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Abstract

Computational models of classical conditioning have made significant
contributions to the theoretic understanding of associative learning, yet
they still struggle when the temporal aspects of conditioning are taken
into account. Interval timing models have contributed a rich variety of
time representations and provided accurate predictions for the timing of
responses, but they usually have little to say about associative learning.
In this article we present a unified model of conditioning and timing that
is based on the influential Rescorla-Wagner conditioning model and the
more recently developed Timing Drift-Diffusion model. We test the model
by simulating 10 experimental phenomena and show that it can provide
an adequate account for 8, and a partial account for the other 2. We argue
that the model can account for more phenomena in the chosen set than
these other similar in scope models: CSC-TD, MS-TD, Learning to Time
and Modular Theory. A comparison and analysis of the mechanisms in
these models is provided, with a focus on the types of time representation
and associative learning rule used.

Author Summary

How does the time of events affect the way we learn about associations between
these events? Computational models have made great contributions to our
understanding of associative learning, but they usually do not perform very
well when time is taken into account. Models of timing have reached high levels
of accuracy in describing timed behaviour, but they usually do not have much to
say about associations. A unified approach would involve combining associative
learning and timing models into a single framework. This article takes just this
approach. It combines the influential Rescorla-Wagner associative model with a
timing model based on the Drift-Diffusion process, and shows how the resultant
model can account for a number of learning and timing phenomena. The article
also compares the new model to others that are similar in scope.
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1 Introduction

Classical conditioning theories aim to understand how associations between
stimuli are learned. Ever since Pavlov (1927) the process of association forma-
tion has been understood to depend crucially on the temporal relations between
stimuli (Savastano and Miller, 1998; Balsam et al., 2006; Kirkpatrick, 2013).
Yet, classical conditioning theories have so far struggled to work when time is
taken into account as an attribute of the stimulus representation. The study of
time as a mental representation is the object of a separate area of study known
as interval timing. Interval timing theories have produced a rich variety of time
representations (Gibbon et al., 1984; Killeen and Fetterman, 1988; Machado,
1997; Staddon and Higa, 1999; Matell and Meck, 2004), and therefore are a
natural place to look for ways to integrate time into classical conditioning. In
this paper we first analyse previous efforts in this direction before introducing
a new hybrid classical conditioning and timing model.

The process of association formation is understood to be of fundamental sur-
vival value for both human and non-human animals. Prediction, which forms
the core of classical conditioning, allows the organism to adapt to significant
events in its surroundings. A prototypical experiment in classical conditioning,
a type of associative learning, involves a neutral stimulus and an unconditioned
stimulus (US) which is capable of eliciting an unconditioned response (UR).
After repeated pairings of both stimuli in a specified order and temporal dis-
tance, the neutral stimulus comes to elicit a response similar to the UR. This
response is called the conditioned response (CR) and the neutral stimulus is
said to have become a conditioned stimulus (CS). Classical conditioning theo-
ries typically conceptualize this process as the formation of a link (association)
between the internal representations of CS and US. Their basic building blocks
are (Pearce and Bouton, 2001; Brandon et al., 2002): (a) the representations
of stimuli, and (b) a learning rule to update the association weights between
these representations. Although most theories do not attempt to find neuro-
physiological correlates, these constructs are nonetheless commonly assumed to
be instantiated by (a) neural activity in the form of spike rates, and (b) synaptic
plasticity (Moore, 2002; Klopf, 1988; Gallistel and Matzel, 2013). These have
found some support in the neuroscientific literature, particularly studies of the
role of dopamine in reward prediction (Schultz et al., 1997; Dayan and Niv,
2008; Niv, 2009; Eshel, 2016). However it is important to note that there is still
no widely accepted complete neural mechanism for classical conditioning and
that most theories stay at the computational level of explanation.

Stimulus representations are generally thought of as neural activation that
is elicited by the stimulus, which may linger for a short time as a ‘trace’ af-
ter stimulus offset. Representations are commonly one of two types: molar or
componential. Molar (or elemental) trace theories treat the stimulus as a single
conceptualized unit whose activity is usually assumed to peak quite early fol-
lowing stimulus onset, and then gradually decrease (Hull, 1943; Wagner, 1981;
Sutton and Barto, 1981; Schmajuk and Moore, 1988; McLaren and Mackintosh,
2000; Harris and Livesey, 2010). In contrast, componential trace theories break
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down the CS representation into smaller units, each capable of being associated
with the US, with some units more active early during the CS and others late,
but all leaving a trace after activation (Desmond and Moore, 1988; Grossberg
and Schmajuk, 1989; Vogel et al., 2003; Ludvig et al., 2008). Learning rules
may be classified according to different criteria. An important period in the
recent history of the field gave rise to one of these criteria. Prior to 1970’s
conditioning used to be rooted in the stimulus-response tradition, which at-
tributed crucial importance to the temporal pairing, or contiguity, of stimuli
for the development of associations. The linear operator learning rule (Hull,
1943) is one of the products of that period. In the late 1960’s and early 1970’s
important experimental discoveries using compound stimuli, that is, a stimulus
formed by combining other individual stimuli, showed the contiguity view to
be incomplete (Rescorla, 1988; Gallistel and Gibbon, 2001). These compound
experiments indicated that the formation of associations also depended on the
reinforcement history of the individual elements forming the compound stimu-
lus. This led to the development of new learning rules (Rescorla and Wagner,
1972; Mackintosh, 1975; Pearce and Hall, 1980) capable of combining individual
reinforcement histories in compounds, which the linear operator rule cannot.
The first, and arguably still the most influential, of these learning rules is the
Rescorla-Wagner (RW, Rescorla and Wagner, 1972).

The CR is usually not a single event. Organisms time their responses so
that they emerge gradually during the duration of the CS and reach maximum
frequency or intensity around the time of reinforcement. Interval timing theories
have attempted to provide an account for this timing of the CR. One of the
fundamental properties of timing behaviour is that it is approximately timescale
invariant, i.e. the whole response distribution scales with the interval being
timed (Gibbon, 1977; Allman et al., 2014).One of the consequences of timescale
invariance is that the coefficient of variation, that is the standard deviation
divided by the mean, of the dependent measure of timing is approximately
constant. A number of timing models have put forth explanations for timescale
invariance and other timing properties (how time is encoded, how it is stored in
memory and how it gets translated into behaviour) by recourse to an internal
pacemaker. The most influential pacemaker-based timing theory to date is
Scalar Expectancy Theory (SET, Gibbon et al., 1984; Gibbon and Church,
1984). The pacemaker is supposed to mark the passage of time by emitting
pulses. These pulses can be gated to an accumulator via a switch which closes
at the start of a relevant interval and opens when the interval is finished. The
accumulator count is kept in working memory. At the end of the interval the
current count is transferred to a long-term reference memory. Behaviour is
guided by the action of a comparator which actively compares the count in
working memory to the one retrieved from reference memory.

In spite of the considerable overlap, interval timing and classical conditioning
are not easily integrated. Most conditioning theories are trial-based, that is they
consider the trial as the unit of time. A trial is generally taken to be the state
where a CS is present (or CSs in compound) and which may or may not contain
a US (or USs). The most influential model in this category is the Rescorla-
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Wagner (RW, Rescorla and Wagner, 1972). In order to account for different
stimulus durations, trial-based theories like RW must resort to some sort of
time discretization, usually by subdividing the trial into ‘mini-trials’. FEach
mini-trial is treated as a trial in its own right, which are then used to update
associative links. This gives rise to the problem of deciding on a particular
discretization. Also, given that humans experience time passing as a continuous
flow, it is unlikely that animals discretize their conditioning experience in such
a way. A more realistic approach to timing is taken by real-time theories. These
theories attempt to formalize the concept of a continuous flow of time.

The Temporal Difference model (TD, Sutton and Barto, 1990,9) was one
of the earliest and still most influential real-time classical conditioning model.
It may be thought of as a real-time version of RW. When used with stimulus
representations such as the Complete Serial Compound (CSC, Moore et al.,
1998), Microstimuli (MS, Ludvig et al., 2008,0) and the Simultaneous and Se-
rial Configural-cue Compound (SSCC, Mondragén et al., 2014) it is capable of
reproducing some timing phenomena like the gradual increase in anticipatory
responding that occurs before a signalled reinforcer, and the lower response rates
observed during longer CSs. However, only MS-TD has a time representation
capable of approximating the most fundamental property of timing, timescale
invariance. Another issue with the stimulus representations for TD is that their
approach to timing resembles the strategy used by trial-based models, i.e. they
all split the stimulus into a number of smaller units or states, the number of
which being directly proportional to the duration of the stimulus. Given that
conditioning is observed in a timescale that ranges from milliseconds to hours
(Kehoe and Macrae, 2002, p. 189) this can lead to a very high number of units
being required. The stimulus as a whole no doubt is a complex entity, and the
brain may be employing a large number of neurons to represent it, but to ded-
icate so many resources only for timing might not be the most energy-efficient
strategy. Also, TD and its stimulus representations do not usually account for a
change in timing that is not tied to reinforcement. Animals time the occurrence
of different events, such as onset and offset of stimuli (see for example Meck and
Church, 1984), but TD usually only allows for the timing of rewards.

On the other hand, timing models have made even fewer attempts at inte-
grating aspects of classical conditioning. A notable exception is the Learning
to Time (LeT, Machado, 1997; Machado et al., 2009) model. It represents the
passage of time by transitioning between internal states according to a stochas-
tic pacemaker, an idea borrowed from an earlier timing model called the Be-
havioural Theory of Time (Killeen and Fetterman, 1988). Learning takes place
by associating reinforcement presentation with the current internal state accord-
ing to the linear operator, a standard classical conditioning rule. LeT offers an
account of the basic dynamics of association formation, but it cannot explain
cue-competition phenomena like blocking. In a blocking procedure, a CS is first
paired with a US until a CR is acquired. The same CS is then presented together
with a novel CS and both are paired with the US for a few trials. If the novel
CS is now presented alone it elicits little or no responding, and so it is said to be
blocked by the first CS. LeT’s learning rule, the linear operator, has largely been
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supplanted by RW in classical conditioning modelling because it cannot explain
cue-competition phenomena. Like TD, LeT also employs a representation that
requires as many units as time-steps, making it a resource-intense model.

Modular Theory (MoT, Guilhardi et al., 2007; Kirkpatrick, 2002) is a timing
model which because of its explicit goal of integrating timing and learning may
be called a hybrid theory. MoT has introduced novelties that allow it to account
for some aspects of the dynamics of classical conditioning that LeT cannot. Its
architecture is different than the connectionist one (states or units connected
by modifiable links) assumed by RW, TD and LeT. Instead, it uses a more cog-
nitive architecture, with separate information processing stages that deal with
perception, memory and decision. It postulates two separate memories: a pat-
tern memory which stores CS durations, and a strength memory which stores
the associative strength between each pattern memory and the US. This sepa-
ration allows MoT to deal with more complex situations involving the dynamics
of learning during acquisition and extinction. However, MoT also relies on the
linear operator to update its strength memory, which, like LeT, prevents it from
accounting for cue-competition phenomena.

Although the models mentioned above, namely TD, LeT and MoT, have
accomplished a great deal in terms of bringing together timing and conditioning,
they each have their different strengths and weaknesses as we have touched
above. In this paper we introduce a model that tries to address some of these
weaknesses while preserving the strengths. More specifically, the model has the
following strengths. It represents time in real-time. Like MoT and unlike LeT
and TD, its time representation does not require an arbitrary large number of
units or states. Similarly to TD but unlike LeT and MoT, it uses a learning rule
that preserves the main features of RW which allow it to account for compound
phenomena. It can time the onset and offset of all stimuli, not only of rewards,
and store a memory for each. It includes two update rules: one for timing that
is updated by time-markers, and another for associations that is updated by
the US. Hence, simple stimulus exposure causes the model to learn and store
its duration. This capability is not present in models that depend only on an
associative learning rule to also learn about time, such as TD and LeT.

This new model is essentially a way to connect one of the most influen-
tial classical conditioning theories, the Rescorla-Wagner model (Rescorla and
Wagner, 1972), with a recently developed timing theory called Timing Drift-
Diffusion Model (TDDM, Rivest and Bengio, 2011; Simen et al., 2011). The
TDDM is based on the drift-diffusion model, widely used in decision making
theory, and it provides an adaptive time representation that has commonalities
with pacemaker-based models like SET and LeT (Simen et al., 2013). These
models postulate the existence of a pacemaker that emits pulses at a regular
rate, which are then counted to mark the passage of time. To preserve timescale
invariance they either postulate a specific type of noise in the memory saved for
intervals and a ratio-based decision process (SET) or adapt the rate of pulses
(LeT). The TDDM takes the latter route but sets a fixed threshold on pulse
counting. To emphasize the unification of these two theories we call our pro-
posal the Rescorla-Wagner Drift-Diffusion Model (RWDDM).
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We evaluate RWDDM based on how well it can simulate the behaviour of
animals in a number of experimental procedures. Many classical conditioning
phenomena have been identified which collectively represent a significant chal-
lenge for any single model to explain. A recent list (Alonso and Schmajuk, 2012)
has compiled 12 categories, which include acquisition, extinction, conditioned in-
hibition, stimulus competition, preexposure effects, temporal properties, among
others. Of particular interest to a theory of timing and conditioning are phe-
nomena that involve elements of both timing and conditioning. As we detail
later, we have searched the literature for documented effects that can challenge
the main mechanisms embodied in RWDDM.

We proceed by first introducing the new model. We compare its formalism
with four models that have similar scope, namely CSC-TD, MS-TD, MoT and
LeT. In the results section we present the phenomena we will simulate, followed
by the results of our simulations, and compare them to the current explanations
given by LeT, MoT and TD.

2 Model

We follow most classical conditioning theories in conceptualizing the condition-
ing process as the formation of an association between the internal representa-
tions of CS and US. Arguably, one of the most influential rules describing the
evolution of this association through training is the Rescorla-Wagner (Rescorla
and Wagner, 1972) rule. As mentioned previously, other models exist which
have a similar scope to RW, both trial based (Mackintosh, 1975; Pearce and
Hall, 1980) and real-time (Buhusi and Schmajuk, 1999; McLaren and Mack-
intosh, 2000,0). However, our goal was to take advantage of TDDM’s time
representation, so we sought a theoretical associative framework that could in-
corporate such a representation. Since trial-based conditioning theories lack
any time representation, they are a natural place to start. Out of those theories
the RW is perhaps the simplest whilst also retaining the greatest possible ex-
planatory power. Its basic formalism consists of the following rule for updating
associative strength:

1
AVi(n) = a8 (A -y vz(n)xi(n)) zi(n) (1)
=1

where V;(n) denotes associative strength for CS; at trial n, A the asymptote of
learning which is set by the US representation, x;(n) which marks the presence
(z; = 1) or absence (x; = 0) of the i-th CS representation at trial n, 0 <
a < 1 a learning rate set by the CS and 0 < 8 < 1 a learning rate set by
the US. The summation term in the equation (1) sums over all CSs present
in the trial. The top panel of figure 1 shows a diagram of a basic neural net
for classical conditioning which serves as the architectural framework for both
RW and RWDDM. The RW rule is used to update the links Vi,...,V; that
connect the CS input nodes CSy,...,CS;. The summation term in the RW rule
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is represented in the diagram as a summation unit or junction ¥, that sums
the inputs it receives from the CSs i = 1,...,] present in the trial. This sum
allows RW to combine (additively) the reinforcement history of each individual
CS present in a compound trial. In the neural network literature, equation (1)
is also referred to as the Widrow-Hoff rule (Widrow and Hoff, 1960) and the
Least-Means-Square (LMS; Sutton, 1992). The relationship to the LMS rule
is easier to see if we let y(n) = 22:1 Vi(n)x;(n) be the output of a learning
unit that aims to predict a target A given inputs x; by adapting the weights
Vi. In classical conditioning, A represents the maximum learning driven by a
given outcome (the US), x; is the CS and V; the associative strength. If we
let §(n) = A — y(n) be the error between output and US, equation (1) can be
obtained with the method of gradient descent by minimizing the squared error
§2%(n) with respect to the weight V;.

| |
| |
| |
| |
I - - I
| . |
Al 0.5
lo.5 I
| |
| |
| 0 0 I
| 0 2 4 6 0 2 4 6 I
time (sec) time (sec)

Figure 1: Connectionist diagram of RWDDM. Each CS unit is connected to
a summing junction (labelled ¥) via a modifiable link V. The output of the
summing junction is the CR. The US is represented as a teaching signal with a
fixed weight H. Each CS unit has its own timer ¥ and representation . The
bottom panel shows a zoomed-in view of the timer ¥; and CS representation x;
associated with CS;. The timer slope A; is tuned to a 5-second CS duration.
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In spite of the relative success in explaining a wide range of conditioning
phenomena (for a list of successes, and failures, see Miller et al., 1995), the
Rescorla-Wagner rule lacks a mechanism to account for the microstructure of
real-time responding during conditioning procedures. In terms of the order of
CS-US presentation conditioning procedures may be either forward (CS followed
by US) or backward (US followed by CS). Two common types of forward condi-
tioning are delay and trace. In delay conditioning the US always occurs a fixed
time after CS onset. In trace conditioning the US occurs at a fixed duration after
CS offset. After sufficient training with delay or trace conditioning, responding
begins some time after CS onset, increases rapidly in frequency until it reaches
a maximum level where it stays until US onset (Gormezano et al., 1983). The
RW rule alone does not account for CR level as a function of time. This role
is usually fulfilled by the choice of CS representation. We base our choice on a
timing model called Timing Drift-Diffusion Model (TDDM, Simen et al., 2011;
Rivest and Bengio, 2011; Luzardo et al., 2013; Balci and Simen, 2016). We chose
the TDDM because it possesses a number of interesting features. It is part of a
family of pacemaker based models like SET and LeT (Simen et al., 2013) which
are arguably two of the most successful timing theories to date. The TDDM
is a modified version of the drift-diffusion models that have been extremely
successful at modelling reaction time in decision making tasks (Ratcliff, 1978;
Voss et al., 2013). Evidence of climbing neural activity related to timing that
resembles the TDDM has been extensively reported (Komura et al., 2001; Leon
and Shadlen, 2003; Brody et al., 2003; Wittmann, 2013; Jazayeri and Shadlen,
2015). The TDDM consists of a drift-diffusion process with an adaptive drift or
rate. The drift-diffusion process is defined by a continuous random walk called
Wiener diffusion process. The two main components of Wiener diffusion are
the drift and the normally distributed noise. The Wiener diffusion process may
be visualized by imagining a two-dimensional grid with time in the horizontal
axis and displacement on the vertical axis. If we imagine a purely linear and
non-random walk that starts at the origin and moves up at a constant rate then
the resulting walk would be a straight line and the drift would be equal to the
slope of the line. With normally distributed noise, the walk becomes a random
walk and it looks like a jagged curve, since at each time step there is now only
a probability that the displacement will be up or down. For the purposes of
timing, the slope is always positive and the random walk can be interpreted as
a noisy accumulator (or timer) W(t), which starts at the beginning of a salient
stimulus and stops (and resets) at the end. In a conditioning experiment the CS
is usually the most salient stimulus in the uneventful context of the conditioning
chamber, so it is well placed to serve as a time marker. When timing starts,
accumulator increments are performed at each time-step according to

AT (t) = Ai(n) - At +m - /A;(n) - At - N(0, 1), 2)

where A;(n) is the rate (slope) of accumulation for CS; in trial n, m is a noise
factor, At is the time-step size and N'(0, 1) denotes a sampling from the standard
normal distribution. An interval is timed by the rise in the accumulator to a
certain fixed threshold, say ¥;(t) = §. The TDDM adjusts to new intervals by
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keeping the threshold fixed but adapting the rate of accumulation A;(n). The
bottom left panel of figure 1 shows a typical trajectory (or realization) of a CS’s
TDDM timer after one 5-second trial.

In its original formulation (Rivest and Bengio, 2011; Simen et al., 2011) the
accumulation process was not allowed to continue beyond the threshold value 6,
a constraint that gave rise to two distinct rules for rate adaptation, one for when
the US arrived earlier than expected and another for when it arrived later. The
constraint fixing a maximum level of accumulation was driven by the neurophys-
iological assumption that a linear neural accumulator is not likely to continue
to perform effectively beyond a certain level. The neural implementation so far
proposed for TDDM’s linear accumulator (Simen et al., 2011) is based on a feed-
back control mechanism that is tuned to balance excitation and inhibition in a
neuron population. Tuning of this kind requires great computational precision,
which may not be easily kept for very long in a biological system. Neurophysiol-
ogy notwithstanding, we will drop that requirement here for simplicity and use
instead only one update rule. We demonstrate how this single update rule can
be derived by the method of gradient descent. The model learns a new interval
by adapting its slope A; so that the accumulator ¥; reaches the threshold value
0 at the target time ¢*, which may be the time of reinforcement for example.
The target slope will therefore be 6/t*. The error §(n) between the target slope
and the current slope is 6(n) = 6/t* — A;(n). By minimizing the squared error
52%(n) using gradient descent we can derive the slope update rule. The squared
error as a function of A; forms a curve. Moving in the direction opposite the
slope of this curve and taking a step of size /2 we form the equation:

a; do?(n)

: (3)

~—

Solving the derivative yields
Ai(n+1) = Ai(n) = S 25(n)(-1)
=A;(n)+ oz (8/t" — A;(n)). (4)

Since the organism only has access to the psychological time given by its internal
timing mechanism, and not the physical time ¢, we assume that an internal
estimate for t is formed by dividing the current pacemaker count by the current
slope, t = U,;(t)/A;(n). Substituting this estimate into equation (4) we get:

A1) = A0+ (S — (o)

— A,(n) + as As(n) (\p?t) - 1)

(60 — Wi (t))

Hence, the update rule for slope A; to be applied at target time ¢t* (the end of
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the trial or of the interval being timed) is
W;(t)

Equation (6) is the slope update rule we use. Note that n above is indexing
the number of occurrences of a specific interval that the timer is timing. These
intervals may be the duration between CS onset and US onset (the usual ‘trial’ in
delay conditioning for example), but they may be any other salient time interval
such as CS or intertrial duration. Figure 2 shows timer slope adaptation during
three timing scenarios: timing a novel stimulus (row 1), timing a long-short
change in stimulus duration (row 3), and timing a short-long change in stimulus
duration (row 5).

AA;(n) = azAi(n)

trial 1, A=0.001 trial 3, A=0.0732 trial 12, A=0.148
5 = =
=4
N g—
3 6 9 12 3 6 9 12 3 6 9 12
1 1 1
x
3 6 9 12 3 6 9 12 3 6 9 12
trial 1, A=0.167 trial 3, A=0.221 trial 12, A=0.33
= b 1? 17
=4
3 6 9 12 3 6 9 12 3 6 9 12
R 1 1
: Lz L/
X 4
3 6 9 12 3 6 9 12 3 6 9 12
trial 1, A=0.167 trial 3, A=0.132 trial 12, A=0.0905
2 =" —=
>
3 6 9 12 3 6 9 12 3 6 9 12
R 1 1
=
3 6 9 12 3 6 9 12 3 6 9 12

time (sec)

Figure 22 RWDDM timer and CS representation during three 12-trial timing
scenarios. Top two rows: timing a novel 6 second stimulus. Timer starts with
a low baseline slope (A = 0.001) on trial 1 and gradually adapts over training
to reach approximately the required slope. Middle two rows: stimulus duration
change from 6 to 3 seconds. Bottom two rows: stimulus duration change from
6 to 12 seconds. Parameters: a; = 0.215, 0 =1, 0 = 0.25, m = 0.15.

In the top row of figure 2 and throughout the paper we assume that the initial

10
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value of slope A for a novel stimulus is so low as to overestimate the stimulus
duration. This overestimation will only last for a few trials, the number of
which can be made arbitrarily small by choosing a high adaptation rate «;.
Alternatively, it would be possible to use a very high initial value for A so as to
underestimate the stimulus duration. However this alternative does not seem
neurophysiologically plausible as the brain would need to keep a pool of neurons
firing very rapidly as its ‘standby’ timer.

In TDDM, timescale invariance arises from the nature of the noise in the
accumulator. After repeated training, say in delay conditioning with a CS of
fixed duration, equation (6) will converge to a value of A; which will make the
accumulator reach the threshold value @ at the time of stimulus offset, but only
on average. In some trials the accumulator will reach the threshold sooner, in
which case the organism will underestimate the stimulus duration. In other trials
the accumulator will reach the threshold later, causing overestimation. The
variability of this time estimate relative to the mean is given by the coefficient
of variation (CV). It has been well established experimentally that the CV of
time estimates in humans and other animals is approximately constant over a
wide timescale (Gibbon, 1977; Gallistel and Gibbon, 2000; Allman et al., 2014).
The CV of TDDM’s time estimate is (see equation 3 in Luzardo et al., 2017)

m
CV 75 (7)
which depends only on the choice of threshold € and noise factor m. As these
are constant, the CV of TDDM’s time estimate is also constant. Note that
because the timer adapts its slope gradually, if the duration of a CS is changed,
CV measurements will only match the one given by equation (7) after the slope
has finished adapting. The number of trials to adaptation will vary depending
on the adaptation rate ay.
We substitute the presence representation used in the original RW model by a
Gaussian radial basis function. Its input is provided by the TDDM accumulator:

2
£:(0;) = exp <W> | ®)
This representation may be interpreted as the receptive field of time-sensitive
neurons that read the signal coming from the accumulator neurons. Their re-
ceptive fields are tuned to the accumulator threshold value §. The bottom right
panel in figure 1 shows the representation for CS; generated from the input
provided by the timer on the left. Note how x; reaches its maximum value at
the same time that ¥; crosses the threshold at 1. Figure 2 shows z(¥) adapting
in the three different timing scenarios explained previously. As can be seen,
x; is a dynamic representation of CS; that adapts to the temporal information
conveyed by the stimulus. Other representation shapes could be used, like a
sigmoid for example, but a Gaussian is mathematically simple and has been
used before by at least one other timing model (MS-TD, Ludvig et al., 2008).
We follow Gibbon (1977) and Gibbon and Balsam (1981) in assuming that

time sets the asymptote of learning, A, in equation (1). They were led to this
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hypothesis by investigating CR timing in fixed interval conditioning schedules,
a type of delay conditioning. After enough training in this procedure, subjects
begin responding some time after CS onset, with a slow rate at first which then
increases rapidly until it reaches asymptotic level some time before reinforcement
delivery. Gibbon (1977) proposed that subjects make an estimate of time to
reinforcement which is used to generate an expectancy of reinforcement. The
expectancy for a particular CS; with duration t*, h;, was hypothesised to be
h; = H/t*, where H was a motivational parameter which was assumed to depend
on the reinforcing properties of the US. The reinforcing value of the US is
thus spread evenly over the CS length. It was assumed that this expectancy
would be updated as time elapsed during the CS, such that h;(t) = H/(t* —
t). Hence, expectancy would increase hyperbolically until the estimated time
to reinforcement ¢ = t*. Responding would reach asymptotic level when the
expectancy crossed a threshold value h;(t) = b.

Here we will not use Gibbon’s concept of expectancy update. A similar role
is fulfilled by the TDDM accumulator in our formalization. But we hold on to
his argument that the reinforcing value of the US is spread over the CS length.
Within the Rescorla-Wagner modelling framework, Gibbon’s expectancy value
may be interpreted as setting the asymptotic level of learning in equation (1),
namely A = H/t*. Under this interpretation, A may be said to implement
hyperbolic delay discounting of rewards. Similarly to the argument used above
in the derivation of the slope update rule, we use the psychological time estimate
from TDDM in place of the physical time ¢*, such that t* = ¥, (t*)/A;(n).

The value we use is then A = I\{P‘?(it(,g). Another possibility would be simply
A = HA;(n). Both alternatives yield the same asymptotic value, but HA4;(n)

\I’i(t*)
version of equation (1) for updating associative strength then becomes:

converges gradually (with the rate set by «;) whilst immediately. Our

!
AVi(n) = ay (Iw - Z Vi(”)%(‘h)) z;(0y). (9)

In the trial-based RW model, equation (1) is applied at the end of a ‘trial’, which
is usually taken to be the event starting at CS onset and ending at US delivery.
We follow the same practice here and apply equation (9) at the end of a trial,
i.e. at US delivery. Note that because z;(¥;) is a dynamic CS representation,
its activation (or strength) level at the end of the trial will vary from trial to
trial, as can be seen in figure 2. Equation (9) is applied using the activation
level of x;(¥;) current at the end of the trial.

We assume that real-time responses to a CS; are emitted according to the
product of its associative strength V;(n) and representation x;(\V;), that is, it is
the output of the summing junction in figure 1:

CR,;(t) = Vi(n)z; (V). (10)
Equations (2), (6), (8), (9), (10) fully define the basic model. Its six free

parameters are: m, oy, 0, o, ay, H.
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2.1 Relationship with Other Models

Among the theories capable of providing an account of both timing and condi-
tioning, arguably four stand out for their scope or influence. They are CSC-TD,
MS-TD, LeT and MoT.

TD has been developed primarily as a learning model, without the explicit
intention of addressing timing. It may be visualized as a real-time rendition of
the RW rule. Its basic learning algorithm, is given by:

Vi(xt) = Zu%(i)xt(i), (11)

O = M — (Vixe—1) = 7Vi(xy)), (12)
Wir1 = Wi + adey (13)

where V; is the US prediction at time ¢, formed by a linear combination of
the weights w(i) and the CS representation values z(i). This update algorithm
is performed at each time step, and not only at the end of a trial like RW
and RWDDM. Another important difference is that equation (12) computes a
difference between the current US value and the temporal difference between
predictions. Hence, §; > 0 if the US is higher than this temporal difference in
prediction, and d§; < 0 if the US is lower. The constant 0 < v < 1 is termed a
discount factor. Equation (13) updates the weights for the next time step. The
vector e; stores eligibility traces, which are functions describing the activation
and decay of representations x;. The three most common eligibility traces used
are: accumulating traces, bounded accumulating and replacing traces. These
three types accumulate activation in the presence of the CS and discharge slowly
in its absence, the first accumulates with no upper bound, the second only until
the upper bound and the third is always at the upper bound whilst the CS is
present (Sutton and Barto, 1998, pp. 162-192).

The richness of TD’s timing account relies on the choice of CS representation
x. The Complete Serial Compound representation (CSC, Moore et al., 1998)
postulates one CS element z(i) per time unit of CS duration. Each element is
only switched on at its activation time unit, and then decays afterwards following
its choice of eligibility trace e(i) (usually an exponential decay function). This
componential representation, which increases in size linearly with CS duration,
should be contrasted with RWDDM’s molar representation (equation (8)) which
requires only one element. CSC may be called a time-static representation,
whilst RWDDM is a time-adaptive representation, with a rule to change its
structure based on a change in time (equations (6) and (8)). CSC-TD also lacks
any mechanism to explain timescale invariance of the response curve, which is
present in RWDDM. A modification of CSC has recently been developed, the
Simultaneous and Serial Configural-Cue Compound (SSCC, Mondragén et al.,
2014). SSCC-TD formalizes the idea that when multiple stimuli are presented
together in time, a configural cue—a novel stimulus that is unique to the current
set of present stimuli—is formed. SSCC follows on the CSC representation, but,
unlike any other TD model, it allows for the representation of compounds and
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configurations of stimuli. Because SSCC-TD is a real-time model, it also allows
for the simulation of CR timing during compounds and configurations. However,
its approach to timing is still the same as CSC, i.e. it breaks down the stimuli
into a series of elemental units which are activated in series. Therefore, with
respect to timing only we will consider SSCC to belong to the family of CSC
representations.

The Microstimuli representation (Ludvig et al., 2008,0) introduced a more
realistic description of time. Unlike CSC, it uses a fixed number of elements
x(4) per stimulus. The ith microstimulus is given by:

(i) = e (“’/m)) - (14)

where m is the total number of microstimuli, y is an exponentially decaying time
trace set at 1 at CS onset. It will be noted that a microstimulus is a Gaussian
curve modulated by the decaying trace y;. The set of microstimuli generated by
the CS will then give rise to partially overlapping Gaussians, with decreasing
heights and increasing widths across time. The fact that only a fixed number
of microstimuli are required per CS is an improvement to the potentially large
numbers of elements in CSC. The MS representation tries to capture the idea
that as time elapses, the stimulus leaves a more diffuse and faint impression.
However, even though it is more realistic than CSC, it still lacks a mechanism
to produce exact timescale invariance.

Learning to Time is primarily a theory of interval timing which can also
account for some aspects of conditioning. Here we will deal with its most recent
version in Machado et al. (2009), which differs somewhat from the earlier version
in Machado (1997). Its CS representation resembles CSC in postulating a long
series of elements (or states) that span the whole stimulus duration. Unlike
CSC, it transitions from state to state at a rate that varies from trial to trial,
and that is normally distributed. Hence, time during a trial is represented as
a noiseless linear increase from states n = 1,2,3,... (one per time-step) at a
fixed rate. This linear time representation resembles the linear accumulator in
RWDDM, except that the latter has noise built into the linear accumulator,
whilst LeT assumes noise only at the intertrial level. Each state n is associated
with the US via an associative link. At the end of a trial, the strength w of
these links are updated as follows:

e For the active state at reinforcement, n*, the update rule is
Aw(n®) = B(1 —w(n")), (15)
where [ is a constant.

e For inactive states, n < n*, the update rule is

Aw(n) = ——w(n), (16)

n*

where « is a constant.
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e For states that did not become active during the trial, n > n*, the rule is

Aw(n) = 0. (17)

Note that unlike RWDDM'’s associative update rule, equations (15) to (17) do
not include a summation term. This places a severe limitation on the ability
of LeT to deal with compound conditioned stimuli. LeT’s strength lies on its
being able to explain timescale invariance of the response curve. Machado et al.
(2009) showed that it is possible to derive timescale invariance using only the
assumption of intertrial normality of state transition rate. Finally, LeT assumes
that responses are emitted at a constant rate if the current active state has
associative strength w(n) greater than a threshold 6. The fact that responding
depends on the associative strength of the current state, and that this strength
only changes with US associations, prevents LeT from accounting for changes
in timing that are not related to US occurrence. For example, there is evidence
that animals learn the timing of a preexposed CS (Bonardi et al., 2016) and are
sensitive to changes in timing during extinction (Guilhardi and Church, 2006),
two situations that do not involve the occurrence of a US.

Modular Theory is another primarily timing theory that can also deal with
some aspects of conditioning. It treats the onset of a stimulus as signalling a
time expectation to reinforcement. Its time representation T is, like LeT, an
accumulator that increases linearly with time ¢, T = ct, where c is a constant.
When reinforcement is delivered the current reading from the accumulator is
stored in what is called pattern memory. Pattern memory is updated at each
trial n according to

m(n) =m(n —1) 4+ a(T* —m(n—1)) (18)

where « is a learning rate and T* is reinforcement time. Equation (18) may be
contrasted to (6) from RWDDM. The main difference is that pattern memory
in MoT stores a moving exponential average of intervals, whilst the slope in
RWDDM stores a moving exponential harmonic average of intervals. However,
both models are similar in that they can potentially time the occurrence of any
event, not only rewards. MoT’s pattern memory and RWDDM’s slope can be
made, for example, to adapt to mark the end of stimuli that are not necessarily
paired with a reward.

A stochastic threshold b is used to mark response initiation. The threshold
distribution is set so as to yield timescale invariance of the response curve.
Its mean, B, is a fixed proportion of the value in pattern memory, B = km(n),
where k is the proportionality constant, and its standard deviation is vB, where
v is the coefficient of variation of B. Hence, the coefficient of variation of
the threshold, i.e. of response initiation, is constant for all intervals, which
is the timescale invariance of the response curve. RWDDM derives timescale
invariance of response curve from noise in the accumulator (equation (2), not
from the threshold.

This account of time from MoT is an instantiation of Scalar Expectancy
Theory, arguably one of the most successful timing models to date. Being a
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purely timing theory, SET does not address associative learning directly, so it
does not have a rule for changes in association between stimuli. MoT bridges this
gap by adding a rule to update what is termed strength memory, w(n). Strength
memory holds the associative strength between stimulus and reinforcement. The
rule consists of a linear operator:

Be(0 —w(n —1)) if US is absent,

19
Br(1 —w(n —1)) if US is present, (19)

Aw(n) = {

with 8 a constant that can determine different rates of update for acquisition
(Br) and extinction (f.). Equation (19) may be compared with (9). Note that,
unlike RWDDM, equation (19) does not contain the summation term from RW
based rules.

MoT also includes a rule for response rate that is more realistic than RWDDM’s
given by (10). It is partly derived from an empirical analysis of real-time re-
sponding in animals. We refer the interested reader to Guilhardi et al. (2007) for
a fuller description. We will only mention here that MoT generates a two-state
response pattern, low and high. The transition between states is determined
by the crossing of threshold B, and the high state is proportional to strength
memory w(n).

Other theories exist which are similar in scope to CSC-TD, MS-TD, LeT and
MoT. Two notable examples are the Componential version of the Sometimes
Opponent Process model (C-SOP, Brandon et al., 2003) and the Adaptive Res-
onance Theory - Spectral Timing Model (ART-STM Grossberg and Schmajuk,
1989). C-SOP builds a CS representation based on two sets of elements, or com-
ponents, one that includes elements activated as a function of time and another
whose elements are randomly activated. Associative strength for each element is
updated using the standard trial-based RW rule. Simulations in Brandon et al.
(2003) have demonstrated that C-SOP can produce some degree of timescale
invariance. ART-STM is a neural net with an input layer and one hidden layer,
which allows it to explain nonlinear conditioning phenomena (such as negative
pattern) that a single-layer RW neural net cannot. It employs a CS represen-
tation that is very similar to the microstimuli used in MS-TD, so it also shows
a degree of timescale invariance. Other theories could be mentioned (for two
influential examples see Buhusi and Schmajuk, 1999; McLaren and Mackintosh,
2000,0) but we will limit the analysis to CSC-TD, MS-TD, LeT and MoT for
two reasons: a) these four models collectively embody most of the conditioning
and timing mechanisms used in modelling these areas, and b) our goal here is
not to provide a comprehensive review, but rather focus on the mechanisms that
are shared by our proposed model and the others.

Table 1 summarizes the main mechanisms/features of the models described
above. In terms of the type of time representation, it may be observed that
the models fall roughly into two categories: (a) those that employ a chain of
units or states activated sequentially (CSC-TD, MS-TD, LeT), and (b) those
that employ an accumulator (MoT and RWDDM). Those in category (b) may
be considered more economical both computationally and biologically, as they
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Table 1: Summary of the main features of the models.

model type of time what it can timescale in- associative
representation time variant learning rule
CSC-TD  units/states, only rewards no TD/RW, cue
one per time competition
step
MS-TD units/states, only rewards approximately TD/RW, cue
fewer than one competition
per time step
LeT units/states, only rewards  yes linear operator,
one per time no cue competi-
step tion
MoT linear accumu- any stimuli, yes linear operator,
lator not only re- no cue competi-
wards tion
RWDDM noisy linear ac- any stimuli, yes RW, cue com-
cumulator not only re- petition
wards

don’t require a number of units that increase with time. In terms of what
the representations can time, two categories may be discerned: (a) those that
time only rewards (CSC-TD, MS-TD and LeT), and (b) those that can time
any stimuli (MoT and RWDDM). Models in category (b) have more flexibil-
ity to create a temporal map involving all stimuli present, including those not
signalling reward. In terms of timescale invariance, the models are basically di-
vided between those that can account for it (MS-TD, LeT, MoT and RWDDM)
and the one that cannot (CSC-TD). Finally, in terms of the type of associative
learning rule used, models are divided between those that use a RW-type rule
(CSC-TD, MS-TD, RWDDM) and those that use the linear operator (LeT and
MoT). The ones that use RW are wider in scope, being able to account for
cue-competition phenomena, which form the core of classical conditioning.

The main innovation of RWDDM over its predecessors is the combination of
a noisy linear accumulator for timing with the RW rule for associative learning.
As table 1 shows, linear accumulator theories are the only ones in our sample
of the models that can fully account for timescale invariance. But because
they rely on the linear operator rule, they cannot account for cue-competition
and other compound stimuli phenomena in conditioning. Therefore RWDDM
extends the application of the linear accumulator to compound stimuli, covering
a wider range of conditioning phenomena.

In summary, the model we propose is, to the best of our knowledge, the only
one that unites the flexibility, computational economy and timescale invari-
ance of the linear accumulator as a time representation, to the RW associative
learning rule, which accounts for many more conditioning phenomena than the
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Table 2: Model features and the experimental findings they can explain.

RWDDM feature phenomenon for which it can ac-
count

independent update rules for time and faster reacquisition, time change

associative strength in extinction, latent inhibition and
timing

RW rule for associative strength blocking with different durations,
time specificity of conditioned inhi-
bition

intertrial variability in time estimation = compound peak procedure
asymptote of associative strength set by  ISI effect, mixed FI

time

a memory that learns the rate of rein- VI and FI, temporal averaging
forcement

linear operator. In the next section we evaluate the models against a number
of phenomena in conditioning and timing.

3 Results

The long history of experimental work in classical conditioning has allowed the
discovery of a rich variety of phenomena—a recent review (Alonso and Schma-
juk, 2012) has catalogued approximately 87. This forces theorists to be selective
when deciding which phenomena to simulate when presenting a new model. We
searched the literature for phenomena that could test each feature of the model.
Table 2 lists the main RWDDM features, together with the corresponding phe-
nomena found in the literature that can test each.

Table 3 contains the design for each simulation performed with the model.
The model parameters used in all simulations were kept almost constant but in
some cases a few adjustments were found necessary to obtain a better agreement
between model and data. We report their values in each simulation below. The
time-step was the same for all simulations: At = 10 msec. Simulations were
performed using MATLAB version R2016b. The code to generate the figures in
each result section is available as supplementary material.

3.1 Faster reacquisition

A conditioned response emerges gradually over the course of several trials where
the CS signals the arrival of a US. If a measure of CR strength (such as rate or
magnitude) is plotted against the number of trials, the shape and rate of this
acquisition curve will depend largely on the CR and organism, but it usually
follows a negatively accelerated curve (Pavlov, 1927; Kehoe and Macrae, 2002).
Pavlov (1927) believed timing of the CR would emerge only later in acquisition,
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through a process he described as inhibition of delay whereby the initial part
of the CS would become inhibitory. Recent and more detailed analyses suggest
that an estimate for the time to reinforcement is acquired very early in training,
possibly even after one or two trials, although the expression of such estimation
may not be observable until later in training (Holland, 2000; Ohyama and Mauk,
2001; Balsam et al., 2002; Drew et al., 2005).

If the CS no longer signals reinforcement, CR strength gradually decreases
over the course of these extinction trials, until it finally disappears. If the CS
is made to signal the US again, the CR returns, a process that is called reac-
quisition. It is a consistent finding that reacquisition is faster than acquisition
(Ricker and Bouton, 1996; Guilhardi et al., 2007; Kehoe and Macrae, 2002, p.
185).

Learning is loosely defined as an enduring change in behaviour as a result of
experience. Acquisition of a CR is the most basic demonstration that classical
conditioning is a form of learning. As such, all classical conditioning models
provide an account of it.

3.1.1 Simulations

Figure 3 (top left panel) shows a plot of RWDDM’s associative strength as
given by equation (9), in a simulation of acquisition and extinction. Acquisition
consisted of 80 presentations of a 5-sec CS followed by reinforcement, after which
there were 100 extinction trials where H was set to zero. The simulations match
with experimental data from acquisition and extinction (bottom left panel of
figure 3). The simulated acquisition curve asymptotes around the theoretical
value given by setting AV (n) = 0 in equation (9) and solving for V, yielding

HA

Voo = L@ )

(20)
which in this particular case is Voo & 1, since H = 5, Ay & 1/5, Uy = U(t*) =
1, 2(¥y+) & 1, where t* is the time of reinforcement. Because ¥(t*) is a random
variable, z(U:«) and Vi, are also random variables and their values are reported
as approximations to their expected values (but not the actual expected values).

Figure 3 (top middle panel) shows the adaptation of timer slope A given by
equation (6). This equation precludes the initial value of A from being zero,
so we set it to the very low value of A(1) = 107%. We also set the threshold
6 = 1, which by equation (6) means that A;(n) encodes the exponential moving
average of the rate of reinforcement signalled by CS;. Or, equivalently, 1/A4;(n)
encodes the moving harmonic average of the intervals since last reinforcement
during CS;. In this simulation, since there is only one US which is delivered
always at the same time at CS offset (5000 msec), A converges to A, = 1/5000.
Note that the value of A does not decline after extinction begins at trial 80. It
continues to be updated since the stimulus is still present, even if its presence
no longer signals reinforcement.

The top right panel of figure 3 shows the acquisition and reacquisition curves
using RWDDM. Reacquisition produced by the model is evidently faster than
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Figure 3: Acquisition and reacquisition. Top left: simulated associative strength
V' in acquisition and extinction. Top middle: adaptation of RWDDM slope A.
CR extinction began at trial 80 but has no effect on the RWDDM slope. Top
right panel: simulated V curves in acquisition and reacquisition. Bottom left
panel: response strength data from an experiment in acquisition and extinction,
redrawn from figure 1 in Ricker and Bouton (1996). Bottom right panel: data
from an experiment in acquisition and reacquisition, redrawn from the top panel
of figure 3 in Ricker and Bouton (1996). Model parameters: m = 0.15, 6 = 1,
oc=0.3, a; =0.1, ayy = 0.1, H = 4 in acquisition and H = 0 in extinction.

the simulated acquisition, but not as fast as the reacquisition seen in the data
on the bottom left of figure 3.

3.1.2 Discussion

In RWDDM acquisition and extinction of associative strength follow from the
same mechanism as RW. The only difference is the noisy stimulus representation
(W4 ), which induces noise into the acquisition curve. Changes in associative
strength and timing are treated independently. In particular, the memory for
time encoded by the slope A is not affected by extinction. This leads to a faster
reacquisition following extinction. This is because RWDDM’s time-adaptive
CS representation x(W;+) reaches its maximum activation value right from the
beginning of reacquisition, since the timer slope A is already tuned to the current
CS duration (see equation (8)).

Modular theory (Guilhardi et al., 2007) is another model that treats timing
and associative strength separately. It postulates two memories, one for the
pattern of reinforcement and another for the strength of the association between
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CS and US. The pattern memory stores an exponential moving average of the
intervals to reinforcement which, like RWDDM, does not change with extinction.
However, its strength memory w(n) is updated according to the linear operator
rule,

w(n+1) =w(n) + BA —w(n)) (21)

which, unlike RWDDM, does not include a term for a time-adaptive CS rep-
resentation. Thus, the way MoT accounts for rapid reacquisition is by using
different learning rates S for acquisition and reacquisition. The same strategy
may be employed with the TD and LeT models.

In summary, RWDDM explains reacquisition as the persistence of a memory
for time, whilst TD, LeT and MoT explain it as a permanent change in the
learning rate for associative strength.

3.2 Time change in extinction

When a previously conditioned stimulus is no longer followed by reinforcement,
the conditioned response gradually decreases. An important theoretical question
for hybrid timing/conditioning models concerns what happens to the timing of
responses in extinction. Using the peak procedure Ohyama et al. (1999) found
that although the maximum (peak) response rate decreased in extinction, peak
time and sensitivity (measured by the coefficient of variation) remained virtu-
ally unchanged. Drew et al. (2004) investigated the behaviour on extinction by
changing CS duration between acquisition and extinction. Groups where the
CS changed to a shorter or longer duration were compared to another where
the duration did not change. They found that CS duration had little effect on
the rate of extinction, with all groups taking about the same number of tri-
als to achieve CR extinction. However, when the CS used in extinction was
considerably longer (4 times) than the one acquired, extinction was facilitated.
Guilhardi and Church (2006) performed a similar experiment (experiment 2)
and observed that when stimulus duration is changed from acquisition to ex-
tinction, the pattern of responding during extinction gradually shifts to the new
duration over extinction trials. Following the same procedure, Drew et al. (2017)
also used partial reinforcement to slow down the rate of acquisition, and thus
observe if response patterns really do shift gradually to the new duration. They
confirmed that when CS duration was increased from acquisition to extinction,
the within-trial response peak shifted gradually to the right over the course of
extinction. When the CS was shortened, the results were not conclusive. Also,
when CS duration was changed from training to extinction, the speed of extinc-
tion increased, but this appeared to be explained at least in part by the shifting
of response patterns.

In summary: a) peak timing and CV are not altered in extinction when using
a peak procedure, b) changing the CS duration from training to extinction causes
the within-trial response peak to shift to the new duration, and ¢) changing the
CS duration in extinction can speed up extinction, but this may be due to the
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shifting of the response peak and not to changes in associative strength. These
results pose a challenge to the models analysed here. Out of CSC-TD, MS-TD,
LeT and MoT, only MoT has a mechanism that would allow it to account for
time change in extinction.

3.2.1 Simulations

RWDDM provides an account for these findings as follows. In the case of the
peak procedure, the occurrence of the longer peak trials may be considered too
infrequent to cause a shift to the longer time. In this case, equation (6) is not
applied in peak trials so RWDDM predicts that both slope A and CV will remain
unaltered in extinction. In the case of a permanent change in CS duration from
acquisition to extinction, the slope update rule is applied and the response peak
will shift gradually to the new duration.

We have simulated RWDDM in two extinction conditions, one where the
CS presented in extinction was longer than the one acquired (20 sec to 40 sec,
short-long) and another where the extinction CS was shorter than the acquired
CS (20 sec to 10 sec, long-short). Figure 4 summarizes the main results.
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Figure 4: Time change in extinction. Left column: simulated response strength
averaged over trials in extinction short-long (top) and long-short (bottom). Mid-
dle column: time estimate adaptation of the model during extinction short-long
(top) and long-short (bottom). Right column: experimental data from an ex-
periment where the CS duration changed from 12-sec in acquisition to either
24-sec (top) or 6-sec (bottom) in extinction. Data plots redrawn from figure 10
in Drew et al. (2017). Model parameters: m = 0.25, § = 1, ¢ = 0.35, ay = 0.08,
ay = 0.09, H = 30.
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The panels on the left column show response strength during a trial in condi-
tions short-long (top) and long-short (bottom). In the early stages of extinction
(early) the response curves peak around the time of US arrival in acquisition
(20 sec). This is more evident in the condition short-long (top left) because in
the other condition (bottom left) the trial ends 10 seconds before the peak at 20
seconds occurs. Had the stimulus remained on for a full 20 seconds, the response
curve in the early stages of long-short would have continued to increase until the
20 second mark. In middle and late extinction the response peak slowly shifts
to the new duration in both conditions, and their heights decrease. Compare
the simulated curves in the left column of figure 4 to the actual experimental
data in the right column. The panels on the middle row of figure 4 show the
adaptation of time estimate 1/A in conditions short-long (top) and long-short
(bottom). They demonstrate that RWDDM adapts exactly to time change in
extinction.

To investigate if the rate of acquisition changes with CS duration, we have
plotted the extinction curves for each CS duration in the left panel of figure
5. Decreasing CS duration from acquisition to extinction slightly facilitates
extinction, but increasing CS duration markedly delays extinction. However,
these are only the V' values, a theoretical construct that accounts for the as-
sociative strength of the stimulus as a whole. Actual behaviour measurements
of extinction are based on how much response frequency changes from trial to
trial. But response frequency also changes within the trial. As pointed out by
Drew et al. (2017), the value obtained for the rate of extinction may be affected
by which portion of the CS was measured. To analyse this, Drew et al. (2017)
measured response frequency only during the first 6-sec (half the duration of
the CS in acquisition) of each CS duration in extinction. We have followed the
same procedure and the results can be seen on the middle panel of figure 5.
They show a marked delay on extinction when the CS duration was shortened,
but not when it was lengthened. Compare these curves with the actual data
analysed by Drew et al. (2017) and displayed in the rightmost panel of figure 5.
The simulations conflict in part with the same analysis in Drew et al. (2017),
which showed no delay on extinction, only facilitation in the case of extending
CS duration.

3.2.2 Discussion

RWDDM predicts that a change in CS duration from acquisition to extinction
will always cause a rescaling of the response curves in extinction. This is largely
in agreement with the data. However, RWDDM seems to predict a degree of
delay on extinction, whilst the data seems to point to a facilitation of extinction
when the CS changes duration. When only the first half of the CS response
curves are analysed, the data suggests that extending CS duration in extinction
can speed up extinction, whilst RWDDM predicts that shortening CS duration
will delay extinction.

RWDDM’s prediction for a delay in extinction following a change in CS
duration is due to the shifting of the response curve. At the beginning of
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Figure 5: Extinction curves. Left panel: model V' values for each CS duration
in extinction. Middle panel: simulated CR values calculated only for the first
10 seconds of the CS. Each data point is calculated by summing the output of
equation (10) over the first 10 sec of each trial, then averaging these trial values
two by two, and dividing by 100 to rescale. Right panel: actual CR data for
the first 6 sec of the CS in extinction, redrawn from figure 8 (C) in Drew et al.
(2017)

extinction, a trial ends either before the CS representation has reached its peak
(CS shortening) or after its peak (CS lengthening). This makes equation (9)
update with a small value for (), resulting in a smaller update than with the
higher z(¥) value of the unchanged CS.

As mentioned above, time change in extinction is a difficult phenomenon for
the current models to explain. CSC-TD does not have a mechanism to change
the peak of responding when a US is not present. Neither does MS-TD or LeT.
These models assume that extinction can only weaken existing links between CS
and US representations. Because in these models timing usually depends on the
sequential activation of these links, changing the CS duration in extinction would
not alter the timing but only the magnitude of responding. RWDDM explains
time change in extinction because its rule for time adaptation is independent of a
change in associative strength. Thus, when the duration changes in extinction,
RWDDM’s accumulator slope tracks this change, whilst associative strength
decays as a function of US absence. Regarding the extinction facilitation caused
by a change in CS duration, none of the models analysed here currently have a
mechanism to explain this either.

It would be possible to allow the average rate of state transition in LeT
to vary as a function of CS duration, which would cause timing to adapt to
the new time in extinction. However, in its latest formulation (Machado et al.,
2009) LeT relies on a fixed average rate of state transition to explain timescale
invariance. Thus, if the rate is made to change as a function of CS duration,
this would break timescale invariance.

As for MS-TD, one interesting modification that would likely allow it to
explain time change in extinction is to make the microstimuli themselves time-
adaptive. Like RWDDM’s time-adaptive CS representation, the microstimuli
could be made to ‘stretch’ or ‘compress’ when stimulus duration shortens or
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lengthens.

Modular Theory is likely to account for time change in extinction, since
its pattern memory for time could be made to update even in extinction. That
would shift the response pattern to the new time whilst strength memory, which
depends only on US presentation, would decay.

3.3 Latent inhibition and timing

When a subject is exposed to repeated and non-reinforced presentations of a
stimulus it has never encountered before, this procedure is called preexposure.
If reinforcement is subsequently paired with the preexposed CS, the initial rate
of CR acquisition is usually lower compared to acquisition to a nonpreexposed
stimulus, a phenomenon called latent inhibition (Lubow and Moore, 1959). The
asymptotic level of conditioning, however, is not normally affected by preexpo-
sure (Lubow, 1989). Latent inhibition is an important representative of a class
of phenomena involving latent effects. Collectively, these phenomena demon-
strate that something is learned about the stimulus even when it does not sig-
nal reinforcement. Therefore, latent inhibition cannot be accounted by the
Rescorla-Wagner model, since the theory only applies when there are changes
in associative strength.

A question relevant for real-time conditioning models is what happens to
timing when a preexposed stimulus is conditioned. To answer this question,
Bonardi et al. (2016) used CSs of variable and fixed durations (the variable
duration CS had the same mean as the duration of the fixed CS) to vary the
temporal conditions between preexposure and conditioning phases. Latent in-
hibition was observed even when the temporal information from the two phases
was different. Crucially, timing, as measured by the response gradient within
a trial, appeared to improve in the preexposed CS even when the temporal
information was different between the two phases.

As alluded to above, latent inhibition cannot be accounted by the associative
learning update rule used in RWDDM, the Rescorla-Wagner. However, we show
here that RWDDM is compatible with the Pearce-Hall rule (Pearce and Hall,
1980; Pearce et al., 1982), one of the most widely used models for explaining
latent inhibition and other latent learning effects. We demonstrate that this
modification maintains the basic framework of the RWDDM, and that it can
account for latent inhibition and improved timing with preexposure. None of
the other models analysed here can account for latent inhibition without mod-
ifications. Improved timing with preexposure could be accounted by Modular
Theory, but not by the the current version of the other models.

3.3.1 Simulations

The Pearce-Hall model is basically a rule for adapting the learning rate ay based
on the error § between the predicted US outcome and the actual US outcome.
It was originally formulated by Pearce and Hall (1980) and updated by Pearce
et al. (1982). We have maintained equation (9) for associative strength, but

25


https://doi.org/10.1101/184465
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/184465; this version posted September 5, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

changed ay on every trial n according to
ay(n+1) = ay(n) + (6] — av(n)), (22)

HA(n)
§= < V@) V(n)x(\I/)) (23)

where 0 < 7 < 1 is a parameter that sets the rate of learning rate adaptation.
Equation (22) is basically the Pearce-Hall rule, except that instead of using 1
Sica)

We simulated latent inhibition with a 5-sec CS. Preexposure consisted of
80 trials of the CS without reinforcement (H = 0). The preexposed CS was
then reinforced for 250 trials. Figure 6 (top left panel) compares the acquisition
curves for the preexposed CS and a control CS in the reinforced trials. The
preexposed CS acquisition curve increases at a lower rate than the control CS,
the latent inhibition effect (see data from a corresponding experiment at the
bottom left panel of figure 6).

as the asymptote of learning we use
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Figure 6: Latent Inhibition. Top row: simulated associative strength in latent
inhibition (left), simulated CR averaged over the first 30 trials of conditioning
phase (middle), and simulated CR averaged over the last 30 trials of conditioning
phase (right). Bottom row: acquisition curves from an actual experiment in
latent inhibition (left), and response rate data during the CS (right). Data
plots redrawn from figures 1 and 2 respectively in Bonardi et al. (2016). Model
parameters: a; = 0.1, ay = 0.08, p = 1, 0 = [0.6 — 0.35], m = 0.2, H = 4,
apHg — 0.4, Y= 0.03.

Improved timing with preexposure follows directly from the fact that RWDDM

adapts its accumulator slope A to the CS duration during preexposure. How-
ever, our choice of a Gaussian for stimulus representation does not allow for this
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change to become visible. Bonardi et al. (2016) demonstrated improved timing
by showing that the slope of the response curve from the preexposed CS was
higher in the first few trials of acquisition than the one from the control CS
(see bottom right panel of figure 6). In general, animal response curves tend
to be quite flat during the beginning of acquisition. There is evidence that the
response curves appear to change from negatively accelerated to a sigmoidal
shape over the course of training (see figure 1 in Meck and Church, 1984, for
an example). This means that in the early stages of acquisition, within-trial
response frequency increases very early in the trial and then stays at a constant
level until the end. As training progresses, the increase in frequency moves
slowly to the right, giving rise to the sigmoidal shape that peaks just before
the end of the trial. In these cases a higher slope of the response curve would
indicate improved timing. But in our model the curves are sigmoidal from start
of acquisition, so they will always peak at the end of the trial, even if the timer
slope has not adapted to the interval yet, as is the case with a novel stimulus.
Therefore, during the acquisition phase of latent inhibition, RWDDM predicts
that only the peaks of the response curves will gradually increase over the tri-
als. Because of the learning decrement caused by preexposure, the peak of the
control CS will increase faster than the preexposed CS, as the top middle panel
of figure 6 demonstrates. The response curve of the control CS will have a
higher slope than the preexposed CS, even though the preexposed CS’s timer
rate has been adapted to its duration. Hence, the improved timing found in the
data is explained by adaptation of RWDDM’s timer slope, but RWDDM’s CS
representation cannot make this visible.

We have tried adding an adaptable ¢ in equation (8) so as to decrease the
width of the gaussian curve gradually over trials. We chose a simple linear
operator rule to adapt the Gaussian width:

on+1)=0c(n)+ a,(0.35 — o(n)), (24)

and set 0(1) = 0.6 and o, = 0.025.

Figure 6 (top middle panel) shows response strength of control and preex-
posed CSs averaged over the first 30 trials of the conditioning phase. The pre-
exposed CS already shows a clear sigmoidal shape, whilst the control is slightly
wider and linear. But the effect is too small to be able to account for the one
seen in the data from Bonardi et al. (2016). Towards the end of the conditioning
phase the two curves converge (figure 6, top right panel).

3.3.2 Discussion

The simulations show that the model can account for latent inhibition ade-

quately if the Pearce-Hall rule is used (in which case the model would be more

appropriately named PHDDM). The PH rule adapts the learning rate «y based

on the level of associative learning between stimulus and reward. When the

subject encounters a novel stimulus, it is assumed that ay has some non-zero
novel

starting value a}°¥®', which allows learning in equation (9) to take place. If this
novel stimulus does not signal reward, as is the case in the preexposure phase
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of latent inhibition, ¢ = 0 and equation (22) will simply decay the value of the
learning rate across trials until it reaches zero. If at this point the stimulus
begins to be followed by reward, o > 0 and equation (22) will begin to raise
the value of the learning rate, which in turn will allow equation (9) to begin
increasing the value of V. Since the increase in the value of the learning rate
is gradual, determined by the rate -y, there will be a number of trials in the
beginning of the conditioning phase where ay < a?,o"el, which leads to the ini-
tial impairment in the learning curve when compared to the learning curve of a
non-preexposed CS, as seen in the top left panel of figure 6.

The separate rule for time adaptation allows the model to account for im-
proved timing after preexposure, but the model cannot make this effect visible
even if we allow for Gaussian width adaptation. In view of this it seems more
likely that a two-state CS representation may be a better solution. As men-
tioned above, figure 1 in Meck and Church (1984) suggests that during the
initial stages of training a CS representation may be modelled by the following
leaky integrator

wilt 1) = 2i(t) + (1 — (1)) (25)

where I; is the indicator function marking the presence of CS;, and 7 a time
constant. In the latter stages of training, when timing is expressed, the organism
switches to the Gaussian representation given by equation (8). When the switch
between representations is made and how abruptly remains to be investigated.

Latent inhibition cannot be accounted by any of the other models analysed
here without modifications. Also, models that rely on the US for time adap-
tation, like CSC-TD, MS-TD and LeT, cannot account for improved timing by
preexposure. Modular Theory is the only one that can time any stimulus like
RWDDM, so it could account for the improved timing. But it would also need a
modification like (22) to adapt its learning rate to account for latent inhibition.

3.4 Blocking with different durations

Arguably, the most important compound conditioning phenomenon is blocking.
It is part of a class of cue competition and compound phenomena discovered in
the late 1960s which challenged the view that conditioning was driven by the
pairing, or contiguity, of CS-US. These results suggested that conditioning with
compound stimuli was influenced by the reinforcement histories of the elements
forming the compound (Rescorla, 1988; Gallistel and Gibbon, 2001). This led
to the development of a new generation of models that could account for those
findings (Rescorla and Wagner, 1972; Mackintosh, 1975; Pearce and Hall, 1980).
The rule we use, the Rescorla-Wagner, provides an explanation for blocking that
is based on the summation term in equation (1).

In a blocking procedure a CS is first paired with a US in phase 1 of training.
During phase 2 a novel CS is presented in compound with phase 1 CS and paired
with the US for just a few trials. Subsequently, when tested alone the novel CS
elicits less responding than if it had been trained in compound with another
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novel stimulus (Kamin, 1968). The previously reinforced CS is said to block
the novel CS. The temporal information encoded by each CS has an effect on
the amount of blocking observed. Schreurs and Westbrook (1982) varied the IST
in the pre-training and compound phases, and observed less blocking when the
durations were different in both phases than when they were the same. Barnet
et al. (1993) performed a similar experiment but with forward and simultaneous
conditioning varying between phases, and also found that blocking was stronger
when blocked and blocking CSs had the same temporal history. Jennings and
Kirkpatrick (2006) used compounds where the elements had different durations.
They observed that a long blocking CS could block a co-terminating short Cs,
but a short blocking CS failed to block a co-terminating long CS (see rows 1 and
3 in figure 7). Amundson and Miller (2008) performed four blocking experiments
using trace conditioning. In two of them the blocking CS trace duration changed
between phases, and blocking was not observed. In the other two experiments
the trace duration was held fixed between phases, and the blocking and blocked
CSs were presented serially and not in a compound (see rows 2 and 4 of figure
7). Blocking was observed when the blocking CS followed the blocked CS, but

not in the reverse condition.

Phase 1 Phase 2 Test

B

[A] I B

[ x| ns8

AN | NB

Figure 7: Experimental designs from two blocking experiments. CS X was
blocked (B) in rows 1 and 2, and not blocked (NB) in rows 3 and 4. Blue bar
indicates US presence.

The studies reviewed above appear to show that changing the ISI of the
blocking CS between phases may attenuate blocking. Another finding is the
apparent asymmetry of blocking when the ISI of the blocking CS is kept constant
between phases. Rows 1 and 2 of figure 7 suggest that a long blocking ISI can
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block a short blocked ISI. Rows 3 and 4 suggest that a short blocking IST does
not block a long blocked ISI.

As mentioned above, RWDDM can account for blocking because it uses the
RW rule. The summation term in equation (1) formalizes the widely held view
that a given US can only confer a limited amount of associative strength which
CSs must compete for. Different theories exist that take other approaches to
blocking (see for example Mackintosh, 1975; Harris, 2006; Stout and Miller,
2007) but among the ones analysed here (for their ability to handle timing also)
only CSC-TD and MS-TD are equipped to deal with it. We show next that
RWDDM can account for the blocking of a short CS by a long CS, and that
by making the reasonable assumption of second-order conditioning it can also
account for the lack of blocking of a long CS by a short CS. CSC-TD and MS-TD
are also capable of providing an account of both blocking conditions.

3.4.1 Simulations

Because RWDDM is based on the RW rule, it produces virtually the same results
as the latter when the CSs have the same duration. Our interest here is to test
whether it can reproduce the finding that a long CS can block a shorter CS but
a shorter CS does not block a longer one. We performed a simulation following
the design in rows 1 and 3 of figure 7. In the first phase a CSA (blocking
CS) of duration either 10 or 15 seconds was followed by reinforcement until its
associative strength V reached asymptote. In phase 2 CSA was joined with a
CSX (blocked CS), of either 15 or 10 seconds, in a coterminating compound and
followed by US. The top left panel of figure 8 shows the acquisition of associative
strength for CSX and its control during phase 2 for the condition CSA-15sec
and CSX-10sec. A considerable amount of blocking is observed, matching with
the data (bottom left panel).

The top right panel of figure 8 shows the results for condition CSA-10sec
and CSX-15sec. In this condition the model diverges considerably from the data
(bottom right panel) and predicts that CSX should actually become inhibitory.

3.4.2 Discussion

The blocking and inhibition seen in figure 8 is a result of a discrepancy in the
asymptote of learning between the CSs. After phase 1, CSA has associative
strength V4 ~ HA 4. During phase 2, CSX’s associative strength changes ac-
cording to:

AVX ~ a(HAX — (VA + Vx))
a(HAx — (HA4 + Vy))
(6%

(H(Ax — Aa) = Vx)

and since (Ax — A4) < 0, Vx becomes negative.
However, it could be argued that the short CSA becomes a secondary rein-
forcer which is signalled by the onset of the long CSX. In this case, the onset of
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Figure 8: Blocking with different durations. Left column: simulation (top) with
a 15 sec blocking CS and 10 sec blocked CS, and animal data (bottom) from
an experiment with the same design. Right column: simulation (top) with a
10 sec blocking CS and 15 sec blocked CS, and animal data (bottom) from an
experiment with the same design. Data panels redrawn from the top right panel
in figure 5 in Jennings and Kirkpatrick (2006). Model parameters: a; = 0.2,
ay =01, p=106=0.35 m=0.2 H=10.

CSX would serve as the time marker for the onset of CSA, and not for the onset
of US. Hence, during the first 5 seconds of CSX responding would be under
the control of this 5-sec stimulus representation which would not overlap, thus
not compete, with CSA’s later representation. It would follow from this account
that no blocking would be observed, and that responding during test phase with
CSX would peak at the 5-sec mark. This is a testable prediction that, if shown
to be the case, could validate RWDDM'’s account.

Also note that the time-dependent associative strength asymptote assumed
by RWDDM implies that learning during a compound where the elements are
of different durations is not stable. In particular, if CSA and CSX are the
two elements of the compound phase of blocking, their associative strengths are
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updated by RWDDM as

AVy=ay(HAs — (V4 +Vg))
AVg =ay(HAp — (Va+ Vg)),

which in the steady state form an inconsistent system of linear equations,

Va+Veg=HAy
Va+Vg=HAp.

Since the compound phase of blocking only lasts for a few trials, RWDDM
could produce the blocking seen on the left panel of figure 8. But if training
with the compound was carried out for longer, the V' values would grow without
bound. However, there is evidence that in compounds formed by elements with
asynchronous onsets, like in the compound phase of the blocking experiments
here, the shorter stimulus comes to control CR timing and there is no summation
of associative strengths (Fairhurst et al., 2003). Hence, it appears that with
compounded asynchronous CSs, the shorter CS, more proximal relative to the
US, comes to dominate and a summation rule like RW would not be applicable
beyond the first few trials of training.

A model that is well placed to explain these results is CSC-TD. A long
blocking CS will completely overlap a short blocked CS, blocking all units in the
blocked CS. But in the case of a short blocking CS, there will be free units in the
beginning of the blocked CS which will acquire associative strength, attenuating
blocking. Given its similarity, MS-TD would likely produce comparable results.
MoT and Let would not be able to account for any type of blocking given their
current choice of rule for associative strength. Unlike RWDDM and the TD
models, they both rely on the linear operator rule, which antedates the transition
to the rules that sum associative strengths in the compounds as mentioned
previously. MoT and LeT would need, at the very least, to replace the linear
operator by the RW or other equivalent rule to be able to account for blocking
and other compound phenomena.

3.5 Time specificity of conditioned inhibition

Learning occurs not only when a CS signals the occurrence of a US, but also
when a CS signals the omission of a US. It is commonly assumed that the ex-
citation caused by the former is counteracted by an inhibition produced by the
latter. This is again formalized by the summation term in the RW rule. Con-
ditioned inhibition is thus one of the phenomena that, together with blocking
and other compound phenomena, challenged the contiguity interpretation of
classical conditioning.

A conditioned inhibition procedure involves reinforced trials with a CS, say
A+, intermixed with non-reinforced trials with a compound AB-. Conditioned
responding develops during A+ trials but not during AB-. Hence, conditioned
inhibition is a key conditioning phenomenon since it is also a form of discrimi-
nation learning.
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Conditioned inhibition poses higher technical challenges for a model of learn-
ing and timing as responses cannot be directly observed. To assess conditioned
inhibition two types of measures are used (Denniston and Miller, 2007): sum-
mation and retardation tests. There are different procedures that can generate
inhibition, so we refer here specifically to the inhibition produced by alternating
A+ with AB- trials. CSA is called a training excitor, and CSB an inhibitor.
In summation tests, this inhibitor is then presented together with a different
excitor, and the inhibitor is said to pass the test if there is a decrement in re-
sponding compared to the excitor alone. In retardation tests, the inhibitor by
itself is now paired with the US, and it is said to pass the test if acquisition
is slower than with a neutral stimulus. Denniston and Miller (2007) reviewed
a series of studies that varied the durations of the training excitor and that
between the inhibitor and the training excitor. The studies showed that condi-
tioned inhibition is observed when the temporal relations between training and
testing are preserved, and not otherwise.

However, the studies reviewed by Denniston and Miller (2007) used as mea-
sure of conditioned inhibition the time to resume drinking (licking suppression)
when presented with the inhibitor. Williams et al. (2008) investigated inhibi-
tion caused by reinforcement omission in excitatory conditioning, a more direct
measure than licking suppression. In their experiments the inhibitor stimulus
signalled the omission of one of two USs (at 10 or 30 seconds) that had been as-
sociated with the excitor stimulus. Using summation tests they found that the
inhibitor would suppress responding only at the specific time of predicted US
omission. Retardation tests confirmed that the time of US omission is encoded
by the inhibitor.

We show here that RWDDM can account for inhibition and its time speci-
ficity. CSC-TD and MS-TD are also equipped to deal with these results. MoT
and LeT do not currently have the necessary mechanisms to explain inhibition.

3.5.1 Simulations

We demonstrate time specificity of inhibition with simulations of Williams et al.
(2008) experiment. Excitors E1 and E2 signalled reinforcement after 10 and 30
seconds respectively, and inhibitors I1 and I2 signalled US omission after 10
and 30 seconds respectively. During phase 1, E1 and E2 were always reinforced,
whilst the compounds E111 and E2I2 were never reinforced (see table 3). In
phase 2 a transfer excitor E3 was trained on a mixed FI schedule, where in
half the trials E3 lasted 10 seconds and in the other half 30 seconds. Phase 3
consisted of nonreinforced peak trials that lasted 90 seconds, a third with E3
compounded with I1, a third with E312, and a third with E3 alone. Figure 9
summarizes the results. Responding during E3 alone shows the two peaks char-
acteristic of mixed FIs. As figure 9 shows, the compound excitor and inhibitor
inhibits responding only at the time encoded by the inhibitor.
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Figure 9: Conditioned inhibition. Left column: simulation (top) and data (bot-
tom) from conditioned inhibition with a long inhibitor. Right column: simula-
tion (top) and data (bottom) from conditioned inhibition with a short inhibitor.
Data plots redrawn from figure 4 Williams et al. (2008). Model parameters:
oy =0.09, ay =0.06, p =1, 0 =0.35, m = 0.16, H = 30.

3.5.2 Discussion

The account provided of inhibition by RWDDM relies on the traditional summa-
tion term inherited from the RW rule. Time specificity comes from the inhibitor
CS timer being treated just like any other CS timer, except that instead of tim-
ing the arrival of the US it times the arrival of US omission.

RWDDM predicts that the representation of an inhibitor CS has the same
shape as of an excitor CS. This implies that inhibition is the exact opposite
of excitation. This is a testable prediction which the empirical results above
provide some validation.

The TD models provide a similar account of these data. Both CSC and
MS TD have CS representations that allow for time specificity of US omission.
Because the TD relies on the RW summation term, they can account for inhi-
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bition. LeT and MoT can also represent such time specificity, but because they
rely on the older linear operator rule, they do not have a mechanism to account
for inhibition.

3.6 Disinhibition of delay and compound peak procedure

The two related phenomena described here are important in that they appear
to challenge the summation effect. A common observation is that a compound
of two previously conditioned CSs usually produces more responding than its
individual components (Rescorla, 1997; Kehoe and Macrae, 2002, p. 204). How-
ever, failure to obtain summation is also common (Rescorla and Coldwell, 1995;
Pearce et al., 2002), and the precise conditions when it is observed or not is still
a current topic of debate (see Harris and Livesey, 2010, for a discussion). Here
we consider two cases in which summation was not observed and that RWDDM
can offer a possible explanation.

Aydin and Pearce (1995) used an autoshaping procedure to condition pigeons
to stimuli of 30 second duration. They observed little or no summation in
compound trials, but a response curve with a consistent shift to the left. This
earlier start of responding was observed even when one of the components was
a neutral preexposed CS. The shift of the response curve to the left was termed
disinhibition of delay.

Meck and Church (1984) performed an analogue experiment using the peak
procedure. They trained rats to associate a light and a sound (both of 50 second
duration) individually to a reinforcement, and then used a peak procedure to
investigate what happens to timing in their compound. Like Aydin and Pearce
(1995) they also found no summation and a shift to the left in the compound.
Furthermore, rats also stopped responding earlier in the compound peak trials.

Taken together, these results appear to show that in some cases summation
is not observed, and responding in the compound starts earlier than in the com-
ponent CSs. One possible explanation for this effect is that the subject fails
to recognize the two individual components of the compound, what is known
as generalisation decrement. If this is the case then it would be a performance
effect, and not a learning phenomenon. We cannot rule this out, but we show
that RWDDM'’s trial variability in time estimation provides a plausible mecha-
nism to explain this effect. The only other models in our analysis set that can
account for this are MoT and LeT.

3.6.1 Simulations

RWDDM is capable of accounting for the earlier responding in compounds by
noise in the timer. When a compound formed by CSA and CSB is presented,
its two timers W4 (t) and ¥p(t) will run in parallel. However, their rates A4
and Ap will have slightly different values due to noise. This implies that on
every compound trial, one timer will be running slightly faster than the other.
In contrast, on trials where only one CS is present, the timer will run faster in
some trials and slower in others. Therefore, if on compound trials responding
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is guided by the faster timer, the average response curve for compounds will be
shifted to the left when compared to the averaged response curve for a single
CS.

Figure 10 shows simulations of disinhibition of delay and compound peak
procedure. The figures were constructed by averaging the responses produced
by equation (10) over 50 trials. The simulations reproduce in part the an-
ticipation in responding during the compound that is observed in the data in
both experiments (see top right and bottom left panels of figure 10). Meck and
Church (1984) reported a median peak time of 404+4 seconds for the response
curves in compound trials, and 50£3.5 seconds in the individual trials. We ran
15 simulations as the one shown at the bottom row of figure 10, and analysed
the peak times produced by each. We found an average peak time of 4243 sec-
onds in the compound trials, and 47+4 in the individual trials. Both results are
within the error bounds in Meck and Church (1984). Aydin and Pearce (1995)
did not analyse peak times or shift in the response curves, so we cannot make
a quantitative comparison with our simulations.
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Figure 10: Disinhibition of delay and compound peak procedure. Top row: sim-
ulation (left) and data (right) of disinhibition of delay. Bottom row: simulation
(left and middle) and data (right) of a compound peak procedure. The middle
panel is a normalized (proportion of maximum response strength) version of the
left panel. Data plot redrawn from figure 13 in Meck and Church (1984). Model
parameters: m = 0.25,0 =1, 0 = 0.18, oy = 0.75, ay = 0.1, H = 5.
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3.6.2 Discussion

RWDDM can offer a good account for the lack of summation and earlier re-
sponding in compound trials in the two cases analysed here. It does so by
having trial to trial variability in time estimation. However, the model shows a
slightly higher maximum response frequency in compounds than in their com-
ponents (top and bottom left of figure 10) something not observed in the data.
This is not the product of summation, but of the slightly different asymptotes of
learning in the faster and slower timers in the reinforced trial immediately pre-
ceding the peak trial. Our assumption was that in compound trials the timer
running faster, with a higher slope A, would be the one guiding responding.
When timing adaptation has reached asymptotic levels, the updates on slope
A are due to noise in the value of the timer at reinforcement time, ¥(¢*). The
two slopes, A4 and Apg, will have very similar values. In the reinforced trial
preceding the compound peak trial, whichever timer produces a value of W(t*)
lower than the threshold will have its slope A adjusted up by the the slope
update rule, likely causing it to overtake the other slope. This slightly higher
slope will then be chosen in the peak trial that follows. But the corresponding
V associated with that timer will have been updated on the previous reinforced
trial based on the lower ¥(¢*) < 6 value. Because that is the denominator in
HA/¥(t*), the V value of the chosen timer will be consistently slightly higher
on the compound peak trials.

Other theories that might account for the data in this phenomenon are LeT
and MoT. Both theories postulate intertrial variability in timer rate, the same
mechanism used by RWDDM to explain this data. TD in any of its current
versions lacks a mechanism to explain these data.

3.7 ISI effect

The interval between CS onset and US onset is called Inter Stimulus Interval
(IST). In general, measures of CR strength such as response frequency and ampli-
tude decrease with longer ISTs (Smith, 1968; Gormezano et al., 1983; Kehoe and
Macrae, 2002). Response timing is commonly analysed by using fixed interval
(FI) schedules of reinforcement, which rely on a fixed ISI. It is a well established
result that the peak in the response curve decreases with longer FIs (Catania
and Reynolds, 1968; Gibbon et al., 1997). However, the entire response curve
approximately scales with FI. This is obtained by plotting different FI response
curves as the proportion of maximum response strength versus the proportion
to FI, a normalization procedure. The resultant normalized curves roughly su-
perimpose (Rakitin et al., 1998; Matell and Meck, 2000,0; Allman et al., 2014).
This is sometimes called scalar timing, and it is one of the manifestations of the
more general property of timescale invariance.

CSC-TD does not have a mechanism to explain either timescale invariance
or the ISI effect. Its more recent development, MS-TD, can approximately
reproduce both timescale invariance and the ISI effect. LeT is also a timescale
invariant model, but does not appear to show the decrease in response peak as
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a function of FI. MoT, at least in its earlier version (Kirkpatrick, 2002), can
reproduce both the ISI effect and timescale invariance.

3.7.1 Simulations

To demonstrate how RWDDM can reproduce the ISI effect we have simulated a
delay conditioning procedure using three fixed interval stimuli. Figure 11 shows
RWDDM simulations with FIs 5, 10 and 20 seconds. The top left panel shows
within-trial response rate (given by equation (10)) averaged over 50 trials for
each FI. The response curves show the same pattern as the data (bottom panel)
from the ISI effect: a sigmoidal shape with a maximum that decreases as a
function of FI duration. Note that because the curves are averages of 50 trials,
the noise is averaged out.
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Figure 11: ISI effect. Top row: simulated average response rate during CSs
(left), associative strength over trials (middle), and superimposition of response
curves (right). Bottom row: average response rate data from an FI experiment,
redrawn from bottom right panel of figure 4 in Kirkpatrick and Church (2000).
Model parameters: m =0.15, 0 =1,0 =0.3, a; = 0.2, ay = 0.1, H = 5.

The top middle panel of figure 11 shows the associative strength acquisition
curves for each FI. Their asymptotic levels are given by equation (20). V, is ap-
proximately a linear function of A, the TDDM slope. The different asymptotic
levels of associative strength are responsible for the different response peaks in
the left panel of figure 11.

RWDDM also reproduces the superposition observed when FI response curves
are normalized by maximum response rate and time to reinforcement (top right
panel of figure 11).
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3.7.2 Discussion

Gibbon and Balsam (1981) attributed the ISI effect to the expectancy to re-
inforcement. A specific reinforcer carries, according to their view, an amount
of expectancy H. This expectancy is spread back in time over the stimulus
that signals US occurrence. Hence, for a CS of fixed duration T" and US with
expectancy amount H, the total expectancy during the CS is hy = H/T. Our
RWDDM account follows the same principles. The time to reinforcement T is
computed by the ratio between the accumulation height at time of reinforcement
U(t*) and the timer slope at the current trial A(n). This leads to the asymptote
of learning in equation 9 being set to HA;(n)/¥;(t*). Superimposition of the
response curves follows directly in RWDDM from the nature of noise in the
linear accumulator. This noise guarantees that the time estimate produced by
the model is timescale invariant (Simen et al., 2013).

The IST effect can also be explained by the TD model with the Presence
representation (Sutton and Barto, 1990) and with the more recently developed
Microstimuli representation (Ludvig et al., 2012). The Presence representation
consists of a single element x which has the value 1 when the CS is present,
and 0 otherwise. Its associative strength V is updated by the TD rule at every
time step within a trial. In longer trials (longer FIs) the strength V' will decay
more, since it is updated more times in the absence of the US. This will lead to
a lower asymptotic value for V. However, Presence TD cannot account for the
superimposition of intratrial response curves. The CSC-TD fares even worse,
unable to account for either ISI effect or superimposition (see Ludvig et al.,
2012, for a comparison between MS, CSC and Presence TD). The Microstimuli
representation treats the stimulus as if it were composed of many units activated
in sequence. Their activations follow a Gaussian shape which partially overlap.
Later units have lower peaks and are wider than earlier ones. Because the
number of Microstimuli are fixed, in longer FIs there is less temporal resolution
which causes the US prediction to be lower than in shorter Fls, so it can explain
the ISI effect. MS-TD’s account of superimposition is only partial, although
clearly better than CSC and Presence-TD.

LeT in its current version lacks a mechanism to produce decreasing response
peaks with increasing FIs. But it can account very well for superimposition,
since its time representation is timescale invariant. The earlier version of Mod-
ular Theory, called Packet Theory, has been shown to produce the IST effect (see
top row of figure 3 in Kirkpatrick, 2002). This prediction comes from longer in-
terval durations decreasing the probability of response packet generation in the
model. MoT is also timescale invariant, so it generates superimposition quite
easily.

To summarise, the IST effect is explained either by time setting the asymptote
of learning (RWDDM) or by a time representation that gets more diffuse with
time, lowering the US prediction (MS-TD). Superimposition is explained either
by the type of noise in the linear accumulator (RWDDM, LeT) or by stimulus
units which have an approximately timescale invariant activation profile (MS-
TD).
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3.8 Mixed FI

Procedures where a stimulus signals reinforcement at more than one location in
time are called mixed FI or two-valued interval schedules. A mixed FI involves
only one CS which could be of short or long duration, and the subject has no way
of knowing which duration it is currently experiencing until the US is delivered.
Catania and Reynolds (1968) conditioned pigeons in a mixed FI and reported
a pattern of responding during the long CS that resembles a combination of
two distinct FIs (with two peaks) when the separation between the intervals
was in the ratio 8:1 but not at smaller proportions. Cheng et al. (1993) found
a similar result (experiment 2) when the intervals were in 5:1 proportion and
Leak and Gibbon (1995) showed that with intervals in the 8:1 proportion the
scalar property (measured by the CV) holds approximately even for three-valued
interval schedules. Whitaker et al. (2003) ran three experiments with Mixed FIs
in rats and found two peaks with the same CV when the proportion between
the durations was greater than 4:1, but not for smaller proportions. They also
found that the peak height at the short duration was higher than at the long
duration in most cases. Whitaker et al. (2008) used intervals in the very small
proportion 2:1 and still found two peaks that became more distinct when the
short interval was presented more often than the long.

These results are interesting because they challenge in particular models of
timing. They have served to provide evidence in favour of SET, and against
BeT and the first version of LeT (Leak and Gibbon, 1995). Subsequently, they
provided motivation for the development of the current version of LeT Machado
et al. (2009). LeT can now account for the multiple response peaks in Mixed FIs,
and their superimposition, but it cannot produce peaks with decreasing heights.
Modular Theory has the necessary mechanisms to account for all the features of
the data above. The TD models, MS and CSC, could both account for multiple
peaks, but their account of superimposition would vary, with MS being superior
than CSC. We show next that RWDDM can account for all features of the data
in Mixed FIs.

3.8.1 Simulations

In this simulation one CS was used which was followed by reinforcement either
after 15 or 75 seconds randomly chosen, a proportion of 5:1. Our assumption
was that in Mixed FI experiments subjects form two independent stimulus rep-
resentations, one for the short interval xg, and another for the long interval zj,
each with its respective associative strength (Vg, Vz) and timer (Ug, ¥r). At
CS onset, both timers begin timing, generating the two representations xg and
xr, and at each point in time behaviour is guided by the representation with the
highest activation value. When a reinforcement occurs, the CS representation
with the highest activation value is the one to which credit is assigned.

The left panel of figure 12 shows the simulated responses averaged over 50
trials of the long 75-second duration. Two peaks, centred roughly at 15 and 75
seconds, of decreasing heights and increasing widths are clearly seen, matching
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roughly with the data (right panel).
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Figure 12: Mixed FI. Left: simulated response strength during long trials.
Right: response strength data from a mixed FI experiment, redrawn from figure
3 in Leak and Gibbon (1995). Model parameters: oy = 0.2, ay = 0.1, p = 1,
o =0.425, m=0.2, H=30.

3.8.2 Discussion

RWDDM’s mechanism for dealing with mixed FIs is in essence the same as for
single FIs. The only difference is that instead of only one timer (and CS repre-
sentation) in Mixed FIs RWDDM uses as many timers (and CS representations)
as rewards. We have not however addressed explicitly how one CS can give rise
to two distinct representations. One possible explanation is that the slope adap-
tation rule (equation (6)) is only applied when the difference between the two
intervals is below a certain amount. If the difference is above this amount, then
the model would create a new representation. In fact, the data reviewed here
suggests that animals may not be able to distinguish two intervals if they are
in proportion below 2:1.

To the best of our knowledge, the only other model from our analysis set
that has tried to address the behaviour in mixed FIs is LeT. Machado et al.
(2009) have succeeded in obtaining the two peaks with the same CV using LeT.
Their account relies on a single accumulator in the form of a series of states
activated at a fixed rate. This rate is fixed within a trial, but varies from
trial to trial. After repeated training with a mixed FI, the states around the
reinforced times receive on average more associative strength than the ones away
from them. This activation pattern generates the response peaks seen in the
data. However, as the authors note, ‘in mixed-FI schedules, the response rate
[produced by LeT] at the first peak is equal to or lower than the response rate
at the second peak, but never higher,” which is the opposite of what the data
shows. The authors suggest that a decaying arousal function might need to be
added to the model so as to allow response rate to decay with interval duration.
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Modular Theory is capable of accounting for the behaviour in Mixed Fls
since its pattern memory for time is based on SET, which has been shown to
account for these data (Leak and Gibbon, 1995). MoT’s account is similar to
RWDDM’s in that both rely on a separate accumulator (and memory) for each
time of reinforcement. CSC-TD would likely produce two peaks, since it relies
on a perfect discretization of time into as many units as time-steps. But the
curves would not superimpose when scaled as there is no mechanism to account
for timescale invariance. MS-TD would also account for the two peaks but
superimposition would likely not be fully obtained as its simulations of the ISI
effect have only partially reproduced it (see section 3.7 and Ludvig et al., 2012).

3.9 VI and FI

Schedules of reinforcement specify the conditions of reinforcement delivery. There
are a number of different types of schedules, some are based on the time elapsed
between reinforcements, some on the number of responses emitted between re-
inforcements, but there can be other possibilities. Of particular interest for a
timing and conditioning model are the two most commonly used time-based
schedules: variable and fixed interval. Variable Interval schedules of reinforce-
ment (VI) consist in the delivery of a US following a CS that varies in duration
from trial to trial. The CS durations are usually derived from an arithmetic or
geometric sequence. In contrast, Fixed Interval schedules of reinforcement (FI)
use a CS of fixed duration in all trials. Skinner and Ferster (2015) reported that
VIs tend to produce behaviour with a constant rate throughout the trial, whilst
FIs produce scalloped curves with a pause following each reinforcement and a
rapid increase in rate until the next reinforcement.

Catania and Reynolds (1968) performed a detailed analysis of behaviour un-
der VIs and found that response rate declined with the average reinforcement
rate. Within a trial response frequency increased with time, following approxi-
mately a negatively accelerated curve. When normalized by maximum response
rate and time to reinforcement, these curves showed a considerable degree of
superimposition.

Matell et al. (2014) trained rats on a VI in which intervals were sampled from
an uniform distribution ¢/(15,45), and then tested using a peak procedure. They
compared the VI response peak curve to the peak curve from a control group
trained on an FI 30 (the mean of the VI distribution). Although the two curves
were not significantly different statistically, the VI response peak curve peaked
slightly earlier and was slightly higher than the control group.

Jennings et al. (2013) compared timing performance between VI and FI in
three experiments, but found VI timing only in a VI where the average interval
was 30 seconds. The other experiments from the same paper produced results
more in agreement with the earlier work by Skinner and Ferster (2015) showing
a constant rate of responding during VI trials.

Taken together, these studies appear to show that timing may sometimes
be present during VI schedules. In this case, animals appear to be learning the
average of the interval distribution. Here we demonstrate with simulations that
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RWDDM can account for such findings. The only other model in our analysis
set that can account for this result is Modular Theory.

3.9.1 Simulations

In this simulation a random VI was produced by sampling intervals from a
discrete uniform distribution ¢/(15,45). Non-reinforced peak trials of duration
135 seconds were interspersed during the VI, with a probability of 0.25. Our
assumption here is that subjects will keep adapting the timer rate A over trials.
In this case, equation (6) calculates the exponential moving harmonic average
of the CS durations. Since it is a moving average, the predicted peak time will
depend on the actual intervals used and their presentation order, but the non-
moving harmonic average of all intervals is 27.1 seconds. This is earlier than
the arithmetic average (30 seconds), which is in line with the trend observed in
the data by Matell et al. (2014).

Figure 13 (top left panel) compares the response strength averaged over peak
trials in the VI and in a regular peak procedure with FI 30. The VI peak is
higher and slightly earlier (at roughly 29.68 sec) than the FI peak, matching
roughly with the data (bottom row). When normalized both by peak height
and time the curves show the superimposition (top right panel) also seen in the
data.

3.9.2 Discussion

The model predicts a harmonic mean value for the position of the response peak,
which is always less than the arithmetic mean, but because it is a weighted
moving average the actual value may vary. As we saw in the simulations, the VI
response curve peaked at a value (29.68 sec) very near the arithmetic mean of the
intervals (30 sec). This may explain the trend observed in the data by Matell
et al. (2014). However, because that trend was not statistically significant,
further experiments would be needed to establish if the response peak during
VIs is nearer to the harmonic or the arithmetic mean.

Taken together, these results are more easily accommodated by theories that
can store an average of CS durations like RWDDM. Modular Theory is such
an example, since it also stores an average of intervals in its pattern memory.
Other models such as LeT and MS or CSC-TD would struggle with this result.
The CS representation in these models break down the CS into a sequence of
units activated serially in time. With a uniform distribution of CS durations
associative strength would likely be spread broadly over the weights that cover
the interval, generating a broader pattern of responses that would not be centred
on the mean.

3.10 Temporal Averaging

Although animals are able to time different durations simultaneously, as seen
in mixed FIs, paradoxically under certain circumstances a type of temporal
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Figure 13: VI and FI. Top row: simulated average response strength during
peak trials (left), and the same data plotted after both axes are normalized
(right). Bottom row: average response strength data from an experiment in
VI and FI, redrawn from figure 1 in Matell et al. (2014). Model parameters:
ar=0.1,ay =01, u=1,0=0.3 m=0.2 H=140.

averaging can be observed. This is a relatively new and important phenomenon,
which challenges in particular theories of timing to propose a mechanism that
can explain such averaging.

When rats are trained using two distinct stimulus modalities, a visual stimu-
lus (a light) and an auditory (a tone), each signalling reinforcement at a different
time, responding during compound presentations of both stimuli peaks roughly
in the middle of both durations (Swanton et al., 2009). This intermediate re-
sponse curve to the compound superimposes with the two other single stimulus
curves when normalized, suggesting that the animal is timing only one aver-
age duration. The type of average being computed appears to be modulated by
the reinforcement probabilities associated with each stimulus duration, with the
weighted geometric average fitting the data better than a weighted arithmetic
average or a non-weighted average (Swanton and Matell, 2011; Matell and Hen-
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ning, 2013; Matell and Kurti, 2014). Significantly, temporal averaging in rats
is only consistently observed when the auditory stimulus signals the short in-
terval and the visual stimulus signals the long interval (Swanton and Matell,
2011; Delamater and Nicolas, 2015). Even when each stimulus is associated
with a different response option (light reinforced with a left nosepoke, tone with
a right) rats still tend to mix the temporal information during compound trials
(De Corte and Matell, 2016).

We do not make a strong claim about RWDDM’s ability to explain this data.
Rather, we show that it has the necessary elements from which an account can
begin to be formulated. MoT also has similar elements from which an account
can be built. CSC-TD, MS-TD and LeT do not appear to be equipped to deal
with this phenomenon.

3.10.1 Simulations

In RWDDM the accumulator is the mechanism that marks the passage of time.
The temporal proximity to an event is determined by how close the level of
accumulation is to a fixed threshold value. A CS that signals reward later than
another CS, will have a lower rate (Ajoy) of accumulation than the shorter CS
(Anigh)- Because in RWDDM associative strength is set by time to reward, the
two CSs will also have different associative strengths, Vigw and Vyign respectively.
We may assume that under temporal averaging circumstances the stimuli are
of such nature that they cause the subject to integrate their information. At
the start of the compound trials, the ambiguity presented by the compound
stimulus may cause the representations of the two component stimuli to be only
partially retrieved. If the subject fails to represent the two stimuli separately,
the result may be the formation of a single representation composed by only
a fraction of the timing rate A and associative strength V of each individual
stimulus. The fractions are then added into one single rate and one single
associative strength, and processed as if they were the components of a single
stimulus representation. For the simulation below, we assume that the fractions
added are exactly half of their individual values: Acompound = Aiow/2+ Anigh /2,
and ‘/compound = ‘/low/2 + Vhigh/2-

We used a long CS of duration 20 seconds and a short CS of duration 10.
We simulated a peak procedure with each CS and with the compound. A plot
of the response strength averaged over peak trials is shown in the top left panel
of figure 14. The three peaks scale when normalized (top right panel).

The peak of the compound is roughly at 13.33 sec, which would be the
expected value for an averaged rate A = (1/10+41/20)/2, the harmonic average
of the intervals. The height of the compound peak is also at an intermediate
level between the two end peaks. The simulations match roughly with the data
(bottom row of figure 14)
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Figure 14: Temporal averaging. Top row: simulated response strength averaged
over peak trials in temporal averaging (left), and the same data normalized by
maximum response strength and peak time (right). Bottom row: peak trial
response strength data from an experiment in temporal averaging, redrawn from
figure 1 in Swanton et al. (2009). Model parameters: oy = 0.2, ay = 0.1, p = 1,
0 =0.35 m=0.2, H=230.

3.10.2 Discussion

The assumption we made here, that temporal averaging is the result of only
one accumulator being active during the compounds and fed with half the rate
for each of the stimuli, is plausible and can accommodate the main features of
the data. However, given the evidence from mixed FIs it seems animals are
capable of keeping multiple timers running in parallel, without averaging their
rates. Also, if averaging of rates always happened during compounds, then
the explanation provided by RWDDM for the left shift in the response curve
in the compound peak procedure would not hold. We suggest one possible
way of interpreting these three phenomena based on a failure of representation
selection caused by the ambiguity of the signal. In mixed FIs there is one
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single CS that signals two rewards at very different times. There is not much
ambiguity in how to interpret the signal, so the subject keeps two timers running
in parallel. In the case of compounds formed by individual CSs that signal
reward at the same time, as in the compound peak procedure, there is also
not much ambiguity. There’s very little difference between the time memories
evoked by the CSs, so choosing only one, the faster one, leaves no ambiguity as
to which CS is signalling reward. In the case of compounds formed by individual
CSs of different modalities that signal reward at different times, the ambiguity
might be such that cannot be resolved easily. The information from each CS
may then be only partially retrieved and added into one representation, resulting
in temporal averaging.

As mentioned previously, this is not a strong account of the conditions that
generate temporal averaging. But whatever the final word on this may be,
RWDDM has components that allow it to generate averaging and timescale
invariance. However, RWDDM predicts this average to be the harmonic mean,
and not the geometric mean weighted by reinforcement probabilities that has
been frequently found (Swanton and Matell, 2011; Matell and Henning, 2013;
Matell and Kurti, 2014). Also, Matell and Henning (2013) reported evidence
of summation of response rates during the compound trials. In our simulations
here we assumed that equal fractions were taken of the rates of each CS, resulting
in a combined non-weighted harmonic average of rates, but different fractions
(or weights) may be taken. In particular, the data indicates that the weights
are set by the reinforcement probabilities of each individual stimulus. Since this
information is stored in the associative strength V', we could assume the subject
integrates the two timer rates as follows:

Viow Vhigh
Acompound = [ 12 ) Ay + (R ) 4
compound (WOW+Vhigh) o +<Vlow+Vhigh> e

Although this would produce a weighted average, it is still a weighted harmonic
average of the intervals and not a weighted geometric average found in the data,
so the account given by RWDDM would still be partial. As for the summation
of response rates observed in the compound trials, this could be explained by
RWDDM if instead of taking a fraction of the V values for each stimulus to
form the Vcompound, the subject simply summed, or partially summed, both
V values.

Another model that is equipped to deal with averaging is Modular Theory.
If we allow for one single accumulator fed by one half of each time memory,
then MoT would predict a peak of responding at the arithmetic mean of the two
intervals. A weighted average could also be obtained following the procedure we
sketched above for RWDDM. However, this would yield a weighted arithmetic
mean, and not the weighted geometric mean obtained in the data. As for
timescale invariance, MoT relies on a noisy timer threshold whose mean is always
a fixed proportion of the time memory, with a standard deviation proportional to
this mean. Therefore, timescale invariance is guaranteed for all time memories,
averaged or not.
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LeT would not be able to explain temporal averaging without modifications.
It cannot change its average transition rate between states without compromis-
ing timescale invariance. Without changing the transition rate it is difficult to
see how else LeT could account for a different timing in the presence of the
compound. CSC-TD and MS-TD also lack any mechanism that could be used
to account for temporal averaging.

3.11 Summary of Results and Analysis

Table 4 summarizes the results from the simulations. RWDDM was able to
reproduce the main features of the data in 8 out of the 10 experiments. In the
other 2 the model was able to partially account for the data.

To allow for comparison we have offered qualitative predictions for the other
4 models in table 4. It is important to note that for most of the 10 phenomena
analysed here simulations using these models are not available in the literature.
Although we have tried our best to provide predictions based on our under-
standing of these models, we have not actually simulated them. Therefore it is
possible that in some cases a model may produce results that we did not foresee
if the right set of parameters is found or some of the assumptions are relaxed.
It is also possible that some simple modifications might allow the models to
explain the data. We endeavoured to point out some such modifications that
seem likely to work when discussing the simulation results above, but we do not
make predictions based on them because the purpose here is only to provide a
comparison of the current mechanisms of each model and therefore encourage
future work on model improvement. With that in mind, Modular Theory has
fared best after RWDDM, being able to account for 7 out of the 10 experiments.
MS-TD and CSC-TD shared the second place with 3 out of 10. LeT came in
last, able to account for 2 experiments. The last column of table 4 identifies the
main mechanisms responsible for successfully accounting for each phenomenon.

4 General Discussion

RWDDM was able to reproduce faster reacquisition due to its memory for time
being conserved during extinction. This memory is used to activate the stimulus
representation. Learning is slower in acquisition because RWDDM increases the
activation in the stimulus representation gradually over the trials. The stimulus
representation needs to be ‘built up’ first, and this process depends on learning
the timing of the US. Extinction eliminates associative strength but leaves the
time memory, hence the stimulus representation, intact. Reacquisition proceeds
faster because the stimulus representation does not need to be built up again.
Other models explain this by allowing the associative strength learning rate to
be faster in reacquisition.

Time change in extinction was accounted for because of RWDDM’s ability to
time CS duration independently from US associations. Time is learned entirely
by time markers. The TD models and LeT do not make this separation. These
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models do not have a mechanism to time stimuli without the US stamping in
the changes.

Improved timing in latent inhibition was also accounted by RWDDM'’s abil-
ity to learn timing independently of associations. Preexposure allows the model
to build its time representation, which is later expressed by behaviour during
the acquisition phase. The only other model that learns to time independently
of associations is MoT, but it does not have a mechanism to explain the latent
inhibition effect. The latent inhibition effect alone, i.e. the initial decrement in
the acquisition curve of a preexposed stimulus, was made possible in RWDDM
by using the P-H rule to change the learning rate for associative strength. The
use of the P-H rule instead of the RW would certainly have other theoretical
implications for the general theory we are introducing in this paper, but we
have used it only in this case. We will make further comments in the conclu-
sion. Blocking with different durations was easily accounted in one condition,
the short blocked and long blocking CS. The blocking effect in this condition
followed from the summation term in the RW rule. For the other condition, long
blocked and short blocking CS, a straight application of the model did not yield
the results expected. But the experimental results leave open the possibility
that this might be a case of second-order conditioning, where the summation
term in RW does not play a role. In this case, RWDDM is well placed to ex-
plain the results, since it can time the whole sequence of stimuli. The only other
models capable of explaining these results were the TD models.

The time specificity in conditioned inhibition was very well accounted for
by the combination of the summation term in the RW rule, which allowed for
inhibition to develop, and the independent timing mechanism in RWDDM that
allowed it to time US omission. However, the alternative account provided by
the different time representation in the TD models was also successful. The
other theories failed here for the same reason as in blocking, they lack a rule
like RW that can deal with compound stimuli effects.

The response curves centred at the mean of intervals in the VI procedure
was well accounted by the ability of RWDDM to learn the average of intervals.
This ability is only present in Modular Theory, making it the only other model
able to account for the results here.

In the case of temporal averaging, RWDDM was able to account for the
general features of the phenomenon, namely a response curve that peaks at the
average of the intervals signalled by the compound stimulus. However, RWDDM
predicts the peak to be at the harmonic mean, whilst some experimental results
suggest it happens at the geometric mean. RWDDM’s account of temporal
averaging was hypothesised as the result of ambiguity in the signal. In trying
to resolve whether the compound should be treated as a single stimulus or as
two separate stimuli, the subject settles on using one accumulator that is fed
partial timing information from both stimuli. Other hypothesis might turn out
to be more adequate, but this is one possibility that fits well with the RWDDM
framework. The only other model that would produce averaging under the same
hypothesis is MoT.

The classic ISI effect followed from two mechanisms in RWDDM. The lower
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response curves during longer stimuli was explained by time setting the asymp-
tote of associative learning. The larger spread of response curves during longer
stimuli and the superimposition of normalised curves follows from RWDDM'’s
timescale invariant time representation. The noise in RWDDM’s accumulator
decreases with the interval being timed, in such a way that it results in timescale
invariance of the response curves. Modular Theory can also reproduce all fea-
tures in the data. This is because it relies on a timescale invariant response rule
function that generates less responding in longer intervals. LeT can account
for superimposition, but it does not have a mechanism to account for the lower
curves in longer stimuli. MS-TD can account for both elements because of the
form of its microstimuli representation.

The double peaks observed in the response curves during mixed FIs is ex-
plained by RWDDM using simultaneous timing. It generates two different repre-
sentations, one for each reward. Thus, it can account for mixed FIs by the same
principles used to account for the ISI effect and simple FI schedules. Modular
Theory takes the same approach of simultaneous timing and is also successful.
The TD models and LeT can provide a partial account due to their distributed
time representation. But timescale invariance of the peaks is not observed in
CSC-TD and only approximately in MS-TD. LeT produces the timescale invari-
ance but not the decrease in peak height with time.

The left shift of response curves seen in compound peak procedure and dis-
inhibition of delay was well accounted for by RWDDM. It did so because of
intertrial variability in noise estimation. By choosing in every compound trial
the time memory that predicts reward sooner, RWDDM produces the left shift
in response. The only other models that can appeal to the same principle to
explain it are LeT and MoT.

The superiority of RWDDM and MoT in explaining the majority of the phe-
nomena analysed highlights the importance of some of their shared mechanisms.
Both models have separate rules for updating time and associative strength.
This makes them capable of timing any stimuli, independent of changes in asso-
ciative strength. Both models represent psychological time as linearly related to
physical time through the theoretical construct of the accumulator. Their mem-
ory for time stores a moving average of the experienced intervals. They both
allow for intertrial variability in time estimation. Among their differences, only
one proved crucial in discriminating the two models in the experiments anal-
ysed here: the lack of a mechanism in MoT to account for stimulus compounds.
RWDDM uses the RW rule, which was developed to deal with phenomena such
as blocking and inhibition, whilst MoT uses the linear operator, a historically
earlier association rule that cannot handle compounds. This was the single dif-
ference that caused the difference between MoT and RWDDM in number of
phenomena explained.

MS-TD came in third place in number of phenomena successfully explained,
but the gap between it and MoT was comparatively high, with MoT being
almost twice more successful than MS-TD. CSC-TD came just half a point be-
low MS-TD. This is certainly a result of their similarities. The only difference
between these two TD models is in their time representation. However, this
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different representation allowed MS-TD to explain only one more phenomenon
than CSC-TD, the ISI effect. Therefore, in the set of experiments analysed
here MS-TD did not show a significant improvement on CSC-TD. This does
not mean that MS-TD is not a significant improvement on CSC-TD overall.
Its superior account of timing is significant. But the set of experiments chosen
here are particularly challenging even for a dedicated timing theory, so they
raise the bar even higher. The strength of the TD models was in account-
ing for compound phenomena of blocking and inhibition, due to their RW rule
for association. Their weaknesses was that they rely on changes in associative
strength to express changes in timing. This prevented them from explaining
time change in extinction and improved timing in latent inhibition. They both
lack a memory to store the average of intervals, so they could not explain be-
haviour in VI schedules. Finally, their lack of trial to trial variability in time
estimation prevented them from accounting for the left-shift in the compound
peak procedure.

With respect to the number of successes only, LeT came in last. The results
allowed us to identify at least four limitations in LeT’s current formulation. The
first is that it ties its time representation to changes in associative strength.
This prevented it to explain time change in extinction and improved timing in
latent inhibition. The second limitation is that it relies on the linear operator
rule for associative strength, which prevented it from accounting for blocking
and time specificity in conditioned inhibition. Thirdly, its distributed memory
for time does not store the average of the intervals seen. This prevented it
from accounting for the behaviour in VI. Lastly, it doesn’t have a mechanism
to explain the decrease in peak height of the response curves with longer ISIs.
However, as a timing model, LeT’s strength is in explaining timescale invariance.
If it can be made to overcome at least the weakness of its associative learning
rule, for example by also adopting the RW to update associative strength, LeT
could be on a par with the TD models.

RWDDM faced a couple of difficulties in explaining the set of phenomena
analysed here. In latent inhibition the model was able to learn the timing for
the preexposed CS, but our choice of CS representation translates this into a
response curve that does not fully match the data. A better solution might
involve a two-state CS representation, one state for the early stages of training
and the other for the latter stages. Finally, RWDDM could not account for the
lack of blocking with a long blocked CS and a short blocking CS. One possible
solution that does not require changing the model is to treat the blocking CS
as a secondary reinforcer.

One relevant phenomenon that we did not explore here is the peak procedure.
In particular, Balci et al. (2009) have produced evidence that in the long peak
trials animals don’t stop responding immediately after the expected reward
time, but instead take a number of peak trials to learn to stop. The Gaussian
function x;(¥;) used as the CS representation in RWDDM ensures that CR
levels will begin to decrease after W;(t) crosses threshold § without any learning.
To address the findings in Balci et al. (2009) the RWDDM CS representation
could be changed to a sigmoid, saturating after the timer W(¢) crosses a first
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threshold. A second threshold could then be introduced to mark the time to stop
responding. When the timer crosses this stop threshold the saturation process
in the CS representation would stop and a decay process would begin. This
however would still be an incomplete account, as a mechanism would be needed
to explain the learning of the second threshold. But if such a CS representation
was used, the model would also fit a larger body of data coming from studies that
analyse responding during individual trials of the peak procedure. Schneider
(1969) and subsequently Gibbon and Church (1990) and others (Cheng and
Westwood, 1993; Matell et al., 2006) have argued that the pattern of responding
is better characterized not by a Gaussian but instead by an approximate square-
wave function, with a low-high-low response frequency pattern. It can be shown
that by introducing a stop threshold to the timer ¥, (¢), the TDDM timer (used
in RWDDM) can fit the data on times of start and stop responding (Luzardo
et al., 2017). Alternatively, the accumulator ¥;(t) itself could be used as the
CS representation, replacing x; in equations (9) and (10). In this case, an
upper absorbing boundary would need to be set on the accumulator to prevent
response strength increasing considerably in the first few trials following a CS
duration increase for example. Also, such a choice of CS representation would
cause within-trial responding to become linear, rather than the more commonly
observed sigmoidal pattern. If a sigmoidal response curve is to be preserved, a
different choice of response function would be required.

Another phenomenon that we did not address but deserves mention is the
timescale invariance of the acquisition process (Gallistel and Gibbon, 2000). It
refers to the general finding that the number of trials required until an acqui-
sition criterion is met depends on the ratio of intertrial (or context) and trial
durations, the I/T ratio (Gibbon, 1977; Lattal, 1999; Holland, 2000). Gibbon
and Balsam (1981) provided an account for this that postulates a decision pro-
cess based on the reward expectancy signalled by the stimulus versus the one
signalled by the context. A ratio between the two expectancies is calculated, and
once the ratio exceeds a certain value, acquisition starts. If the same postulate
of a decision ratio of reward expectancies is made, RWDDM may account for
the I/T ratio in a similar manner. If we assume that animals time the interval
between USs (the context or I duration) with rate Ar(n) and also the CS dura-
tion as usual with rate Ar(n), then we can form the ratio r(n) = Ar(n)/Ar(n).
As the number of trials n increase, the A rates converge to their asymptotic
values, and the ratio r will converge to Ar/A; = (1/T)/(1/I) = I/T. This
is essentially the same account given by Gibbon and Balsam (1981), with the
timer rates Ap and Aj substituting Gibbon and Balsam’s expectancies H/T
and H/C.

At least three testable RWDDM predictions came out from the simulations
reported here. The first concerns blocking with different durations. A long
blocked CS will not be blocked by a short co-terminating blocking CS, and two
peaks in responding will be observed during test trials with the blocked CS: one
at the time the short blocking CS would normally start, and another at the end of
the blocked CS. The second prediction is that conditioned inhibition is the exact
opposite of excitation. This means that the behaviour produced by inhibition is

92


https://doi.org/10.1101/184465
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/184465; this version posted September 5, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

timed in the same manner as in excitation. Finally, in temporal averaging the
response peak in the compound stimulus should be at the harmonic average, or
weighted harmonic average.

RWDDM is, to the best of our knowledge, the first time the RW associative
learning rule is coupled with a accumulator-based timing theory. An important
implication of this effort for associative learning is that it allows for a richer
analysis of the effects of timing in compound stimuli experiments. Here we have
analysed blocking and conditioned inhibition, but there is evidence suggesting
time may have important effects in other cue-competition phenomena such as
overshadowing (Kehoe and James, 1983; Jennings et al., 2007). Timing effects
in compounds has until now received somewhat little attention, with many pub-
lished experimental studies reporting only aggregate response measures. This is
perhaps to be expected, since most associative learning models that can handle
compounds do not have any, or a rich enough, time representation. RWDDM
is an attempt at filling this theoretical gap.

Another limitation of associative learning models is that they tend to simply
postulate the timing features of the stimulus representation, without a detailed
account of how these can mechanistically arise and evolve. This is the case with
the CS representations of CSC-TD, MS-TD and others like C-SOP (Brandon
et al., 2003). RWDDM’s adaptive timer and time-adaptive CS representation
provide a fuller account of the timing mechanism and its dynamics. Another
recent model that provides this level of detail is the Timing from Inverse Laplace
Transform (TILT, Shankar and Howard, 2012; Howard et al., 2015). It can
dynamically develop a timescale invariant representation of stimulus history
using a two-layer neural network. It can also reproduce a number of important
conditioning phenomena, but so far it has only been implemented with the linear
operator rule for associative learning, which precludes it from accounting for cue
competition phenomena.

The RWDDM architecture suggests that timing is largely independent of
the process of association formation and maintenance. Associations however,
according to RWDDM, depend on timing both to set the asymptote of asso-
ciative strength and to build the CS representation so that it can enter into
association with the US. Thus, RWDDM implies that interactions between tim-
ing and associative learning are mainly one-directional. This appears to match
roughly with experimental findings. In a review Kirkpatrick (2013) found that
prediction error influenced measures of time estimation only through changes in
reward magnitude and devaluation, whilst effects in the other direction included
the appropriate timing of CRs from start of conditioning, trial and intertrial
durations affecting strength and probability of CR occurrence, and cues with
different temporal information affecting cue competition.

5 Conclusion

In this paper we introduced a new real-time model for classical conditioning and
timing. The model combines elements from two theories, the Rescorla-Wagner
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conditioning model and the TDDM interval timing theory.

We have simulated the model on 10 conditioning phenomena selected from
the literature, which collectively represent a particular challenge for any single
model to explain. The model was successful in accounting for 9, and can be made
to account for the rest if simple modifications are made. The mechanisms used
by other models of similar scope were evaluated to see if they could also account
for the data. The only other model to reach a comparable level of success in this
set of phenomena was Modular Theory. This was due to MoT and RWDDM
having a significant overlap in terms of mechanisms. Our analysis suggests that
certain mechanisms may also be adopted by some of the other models, thereby
improving their explanatory power.

RWDDM may be improved in several ways. It is quite likely that the asymp-
tote of learning may not be described by the simple inverse relationship to re-
inforcement time that we assumed. In some of the experiments modelled here,
response peak seemed to decrease slower with ISI than our inverse relation-
ship predicted. Functions other than Gaussians might be used to represent the
CS, which could better fit the data in the case of latent inhibition for example.
These and other theoretical issues may be better elucidated by new experiments
involving compound stimuli and a manipulation of their durations, such as the
experiments with blocking, compound peak procedure and temporal averaging
analysed here.

We have also adopted the P-H rule in one experiment, but have not explored
its application in the others. Making the P-H rule an integral part of RWDDM
would add one more parameter but it would also allow RWDDM to account for
other preexposure and attentional effects that the rule is designed to account.
This is not a difficult modification, and we have already shown it to be feasible.

RWDDM may be regarded, like TD, as a real-time extension of RW. It adds
to it the powerful timing mechanism of TDDM. But also, by making a link with
a version of DDM, it shows that it may be possible to arrive at a unified account
of timing, conditioning and decision making.
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Table 4: Summary of main simulation results and comparison with other models.
Notes: (1) if learning rate is allowed to vary.

phenomenon RWDDM CSC-TD MS-TD LeT MoT explaining mechanism

faster reac- yes yes! yes! yes! yes' time-adaptive stimu-

quisition lus representation or
changes in learning
rate

time change yes no no no yes separate rules for time

in extinction adaptation and asso-
ciative strength

latent inhibi- part. no no no no PH rule and separate

tion and tim- rules for time adap-

ing tation and associative
strength

blocking with  part. yes yes no no RW rule and ability to

diff. dura- time any stimulus or

tions distributed time rep-
resentation

time spec. of yes yes yes no no RW rule and con-

conditioned centrated memory for

inhibition time or distributed
time representation

compound yes no no yes yes intertrial variability in

peak proce- time estimation

dure

IST effect and  yes no part. part. yes  asymptote of assoc.

superimposi- strength set by time

tion and accumulator noise
or time representation
that gets diffuse with
longer time

mixed FI yes part. part. part. yes ability to generate
multiple time rep-
resentations or a
single distributed
time representation

VI and FI yes no no no yes  memory that stores
average of intervals

temporal av- yes no no no yes memory that stores

eraging

average of intervals
and the accumulator
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