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Abstract 

The feedback-related negativity, a frontocentral event-related potential (ERP) occurring 200-

350 milliseconds (ms) after emotionally-valued outcomes, has been posited as the neural correlate of 

reward prediction error, a key component of associative learning. Recent evidence challenged this 

interpretation and has led to the suggestion that this ERP expresses salience, instead. Here we 

distinguish between utility prediction error and salience by delivering or withholding hedonistically 

matched appetitive and aversive tastes, and measure ERPs to cues signalling each taste. We observed a 

typical FRN (computed as the loss-minus-gain difference wave) to appetitive taste, but a reverse-FRN 

to aversive taste. When tested axiomatically, frontocentral ERPs showed a salience response across 

tastes, with a particularly early response to outcome delivery, supporting recent propositions of a fast, 

unsigned and unspecific response to salient stimuli. ERPs also expressed aversive prediction error 

peaking at 285ms, which conformed to the logic of an axiomatic model of prediction error. With 

stimuli that most resemble those used in animal models we did not detect any frontocentral ERP signal 

for utility prediction error, in contrast with dominant views of the functional role of the feedback-

related negativity ERP. We link the animal and human literature and present a challenge for current 

perspectives on associative learning research using ERPs. 
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Introduction 

The reward prediction error hypothesis of associative learning provides a foundational 

understanding of adaptive behaviour and is used widely to explain the neuroimaging correlates of 

associative learning in humans (Holroyd & Coles, 2002; O’Doherty, Hampton, & Kim, 2007). The 

seminal finding that sparked much of this research is that midbrain dopamine neurons express reward 

prediction error,  increasing their firing to unexpected reward and reducing their firing to unexpected 

omission of reward (Schultz et al., 1997), with an impressive homogeneity in the firing of individual 

dopamine neurons (Eshel, Tian, Bukwich, & Uchida, 2016). The term ‘reward’ is inherently related to 

the term ‘utility’, an economic term that denotes the subjective value of an outcome, from ‘good’ to 

‘bad’ (Friedman & Savage, 1952). Reward prediction error specifically refers to the signal the brain is 

thought to compute when it encounters an unexpected delivery or omission of an appetitive outcome, 

but the literature often assumes that reward prediction error signals actually reflects the utility of either 

appetitive or aversive outcomes (Schultz, 2016). This assumption means that unexpected delivery of 

appetitive outcomes should be signalled similarly to the unexpected omission of aversive outcomes.  

This interpretation of the midbrain dopamine signal has been challenged by evidence that 

some dopamine neurons respond with phasic bursts to the delivery of both appetitive and aversive 

outcomes, suggesting that they code salience, instead of utility (Brischoux, Chakraborty, Brierley, & 

Ungless, 2009; Bromberg-Martin, Matsumoto, & Hikosaka, 2010; Joshua, Adler, Mitelman, Vaadia, 

& Bergman, 2008). Schultz (2016) proposed that the challenge salience presents to the interpretation 

of  midbrain dopamine firing as a reward prediction error can be addressed by distinguishing between 

two temporally separate signals within 500 ms of a predictive cue: an initial nondiscriminative 

response to various forms of salience, between 100-200ms from the cue, followed by a utility 

prediction error signal from 150-350ms (Schultz, 2016). Schultz (2016) listed three reasons for this 

initial salience response. Physical salience refers to physical attributes such as size and colour, 

motivational salience refers to the ability of an outcome to elicit attention due to its high motivational 

relevance, while surprise salience refers to the unexpectedness or novelty of an outcome. Clearly, both 

appetitive and aversive outcomes can have high motivational and surprise salience (Sambrook & 
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Goslin, 2014). Higher salience of stimuli increases their ability to capture attention. For example, an 

unpleasant taste is low in utility and so could elicit a negative reward prediction error, but is also high 

in motivational salience, because it represents a potentially harmful substance which would attract 

attention so that it is avoided in the future (Esber & Haselgrove, 2011).  A negative reward prediction 

error would be expressed by a reduction in neural activity, whereas a salience response would be 

expressed by an increase. 

Distinguishing between utility and salience is fundamental in the burgeoning literature in 

neuroeconomics and affective neuroscience. This is evident in recent meta-analyses of human 

neuroimaging (Bartra, McGuire, & Kable, 2013; Lindquist, Satpute, Wager, Weber, & Barrett, 2015; 

Sambrook & Goslin, 2015a). The doubt regarding what dopamine neurons compute has triggered a re-

examination of the functional role of a key event-related potential (ERP) that is thought to be 

dopaminergically mediated. The feedback-related negativity (FRN) is thought to originate from 

dopaminergic projections to the anterior cingulate cortex (ACC), evident by the finding that it is 

modulated by dopamine agonists (Holroyd & Coles, 2002; Santesso et al., 2009; Walsh & Anderson, 

2012) and combined EEG-fMRI work (Hauser et al., 2014) . The dominant theory contends that the 

feedback-related negativity (FRN) expresses utility prediction error, but recent studies provided 

evidence that it expresses salience (Garofalo, Maier, & di Pellegrino, 2014; Hauser et al., 2014; Huang 

& Yu, 2014; Pfabigan et al., 2015; Sambrook & Goslin, 2015b; Talmi, Atkinson, & El-Deredy, 2013). 

Those studies showed that the FRN reflects a negative deflection when any outcome – appetitive or 

aversive – is unexpectedly omitted, as proposed by the predicted response-outcome (PRO) model 

(Alexander & Brown, 2011) and in line with an interpretation of the FRN as expressing motivational 

salience rather than utility prediction error signal.  

A criticism of those studies is that most appetitive and aversive outcomes were not well-

matched. For example, in two studies that used money and physical pain as reinforcers (Heydari & 

Holroyd, 2016; Talmi et al., 2013) the response latency of the frontocentral EEG signal differed 

(Heydari & Holroyd, 2016). While disparate spatiotemporal dynamics are unsurprising when appetitive 

and aversive outcomes have different hedonic values and are drawn from different modalities, as in 

both of these studies, such spatiotemporal differences make it difficult to argue that a signal expresses 
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the psychological variable of salience in both appetitive and aversive conditions. Importantly, in 

traditional FRN studies that use financial outcomes, ostensibly matching modality and outcome value, 

monetary gain may represent a different level of motivational salience than monetary loss, so that the 

dimension of value could be confounded by that of salience (e.g. Bai, Katahira, & Ohira, 2015; Hauser 

et al., 2014; Weismueller & Bellebaum, 2016). Studies that employ financial outcomes rarely match 

the utility of reinforcement (e.g. Bai et al., 2015; Hauser et al., 2014) so that an FRN could stem from 

greater emotional and ensuing cognitive impact of losses over gains, as described in prospect theory 

(Sambrook, Roser, & Goslin, 2012). Indeed, there is evidence that midbrain neurons signal to negative 

more than positive prediction errors, suggesting negative prediction errors have greater salience 

(Rodriguez, Aron, & Poldrack, 2006). Because electrophysiological recordings demonstrate that 

different temporal ranges of the signal express different psychological variables, it is important to 

match outcome modality and utility.  

A functional magnetic resonance imaging (fMRI) study that addressed the issue of salience and 

utility with well-matched outcomes, using taste reinforcers, observed a salience but not a utility 

prediction error response (Metereau & Dreher, 2013), in accordance with other fMRI studies that 

examined this distinction with other outcomes (Gu et al., 2016; Hauser et al., 2014). However, the 

recent realisation that differences between the dopaminergic signature of utility prediction error and 

salience can be discerned in different temporal ranges of the signal (Schultz, 2016) means that unique 

utility responses in those studies were perhaps lost to temporal smearing in fMRI work. Here we used 

EEG, which has greater temporal resolution, to test whether any ERP could be detected which 

expresses utility prediction error rather than salience across well-matched appetitive and aversive 

outcomes.  

We used taste reinforcers, which closely resemble reinforcers used in the animal models that 

the associative learning literature uses as its key interpretative framework. Indeed, while previous 

research  has demonstrated the feasibility of using taste in appetitive conditioning in EEG (Franken, 

Huijding, Nijs, & van Strien, 2011), ours is the first ERP study of taste prediction error. Importantly, 

we used hedonically equidistant sweet and bitter tastes, which circumvents the confound of utility and 

motivational salience present in traditional FRN studies and allows a direct comparison of the signal 
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in the appetitive and aversive conditions, to distinguish between utility and salience response. We 

observed an FRN for appetitive outcomes, but a reverse FRN for aversive outcomes. Further analysis 

exploited the logic of the axiomatic model of prediction error (described under ‘Experimental Design’ 

below) to assess whether signal codes salience or utility prediction error (Roy et al., 2014; Rutledge, 

Dean, Caplin, & Glimcher, 2010). We found ERPs that expressed salience and an aversive prediction 

error; we did not observe an ERP expression of utility prediction error. These results are important 

because they contradict the dominant theory of the FRN and reveal the limits in what we can observe 

on the human scalp.  

Method 

Experimental design 

Axiomatically, a neurobiological signal of utility prediction error should be expressed as a 

specific form of interaction between outcome and expectancy (Rutledge et al., 2010). When good 

outcomes (here, delivered sweet and omitted bitter taste) and bad outcomes (omitted sweet and 

delivered bitter taste) are expected, the signal should not differentiate between them, so expected 

outcomes form a baseline for comparison, in agreement with direct recordings of dopaminergic 

neurons (Schultz et al., 1997). The difference between good and bad outcomes should be pronounced 

when outcomes are unexpected. This logic of the original model requires a manipulation of valence 

and expectancy but not of outcome domain (appetitive/aversive). It would be enough, for example, to 

cross expectancy with delivered and omitted sweet taste, or with delivered sweet and delivered bitter 

taste. A manipulation of valence and expectancy is not enough, however, to convincingly show that a 

signal expresses utility prediction error. This is because a utility prediction error signal must express 

both appetitive and aversive prediction errors, namely, it must exhibit the interaction described above 

separately in the appetitive (here, sweet) and aversive (here, bitter) domain. Moreover, although it is 

not known whether more dopamine corresponds to more or less positive amplitude in any particular 

instance, if the funnel plot for the appetitive domain shows that unexpectedly delivered positive 

outcomes are more positive than unexpectedly omitted positive outcomes, the opposite should then 

hold in the aversive domain, where unexpectedly delivered negative outcomes should be less positive 
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than unexpectedly omitted negative outcomes. Therefore, to investigate whether the ERP signal 

expresses utility prediction error or salience we manipulated taste: (bitter / sweet), expectancy 

(expected / unexpected) and outcome (whether taste is delivered / omitted) within subjects (Figure 1). 

This factorial design is appropriate to investigate whether any neurobiological signal conforms to the 

axiomatic model (Rutledge et al., 2010) . A difference wave approach cannot tell us, for example, 

whether unexpected good outcomes diverge away from Expected outcomes in the opposite direction 

than unexpected bad outcomes.  

Motivational salience is operationalised as a main effect of outcome, differentiating cues that 

predict delivered taste from those that predict omitted taste.  Surprise salience is operationalised as a 

main effect of expectancy, differentiating cues that are expected from those that are unexpected. 

These main effects could be expressed regardless of whether the taste is appetitive or aversive. To 

maintain the perceived salience of experimental taste delivery, a subset of additional trials in the 

experiment delivered low magnitude tastes (slightly sweet, slightly bitter), which were administered 

in keeping with the same experimental design, but not analysed. Bitter and sweet tastes were delivered 

in separate blocks, to prevent reward generalisation (Schultz, 2016), namely a response to the bitter 

taste because participants were expecting the sweet taste. 

Participants 

Twenty participants aged 18-35 (12 females, mean age 20 years) received £20 compensation or 

course credit points for participation in the study. Participants had normal or corrected-to-normal 

vision. They had no history of neurological or psychiatric conditions, no metabolic disorder and were 

not taking any centrally-acting medication or any medication which could make it difficult to fast for 2 

hours. Ethical approval was granted by the University of Manchester, where the study took place.  

Materials 

Pilot studies identified four concentrations of sucrose and water (sweet) and four 

concentrations of quinine and water (bitter), which elicited a range of hedonic ratings of pleasantness 

and unpleasantness, respectively. For sweet those were 1.0, 0.6, 0.2 and 0.1 mole of sucrose, and for 
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bitter those were 1.0, 0.75, 0.25 and 0.05 millimole of quinine. Each solution also included 10 

millilitres of lemon juice per litre of liquid to balance the sweetness of the sucrose whilst maintaining 

symmetry between sweet and bitter taste.  

For each participant, two concentrations from each taste were selected, corresponding to 

equivalent high and low taste magnitude pairs, whose hedonic ratings were within 10% of one another 

(see procedure).  The low magnitude hedonic ratings were at least 20% less than the high magnitude 

concentrations for that participant. 

A neutral solution was designed to mimic the ionic balance of saliva to minimise reward 

associated with the liquid, and comprised of distilled water, 0.012 moles sodium bicarbonate and 0.012 

moles potassium chloride.  

Taste magnitude and likelihood were communicated to participants by visual cues, represented 

in figure 1, which were matched for luminance.  The experiment was conducted on a Matlab platform 

(Mathworks). 

Apparatus 

Participants’ heads were stabilized using a chin rest. Four rubber tubes [bore 2mm, wall 

0.5mm, Altec Product LTD] were attached to the chin rest and to the participant’s face with medical 

tape. The tubes were attached to 50ml syringes (Plastipak syringe 50ml Luerlok, Fisher Scientific) 

fitted into pumps (Harvard Apparatus, pump 33,) in the neighbouring room. Pump activity was 

controlled by software (Matlab, Mathworks). 

Procedure 

Participants made two visits to the lab, and were instructed to avoid food and water for two 

hours prior to each visit.  

On the first visit, in order to establish equivalent behavioural responses in bitter and sweet, 

participants rated four concentrations of quinine and four concentrations of sucrose using the labelled 

magnitude scale (LMS), a validated scale for collection of intensity ratings (Hayes, Allen, & Bennett, 

2013). The LMS is a quasi-logarithmically spaced verbally labelled line describing hedonic intensity 

from strongest imaginable to no sensation. Participants were instructed to place a mark on the line 
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where their perceived intensity of pleasantness for sweet, or unpleasantness for bitter, lay. Bitter and 

sweet were administered in separate blocks. Block order was randomised. The taste stimulus was 

delivered for 1000 ms. Participants then rated the taste on the LMS and had a sip of water before 

moving on to the next taste. Participants rated each stimulus five times in each block. Trial order was 

randomised. On the basis of those ratings, four concentrations were selected for each participant (see 

Materials).    

On the second visit, participants were sat in a quiet, dimly lit room. A total of 720 trials were 

administered in the high magnitude condition. Each trial lasted 10 seconds, and the entire session lasted 

3 hours. Bitter and sweet were administered in separate, alternating and counterbalanced blocks. The 

different magnitude and probability conditions were presented pseudorandomly within each block.  

Participants were advised at the beginning of a block whether it was a ‘sweet’ block, or a 

‘bitter’ block. Figure 1 depicts a schematic of the design and a timeline of each trial. A fixation cross 

was presented for 500ms followed by a veridical probability cue presented for 750ms which set up 

expectations: either 75% probability of taste delivery and 25% taste omission, or 75% probability of 

taste omission and 25% taste delivery. Next, an outcome cue was presented for 750ms. The outcome 

cue signalled the actual outcome (with 100% probability) of either delivery (orange) or omission (grey) 

of the taste. The probability of the deliver/omit outcome cues followed the statistics of the expectation 

cues: On trials with 25% probability of taste delivery, the taste delivery outcome cue was presented 

25% of the time, and on trials with 75% probability of taste delivery, the taste delivery outcome cue 

was presented 75% of the time. Next, the taste was delivered, or omitted, based on the outcome cue. On 

‘omit’ trials a neutral solution was delivered. Both taste solutions and neutral solutions were 

administered for 1000ms. Finally, a wash of neutral solution for 1250ms prepared the participant for 

the next trial. There was a pause of 2500ms during which the screen was black before the next trial 

began (see figure 1). 

Breaks were provided every 40 trials. Every 80 trials a randomly selected cue was presented to 

participants and they were asked to identify whether they had seen this in the last 40 trials. This was 

designed as a check that participants were paying attention to the images on the screen.  
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 EEG recording 

Continuous EEG recording was acquired at a sampling rate of 512 Hertz using a 64 electrode 

Active-Two amplifier system (Biosemi, Amsterdam, Netherlands) with Actiview acquisition software 

(Biosemi, Netherlands). Here, an active and passive electrode replaces the ground electrode to create a 

feedback loop that drives the average potential of the subject (the common mode voltage) as close as 

possible to the analogue-to-digital converter reference voltage in the analogue-to-digital box. Vertical 

and horizontal electro-oculograms (EOG) was measured for detection of eye-movement and blink 

artefacts. Impedances were kept at 20 KΩ or less. The experiment was conducted in a dimmed, quiet 

room.  

EEG data analyses 

Preprocessing 

The ERP time-locked to the outcome cue was preprocessed using SPM12 (Ashburner et al., 

2013; Litvak et al., 2011). The signal was re-referenced to the mean of all scalp electrodes, 

downsampled to 200 Hertz (Hz), and filtered with a Butterworth filter between 0.1 and 30 Hz. Epochs 

were extracted 200ms before the outcome cue to 600ms after, importantly avoiding the actual delivery 

of any fluid, which occurred 750ms after the outcome cue. Artefact rejection was achieved by 

following two steps. Firstly, eyeblinks were modelled and underwent artefact rejection at a lenient 

threshold of 150uV. The resulting eyeblinks model was used to correct for eyeblinks, using the singular 

value decomposition (SVD) technique implemented in SPM12. Any remaining trials in which the 

signal in any of the electrodes exceeded 80 μV were rejected. On average, 17% of trials were removed 

across participants and conditions. One participant was removed from the analysis due to high noise 

levels in the ERP signal. Single-trial data were averaged separately for the eight conditions using the 

“robust averaging” method in SPM12b (Litvak et al., 2010). Robust averaging takes into account 

distribution of data for every channel and trial by down-weighted outlier trials. Weights were determine 

for each condition separately so as not to unduly distort signal in unexpected trials which, by definition, 

had fewer trials than the expected condition. Averages were then filtered with a low-pass filter with a 

cut-off of 30Hz to remove high frequencies introduced by the robust averaging method. These 
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preprocessed signals were used in all of the analyses reported later on in the manuscript. They were 

only additionally manipulated in the SPM analysis, as reported below. 

Analysis of habitation  

We obtained ERPs time-locked to taste delivery to test for ERP habituation to the actual 

delivery of taste over time. For the purpose of the habituation analysis we analysed response to the 

taste itself (rather than to the cue). Although there is a risk that signal-to-noise ratio may be reduced in 

taste ERP trials due to muscle artefacts associated with the stimulus, previous research has confirmed 

an ERP response to taste at electrodes Fz, F3, F4, Cz, C3 and C4 (Franken et al., 2011; Kobal, 1985). 

We averaged across these electrodes within the window of taste delivery (0-1000ms after taste onset) 

for the first and second half of the experiments for the four conditions where taste was delivered, 

regardless of how expected the taste was. These data were analysed in SPSS entered into a 2 (taste) x 2 

(experiment half) repeated-measures ANOVA using a threshold of p < .05.  

Difference wave analysis of the FRN 

Firstly, we conducted a difference-wave analysis to facilitate comparison with previous results. 

We extracted data from vertex electrodes Fz, FCz and Cz, 240-340ms after the outcome cue, following 

the recommendations of a meta-analysis which identified this spatiotemporal window as the most likely 

latency and location of the FRN signal of prediction error (Sambrook & Goslin, 2015a). Difference 

waves representing unexpected outcomes were computed using the conventional loss-minus-gain 

technique. In sweet we computed the omission-delivery difference wave, and in bitter we computed the 

delivery-omission difference wave. We conducted a one-sample t-test on this signal, following the 

analysis protocol of a recent study of the FRN to appetitive and aversive outcomes using a threshold of 

p < .05 (Heydari & Holroyd, 2016). 

SPM analysis of frontocentral electrodes in the 200-380ms time window 

The FRN literature lacks consistency in measuring the FRN. The meta-analysis we relied on to 

compute the difference waves above (Sambrook & Goslin, 2015a) acknowledged that variability in 

methods may complicate a blanket application of that time window.  Though the FRN is linked to 

activity in the ACC (Walsh & Anderson, 2012) and well-defined as being expressed at frontocentral 

electrodes after 200ms, the specific electrode and latency varies between studies, meaning the peak 
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signal may be overlooked. This is a particular issue in more complex experimental designs or where 

novel modalities, such as pain, could change the morphology of the signal (Garofalo et al., 2014; Talmi 

et al., 2013). Because we used a novel feedback modality here (taste), and because the difference-wave 

approach does not allow a test of the predictions of the axiomatic model (Talmi, Fuentemilla, Litvak, 

Duzel, & Dolan, 2012), we employed an additional data-driven approach for data analysis.  

Global Field Power (GFP) is a technique that measures variance across all electrodes, 

conditions, and participants, and has traditionally been used to select spatiotemporal analysis windows 

(Lehmann & Skrandies, 1980; Skrandies, 1990). Using GFP we observed two peaks in  frontocentral 

ERP activity, where the FRN is normally expressed (Walsh & Anderson, 2012), 200-380ms from the 

outcome cue (figure 2). This window was used for statistical analysis with  SPM, an established 

technique (Litvak et al., 2011) which employs the General Linear Model to estimate parameters over 

electrodes and time, and which has been successfully used to study the FRN (Hauser et al., 2014; 

Litvak et al., 2011; Talmi et al., 2013). For this analysis the preprocessed data were converted to a 

single three-dimensional space by time image was created for each subject and condition. This 

conversion is achieved by generating a scalp map for each condition and stacking these maps over 

peristimulus time. The resulting images were smoothed using a Gaussian kernel full-width at half-

maximum of 8 mm/ms. Individual smoothed images for each condition were entered into a two 

statistical models, one for each taste, and analysed with a 2 (expectancy: expected/unexpected) x 2 

(outcome: delivered/omitted) repeated-measures ANOVA. Higher-order effects were analysed first, 

and, used to mask exclusively the analysis of lower-order effects. Following (Talmi et al., 2013), a 

peak threshold of p < 0.005 and a cluster extent threshold of 100 voxels was used. All key results are 

reported corrected for multiple comparisons at the cluster level using a strict FWE < .05.  

Results 

Behavioural results  

We ran a 2 (magnitude: high, low) x 2 (taste: bitter, sweet) factorial ANOVA on the ratings of 

intensity for bitter and sweet for the concentrations we selected for each participant. Unsurprisingly, 

there was a significant main effect of magnitude on the ratings, where high magnitude tastes were rated 
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as significantly more intense than low (F(1,18) = 62.17, p < .001, 2
Pη  = .775). There was no significant 

effect of taste (F(1, 18) = 3.135, p = 0.94, 2
Pη  = .148), and no interaction (F(1, 18) = .835, p =.373, 2

Pη  

= .044). Participants were 97% accurate in identifying whether or not they had seen a cue in the 

previous 40 trials, which confirmed that they were attending to the cues. 

Electrophysiological results 

Habituation  

Taste-elicited amplitudes showed no significant effect of taste (F(1, 18) = 1.309, p  = .268, 2
Pη  

= .068), experiment half (F(1, 18) = 2.204, p =.155, 2
Pη  = .109), or interaction (F(1, 18) = .016, p 

=.902, 2
Pη  = .001), suggesting participants did not habituate to the taste. 

Difference-wave analysis of the FRN 

Figure 3 depicts a significant FRN in sweet (t (18) = -2.152, p =.045), replicating previous 

work. Crucially, in bitter we observed a significant ‘reverse’ FRN (t (18) = 2.78, p = .012), replicating 

our previous findings with pain (Talmi, Anderson & El-Deredy, 2013).   

SPM analysis of frontocentral electrodes in the 200-380ms time window 

Aversive and reward prediction error.  

The outcome by expectancy interaction was analysed for each taste. Figure 4 shows that the 

pattern of this interaction was similar in both tastes, but more pronounced in bitter. In bitter, the 

interaction was expressed in a significant cluster peaking at 285ms, which extended 251-317ms after 

the outcome cue (peak at C2, x = 17.00, y = -3.25, cluster p (FWE) = .032, cluster size 618 voxels). We 

conducted further analyses to unpack this interaction. Masked inclusively by the interaction of outcome 

and expectancy, unexpected delivered outcomes were significantly more positive than omitted (peak at 

C2, x = 12.75, y = -8.63, extending 200-368ms after the outcome cue, cluster p (FWE) <.001, cluster 

size 2855 voxels). There was no significant difference between expected delivered and omitted 

outcomes.  Unexpected delivered outcomes were significantly more positive than expected (peak at Cz, 

x = 0.00, y = -8.63, extending 200-380ms after the outcome cue, cluster p (FWE) = .003), and 

unexpected omitted outcomes were significantly more negative than expected (peak at FC4, x = 34.00, 
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y = 7.50, extending 269-295ms after the outcome cue, peak p (FWE) < .001). As shown in figure 4, this 

funnel-shaped signal adhered to the criteria of an axiomatic model of prediction error in the aversive 

domain. In Sweet the outcome by expectancy interaction did not survive our significance threshold.  It 

can be readily appreciated that the numerical pattern of the nonsignificant interaction in sweet 

contradicts an interpretation of the frontocentral signal as a utility prediction error, because in both 

tastes unexpected delivered outcomes – good in sweet, bad in bitter - yield more positive amplitudes 

than unexpected omitted outcomes.  

Motivational salience 

The analysis of the main effect of outcome in each taste was masked exclusively by the 

interaction of outcome and expectancy. In bitter, the effect of outcome yielded a frontocentral cluster 

where amplitude for delivered outcomes was more positive than for omitted outcomes, peaking at 

215ms and extending 200-287ms after the outcome cue (peak at FC1, x = -21.25, y = 2.13, cluster p 

(FWE) < .001, cluster size 3582 voxels). A similar result was obtained in sweet, where a frontocentral 

cluster peaked at 220ms and extended 200-265ms after the outcome cue (peak at C1, x = -17.00, y = -

3.25, cluster p (FWE) = .001, cluster size 2181 voxels).  

Surprise salience 

The analysis of the main effect of expectancy in each taste was again masked exclusively by 

the interaction of outcome and expectancy. In bitter, the effect of expectancy was expressed in a 

frontocentral cluster peaking at 370ms and extending 306-380ms, where amplitude for unexpected 

outcomes was more positive than amplitude for expected outcomes (peak at FCz , x = -8.50, y = 7.50, 

cluster p (FWE) <.001, cluster size 2861 voxels). Again, a similar result was obtained in sweet, where 

the effect of expectancy yielded a frontocentral cluster peaking at 375ms (peak at C1, x = -8.5, y = -

3.25, 309-380ms, cluster p (FWE) <.001, cluster size 2525 voxels). 

Analysis across tastes 

The analyses above yielded a number of similarities across tastes which are explored here with 

a more comprehensive model, including taste as an additional within-subject factor. Although the 

Outcome-by-expectancy interaction was of different magnitudes in bitter and sweet, the three-way 

interaction between outcome, expectancy, and taste was not significant. The two-way outcome-by-
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expectancy interaction (across bitter and sweet tastes) yielded a frontocentral cluster peaking at 285ms 

which extended 273-317ms after the outcome cue (peak at C2, p < .001, x = 21.25, y = -3.25). While 

significant, this activation did not survive our conservative correction for multiple comparisons; this is 

clearly because the weak interaction in sweet attenuated the highly significant interaction in bitter. The 

main effect of outcome, masked exclusively by the interaction of outcome and expectancy, yielded a 

frontocentral cluster peaking at 220ms and extending 200-342ms after the outcome cue (peak at C1, x = 

-21.25, y = -3.25, cluster p (FWE) < .001, cluster size 4168 voxels). The main effect of expectancy 

masked exclusively by the interaction of outcome and expectancy yielded a frontocentral cluster 

peaking at 370ms and extending 203-380ms after the outcome cue (peak at FCz , x = -4.25, y = 2.13, 

cluster p (FWE) < .001, cluster size 3902 voxels). 

Discussion 

This is the first study to characterise ERP expression of prediction error using taste, thus 

bridging a gap between human EEG studies on reinforcement learning and those carried out in animal 

models (Holroyd & Coles, 2002; Schultz, Dayan, & Montague, 1997).  We delivered and omitted 

expected and unexpected hedonically matched appetitive and aversive tastes. Our goal was to 

distinguish between utility prediction error signals, where amplitude should be most positive (or 

negative) for delivered appetitive and omitted aversive tastes and most negative (or positive) for 

omitted appetitive and delivered aversive tastes, and a salience response, where amplitude should be 

most positive (or negative) for the delivery of both appetitive and aversive tastes compared to their 

omission. Following the logic of the axiomatic model (Caplin & Dean, 2008; Rutledge et al., 2010) we 

were particularly interested in signal that differentiated aversive and appetitive taste and taste omission 

cues more strongly when they were unexpected. For both appetitive and aversive taste, we observed 

continued expression of salience (Sambrook & Goslin, 2015b) across the entire 200-380ms time 

window. There was also an expression of aversive but not reward prediction error at the latency most 

characteristic of the FRN, peaking at 285ms (Holroyd, 2004; Sambrook & Goslin, 2015a).  

The latency of the FRN, considered the ERP correlate of prediction error, is variable between 

studies and is usually identified between 200-350ms after the outcome (Hauser et al., 2014; Heydari & 
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Holroyd, 2016; Holroyd, Hajcak, & Larsen, 2006; Holroyd, 2004). The lack of consistency in selection 

of latency windows makes it difficult to conclude whether the same signal is being studied across 

laboratories. A meta-analysis suggested that frontocentral vertex electrodes are most likely to express 

reward prediction error, mainly related to monetary reward, around 240-340ms, although the latency 

could be influenced by the modality of the outcome and other features of the experimental set-up 

(Sambrook & Goslin, 2015a). Here we examined the ERPs from 200ms onwards, firstly employing the 

traditional difference-wave approach within the electrodes and time-window recommended in the 

meta-analysis, and secondly in through a data-driven analysis in the spatiotemporal window of 200-

380ms identified through coarse GFP analysis. 

The commonly-used loss-gain difference-wave analysis (Heydari & Holroyd, 2016) was 

conducted to facilitate comparison between this study and previous FRN studies. We observed 

significant expression of appetitive FRN and aversive reverse-FRN. This result was driven by an 

increased positivity in response to delivered over omitted tastes in both appetitive and aversive 

domains and directly replicates our previous work, where we observed increased positivity to the 

delivery of pain and money  (Talmi et al., 2013), with a reverse-FRN for pain. The implication of these 

results is that the FRN may express response to more and less salient stimuli, rather than differentiate 

‘bad’ from ‘good’.  

In the data-driven analysis ERPs had a more positive amplitude for tastes that were about to be 

delivered compared to those that were about to be omitted, and were also more positive for tastes that 

were unexpected compared to those that were expected. Using the terminology of Schultz (2016), this 

expression of motivational salience and surprise salience, respectively, was observed for both 

appetitive and aversive outcomes (i.e. sweet and bitter tastes). The response to motivational salience 

peaked particularly early, around 220ms, in agreement with recent proposals of an initial unsigned 

response that represents various forms of salience rather than utility (Schultz, 2016). This finding 

replicates our previous work with pain and money outcomes, where ERPs differentiated between pain 

and money that were about to be delivered and those about to be omitted around 200-290ms after the 

cue (Talmi et al., 2013). It is important to note that the main effect of outcome here drove the results 

reported above for the traditional difference-wave analysis. As per previous suggestions (Holroyd, 
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2004; Sambrook & Goslin, 2015b) the early response to motivational salience is likely related to the 

N2. 

Frontocentral ERPs at 285ms in the aversive domain, in experimental blocks where only 

Delivery or Omission of bitter taste was possible, conformed to the logic of an axiomatic model of 

prediction error. The key pattern specified by the Axiomatic Model of prediction error is an interaction 

between outcome and expectancy (Rutledge et al., 2010).  At that time window in the bitter condition 

ERPs were more positive for outcome delivery relative to omission, a difference that was more 

pronounced when outcomes were unexpected. The signal was also significantly more positive for 

delivered unexpected than delivered expected outcomes, and more negative for omitted unexpected 

than expected outcomes, in line with the predictions of the axiomatic model. On its own, as discussed 

earlier, the signal observed in the bitter condition adheres to criteria for an aversive prediction error, but 

cannot be interpreted unambiguously as a utility prediction error signal. 

In the appetitive domain at that same latency, in blocks where only delivery or omission of 

sweet taste was possible, the signal followed a similar pattern to that found in the aversive domain, but 

while the main effects of outcome and expectancy were significant, the interaction between them was 

not. Two aspects of this result are important. First, because this outcome by expectancy interaction is a 

hallmark of a neurobiological reward prediction error signal we conclude that we could only observe an 

aversive prediction error here, but not a reward prediction error. Clearly, the finding that frontocentral 

ERPs did not express prediction error in the appetitive domain already means that they also did not 

express utility prediction error, a quantity which should be equally well observed in both appetitive and 

aversive domain; yet the null interaction between outcome and expectancy in sweet could be just due to 

low power. Crucially, a utility prediction error signal should present with an opposite sign in each 

domain, but the direction of averages in all four conditions was the same. Clearly, a neurobiological 

signal of utility prediction error would not be expressed as greater positivity for both unexpectedly 

good and bad outcomes. Taken together, the frontocentral signal observed in this experiment did not 

express a utility prediction error. Other aspects of the data suggest that ERPs also did not track utility 

per se. For example, ERPs did not differentiate expected omission and delivery of a bitter taste (which 
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have different utility), but did distinguish between expected and unexpected sweet taste (which have 

the same utility).  

We did not observe a reward prediction error pattern in the appetitive domain, although such a 

pattern has been readily observed in previous work (Sambrook & Goslin, 2015a; Walsh & Anderson, 

2012) including in our own previous study (Talmi et al., 2013). Instead ERPs in the appetitive domain 

expressed motivational and surprise salience. This may be due to the reinforcement modality we 

selected. Very few ERP studies of FRN used primary reinforcers. Although some previous ERP studies 

of aversive prediction error used pain, which is a primary reinforcer (Garofalo et al., 2014; Heydari & 

Holroyd, 2016; Talmi et al., 2013), all previous ERP studies of reward prediction error, including those 

that used pain in the aversive domain, used money, a secondary reinforcer, in the appetitive domain. 

We used primary taste reinforcers because appetitive taste is known to elicit a dopamine response. 

Second-by-second dopamine release in response to food cues signals future appetitive outcomes 

(Hamid et al., 2015), and anticipation of appetitive taste activates the dopaminergic system (O’Doherty, 

Deichmann, Critchley, & Dolan, 2002).  In agreement with previous research (Nitschke et al., 2006), 

we did not see neural habituation to appetitive taste. Moreover, we followed routine practice in animal 

models and ensured that the hedonic value of our taste reinforcers was titrated so that it was positive 

and high for each individual participant, and we deprived participants of food and water beforehand, 

which enhanced the incentive salience (Berridge, 2012; McClure, Daw, & Montague, 2003)  of the 

sweet taste. We propose, therefore, that the sweet taste is more salient than the small amounts of money 

participants gained in previous work, and so ERPs to sweet taste prioritised expression of salience, 

rather than prediction error. This hypothesis can be tested in future work where monetary and taste 

reinforcers are directly compared. We also acknowledge that it is possible, as the use of sweet taste as 

an appetitive reinforcer in humans is fairly novel, that the sweet taste was salient, but not appetitive, 

despite titration of the hedonic intensity of the sweet taste, and so elicited a salience response. 

However, previous research has successfully used sweet appetitive taste reinforcers (Franken et al., 

2011; Kim, Shimojo, & O’Doherty, 2011; McClure, Berns, & Montague, 2003), so this hypothesis 

remains questionable. Future studies could acquire trial-by-trial ratings of hedonic intensity and 

appetitive value of sweet taste to test this. 
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We employed a Pavlovian task because this task established the fundamental reward prediction 

error result in animal models, which we aimed to be closest to. However, the fact that we employed a 

passive Pavlovian task, in contrast to the majority of FRN experiments which tend to employ 

instrumental learning tasks, could also contribute to the lack of reward prediction error signal. This is 

in keeping with previous work showing a smaller effect of reward prediction error in passive tasks 

(Sambrook & Goslin, 2015a). Therefore, it is possible that the FRN signals an instrumental, rather than 

a Pavlovian, reward prediction error.  The fact that the ERPs signalled prediction errors in the aversive 

domain clarifies that domain cannot be ignored in the pursuit of an ERP signature of prediction error. 

As we did not use source localisation analysis, we cannot make claims about where the signal 

originated from. A number of different regions expressed salience in previous fMRI work, summarised 

in a recent meta-analysis (Lindquist et al., 2015). The most likely sources of the salience response are 

the ACC, which receives prediction error signals from the midbrain, and the insula, which together 

with the ACC form the salience network (Seeley et al., 2007). The ACC was the source of the 

frontocentral salience response to money in a previous ERP-fMRI study, and this signal was shown to 

be signalled directly from dopaminergic sources to the ACC (Hauser et al., 2014). Furthermore, the 

ACC is known to be the source of the FRN ERP (Miltner, Braun, & Coles, 1997; Walsh & Anderson, 

2012). The anterior insula and striatum have also been shown to express salience to appetitive and 

aversive tastes (Metereau & Dreher, 2013). The aversive prediction error signal we recorded on the 

scalp may have originated from the dopaminergic midbrain, involved in previous studies of aversive 

prediction error (Brischoux et al., 2009; Seymour et al., 2004), but its pathway to influencing scalp 

ERPs awaits further work. 

Our findings go beyond existing fMRI work to exploit the temporal resolution of EEG and 

contradicts the dominant perspective on the FRN ERP as a signal of reward prediction error (Abler, 

Walter, Erk, Kammerer, & Spitzer, 2006; Carlson, Foti, Mujica-Parodi, Harmon-Jones, & Hajcak, 

2011; Hauser et al., 2014; Holroyd, 2004; Holroyd & Coles, 2002; Walsh & Anderson, 2012). They 

agree better with recent work that proposes this signal expresses salience (Garofalo et al., 2014; Hauser 

et al., 2014; Huang & Yu, 2014; Pfabigan et al., 2015; Sambrook & Goslin, 2015b; Talmi et al., 2013). 

Our findings also agree with the PRO model, which asserts that ACC activity reflects negative surprise, 
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responding to the unexpected omission of both appetitive and aversive outcomes (Alexander & Brown, 

2011), in that ERPs were more negative to omissions across the board.  

Our data show conclusively that frontocentral ERPs at the time-window of the FRN does not 

express outcome valence, contradicting the interpretation of the FRN as a utility prediction error signal 

(Holroyd, 2004). Across the time window of interest and across tastes ERPs were more positive for 

cues that predicted salient outcomes, namely, delivered or unexpected outcomes. The spatiotemporal 

evolution of the signal was differentially sensitive to the feature that rendered the predicted outcome 

salient, with a particular time window where the response in the aversive domain appeared to go 

beyond salience to resemble an aversive prediction error.  
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Figure captions 

Figure 1: Experimental paradigm. Top:  The timeline of each trial. After a fixation cross, a 

veridical probability cue set the expectation of the taste delivery/omission chance of the trial. An 

outcome cue followed, declaring the impending true outcome of the trial, deliver/omit, which triggered 

a theoretical prediction error.  The taste was delivered, or omitted, based on the outcome cue. A rinse 

solution of artificial saliva prepared the participant for the next trial. Bottom: Number of trials in each 

condition. ‘Expected’ outcomes were presented 75% of the time, and ‘unexpected’ outcomes 25% of 

the time, to match the veridical probability cue.  

Figure 2: Detailed results. Top: group average ERPs for all conditions. ERPs were averaged 

over frontocentral electrodes and  time-locked to the outcome cue presented at 0ms. Bottom: Global 

field power. Global field power identified two peaks in time windows 200 to 380ms post outcome cue. 

Topographic plots at the top of this panel show the topography of the global field power for the two 

time-windows. 

Figure 3: Difference-wave FRN analysis. Difference waves averaged over Fz, FCz and Cz 

across participants, subtracting unexpected loss from unexpected gain. The difference waves are time-

locked to the outcome cue presented at 0ms. The search volume (240-340ms), based on a meta-

analysis, is shaded. Topographic plots show the unexpected loss-gain difference wave topographies 

for the shaded time-window.   

Figure 4: Aversive prediction error but no reward prediction error. Left: Difference waves 

subtracting delivered from omitted outcomes. The difference waves were averaged over frontocentral 

electrodes across participants, and time-locked to the outcome cue presented at 0ms. The temporal 

boundaries of the significant interaction are shaded in grey.  In the Sweet condition (lower left) the 

interaction was not significant. Right: Voltages at the peak voxel of the cluster (inset, plotted on the 

SPM glass brain) corresponding to the significant Outcome-By-Expectancy interaction cluster in the 

Bitter condition (upper right) and the nonsignificant Outcome-By-Expectancy interaction in the Sweet 

condition (lower right). Error bars represent the standard error of the mean.   
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