEMMA runs (results for individual 
runs are given in Table S4). For the top 1% SNPs, medians (and interquartile ranges) are 
reported. 
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