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Abstract

Rapid progress in high-throughput sequencing (HTS) has enabled the molecular char-

acterization of mutational landscapes in heterogeneous populations and has improved our

understanding of clonal evolution processes. Analyzing the sensitivity of detecting genomic

mutations in HTS requires comprehensive profiling of sequencing artifacts. To this end, we

introduce MERIT, designed for in-depth quantification of erroneous substitutions and small

insertions and deletions, specifically for ultra-deep applications. MERIT incorporates an all-

inclusive variant caller and considers genomic context, including the nucleotides immediately

at 5′ and 3′, thereby establishing error rates for 96 possible substitutions as well as four single-

base and 16 double-base indels. We apply MERIT to ultra-deep sequencing data (1,300,000×)

and show a significant relationship between error rates and genomic contexts. We devise an

in silico approach to determine the optimal sequencing depth, where errors occur at rates

similar to those of true mutations. Finally, we assess nucleotide-incorporation fidelity of four

high-fidelity DNA polymerases in clinically relevant loci, and demonstrate how fixed detection

thresholds may result in substantial false positive as well as false negative calls.

Introduction

Advances in high-throughput sequencing (HTS) technologies have revolutionized the genomic,

transcriptomic, and epigenomic characterization of biological states. HTS platforms produce large
∗Correspondance: h.khiabanian@rutgers.edu
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amounts of sequencing reads at relatively low cost. However, their high rates of sequencing ar-

tifacts have hindered profiling heterogenous populations such as those in tumor samples, where

in addition to genomically diverse cancer cells, contaminating normal cells may also be present.

Comprehensive error profiling and mutation detection sensitivity analysis has direct implications

for predicting evolutionary trajectories that may arise from such heterogeneity. For example, since

cancer’s eventual evolution to a therapy-resistant disease is often associated with the natural selec-

tion of pre-existing resistant clones, detecting somatic genomic variations that exist in small cell

populations prior to treatment is pertinent for prevention of therapy-resistant relapsed disease.

[1, 2]

HTS errors are dominated by misreading a base within the instrument or nucleotide misin-

corporations during library enrichment with polymerase chain reaction (PCR). Specifically, DNA

damaging factors such as spontaneous deamination, presence of oxidized bases in cells in addition

to ex vivo oxidation during DNA extraction [3], or short-lived high temperatures during acoustic

shearing [4] have been associated with high polymerase error rates [5]. PCR-free library prepara-

tion [6, 7], sophisticated DNA barcoding [4, 8, 9], and overlapping-read design [10, 11, 12] have

been proposed to reduce rates of error. Despite varying success of these methods, complete elimi-

nation of HTS errors is not possible; therefore, their exhaustive analysis is critical for estimating

and improving sensitivity in calling somatic variants.

Here, we introduce MERIT (Mutation Error Rate Identification Toolkit), a comprehensive

pipeline designed for in-depth quantification of erroneous HTS calls, specifically for ultra-deep

applications. MERIT considers the genomic context of errors and shows a significant relationship

between error rates and their sequence contexts. In addition to observing more than three orders

of magnitude difference between transition and transversion error rates, we identify variations of

more than 130-fold within each error type at high sequencing depths. We also propose an in silico

depth reduction approach to provide insights on estimating optimal depth – where sequencing

errors exist at rates similar to those of true mutations. Finally, we describe an assay for detailed

assessment of nucleotide-incorporation fidelity for four high-fidelity DNA polymerase molecules.

Results

MERIT: a comprehensive error rate estimator. Differential rate of substitution errors in

HTS has been attributed to common DNA damaging events such as deamination and oxidation
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during library preparation. Such events often lead to higher rates of transitions versus transver-

sions [13, 14, 15, 16, 17] or increased number of errors in specific genomic contexts.These differences

can be more pronounced at higher sequencing depths and directly impact the sensitivity for detect-

ing true mutations. MERIT, primarily designed for profiling ultra-deep data (depths >5,000×),

provides a comprehensive toolkit to identify, characterize, and quantify various sources of HTS

error.

Comparative performance analysis of the commonly used HTS variant callers [18, 19, 20]

suggests a significant disagreement between their identified variants [21, 22, 23]. These differences

are mainly rooted in each pipeline’s specific filtering and statistical methodology. Moreover, since

the goal of these algorithms is to distinguish true mutations from artifacts, they do not report all

the variants required for a precise quantification of sequencing noise. To overcome this limitation,

MERIT uses SAMtools to identify all positions with alternate alleles from the aligned, indexed

sequencing reads. It then probes SAMtools mpileup data to extract the reference and alternate

alleles’ depths, Phred quality, and position-in-read information for all variants, even when they are

present in only a single read amongst tens of thousands. Finally, it obtains the genomic context of

the variants from the reference genome, including the nucleotides immediately at their 5′ and 3′,

and estimates error rates for 96 possible single nucleotide substitutions as well as four single-base

and 16 double-base insertions/deletions (indels). An optional annotation step is also available.

Details of MERIT’s workflow are shown in Figure 1 and described in Methods.

Ultra-deep sequencing data set. We generated ultra-deep sequencing data for a HapMap

sample (NA19240) targeting four commonly mutated loci in the TP53 and SF3B1 genes. We

used four high-fidelity DNA polymerase enzymes – NEBNext® High-Fidelity 2X PCR Master

Mix (Hi-Fi 2X), NEBNext® UltraTM II Q5® Master Mix (Ultra II), KAPA HiFi PCR kits with

ReadyMix (KAPA), and InvitrogenTM PlatinumTM SuperFiTM DNA polymerase (SuperFi) – for

PCR amplification. Custom primers for amplicon-based paired-end reads were designed such that

a large portion of the two reads for each DNA fragment (R1 and R2) overlapped (Tables S1 and

S3, SI Materials). Because we used a single, and therefore homogenous, sample, it followed that

all detected variants were errors accumulated in library preparation or during sequencing.

Impact of merging reads on context-specific error correction. Independent analysis of

R1 and R2 reads at 1,300,000× indicated significant difference in estimated error rates across 96
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possible sequence contexts (Fig. 2). High error rates and low Phred quality scores observed in R2

relative to R1 may be associated with sequencing errors caused by misreading a base, attributed to

image analysis biases [5] or phasing/pre-phasing [17]. These sequencing errors that dominated the

R1 and R2 profiles can be distinguished from polymerase errors by merging the overlapped paired-

end reads [24, 11, 25]. Merging, however, cannot eliminate errors randomly accumulated during

the amplification processes and present in both reads. In contrast to higher rates of transversion

versus transition errors in paired-end reads (Fig. 3A), the remaining PCR-related errors in the

merged reads are dominated by transitions, often with high Phred quality scores (Fig. 3B). MERIT

provides further insight for profiling these errors, which are the main hurdle in distinguishing real

mutations from sequencing noise:

• Merging R1 and R2 reads lowered all the context-specific error rates. The highest reduction

in rate was observed for GTA>GGA transversions (5,025±2,794×) while GCG>GTG tran-

sition errors only improved by a factor of 1.22±0.07×. Moreover, these improvements were

context-specific. For example, T>A transversion in GTA trinucleotides showed substantial

reduction (568±249×) compared to those in CTAs (1.43±0.31×).

• Transition errors occurred at higher rates relative to transversions, in agreement with previ-

ous reports [13, 14, 15, 16, 17]. This difference was pronounced further when errors were clas-

sified based on their context, denoting a rate of 1.29±0.04×10−3 [error/base] for GCG>GTG

versus that of 2.17±0.92×10−6 [error/base] for GTA>GAA (Fig. 3B). MERIT also revealed

considerable variation within each substitution type. For example, T>G transversions in

GTCs occurred 133.5±65.9× more often than those in ATAs. Similarly, C>T transitions in

GCGs were observed at 73.8±10.5× higher rate than those in TCTs (Fig. 3B).

• The rate of C>A errors in ACCs was the highest of all such transversions. These errors

are linked to the conversion of guanine to 8-oxoG resulting in mismatched pairing with

adenine [26, 27]. Oxidation of guanine to 8-oxoG happens naturally in living cells and can

be increased by DNA damaging factors such as acoustic shearing [28].

• Merging R1 and R2 can correct for the low quality erroneous bases associated with sequencing

errors. Our analysis suggests that such sequencing errors can be identified and eliminated

based on their quality, when merging the reads is not possible (e.g., in hybrid-capture-based

sequencing where read pairs are not designed to necessarily overlap).
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Effect of mutation context on amino acid variations. In a single codon, the context-

specific rate of error for each base change directly affects the sensitivity of detecting the resulting

amino acid variation. Our data indicated that the most commonly mutated residues in TP53 and

SF3B1 were often more prone to errors and hence comparatively less likely to be distinguished

from sequencing errors. For example, in TP53, R248Q and R248W are among the most common

mutations found in cancer patients [29]. The transition base changes that result in these mutations

could be confounded by the HTS errors at an 8-fold higher rate than the transversion alterations

that lead to R248L, and 55-fold higher than those that lead to R248G (Fig. 4A). Similarly, the

K700E mutation in SF3B1 is the most frequently mutated residue in the gene’s exon 10 [30, 31];

it results from a T>C mutation in a TTC trinucleotide that showed the highest rate of error for a

non-synonymous amino acid change in its codon (4.74±0.42×10−5 [error/base]). In contrast, the

comparatively rarer I704F mutation — a T>A in a ATG — had one of the lowest rates of error in

its respective codon (5.15±1.13×10−6 [error/base]; Fig. 4B). K700E’s 9-fold higher rate of error

than that of I704F indicated marked reduction in its relative detection sensitivity.

Optimal sequencing depth. Insufficient sequencing depth reduces the sensitivity of detecting

variants and leads to loss of statistical significance for a confident variant calling [32]. Consequently,

sequencing at higher depths is expected to provide robust error rate estimates and improved

sensitivities in detecting true mutations. Accurate estimation of optimal sequencing depth, beyond

which the inferred background error is not further reduced, not only provides a precise view of

intrinsic limitations in HTS assays, but also leads to preserving time and resources by avoiding

unproductive ultra-deep sequencing experiments.

To provide insight on optimal sequencing depth, we performed in silico experiments and

estimated context-specific error rates as a function of depth. We randomly selected merged reads

and constructed simulated sequencing data at depths ranging from 1,000× to 700,000×, with 500

independent replicates at each depth to establish confidence intervals (Fig. 5). MERIT showed

that the type of substitution error was an important determinant in estimating the optimal depth

(Fig. 5A). The error rate estimates for all transitions as well as C>A transversions did not

significantly change as sequencing depth increased beyond 200,000×; however, the inferred rates

for the remaining transversions marginally improved at higher depths. More importantly, this

analysis highlighted the importance of context-specific error profiling in determining detection
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sensitivity thresholds for true mutations. For example, at 5,000×, the corresponding error rates for

all T>A errors, T>A errors in CTAs, and T>A errors in GTTs were 2.19±0.37×10−4 [error/base],

4.27±2.28×10−4 [error/base], and 1.96±0.02×10−4 [error/base], while at 700,000×, these rates

were reduced to 2.02±0.73×10−5 [error/base], 2.5±0.99×10−4 [error/base], and 2.01±0.89×10−6

[error/base], respectively. Selecting a frequency threshold for these variants at 5,000× based on

the general T>A rate may not yield significant number of false calls independent of their sequence

contexts; however, at depths >5,000×, setting a threshold based on all T>A errors would lead to

substantial false positive CTA>CAA and false negative GTT>GAT calls, as their corresponding

error rates diverge at high depths, reaching a difference of two orders of magnitude at 700,000×.

DNA polymerase fidelity estimation. High-fidelity DNA polymerases – equipped with proof-

reading – result in fewer base misincorporations in PCR enrichment step, and thus, can reduce

HTS error rates. The Hi-Fi 2X, Ultra II, KAPA, and SuperFi enzymes are marketed as high-

fidelity polymerases, specifically designed for efficient amplification of complex templates such as

those with GC-rich regions. Their providers have reported a fidelity 100× better than wild-type

Taq DNA polymerase [33, 34, 35, 36]. Several techniques such as forward mutation assay [37], de-

naturing gradient gel electrophoresis [38], and most recently, HTS-based techniques [39, 40, 41, 42]

have been used to determine replication fidelity of DNA polymerases. Because different assays,

quantification methods, and often descriptive units [42, 41] are used to report polymerase fidelity,

comparing these methodologies is a challenging task and beyond the scope of this work. Instead,

here, we used MERIT to emphasize on the importance of context-specific error estimation and

provide a robust comparison of these commonly used enzymes.

We applied MERIT to the merged reads at equal depths of 650,000×, ensuring that the

estimated fidelities were not affected by sequencing depth. When all errors were included in the

analysis, global error rates suggested that these polymerases performed fairly similarly to each

other, with the highest and lowest error rates belonging to KAPA and SuperFi enzymes, respec-

tively. Specifically, the overall substitution error rates for Hi-Fi 2X, Ultra II, KAPA, and SuperFi

were estimated at 2.66±0.21×10−6, 1.91±0.19×10−6, 6.95±0.54×10−6, and 1.76±0.25×10−6 [er-

ror/base/doubling], respectively (Fig. S1A).

Despite highly correlated error profiles of these polymerases (Fig. 6D), MERIT illustrated

enzyme-specific biases beyond global error rates. For example, the overall substitution fidelity

of SuperFi was found 3.95±0.65× better than that of KAPA’s; however, specific substitution
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fidelity differed widely. C>G errors of SuperFi were 6.88±2.16× less frequent than those of

KAPA. In contrast, for C>A substitutions, SuperFi’s advantage over KAPA was reduced to only

1.85±0.30× (Fig. S1B). More unexpected differences could also be observed across 96 contexts

(Fig. 6A). For example, TTA>TGA error rate of SuperFi is 132±35× lower than KAPA, while

for GCG>GAG errors, KAPA performs just slightly better than SuperFi. Finally, using the data

from multiple regions of the TP53 and SF3B1 genes, we found limited change in error profiles as

the similarities between the genomic content of the amplified amplicons decreased as measured by

their corresponding Kullback-Leibler distance (Fig. 7).

Discussion

Rapid progress in HTS technologies in addition to the development of novel library preparation

methods have succeeded in reducing background sequencing noise, which has led to improving the

sensitivity of detecting true mutations in heterogenous samples: PCR-free methods [43, 44] have

forgone the bias associated with the polymerase base incorporation [6, 7]; DNA barcoding and

overlapping read design approaches have minimized PCR-related errors [4, 8, 45, 46, 9]. However,

these methods are bounded by their technical and theoretical limitations and often require large

amounts of input DNA. Moreover, since sequencing error cannot be completely eliminated, compre-

hensive quantification of their profiles can highlight both the efficiency and the limitations of any

methodology. In this manuscript, we introduce MERIT, which provides a platform-independent

toolkit and illustrates the importance of estimating error rates in their genomic contexts, especially

in ultra-deep HTS data.

Our results as applied to the Illumina platform confirm previous data on the differential

rates of errors in paired-end sequencing reads [17], and indicate that merging the overlapping read

pairs can notably correct errors that accumulate in sequencing instruments. We also provide a

systematic approach for estimating the optimal sequencing depth for discovery of mutations that

exist at very low abundances. Our data show that increasing sequencing depth may improve

sensitivity for detecting some mutations based on their genomic context.

We also report the application of MERIT to ultra-deep sequencing data obtained from the

amplification of multiple clinically relevant loci using four high-fidelity polymerase enzymes. Al-

though there is limited variation in both the rates of error and dependence on the genomic content

of the amplified region, our results indicate that profiling each polymerase’s misincorporations
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according to their genomic contexts has important clinical consequences. Specifically, we show

that assigning a single allele frequency threshold to call mutations may result in substantial false

positive as well as false negative variants. Not only are neighboring mutational hotspots in one

gene affected with markedly different error rates, there is significant variation in the sensitivity

of detecting common amino acid changes within each residue. These results suggest that some of

these mutations may in fact be more prevalent at sub-clonal levels in disease populations than pre-

viously reported. Small mutated clones in the TP53 and SF3B1 genes, present in >0.1% of alleles,

are shown to be strong predictors of poor survival and possible resistance to therapy in various

neoplasms [47, 48, 49, 50]; thus, their detection at very low abundances is pertinent for patient

care. Put together, our results strongly advocate mutation-specific variant calling approaches that

go beyond estimating fixed detection thresholds for all variants [51].

Methods

DNA sample. HapMap NA19240 human genomic DNA (5 µg) was obtained from Coriell, purified from immor-

talized lymphocytes using the Qiagen Autopure LS instrument in TE buffer (10 mM Tris, pH 8.0/1 mM EDTA)

with concentration of 301 ng/L. Sample quality and concentration were assessed via Nanodrop and Qubit dsDNA

assay before library preparation.

HTS platform and assay optimization. Custom amplicon-based sequencing and library preparation were

performed at GeneWiz (South Plainfield, NJ) using Illumina HiSeq2500 Rapid Run. Primers were designed using

Primer3 [52] and were used along with Illumina partial adapters to target four loci in the TP53 and SF3B1 genes

(SI Materials, Table S1) such that the paired-end reads significantly overlapped. The annealing temperature of

66°C was determined based on the product specificity and yield for all polymerases after performing gradient PCR

optimization at eight different temperatures (SI Materials, Fig. S3).

PCR amplification and indexing. Twenty PCR cycles were performed using the Hi-Fi 2X, KAPA, and SuperFi

polymerases, and 16 cycles were performed using the Ultra II polymerase in the first round of amplification. The

cycle numbers were determined after initial PCR amplification tests (Table S2, SI Materials) in order to obtain

similar amount of DNA for each enzyme.The second round of PCR for multiplexing included seven cycles for all

four polymerases. After each PCR amplification, AMPure Bead cleanup was performed. First, 0.4× ratio (20 µL

AMPure bead to 50 µL PCR product) was used to remove gDNA and larger fragments (i.e., >600 bps). For the

saved supernatant, additional 80 µL AMPure Bead was added to bring the total to a 2× ratio. The beads were

eluted with 22 µL EB (10 mM Tris, pH 8.0). Qubit quantification and Bioanalyzer analysis were performed for

quality assessment.

Alignment and merging. Paired-end (PE) reads were cleaned of adapters and primers, and were aligned to

the reference human genome hg19 assembly using the Burrows-Wheeler Aligner (BWA) tool [53]. PE reads that

properly mapped to the targeted loci were then merged. In our merging scheme, if R1 and R2 reads did not match

at a base, an N was assigned for that position. Read pairs with smaller than 50 base overlaps or with more than
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five mismatches were discarded. Phred quality score (Q) of a successfully merged locus was calculated as sum of

the qualities in R1 and R2 reads since these are independent events; Q is given by Q = −10 log10 p where p is

the probability that the base is called wrong. Merged reads were then mapped to the reference human genome,

and were filtered so that they were uniquely mapped (BWA tags X0:1 and X1:0). Finally, in order to make a

fair comparison between the error rate of merged and PE reads, only PE reads that were merged successfully and

uniquely mapped were considered. Table S3 in SI Materials represents the average depth of merged and PE reads

in different loci.

In silico depth reduction. The sequencing assay was designed to obtain an average depth of >1,000,000×

bp, but for some amplicons the average depth was substantially larger (Table S3, SI Materials). Therefore, an in

silico depth reduction procedure was performed to reduce the high depths and more importantly, generate enough

independent samples to estimate low error rates confidently. It should be noted that one of the main hurdles in

error rate estimation of high fidelity polymerases via HTS is the lack of signal as errors occur infrequently with

increased fidelity, hence, a large number of samples is required to accurately estimate errors. As performing ultra-

deep sequencing on a large number of samples is not cost-effective, alternatively, in silico samples at lower depths

can be generated from one ultra-deep sequencing run by randomly selecting reads from the original raw sequencing

data.

Error rate estimation. Context-specific erroneous base calls at each locus were assumed to follow a binomial

distribution. More precisely, the probability of a single nucleotide Xi with the genomic context ZXiZ
′, Z,Z′ ∈

{A,C, T,G}, in a specific locus i being misread as Yi, i.e., PZXiZ′→ZYiZ′ followed

PZXiZ′→ZYiZ′ = P (xi|ni, p) =

(
ni

xi

)
pxi(1− p)ni−xi ,

where p is the combined PCR and sequencing error rate and ni and xi are the total read depth and the number

of erroneous calls at position i, respectively. Assuming a position-independent p, the probability of observing m

instances of ZXZ′ → ZY Z′ error within each sample was then given by

PZXZ′→ZY Z′ = P (

m∑
i=1

xi|
m∑
i=1

ni, p) =

(∑m
i=1 ni∑m
i=1 xi

)
p(

∑m
i=1 xi) (1− p)(

∑m
i=1 ni−

∑m
i=1 xi) .

See Remark 1 in SI Materials on the sum of binomial random variables.

For the case of indels, a binomial model was used to describe the error rate as well, but instead of categorizing

them based on their context, indels were classified based on the type of inserted/deleted base, as no differential

error rates was observed for context-specific indels.

This estimated error rate has a unit of [error/base]. It is common to report the fidelity of polymerase enzymes as

[error/base/doubling] in the literature where template doubling d is given by

2d =
final DNA amount after PCR
starting DNA amount for PCR

.

Since precise amounts of input and output DNA was known for our experiment in its second round of PCR,

template doubling could be calculated and polymerase replication efficiency would be estimated as the ratio of

template doubling d over the number of PCR cycles performed (Table S4). Next, to obtain the total amount
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of template doubling after performing two rounds of PCR amplification, the total number of PCR cycles were

multiplied by the polymerase efficiency which resulted in 20.83, 16.19, 16.87, and 20.98 total template doubling for

the Hi-Fi 2X, Ultra II, KAPA, and SuperFi polymerases, respectively.

MERIT. SAMtools mpileup was used for variant identification step in the MERIT pipeline. As MERIT was

designed for ultra-deep HTS applications, the input options of its SAMtools mpileup were set to accommodate

high depths while providing the users the ability to modify these parameters based on each sequencing data’s

characteristics. Table S5 in SI Materials summarizes the default input parameters of SAMtools mpileup and those

used in MERIT. These parameters ensure the inclusion of all reads and variants for profiling errors, and may not

be suitable for calling statistically significant variants.

MERIT extracts the Phred quality score of base substitutions as well as the average Phred quality of bases before

and after indels. These quantities are not provided in VCF files generated by SAMtools. Of note, the alternate

allele and total depths at indel loci are only accurate in SAMtools’s Pileup files and not in its VCF file. Therefore,

to ensure VAF accuracy for both indels and substitutions, the reference and alternate alleles’ depths as well as the

total depths for all the variants were extracted from the Pileup file, including all the read in the analysis. Finally,

MERIT extracts the position-in-read for all variants. Such information, especially in hybrid-capture sequencing,

helps to better quantify the source of errors in HTS platforms.

Data and code availability. MERIT is open-sourced and available at www.software.khiabanian-lab.org. All

the DNA sequencing data used in this study have been deposited in the NCBI’s Sequence Read Archive (SRA)

with accession number SRP115798.
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Figure 2: Estimated context-specific substitution error rates for polymerase Hi-Fi 2X. A) R1 reads. B)
R2 read. C) Γ, the ratio of error rate in R1 over R2. P-values are computed by performing a two-tailed
z-test: p-value > 0.05 , 10-5 < p-value < 0.05 , 10-10 < p-value < 10-5 , 10-50 < p-value < 10-10 ,
p-value < 10-50 . D) Δ, the difference between their corresponding Phred quality scores. We reduced the
depth of paired-end reads to approximately 1,300,000× through an in silico depth reduction experiment.
Results are obtained by averaging over 100 independent samples to establish error bars which indicate one
standard deviation from the average.
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Figure 3: Merging of overlapped PE reads reduces context-specific error rates. A) R1 and R2 reads. B)
merged reads. Depth of merged reads for polymerase Hi-Fi 2X were reduced in silico to approximately
650,000×. Error bars indicate one standard deviation from the average of 100 independent sub-samples.
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Figure 4: Significant variation in error rates for possible amino acid changes at individual codons. A) Six
frequently mutated residues in the TP53 gene. B) Two hotspot residues in the SF3B1 gene. The higher the
rate of error for a specific base change, the lower the power to distinguish true mutations from sequencing
artifacts at its position. Here, the error rates represent the amplification by the Hi-Fi 2X polymerase.
Error bars represent one standard deviation from the mean of 100 independent sub-samples.
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Figure 5: Substitution error rates are classified based on their type (column A) and context (columns
B and C) at nine different depths: 1,000×, 5,000×, 10,000×, 25,0000×, 50,000×, 100,000×, 200,000×,
400,000×, and 700,000×. In silico depth reduction experiment was performed on merged reads, amplified
by polymerase Ultra II to an average depth of 1,930,473×. The shaded areas are uncertainty bounds of
one standard deviation around the average, derived from 500 independent sub-samples.
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Figure 6: Estimating the fidelity of four polymerases, i.e., Hi-Fi 2X , Ultra II , KAPA , and SuperFi
. A) Context-specific substitutions. B) Single-base insertions. C) Single-base deletions. D) Spearman’s

rank correlation coefficient between context-specific error profiles. Results are obtained by averaging over
100 independent samples to establish error bars, which indicate one standard deviation from the average.
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Figure 7: Spearman’s rank correlation coefficient between the context-specific error profiles of the targeted
genes as a function of the symmetric Kullback-Leibler distance between their content profiles presented in
SI Materials, Fig. S2.
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