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Abstract 
 
Local moment-to-moment variability exists at every level of neural organization, but its 
driving forces remain opaque. Inspired by animal work demonstrating that local temporal 
variability may reflect synaptic input rather than locally-generated “noise,” we used publicly-
available high-temporal-resolution fMRI data (N = 100 adults; 33 males) to test in humans 
whether greater temporal variability in local brain regions was associated with functional 
network integration. We indeed found that individuals with higher local temporal variability 
had a more integrated (lower-dimensional) network fingerprint. Notably, temporal variability 
in the thalamus showed the strongest negative association with network dimensionality. 
Previous animal work also shows that local variability may upregulate from thalamus to 
visual cortex; however, such principled upregulation from thalamus to cortex has not been 
demonstrated in humans. In the current study, we rather establish a much more general 
putative dynamic role of the thalamus by demonstrating that greater within-person thalamo-
cortical upregulation in variability is itself a unique hallmark of greater network integration 
that cannot be accounted for by local fluctuations in several other well-known integrative-hub 
regions. Our findings indicate that local variability primarily reflects functional network 
integration and establish a fundamental role for the thalamus in how the brain fluctuates and 
communicates across moments. 
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Local temporal variability reflects functional network integration in the human brain:  
On the crucial role of the thalamus 

 
The human brain is remarkably variable across moments, exhibiting multiple dynamic 
signatures at every level of neural function (Faisal et al. 2008). However, the nature and 
driving forces of temporal variability remain opaque, with several competing definitions and 
associated theories (Garrett, Samanez-Larkin, et al. 2013). If dynamic neural activity at the 
regional level (in animals) is indeed a primary function of its synaptic inputs (Britten et al. 
2009), then one simple starting point is to investigate how local temporal variability in the 
human brain may relate to functional connectivity (Mišić 2011). Interestingly, the direction 
and manifestation of this potential relationship is not trivial.  
 
Theoretically, high local signal variability could result from entirely disparate functional 
network scenarios. For example, (i) through a lower-dimensional, well-integrated functional 
network composition, local variability would be a function of a coherent and common “drive” 
among a greater number of network regions. Accordingly, the dynamic range of a local brain 
signal would result from heightened levels of synchronized processes across connected 
regions, regardless of whether those processes are deterministic or stochastic (they must only 
be shared). Further, with a greater number of functional inputs to any local region that may 
operate across moments (Faisal et al. 2008), the probability of variable functional output may 
also increase. Conversely, high local variability could also conceivably result from (ii) a more 
fractionated (higher dimensional) network system. Here, greater local moment-to-moment 
fluctuations may be due to a lack of “entrainment” by a reduced number of available 
functional inputs (and thus, likely driven more by local sources of stochasticity); accordingly, 
local variability could therefore represent a lack of coordinated information transfer in the 
brain. In light of theories suggesting that more disconnected, fractionated biological systems 
are less dynamic across moments (Pincus 1994), the former (i) may be more likely. 
Strikingly, animal and computational work focusing primarily on the visual cortex has shown 
that the majority of apparent “noise variation” is shared across neurons that are similarly 
functionally tuned (Goris et al. 2014; Lin et al. 2015). These features suggest a plausible 
general phenomenon that could also apply to the human brain – that more temporal variability 
at the regional level may be characterized by a more integrated (lower dimensional) network 
fingerprint. 
 
Critically, the thalamus may play a key role in the relation between local variability and 
whole-brain network dimensionality. The thalamus maintains projections to the entire cortex 
and is thought to either relay and/or modulate information flow throughout the entire brain 
(Bell and Shine 2016; Sherman 2016). To the extent that temporal variability is indeed an 
expression of information flow or “dynamic range” (Garrett, Samanez-Larkin, et al. 2013), 
thalamic variability may provide a key temporal signature of whole-brain network 
dimensionality. Further, it has been demonstrated that the macaque (Goris et al. 2014) and cat 
visual cortices (Kara et al. 2000; Scholvinck et al. 2015) may inherit and then upregulate 
temporal variability explicitly from thalamic inputs. However, such variability differences 
between the thalamus and visual cortex have not yet been demonstrated in humans, nor 
expanded to examine the links between thalamic temporal variability and that of the broader 
cortex to which it connects in the context of network integration. We have posed previously 
that the brain’s ability to modulate variability levels within-person provides a key signature of 
neural “degrees of freedom” in response to differential environmental demands (Garrett et al. 
2012; Garrett, McIntosh, et al. 2013; Garrett, Samanez-Larkin, et al. 2013). Should the 
thalamus indeed be considered a dynamic and integrative “pacemaker” for the brain, then 
thalamic variability, and within-person increases in signal variability from thalamus to its a 
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priori structurally connected cortical targets may also be associated with lower network 
dimensionality. If so, the thalamus would qualify as a key region linking locally-assessed 
brain signal variability to overall network integration. 
 
In the present study, we used publicly available multiband fMRI resting-state data (N = 100, 
18–85 years) to test the hypothesis that moment-to-moment variability in voxel-wise brain 
signals reflects lower dimensional network integration at the individual level. Furthermore, 
we hypothesize that the thalamus should play a primary role in this association.  

 
MATERIALS and METHODS 

 
Neuroimaging, preprocessing, and analyses 	
 
We utilized high-speed, multiband fMRI resting state data from 100 healthy adult participants 
(age range = 18–83 years; n = 33 males) from the NKI-Enhanced dataset (publicly available 
at http://fcon_1000.projects.nitrc.org/indi/enhanced/download.html). All participants were 
reported to be psychiatrically and neurologically healthy. As noted in Nooner et al. (2012), 
Institutional Review Board Approval was obtained for the NKI-Enhanced project at the 
Nathan Kline Institute (Phase I #226781 and Phase II #239708) and at Montclair State 
University (Phase I #000983A and Phase II #000983B). Written informed consent was 
obtained for all study participants. 
 
Whole-brain resting-state fMRI data (10 mins, 900 volumes total) were collected via a 3T 
Siemens TrioTim MRI system (Erlangen, Germany) using a multi-band EPI sequence (TR = 
645 ms; TE = 30 ms; flip angle 60°; FoV = 222 mm; voxel size 3x3x3 mm; 40 transverse 
slices; for full scanning protocol, see 
http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_TRT/ Rest_645.pdf). The first 15 
volumes (15 × 645 ms = 9.7 sec) were removed to ensure a steady state of tissue 
magnetization (total remaining volumes = 885). A T1-weighted structural scan was also 
acquired (MPRAGE: TR = 1900 ms; TE = 2.52 ms; flip angle 9°; FoV= 250 mm; voxel size 
1x1x1 mm; 176 sagittal slices; full details at 
http://fcon_1000.projects.nitrc.org/indi/enhanced/NKI_MPRAGE.pdf). 
 
fMRI data were preprocessed with FSL 5 (RRID:SCR_002823) (Smith et al. 2004; Jenkinson 
et al. 2012). Pre-processing included motion-correction and bandpass filtering (.01–.10 Hz). 
We registered functional images to participant-specific T1 images, and from T1 to 2mm 
standard space (MNI 152_T1) using FLIRT (affine). We then masked the functional data with 
the GM tissue prior provided in FSL (probability > 0.37), and detrended the functional images 
(up to a cubic trend) using SPM8. We also utilized extended preprocessing steps to further 
reduce potential data artifacts (Garrett et al. 2010; Garrett, Kovacevic, et al. 2011; Garrett et 
al. 2015). Specifically, we subsequently examined all functional volumes for artifacts via 
independent component analysis (ICA) within-run, within-person, as implemented in 
FSL/MELODIC (Beckmann and Smith 2004). Noise components were identified according to 
several key criteria: a) Spiking (components dominated by abrupt time series spikes); b) 
Motion (prominent edge or “ringing” effects, sometimes [but not always] accompanied by 
large time series spikes); c) Susceptibility and flow artifacts (prominent air-tissue boundary or 
sinus activation; typically represents cardio/respiratory effects); d) White matter (WM) and 
ventricle activation (Birn 2012); e) Low-frequency signal drift (Smith et al. 1999); f) High 
power in high-frequency ranges unlikely to represent neural activity (≥ 75% of total spectral 
power present above .10 Hz;); and g) Spatial distribution (“spotty” or “speckled” spatial 
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pattern that appears scattered randomly across ≥ 25% of the brain, with few if any clusters 
with ≥ 80 contiguous voxels [at 2x2x2 mm voxel size]).  
Examples of these various components we typically deem to be noise can be found in Garrett 
et al. (2013). By default, we utilized a conservative set of rejection criteria; if manual 
classification decisions were challenging due to mixing of “signal” and “noise” in a single 
component, we generally elected to keep such components. Three independent raters of noise 
components were utilized; > 90% inter-rater reliability was required on separate data before 
denoising decisions were made on the current data. Components identified as artifacts were 
then regressed from corresponding fMRI runs using the regfilt command in FSL. 
 

Voxel-wise estimates of signal variability	
Voxel-wise signal variability was calculated using the square root of power (summed between 
.01–.10 Hz) derived from the pwelch function in Matlab. This quantity is akin to the standard 
deviation of the time series within the same frequency range.  
 

Network dimensionality estimation	
Our primary within-subject network dimensionality estimation technique utilized “spatial” 
principal components analysis (PCA), which decomposes a correlation matrix (voxel_corrs) 
for all voxel pairs from each within-subject spatiotemporal matrix (885 (time points) * 
171922 (common MNI grey matter voxels across subjects at 2mm), 
 

   PCA(voxel_corrs) = USV´                                                    (1) 
 
where U and V are the left and right eigenvectors, and S is a diagonal matrix of eigenvalues. 
We then counted the number of dimensions it took to capture 90% of the within-subject voxel 
correlation data. Because the S matrix represents the eigenvalues of the solution, and each 
eigenvalue is proportional to the variance accounted for in the entire decomposition, we 
summed eigenvalues until 90% of the total variance was reached. The fewer dimensions there 
are for a given subject, the more that voxels correlate with each other across time points. The 
same decomposition technique was also applied to 14 individual a priori functional network 
clusters reported and made publicly available by Shirer et al. (2011). For each subject, we 
calculated a between-voxel correlation matrix using only those voxels contained within each a 
priori network, and ran each network matrix through PCA to calculate a network-specific 
dimensionality score. In this way, we estimated individual differences in the dimensionality of 
previously defined, group-level networks. We chose to use the Shirer et al. (2011) network 
affiliations given the templates inclusion of subcortical structures in the possible network 
space, unlike other commonly utilized, but cortical-only, alternatives (Yeo et al. 2011).   
 

Statistical modeling: Partial Least Squares	
To examine multivariate relations between PCA dimensionality and BOLDpower, we utilized a 
behavioural PLS analysis (McIntosh et al. 1996; Krishnan et al. 2011), which begins by 
calculating a between-subject correlation matrix (CORR) between (1) PCA dimensionality 
(PCAdim) and (2) each voxel’s BOLDpower value. CORR is then decomposed using singular 
value decomposition (SVD).  
 

SVDCORR (BOLDpower, PCAdim) = USV´                                            (2) 
 
This decomposition produces a left singular vector of PCAdim weights (U), a right singular 
vector of brain voxel weights (V), and a diagonal matrix of singular values (S). A single 
estimable latent variable (LV) results that represents the relations between PCA 
dimensionality and BOLDpower values. This LV contains a spatial activity pattern depicting 
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the brain regions that show the strongest relation of local signal variability to network 
dimensionality identified by the LV. Each voxel weight (in V) is proportional to the voxel-
wise correlation between voxel PCAdim and BOLDpower.  
 
Significance of detected relations was assessed using 1000 permutations of the singular value 
corresponding to the LV. A subsequent bootstrapping procedure revealed the robustness of 
within-LV voxel saliences across 1000 bootstrapped resamples of the data (Efron and 
Tibshirani 1993). By dividing each voxel’s weight (from V) by its bootstrapped standard 
error, we obtained “bootstrap ratios” (BSRs) as normalized estimates of robustness. For the 
whole brain analysis, we thresholded BSRs at values of ±3.00 (which exceeds a 99% 
confidence interval) and ±24.00. For the network-specific analyses, we thresholded at ±3.00.  
 
We also obtained a summary measure of each participant’s robust expression of a particular 
LV’s spatial pattern (a within-person “brain score”) by multiplying the model-based vector of 
voxel weights (V) by each subject’s vector of voxel BOLDpower values (Q), producing a single 
within-subject value,  
 

Brain score = VQ´                                                         (3) 
 

Brain scores are plotted in various models noted in Figures 1-4. 
 

Statistical modelling of links between thalamo-cortical differences in variability and 
network dimensionality	
 
To address the hypothesis of whether thalamo-cortical upregulation of local signal variability 
is linked to greater network integration within the a priori functional networks from Shirer et 
al. (2011),	we first manually determined the assignment of each of the Shirer et al. network 
regions to one or more of the seven structurally connected cortical target labels suggested by 
Horn et al. (2016)	 within	 their	 thalamic	 parcellation	 (see	 Figure	 5).	 These	 labels	 also	
correspond to those utilized in Behrens et al. (2003),	but	we chose the Horn et al. thalamic 
atlas as a result of its derivation from an adult sample (N = 169) far larger than that utilized by 
Behrens et al. (2003) (N = 7). Since we were primarily interested in projections connecting 
thalamus to cortex, all Shirer et al. (2011) networks were cortically masked via the Harvard-
Oxford Cortical Atlas using a probability threshold of 5% (Desikan et al. 2006) prior to 
analyses. As the basal-ganglia network only contained 4% cortical voxels, it was not 
considered further, and all successive analyses were calculated on the remaining 13 networks. 
Subsequently, for every subject and network, we calculated the median temporal variability of 
all voxels within the cortical networks voxels and corresponding thalamic subdivisions. To 
model the relation between thalamo-cortical differences in temporal variability and within-
network dimensionality, we first re-calculated within-person, network-specific PCA 
dimensionality scores (as described above), although only using cortical voxels from each 
network within the PCA. The relation between thalamo-cortical differences in temporal 
variability and network dimensionality was then formalized for each network by a multiple 
regression of the form 
 

PCAdim = a + b1(VARthalamus) + b2(VARcortex- thalamus) + b3…7(VARhub1…5) + e                (4) 
 
where VARcortex-thalamus is the difference score between cortical and thalamic temporal 
variability, VARthalamus is thalamic temporal variability, and PCAdim is the within-subject PCA 
dimensionality value from within-cortical-network regions only. The partial regression 
coefficient b2 quantifies the relation between the thalamo-cortical difference in variability and 
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PCA dimensionality, while controlling for baseline (i.e., thalamic) variability. Further 
controls (b3…7) are noted below.	
 

 Further control for temporal variability of cortical hub regions to gauge the 
robustness of thalamic influences on network integration 

To provide evidence for the robustness of the influence of the thalamus and thalamo-cortical 
differences in local variability on network integration, we sought to control for fluctuations in 
other canonical hub regions in all models (see equation 4 above). To do so, we first extracted 
the temporal variability of four "classic" cortical hub-regions, for which the a priori definition 
was based upon their well-known integrative roles within healthy structural and functional 
brain networks (Power et al. 2013; van den Heuvel and Sporns 2013; Perry et al. 2015; de 
Pasquale et al. 2017). These regions included (i) the posterior cingulate (PCC)/precuneus, (ii) 
supplementary motor area (SMA), (iii) posterior intra-parietal sulcus (pIPS), and (iv) the 
middle frontal gyri (MFG); the corresponding MNI coordinates were extracted from De 
Pasquale et al. (2016) (see Table S1). A spherical blob with a radius of 8mm was constructed 
using the coordinates for each cortical "hub" region. We then extracted the Shirer et al. 
functional network cluster which either enveloped the "hub" blob or was most proximal in 
anatomical location (see Figure S1). Due to the overlap of the a priori MFG region to frontal 
regions in both the visuospatial and executive control networks, we selected the MFG-like 
regions from each of these networks as separate controls. After extracting the local variability 
from each of these "best-fitting" network clusters (noted in the above equation as 
“b3…7(VARhub1…5)”), we then covaried these regional values from each of the subnetwork-
based models linking thalamic power and thalamo-cortical power differences to PCAdim.  

Notably, for network-specific maps (Shirer et al. 2011) within which hub regions were 
represented, local variability of such hub regions were not covaried to maintain model 
stability. Given that cortical estimation of variability within network regions may be largely 
determined by the variability within their representative hub regions, it becomes statistically 
redundant to model a change score as well as both elements that constitute the particular 
change score (i.e., we already model thalamic variability and thalamo-cortical differences in 
variability). Thus, to avoid model multicollinearity, for any given network model above, we 
only control for variability within hub regions that are not part of that exact network. 
Accordingly, for the dDMN network analysis, PCC/precuneus was excluded as a control; for 
the sensorimotor network analysis, SMA was excluded as a control; for the visuospatial 
network analysis, pIPS and visuospatial MFG were excluded as controls, and; for the RECN 
and LECN networks, bilateral ECN network MFG was excluded as a control.   
 
 

Publicly available data and code 
All data are already publicly available at 
http://fcon_1000.projects.nitrc.org/indi/enhanced/download.html. Our subject ID list, 
rationale for sample selection, and all code written to reproduce the current results is available 
on Github.	

 
RESULTS 

 
Whole-brain model linking local temporal variability and network dimensionality 
 
In line with our initial hypothesis, multivariate partial least squares (PLS) modeling (see 
Methods) revealed that greater local temporal fluctuations coincided with lower network 
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dimensionality (r = –0.84 (95% bootstrap confidence interval (CI) = –.81, –.88); p = 2.22*10-

27). Spatially, this was a robust and global phenomenon at typical threshold levels (see Figure 
1). When increasing statistical thresholds greatly (Figure 1), temporal variability in bilateral 
thalamus was indeed the peak correlate of lower whole-brain network dimensionality.  
 
We subsequently probed the relation between within-voxel temporal variability and network 
dimensionality via a series of control analyses. First, given that much of our previous work 
has demonstrated that older adults express less temporal variability in brain signals (Garrett et 
al. 2010; Garrett, Kovacevic, et al. 2011; Garrett et al. 2012; 2015), we examined whether the 
link between local variability and network dimensionality would hold after controlling for 
adult age. We found that network dimensionality strongly predicted local variability 
independent of age (semi-partial r = –.74). In line with our previous findings (Garrett et al. 
2010; Garrett, Kovacevic, et al. 2011; Garrett et al. 2012; 2015), local variability also 
decreased with age (see Table 1), although the zero-order effect of age (r = -.46) was 
somewhat attenuated (semi-partial r = -.24) when controlling for network dimensionality.  
 
Second, for PCA dimensionality estimation in our primary results above, we decomposed a 
spatiotemporal correlation matrix (PCAcorr) as opposed to the more typical decomposition of a 
covariance matrix (see Methods). PCA is variance-sensitive by design, so decomposing a 
covariance matrix in which temporal variance is not scaled (as it is in PCAcorr) could bias the 
relation between local variability and PCA dimensionality. Conversely, decomposing a 
correlation matrix ensures that differential temporal variances between region pairs are 
accounted for (i.e., in the denominator of the correlation formula; see Methods for a 
description). In any case, our results showed that the relation between local variability 
(!"#$%&) and PCAcorr dimensionality (Figure 1) held in the absence of “variance bias.” 
However, because other decomposition methods (i.e., covariance matrix-based PCA 
(PCAcovar) and independent components analysis (ICA, which seeks statistical independence 
between dimensions rather than orthogonality) are not only typical but also differ in 
potentially relevant ways from PCAcorr, we also investigated whether these alternative 
methods would grossly alter the relation between network dimensionality and local temporal 
variability. PCAcovar was run in the same manner as described in Methods, although using a 
within-subject, between-voxel covariance matrix instead of a correlation matrix. ICA was run 
via MELODIC in FSL (Beckmann and Smith 2004). In all cases, we counted how many 
dimensions were required to capture 90% of the spatiotemporal data, within-subject. Results 
indicated that PCAcovar (r = .88, bootstrap CI = -.84, -.91; p = 2.58*10-33) and ICA (r = .82, 
bootstrap CI = -.72, -.90; p = 1.67*10-25) dimensionality correlated strongly with PCAcorr 
dimensionality (see Figure 2A). Separate PLS models were also robust (see Figure 2A) when 
linking PCAcovar dimensionality to local variability (r = -.66, bootstrap CI = -.61, -.73; p = 
7.37*10-14) and ICA dimensionality to local variability (r = -.64, bootstrap CI = -.50, -.76; p = 
8.86*10-13). Thus, regardless of exact dimensionality estimation method, all results converged 
to demonstrate a reliable negative relation between network dimensionality and local 
temporal dynamics. 
 
Third, because our primary results in the current paper gauge local temporal variability by 
estimating power in a typical bandpass range for fMRI (.01-.10 Hz), we also examined 
whether frequency range may influence the relation between PCA dimensionality and local 
voxel-wise variability. We separated the bandpass frequency range (.01-.10 Hz) into equal 
thirds (low, medium, high), calculated !"#$%& for each voxel and frequency range (as our 
estimate of local temporal variability), and then ran a PLS model linking PCA dimensionality 
to local variability for each frequency range within one model. We found a single significant 
latent variable (p = 1.08*10-27) demonstrating a similar effect as seen in our overall results; 
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for low (r = -.81; 95% bootstrap CI = .76, .87), medium (r = -.74; 95% bootstrap CI = .69, 
.81), and high frequency ranges (r = .71; 95% bootstrap CI = .65, .78), network 
dimensionality and local variability were negatively correlated (see Figure 2B). 
 
Fourth, our primary finding thus demonstrates a stable negative relation between PCA 
dimensionality and local signal variability. Prior to estimation of more specific models (see 
below), it is important to consider that the statistical conditions required for this negative 
relation to emerge are non-trivial. If we consider the correlation formula that provides the 
initial matrix for PCA decomposition, 
 

& = 	 ∑(+,-+̅)	(0,-01)234235
                                                        (5) 

 
the between-region time series covariance (numerator) is scaled by the time series’ standard 
deviations of each region pair (denominator; representing local temporal variability). For the 
current relation between PCA dimensionality and local signal variability to be negative, it is 
necessary for the covariance between regions (the numerator term) to outpace the SDx SDy 
term (representing local temporal variability) in the denominator of the correlation formula. If 
the local variability of regions x and y was random noise, then the covariance between x and y 
should be minimized, pushing the correlation value to zero and the PCA dimensionality 
estimate higher. In our results however, between-region correlations appear high (resulting in 
lower PCA dimensionality) despite high levels of local variability. As a simple demonstration 
that increasing randomness should invert the effect we find in our data, we simulated the 
impact of additive random noise on dimensionality by: (a) generating a matrix of in-phase 
sine waves (amplitude = 1) of equal spatiotemporal dimension to the original within-subject 
2x2x2mm voxel-wise data (885*171922); (b) generating 171922 different vectors of 
uniformly distributed random noise (885*1) in varying proportions of the sine wave 
amplitude (here, 40 to 50%); (c) adding noise vectors to each generated sine wave (thus 
increasing total time series variation), and; (d) calculating PCA dimensionality of the entire 
spatiotemporal matrix at each noise level. In Figure 2C, a clear positive (and effectively 
deterministic) linear effect between random noise level and PCA dimensionality emerges, the 
exact opposite effect we see in our data (see Figure 1).  
 
Finally, other influences that could drive the relation between local variability and network 
dimensionality in the observed negative direction are equally essential to consider. The most 
obvious fMRI artifact to account for in this regard is global signal (i.e., the average signal 
across the entire brain) (Liu et al. 2017). Controversy remains regarding the nature of the 
global signal in fMRI, and whether or not it should be corrected (Liu et al. 2017; Power et al. 
2017). Regardless of the mechanisms driving the global signal, this issue could be potentially 
salient for the present study given that by definition, a higher unifying between-region “global 
signal” would necessarily result in a lower dimensional spatiotemporal network organization. 
We thus computed the global signal within-subject (average of all voxels at each time point 
from a whole-brain mask (2mm standard MNI), yielding a single full-length time series), and 
regressed it from every voxel within-subject. From the global signal-regressed spatiotemporal 
matrix, we then recalculated PCA dimensionality and voxel-wise temporal variability within-
person, and ran a new multivariate model linking the two. We first found that not only did 
PCA dimensionality values calculated from global signal regressed data correlate strongly 
with PCA dimensionality from non-regressed data (r = .86; bootstrap CI = .81, .91; p = 
4.68*10-31), but also that a very strong relation between network dimensionality and local 
temporal variability using global signal regressed data resulted (r = –.88; bootstrap CI = –.83, 
–.92; p = 8.36*10-34; Figure 2D). Global signal thus had little impact on our primary findings. 
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Network-specific models	
 
Next, we examined whether pre-selection of a priori networks would affect the link between 
higher local temporal variability and lower network dimensionality. Most studies examining 
networks in fMRI data typically rely on network patterns resolved at the group level 
(Beckmann and Smith 2004; Damoiseaux et al. 2006; Shirer et al. 2011; Salami et al. 2014)). 
Researchers’ expectation of, or interest in, such group level networks (e.g., default mode 
network) may provide a clear rationale for network-specific probing of relations between 
PCA dimensionality and local variability. Thus, employing a widely used, publicly-available 
14-network parcellation (Shirer et al. 2011), we re-computed (within-person) PCA 
dimensionality for each network independently; in this way, we estimated divergence from 
unidimensionality for each network separately, within-subject, and subsequently related that 
value directly to temporal variability only in network-specific voxels. For all networks, 
associations between local variability and network dimensionality were robustly negative, 
ranging from r = –.54 (p = 8.31*10-9) to r = –.81 (p = 3.39*10-24), with the strongest link 
again being expressed in the basal ganglia network (including thalamus, as in our overall 
model), as well as in the sensorimotor network (see Figures 3 (scatter plots) and 4 (brain 
plots), and Table 2 (statistics)).  
 
To provide a complementary view on these network specific effects, we also calculated the 
variance accounted for by the first principal component (which necessarily accounts for the 
most within-subject spatiotemporal variance) from the within-subject PCAcorr solution for 
each network. Doing so provides an alternative within-person measure of the divergence from 
spatial network unidimensionality (i.e., spatiotemporal divergence from the network template) 
that does not require setting an explicit summed variance criterion (e.g., 90%, as we have in 
the current study). First dimension variance accounted for correlated strongly with PCA 
dimensionality as estimated above (Figure S2). These results suggest that the links we report 
between PCA dimensionality and local temporal variability above are not a function of 
arbitrary choice of threshold (i.e., 90% of total spatiotemporal data), but rather, represent a 
more general relation between divergence from network unidimensionality and local temporal 
variability.  
 
Greater thalamo-cortical upregulation in local temporal variability correlates negatively with 
network dimensionality	
 
In our overall model, moment-to-moment variability in thalamus was a peak negative 
correlate of network dimensionality (see Figure 1), in line with our hypotheses. The thalamus 
indeed maintains projections to the entire cortex, and is thought to relay and/or modulate 
information flow throughout the entire brain (Bell and Shine 2016; Sherman 2016). 
Importantly, animal work indicates that visual cortex may upregulate temporal variability 
explicitly from thalamic inputs (Kara et al. 2000; Goris et al. 2014; Scholvinck et al. 2015). 
We thus tested next whether thalamo-cortical upregulation of signal variability relates to 
network dimensionality. Utilizing the Horn et al. (2016) thalamic atlas, which parcellates the 
thalamus via its structural connections to seven non-overlapping cortical targets (see 
Methods), we calculated within-person differences in temporal variability from thalamus to 
cortex, and modelled its relations to network dimensionality by: (1) cortically masking each 
of the Shirer et al. (2011) networks by intersecting each network with the Harvard-Oxford 
Cortical Atlas (Desikan et al. 2006); (2) manually determining which thalamic projections 
from the Horn et al. atlas are associated with the cortical regions within each subnetwork (see 
Figure 5); (3) calculating the median temporal variability for relevant thalamic regions and 
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then from cortical voxels within each network; (4) calculating PCA dimensionality from 
network-specific cortical voxels, and; (5) modelling the relation between within-network 
dimensionality and upregulation of temporal variability from corresponding thalamic regions 
to within-network cortical regions (see Methods). We did not submit the basal ganglia 
network for further analysis as only 4% of its voxels were localized in cortical areas. Eleven 
of 13 remaining networks were largely localized within the cortical regions displayed in the 
Harvard-Oxford atlas (82%–94% overlap), with a somewhat lower overlap for the right 
executive control network (67%) and the sensorimotor network (53%). We found that in 12 
out of 13 networks, greater within-person upregulation of temporal variability from thalamus 
to cortex correlated with lower within-network dimensionality (i.e., higher functional 
integration; see Methods for model details, and Table 3 (statistics)). Critically, thalamo-
cortical upregulation also predicted network dimensionality over and above local variability 
thalamus and various other canonical integrative “hub” regions (i.e., posterior intraparietal 
sulcus (pIPS), middle frontal gyrus (MFG), PCC/precuneus, and supplementary motor area 
(SMA); see Methods, Table S1, and Figure S1) embedded within the Shirer et al. (2011) 
networks. These findings thus suggest that greater upregulation of local temporal variability 
from thalamus to cortex provides a unique signature of how the brain functionally integrates 
overall.         
 
It should be highlighted that in fMRI, although the technical and biological reasons remain 
unclear in the literature, the total signal strength recoverable in thalamus vs. more lateral 
cortical regions can be lower. Regardless, we argue that potentially impoverished thalamic 
signal strength cannot account for the present findings for several reasons: (1) Our 
multivariate PLS model decomposes correlations between local voxel-wise variability and 
network dimensionality; thus, model weights are predicated on voxels with maximum (i.e., 
signal strength-independent) correlation to dimensionality. (2) Our regression models linking 
network dimensionality to thalamo-cortical differences in local variability (see Table 3) 
control for baseline (thalamic) variability. Semi-partial correlations between network 
dimensionality and thalamo-cortical variability difference scores are provably identical to 
having Z-transformed thalamic and cortical variability estimates prior to computing difference 
scores, while again controlling for Z-transformed baseline (thalamic) power. What matters in 
our specific regression models (Table 3) is the predictive utility of the difference in local 
variability between thalamus and cortical targets, rather than absolute values of each. As such, 
signal strength (or temporal SNR) arguments cannot easily account for why thalamus is the 
strongest correlate of network integration overall in the current data. If anything, the strength 
of the current thalamic findings would rather serve as statistical underestimates if signal 
strength/temporal SNR were of primary concern.          
 

Discussion 
 
Our results robustly demonstrate that high levels of local temporal variability in the human 
brain reflect lower functional network dimensionality. Our findings converge with recent 
computational and animal work suggesting that local variability may be largely generated 
directly from network interactions (Vreeswijk and Sompolinsky 1996; 1998; Doiron and 
Litwin-Kumar 2014). Local spiking variance (in area V1) is maximally shared among neurons 
that are similarly “tuned” (a hallmark of functional connectivity) (Lin et al. 2015; Scholvinck 
et al. 2015); beyond visual cortex however, we find that local variability reflects network 
dimensionality across the entire human brain. Perhaps most striking is the proportion of local 
dynamics accounted for by network dimensionality, ranging from correlations of r = –.54 to –
.81 in individual networks, and r = –.84 at the whole brain level. It thus appears that local 
variability largely reflects the dimensionality of functional integration. Regarding how higher 
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local variability could be produced from a lower dimensional functionally connected brain, 
computational and animal work suggests that greater moment-to-moment local variability 
may be driven by networks with balanced excitation and inhibition, particularly when 
connections are clustered or structured (Shew et al. 2009; 2011; Litwin-Kumar and Doiron 
2012; Doiron and Litwin-Kumar 2014; Doiron et al. 2016) (perhaps akin to our measure of 
network dimensionality). A key hallmark of balanced networks is that fluctuations in synaptic 
input (via network connectivity) reliably produce output fluctuations at the single cell level 
(Shadlen and Newsome 1994; Doiron and Litwin-Kumar 2014). Because lower network 
dimensionality correlates with higher local variability in the current study, it is testable in 
future studies (e.g., via magnetic resonance spectroscopy) whether excitatory-inhibitory 
balance lies at the root of our findings. Although debate continues as to whether and how 
BOLD may capture inhibition, the on- and offset of excitation (glutamatergic release) likely 
captured by BOLD dynamics (Logothetis 2008; Bojak et al. 2010) may serve as an effective 
proxy to test for balanced networks.  
 
Thalamic variability, within-person thalamo-cortical upregulation of temporal variability, 
and relations to network integration	
 
We found that the thalamic variability was a particularly salient correlate of higher network 
integration overall. Computational and animal work indeed suggests that the thalamus (lateral 
geniculate) may provide a primary source of local dynamics for visual cortex (Sadagopan and 
Ferster 2012), suggesting the presence of network integration as a driver of local variability 
(Wang et al. 2010); strikingly, our findings indicate that greater temporal variability in 
thalamus is also one of the strongest markers of lower dimensional functional connectivity in 
the human brain overall. Given that the thalamus maintains either afferent or efferent 
projections with most cortical regions (Draganski et al. 2008; Zhang et al. 2008; Lenglet et al. 
2012; Ji et al. 2015), the thalamus may indeed serve as a putative hub (Hwang et al. 2017) of 
local dynamics throughout the human brain.   
 
Critically, we hypothesized that heightened temporal variability in cortex vs. thalamus may 
uniquely predict network integration. Although it is not currently feasible to model the causal 
nature of this upward shift in variability directly using relatively temporally sparse fMRI data 
(i.e., whether, per se, thalamic variability causally drives cortical variability, or rather, 
thalamus dampens cortical variability), our overall expectation that variability should be 
higher in cortex than thalamus is largely derived from animal and modeling work by Goris et 
al. (2014) on the thalamus and visual cortex. Here, the authors argue that the visual cortex is 
required to integrate a greater number of differing input sources (e.g., intra- and inter-
cortically; thalamo-cortically; top-down inputs), which may all have their own modulatory 
influences at different temporal scales. Indeed, the sheer number of cortico-cortical 
connections far outweighs the number of thalamo-cortical connections (Latawiec et al. 2000; 
Binzegger 2004; Douglas and Martin 2004). Accordingly, higher cortical variability (which 
we generally find is indicative of optimal cognitive performance (Garrett, Kovacevic, et al. 
2011; Garrett, McIntosh, et al. 2013; Garrett, Samanez-Larkin, et al. 2013; Garrett et al. 
2015)) may be a direct reflection of a more complex process of “local” integration over 
differentiated inputs. Strikingly, we also found that greater thalamo-cortical upregulation in 
variability was a hallmark of lower network dimensionality in 12 of 13 brain networks 
considered, suggesting that thalamo-cortical upregulation may also provide a signature of 
generalized, distributed (as well as local) neural integration. Further, as another potential 
determinant of thalamo-cortical upregulation, observed temporal variance levels at the single 
cell level appear much more differentiated across cells in the visual cortex compared to 
relatively homogeneous levels in the thalamus (Goris et al. 2014); given that fMRI captures 
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ensemble level activity across millions of neurons per voxel, integrating spatially 
differentiated temporal variability levels across neurons into voxels could amount to a greater 
degree of ensemble-level temporal variance, compared to more spatially homogeneous voxels 
in thalamus. Thus, greater thalamo-cortical upregulation in BOLD variability could be a 
function of (1) increased functional integration over differing input types, and (2) cell 
differentiation contributing to observed local (ensemble) dynamics, which rises from 
thalamus to cortex in more integrated brains.  
 
Further, Goris et al. (2014) also offer the most convincing computational model-based 
account for higher variability in cortex compared to thalamus. They argue that fluctuations in 
neural gain (i.e., neural excitability) increase from the thalamus to cortex, and that this gain 
parameter plausibly represents modulatory influences on neural function, likely reflecting 
synaptic activity/potentiation. Further, fluctuations in gain may occur primarily on the order 
of minutes (Goris et al. 2014). These two features permit the consideration of BOLD 
variability in relation to the Goris et al. model; BOLD is indeed most closely linked to 
synaptic (modulatory) activity (Viswanathan and Freeman 2007), and can easily approximate 
the time scale of gain fluctuations proposed. In particular, BOLD also likely dominantly 
reflects glutamatergic (excitatory) activity, rather than inhibitory sources. As such, 
fluctuations in BOLD may represent fluctuations in the excitatory system directly, thus 
approximating the Goris et al. view of variance in neural gain (excitability) as the primary 
feature of thalamo-cortical upregulation in variability. There are many potential influences on 
fluctuations in neural excitability that could be tested in future studies of moment-to-moment 
BOLD signal variability, such as attention/vigilance, system arousal/wakefulness (Chang et 
al. 2016), and reward (Goris et al. 2014). Previous work on the positive coupling of 
dopamine, brain signal variability, and cognitive performance (Garrett et al. 2015; Alavash et 
al. 2018) may also provide a fertile starting point for testing theories of neural excitability as a 
driving force for coupling between thalamo-cortical variability upregulation and network 
integration.  
 
Further comments  
 
With regard to the potential functional relevance of the current resting-state results, past work 
suggests that greater local variability predicts faster and more stable reaction time 
performance, both within- and between- persons (McIntosh et al. 2008; Misic et al. 2010; 
Garrett, McIntosh, et al. 2011; 2013; Garrett, Samanez-Larkin, et al. 2013; Garrett et al. 
2015); given that the present results demonstrate that higher local variability correlates 
strongly with lower network dimensionality, it is tempting to infer that relatively lower 
dimensionality may also serve as a marker of a well-functioning system on task. We contend, 
however, that the optimal behavioral working point for level of network dimensionality will 
depend on experimental context. We do not propose that an optimal brain should approach 
uni-dimensionality (and presumably then, maximal local variability); it is rather more likely 
that the number of dimensions should be as low as is necessary given the contextual demands. 
Indeed, in the extreme, too-low dimensional neural systems may prove entirely dysfunctional 
(e.g., during epileptic seizure (Babloyantz and Destexhe 1986)). Future work using parametric 
task paradigms could more carefully address “optimal” network dimensionality levels 
associated with high cognitive performance.   
 
Interestingly, recent work by Fusi and colleagues (Rigotti et al. 2013; 2016) highlights 
neuronal-based dimensionality from a complementary perspective. So-called “mixed 
selectivity neurons” (e.g., those that respond well to auditory and visual input) tend to exhibit 
higher “response” dimensionality and thus permit system flexibility. However, highly 
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selective neurons (e.g., those that respond only to visual input) are low dimensional by nature 
and may be useful when, for example, classification-type tasks are required (e.g., face/house 
discriminations (Park et al. 2010; 2012)). In this way, higher and lower dimensionality may 
be beneficial under different constraints. Critically however, our current estimate of network 
dimensionality differs from this perspective in that it captures how brain regions are jointly 
coupled in time, regardless of whether neural ensembles respond to more or fewer stimulus 
types. Interestingly, because mixed selectivity neurons would by definition correlate with a 
greater number of different types of neurons, then if anything, network dimensionality would 
reduce in the presence of mixed selectivity neurons (e.g., such neurons would be more likely 
to statistically “cross-load” on to different networks, rather than exhibit unique properties), 
potentially also exhibiting greater signal variability at the local level, as our current findings 
would suggest. It remains an open question whether network dimensionality would respond 
differentially to cognitive contexts in which mixed selectivity and highly selective neurons 
may operate simultaneously (e.g., by ramping parametric task complexity, such as employing 
a parametric multisensory integration paradigm).  
 
Conclusion	
 
Using publicly available fMRI data, the current results provide for an immediately 
(re)testable, context-independent hypothesis in future work – that the degree of local, 
observed moment-to-moment variability primarily reflects the level of functional integration 
in the human brain, and that the thalamus may play a particularly important role in this effect.   
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Tables 
 
 
 

Table 1: The relation between PCA dimensionality and voxel-wise temporal variability (depicted in Figure 1) remains robust when covarying 
adult age 
 
 

Predictor b 
Bootstrap	
95% CI SE t p 

Zero- 
order Partial 

Semi- 
Partial 

PCA dimensionality -2532.81 (-2816.69, -2280.53) 167.19 -15.15 2.02*10-27 -0.84 -0.84 -0.74 
Adult age -1034.77 (-1257.89, -794.25) 215.21 -4.81 6.00*10-6 -0.46 -0.44 -0.24 
Note: PCA = principal component analysis; CI = confidence interval; SE = standard error; VIF = variance inflation factor. 
Significant p-values are in bold font. 95% Bootstrap CI was computed via 1000 resamples with replacement of the data. 
“Zero-order”, “partial,” and “semi-partial” columns reflect effect sizes in Pearson’s correlation metric. 
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Table 2: Correlations between network-specific PCA dimensionality and network-voxel-specific local variability 
 

Network r 
95%  

bootstrap CI p 
Auditory -0.72 (-.64, -.80) 2.76*10-17 
Basal ganglia -0.81 (-.76, -.86) 3.39*10-24 
DMN (dorsal) -0.75 (-.69, -.83) 1.78*10-19 
DMN (ventral) -0.67 (-.59, -.75) 1.56*10-14 
Executive control (left) -0.61 (-.50, -.71) 1.05*10-11 
Executive control (right) -0.64 (-.56, -.72) 8.61*10-13 
High visual -0.54 (-.46, -.64) 8.32*10-09 
Language -0.68 (-.58, -.77) 4.94*10-15 
Precuneus -0.54 (-.40, -.65) 8.09*10-09 
Primary visual -0.66 (-.59, -.74) 1.02*10-13 
Salience (anterior) -0.73 (-.66, -.81) 4.23*10-18 
Salience (posterior) -0.69 (-.60, -.77) 1.98*10-15 
Sensorimotor -0.80 (-.75, -.85) 2.02*10-23 
Visuospatial -0.68 (-.59, -.76) 1.21*10-14 
Note: Statistics represent network-specific PLS model runs for 
each network. 95% Bootstrap CI was computed via 1000 
resamples with replacement of the data. Significant p-values are 
in bold font.  
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Table 3:  Regression model predicting network integration (PCA dimensionality) from 
thalamic variability and thalamo-cortical variability upregulation (controlling for local 
variability in canonical hub regions)  
 

Dependent variable: 
PCAdim Predictor b 

Bootstrap 
95% CI  

Low      High SE t p 
Zero- 
order Partial 

Semi-
Partial 

Auditory VARthalamus -0.02 -0.03 -0.01 0.00 -4.31 4.10*10-5 -0.59 -0.41 -0.29 
VARcortex-thalamus -0.01 -0.02 -0.01 0.00 -5.16 1.00*10-6 -0.59 -0.47 -0.35 

DMN (dorsal) VARthalamus -0.03 -0.05 -0.01 0.01 -4.34 3.60*10-5 -0.65 -0.41 -0.30 
VARcortex-thalamus -0.02 -0.03 -0.01 0.01 -4.17 6.90*10-5 -0.50 -0.40 -0.29 

DMN (ventral) VARthalamus -0.03 -0.05 -0.02 0.01 -3.26 0.002 -0.66 -0.32 -0.24 
VARcortex-thalamus -0.02 -0.04 -0.01 0.01 -2.23 0.028 -0.39 -0.23 -0.16 

Exec. control (left) VARthalamus -0.02 -0.03 -0.01 0.00 -3.86 2.13*10-4 -0.49 -0.37 -0.30 
VARcortex-thalamus -0.01 -0.02 -0.01 0.00 -4.23 5.50*10-5 -0.43 -0.40 -0.33 

Exec. control (right) VARthalamus -0.01 -0.02 0.00 0.00 -2.93 0.004 -0.43 -0.29 -0.25 
VARcortex-thalamus -0.01 -0.02 -0.01 0.00 -3.06 0.003 -0.30 -0.30 -0.26 

High visual VARthalamus 0.00 -0.01 0.00 0.00 -1.08 0.284 -0.38 -0.11 -0.09 
VARcortex-thalamus -0.01 -0.01 0.00 0.00 -3.13 0.002 -0.52 -0.31 -0.27 

Language VARthalamus -0.03 -0.04 -0.01 0.01 -4.38 3.20*10-5 -0.64 -0.42 -0.31 
VARcortex-thalamus -0.02 -0.03 -0.01 0.01 -3.45 8.54*10-4 -0.31 -0.34 -0.25 

Precuneus VARthalamus 0.00 -0.01 0.00 0.00 -0.95 0.34 -0.35 -0.10 -0.08 
VARcortex-thalamus -0.01 -0.01 0.00 0.00 -2.45 0.016 -0.44 -0.25 -0.21 

Primary visual VARthalamus 0.00 -0.01 0.00 0.00 -1.32 0.189 -0.44 -0.14 -0.11 
VARcortex-thalamus 0.00 -0.01 0.00 0.00 -3.30 1.37*10-3 -0.57 -0.33 -0.26 

Salience (anterior) VARthalamus -0.03 -0.05 -0.02 0.01 -4.07 1.00*10-4 -0.62 -0.39 -0.29 
VARcortex-thalamus -0.02 -0.03 -0.01 0.01 -3.52 0.001 -0.50 -0.34 -0.25 

Salience (posterior) VARthalamus -0.02 -0.03 -0.01 0.01 0.01 0.008 -0.49 -0.27 -0.22 
VARcortex-thalamus -0.02 -0.02 -0.01 0.00 0.00 3.18*10-4 -0.37 -0.36 -0.30 

Sensorimotor VARthalamus -0.02 -0.04 -0.01 0.01 -2.09 0.039 -0.54 -0.21 -0.18 
VARcortex-thalamus -0.01 -0.02 0.01 0.01 -0.61 0.55 -0.11 -0.06 -0.05 

Visuospatial VARthalamus -0.02 -0.04 -0.01 0.01 -3.17 0.002 -0.60 -0.31 -0.24 
 VARcortex-thalamus -0.02 -0.03 -0.01 0.01 -3.34 0.001 -0.48 -0.33 -0.25 
Note: Variability difference = within-network cortical variability minus thalamic variability (estimated by !"#$%&). PCA = 
principal component analysis; CI = confidence interval; SE = standard error; VIF = variance inflation factor. Significant p-
values are in bold font. 95% Bootstrap CI was computed via 1000 resamples with replacement of the data. “Zero-order”, 
“partial,” and “semi-partial” columns reflect effect sizes in Pearson’s correlation metric. Variability within canonical hub 
regions (IPS, MFG (visuospatial), superior/MFG (executive control network), SMA, PCC/precuneus) served as model 
covariates of no interest, unless otherwise specified (see Methods for details).  
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Figures 
 
 

 
 
Figure 1: Network dimensionality negatively correlates with local temporal variability. Brain ScoreTotal Power = PLS model-derived latent score 
representing local temporal variability (estimated by !"#$%&); BSR = bootstrap ratio (see Online Methods). Both axis variables are z-
transformed. Top right: axial slices shown every 8mm from -24 to 64. Bottom row: due to global nature of the model effect at a typical threshold 
level (upper right panel), the bottom panel depicts the strongest spatial representations of the effect (bilateral thalamus; BSR = 24; peak MNI 
coordinates at [-8 -12 6] (183 voxels) and [14 -18 10], 155 voxels). 
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Figure 2: Control analyses for whole-brain model. (A) Consistent negative correlations between network dimensionality and local temporal variability across various forms 
of dimensionality estimation. PCA = principal components analysis; PCAcovar = covariance matrix-based PCA; PCAcorr = correlation matrix-based PCA; ICA = independent 
components analysis. Bottom row: Brain scoreTotal Power = latent score representing local temporal variability (estimated by !"#$%&) from separate PLS model runs for 
PCAcovar and ICA-based models. All axis variables are z-transformed. (B) Consistent negative correlations between network dimensionality and local temporal variability 
across low (red), medium (blue), and high (yellow) frequency power bands. Brain scorePower = PLS model-derived latent score representing local temporal variability 
(estimated by !"#$%&) separately for low, medium, and high frequency ranges. (C) Increasing simulated random noise increases PCA dimensionality. % Noise added = the 
proportion of random noise added to the simulated sine wave amplitude (amplitude = 1), thus reflecting an equivalent proportional increase in total time series variation. (D) 
Global signal regression does not affect the relation between network dimensionality and local temporal variability. The left plot shows very similar PCAs dimensionality 
estimates pre and post global signal regression. The right plot shows an equally strong relation between PCA dimensionality and local variability as seen in Figure 1. GSreg = 
global signal regression. Brain ScoreTotal Power (GSreg) = PLS model-derived latent score representing local temporal variability (estimated by !"#$%&) following global signal 
regression.  All axis variables are z-transformed.	
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Figure 3: Consistent negative correlations between network dimensionality and local signal variability across possible a priori networks of interest. Network-specific PLS 
model runs. BSWithin-Network Power = PLS model-derived latent brain score representing local temporal variability (estimated by!"#$%&). All axis variables are z-transformed. 
DMN = default mode network. High Visual network: when holding out the four most extreme outliers (two on x-axis and two on the y-axis), the correlation remains similar 
(r = -.60). Note the differences in value ranges on x and y axes across plots, which reflect differential within-network model fit. 
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Figure 4: Network-specific, PLS-derived brain plots representing consistent negative 
correlations between network dimensionality and local signal variability. BSR = bootstrap 
ratio. Green voxels are those within the a priori network mask, but that did not meet the BSR 
threshold.  
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Figure 5: Within-network thalamo-cortical projection and mapping. (A) Thalamic regions as 
in Horn et al.(2016). (B) Mapping of the thalamic regions to the Shirer et al. (2011) networks.  
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Supplementary Materials 
 
 

Supplementary Tables 
 
 
 
 
 

Table S1: A priori cortical hub-regions and their corresponding Shirer et al. (2011) network affiliation 
 
  

   MNI 
coordinates 

 

Region  Label  Hemis.  x y z Shirer network  
Posterior cingulate/precuneus  PCC/precuneus  midline -3 -54 31 dDMN  
Supplementary motor area  SMA  midline -1 -17 55 Sensorimotor  
Posterior intra-parietal sulcus  pIPS    L/R  ±23 -69 49 VS  
Middle frontal gyrus  MFG   L/R  ±41 17 31 VS/ECN  
Note: Abbreviations: Hemis = hemisphere; dDMN = dorsal default mode network; VS = 
Visuospatial network; ECN = Executive control network. 
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Supplementary Figures 
 
 
 
 

 
 
 

Figure S1: A priori hub locations and overlap with Shirer et al. (2011) networks. 
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Figure S2: Correlations between PCA dimensionality (90% criterion) and variance accounted for by first component from PCA dimensionality 
estimation, within-network. All axis variables are z-transformed. 
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