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Abstract 

While some individuals can defy the lure of temptation, many others find appetizing food 

irresistible. Using event-related potentials, we showed that individuals who find food-related 

images more motivationally relevant than erotic ones (“sign-trackers”) are more susceptible to 

cue-induced eating and, in the presence of a palatable food option, eat twice as much as 

individuals with the opposite brain reactivity profile (“goal-trackers”). These findings contribute to 

the understanding of the neurobiological basis of vulnerability to cue-induced behaviors.   
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Main text 

Over 62,000 photos are shared worldwide each day under #foodporn1. These images 

glamorize the high-calorie, highly palatable foods that are believed to encourage the 

maladaptive eating patterns that contribute to today’s obesity epidemic. Researchers posit that 

food-related stimuli elicit compulsive eating, thereby promoting excessive energy intake2. Yet, 

attempts to test this hypothesis yielded to inconsistent findings3, suggesting that the neural 

underpinnings of human cue-induced maladaptive behaviors remain unclear. 

Individual differences in susceptibility to cue-induced behaviors can explain part of these 

inconsistencies. Preclinical models show that rats prone to attributing incentive salience to 

discrete food-related cues (“sign-trackers”) are more vulnerable to compulsive cue-induced 

behaviors than rats not prone to do so (“goal-trackers”)4. Incentive salience refers to the 

motivational properties that grant stimuli the power to capture attention, activate affective states, 

and motivate behaviors5. We hypothesized that, similar to animal models, humans who attribute 

more incentive salience to food-related cues than to erotic images would be more susceptible to 

cue-induced eating. To test this hypothesis, we measured brain responses and eating behavior 

during a cued food delivery task6 in 49 volunteers from the community (aged 24 to 65 years, 

45% female; 41% overweight, 37% obese). During the task (see Supplementary Methods and 

Supplementary Figure 1), we collected event-related potentials (ERPs) while participants 

viewed a slideshow that included images depicting high and low arousing pleasant (erotica and 

romantic), neutral (household objects and individuals engaged in mundane activities), high and 

low arousing unpleasant (mutilations, violence, pollution), and highly-palatable food-related 

contents (high-calorie sweet and savory food). We told participants that the slideshow included 

images of sweet and savory foods and that after each image of a sweet food, a machine would 

dispense one chocolate candy (Food-paired trials); whereas, no candies would follow the 

images showing savory foods (Food-unpaired trials). The food category/candy delivery pairing 

was counterbalanced across subjects. Participants decided whether to eat or discard each of 

the 60 candies delivered during the task. 

First, we classified participants using their brain responses to the image categories (see also 

Supplementary Methods). Then, this classification was used to predict the rate at which 

participants ate the candies. For each participant, we calculated the amplitude of the late 

positive potential (LPP) evoked by each image category (i.e., Food-paired, Erotica, Romantic, 

Food-unpaired, Neutral, Pollution, Violence, Mutilations; Figure 1). The LPP is a sustained ERP 

component that peaks between 400 and 800 ms over central and parietal sites and is 

considered the most replicable and reliable electrophysiological index of motivational 
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relevance7. As expected, the mean amplitude of the LPP increased as a function of the images’ 

motivational relevance (LPP to erotica and mutilations > LPP to romantic and violence > LPP to 

neutral contents; all Ps<.0001). We classified participants by applying k-means cluster analysis 

to their LPP responses. Cluster analysis is an unsupervised multivariate technique used to 

classify objects (i.e., participants) based on their characteristics (i.e., the participants’ brain 

responses)8. The optimal solution (see Supplementary Results) identified two groups that we 

labeled as “sign-trackers” and “goal-trackers”. Figure 2 (left panel) shows that sign-trackers 

(N=20, 41%) had larger LPPs to food-paired images than to erotic images (P<.0001); whereas, 

goal-trackers (N=29, 59%) had larger LPPs to erotic images than to food-paired images 

(P<.0001). Both groups showed the typical affective reactivity pattern such that, irrespective of 

hedonic content, the amplitude of the LPP increased as a function of the images’ motivational 

relevance. Excluding food images, the quadratic trend was significant for both sign- and goal-

trackers (Ps<.0001) and the two groups had comparable LPP responses to all categories of 

stimuli except to food-paired images (P<.0001). These results indicate that, although every 

participant was aware that food-paired stimuli predicted food delivery, only sign-trackers 

attributed more motivational relevance to food-paired images than to erotic images. Conversely, 

goal-trackers processed food-paired stimuli as though they had low motivational relevance. 

Finally, Figure 2 (right panel) shows that sign-trackers ate more than twice as many candies 

as goal-trackers (21 vs. 8; U=188.5, P=.036). In the quasi-Poisson linear generalized regression 

model, sign-trackers ate candies at a rate that was 2.2 times greater (95% CI: 1.14, 4.37; 

P=.024) than that of goal-trackers, after adjusting for potential confounders (age, BMI, gender, 

and pre-experiment hunger level, see Supplementary Results). 

By directly measuring brain responses to a wide array of motivationally relevant stimuli, we 

showed that individuals who attribute more motivational relevance to food-related than to erotic 

images are more susceptible to cue-induced eating. This neurobehavioral pattern mirrors what 

is observed in animal models during Pavlovian conditioning, where sign-tracking behavior is 

associated with larger phasic dopamine responses to stimuli predicting rewards than to actual 

rewards in the nucleus accumbens9. While several factors motivate food consumption, these 

data show that attributing high motivational relevance to food-related cues significantly 

increases the likelihood of an individual engaging in maladaptive eating behaviors, especially 

when this trait co-occurs with high impulsivity or with a weakened ability to regulate reactions to 

cues. By contributing to the understanding of the biological basis underlying individual 

differences in vulnerability to cue-induced eating, these findings represent a step toward 

identifying new targets for personalized weight control interventions aimed at regulating the 
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intense motivation to eat that some individuals experience in the presence of highly palatable 

foods.  
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Figure 1 

 

ERPs from centro-parietal sites (see inset for electrode location) show that, on average, both 

pleasant and unpleasant highly-relevant contents increase the amplitude of the Late Positive 

Potential (LPP). The box shows the time region of interest (ROI) used to compute the LPP 

amplitude. Note: Food+: food images paired with food delivery, Food-: food images not paired 

with food delivery, ERO: erotica, ROM: romance, NEU: neutral, POL: pollution, VIO: violence, 

MUT: mutilations. 
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Figure 2 

 

 

 

 

 

 

 

 

 

Left: The k-means cluster analysis performed on the LPP responses yielded two clusters fitting 

with the hypothesized sign- vs. goal-tracking dichotomy. Sign-trackers (N=20) attributed more 

motivational relevance to Food+ images than to erotic images while Goal-trackers (N=29) had 

the opposite brain reactivity pattern. Right: Sign-trackers ate more than twice as many candies 

as goal-trackers (U=188.5, P=.036). Note: Food+: food images paired with food delivery, Food-: 

food images not paired with food delivery, ERO: erotica, ROM: romance, NEU: neutral, POL: 

pollution, VIO: violence, MUT: mutilations; LPP: Late Positive Potential. 
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Supplementary Methods 

Participants 

We recruited 60 participants from the Houston metropolitan area using flyers, 

magazine, and newspaper advertisements. Participants were eligible for the study if 

they were between 18 and 65 years of age, were neither pregnant nor breast feeding, 

did not report any history of psychiatric disorders, seizures, head injuries with loss of 

consciousness, uncorrected visual impairments, eating disorders, allergies, or diet-

related chronic diseases that might have prevented consumption of chocolate candies. 

All participants received monetary compensation for their time and for parking/travel, 

totaling $60. Due to poor recording quality, largely attributed to excessive movement 

during the task, 11 participants were excluded at various stages of the data reduction 

procedures, leaving 49 participants in the final sample. 

Procedures 

The study included a telephone interview to verify study eligibility, followed by one 

in-person laboratory visit. At the in-person visit, a research assistant reviewed the study 

with the participant and obtained informed consent. Then, the research assistant 

measured the participant’s weight and height, and, using a computer-assisted 

procedure, collected answers to a series of questionnaires about impulsivity, eating 

behaviors, hunger, mood, and hedonic capacity. At the completion of the questionnaire 

assessment, the research assistant placed the sensors for the electroencephalographic 

(EEG) recording and described the task to the participant. To ensure that the participant 

fully understood the instructions, the research assistant remained in the room while 11 

test trials were carried out (2 candies were delivered during this phase), then the 

research assistant left the room and began the EEG recording. At the end of the EEG 

session, the research assistant removed the sensors, debriefed and compensated the 
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participant. All study procedures were approved by the University of Texas MD 

Anderson Cancer Center Institutional Review Board.  

Questionnaires  

The computerized battery included the following questionnaires:  

Barratt Impulsiveness Scale The Barratt Impulsiveness Scale1 (BIS) includes 30 

items describing common impulsive or non-impulsive behaviors and preferences 

designed to assess the personality/behavioral construct of impulsiveness. 

Weight-Related Eating Questionnaire. The 16-item Weight-Related Eating 

Questionnaire2 (WREQ) assesses four theory-based aspects of eating behavior labeled 

compensatory restraint, routine restraint, susceptibility to external cues, and emotional 

eating. 

Center for Epidemiological Studies Depression Scale (brief). The Center for 

Epidemiological Studies Depression Scale3 (brief) is a 10-item self-report instrument 

assessing the frequency of several depressive symptoms and originally developed for 

studying depressive symptomatology in the general population.  

Positive and Negative Affect Schedule (PANAS). The PANAS4 is a 20-item self-

report instrument designed to measure the two primary measures of mood: positive and 

negative affect. This instrument is a reliable and valid measure of the two mood 

constructs 5. 

Snaith-Hamilton Pleasure Scale (SHAPS). The SHAPS6 is a self-report measure of 

anhedonia that, unlike other instruments, was specifically developed to be unaffected by 

social class, gender, age, dietary habits, or nationality. The SHAPS is a reliable and 

valid questionnaire to assess hedonic tone in patient and non-patient populations 7. 

Satiety Labeled Intensity Magnitude (SLIM)8 is a sensitive, reliable, and easy to-use 

scale for measuring perceived satiety. 

Cued food delivery task 

During the cued food delivery task, participants viewed a series of images presented 

with a computer using E-Prime software (version 2.0.8.74; PST Inc., Pittsburgh, PA) on 

a 17-inch LCD monitor. M&M’s® chocolate candies were delivered in a receptacle within 

arm’s reach from the participant, situated to the right of the computer monitor9 (Figure 

S1). Picture stimuli consisted of eight categories covering a variety of content: neutral 
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(people, objects), highly arousing pleasant (erotica) and unpleasant (mutilations), low 

arousing pleasant (romantic) and unpleasant (violence), unpleasant objects (pollution), 

and palatable food (sweet, savory). The images were selected from the International 

Affective Picture System10 and from a database of images that we used in previous 

studies from our laboratory11. The task was divided into 6 equivalent blocks lasting 

approximately 5 minutes each. Each block included the pseudo-random (i.e., no more 

than two consecutive images of the same category) presentation of 55 images: 10 

neutral, 10 pleasant (5 erotica and 5 romantic), 15 unpleasant (5 mutilations, 5 violence, 

5 pollution), and 20 food-related (10 sweet and 10 savory). Images were not repeated 

during the task. One category of food images (either sweet or savory, counterbalanced 

across subjects) was designated as the “food-paired” image: 1000 ms after image 

onset, an M&M’s® chocolate candy was released from a dispenser and, through a tube, 

was delivered in a receptacle where the participant could pick it up and either eat it or 

deposit it in a box. The food predictive image remained visible on the screen until the 

participant either pushed a button to indicate having swallowed the candy or until the 

candy was deposited in the deposit box. All other images, including the “food unpaired” 

images (i.e., images of food not followed by candy delivery), were presented for 2200 

ms. A random inter-trial interval of 500-2000 ms separated each trial. Figure S2 

illustrates the sequence of events during the task. Instructions at the beginning of the 

task indicated to the participant which food category was designated as the food 

predictive category. In this way, the participant did not have to learn the contingency 

and all trials could be used in the analyses. During the test trials that preceded the task, 

we presented 11 images and two candies were delivered.  

EEG acquisition and data reduction 

During the task, we recorded EEG continuously using a 129-channel Geodesic 

Sensor Net, amplified with an AC-coupled high input impedance (200 MΩ) amplifier 

(Geodesic EEG System 200; Electrical Geodesics Inc., Eugene, OR), and referenced to 

Cz. The sampling rate was 250 Hz, and data were filtered online by using 0.1 Hz high-

pass and 100 Hz low-pass filters. Scalp impedance of each sensor was kept below 50 

KΩ, as suggested by the manufacturer. 
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After EEG data collection, we filtered the data with a 30-Hz low-pass filter, inspected 

the EEG traces to evaluate the quality of the recording, and identified and interpolated 

(using spherical splines) channels contaminated by artifacts for more than 50% of the 

recording time. At this stage, we discarded three participants due poor EEG quality of 

the recording. For the remaining 57 participants, we corrected eye blinks using a spatial 

filtering method as implemented in BESA ver. 5.1.8.10 (MEGIS Software GmbH, 

Gräfelfing, Germany). After eye blink correction, we transformed the EEG data to the 

average reference and segmented the data using the picture onset to time-lock the 

ERPs. The segments started 100 ms before picture onset and ended 1100 ms later. 

Baseline was defined as the 100 ms interval preceding picture onset. Artifacts affecting 

sensors within each trial were identified using the following criteria: EEG amplitude 

above 100 or below –100 μV; absolute voltage difference between any two data points 

within the segment larger than 100 μV; voltage difference between two contiguous data 

points above 25 μV; and less than 0.5 μV variation for more than 100 ms. A segment 

was excluded from the subsequent averages if more than 10% of the sensors within the 

segment were contaminated by artifacts. At the end of this process, the average ERPs 

were calculated at each scalp site for each picture category. If a participant had fewer 

than 20% of the possible trials included in any category average, the participant was 

excluded from the subsequent analyses (eight participants were excluded at this stage, 

leaving 49 participants in the sample). We used the amplitude of the late positive 

potential (LPP) as a measure of motivational relevance12,13. The LPP for each picture 

category for each participant was calculated by averaging the voltage recorded between 

400 and 800 ms after picture onset from 10 central and parietal sensors (EGI HydroCel 

Geodesic Sensor Net sensors: 7, 31, 37, 54, 55, 79, 80, 87, 106, 129). This group of 

sensors, the same that we used in our previous studies11,14,15, covers the area where 

the LPP amplitude differences between neutral and emotional pictures is maximal. 

Additionally, a preliminary analysis showed that the amplitude of the LPPs for neutral 

stimuli depicting objects or people was comparable; hence, we decided to collapse the 

two neutral categories together. 

Classification of participants as sign-trackers or goal-trackers 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 5, 2017. ; https://doi.org/10.1101/184838doi: bioRxiv preprint 

https://doi.org/10.1101/184838


13 
 

To classify participants as sign- or goal-trackers, we used the same procedure that 

we followed in our previous studies11,15,16. For each individual, we calculated the mean 

LPP evoked by each stimulus category (i.e., food paired, erotica, romantic, food 

unpaired, neutral, disgust, violence, and mutilations) between 400 and 800 ms over 10 

centroparietal sensors. To account for individual variation in absolute voltage amplitude 

we standardized the LPP values using ipsatization17. Then, we classified individuals 

based on their brain reactivity profiles using k-means cluster analysis as implemented in 

the R statistical package18. Cluster analysis is a multivariate technique that groups 

individuals by minimizing within-groups variability and maximizing between-groups 

variability19. The algorithm is unsupervised, using as constraints only the number of 

clusters and the variables used for deriving the solution. The optimal number of cluster 

and corresponding classification was assessed using the Silhouette coefficient method20 

and the gap statistics21. The groups extracted using cluster analysis can differ with 

respect to any brain reactivity pattern, hence the first analytic steps consisted of a series 

of post-analysis validation checks (see below) aimed at confirming a) the reliability of 

using the amplitude of the LPP to measure the motivational relevance of the visual 

stimuli used in the experiment and b) the replicability of the sign- vs. goal-tracking 

categorization based on LPP responses. 

Statistical Analyses 

Event-Related Potentials 

The first post-analysis validation check tested whether both groups extracted using 

k-means cluster analysis showed increasingly larger LPPs for images with increasing 

motivational relevance (i.e., erotica and mutilations > romantic and violence > neutral 

and pollution). Within each group, we tested the presence of a quadratic trend using 

polynomial contrasts. The second validation check tested whether the two brain 

reactivity profiles extracted using cluster analysis fit the sign- vs. goal-tracking 

dichotomy (i.e., one group shows higher reactivity to food-predictive images than to 

pleasant images, and the other group shows the opposite pattern) and whether the two 

groups differed in reactivity to any image category. To conduct these tests, we ran an 

analysis of variance (ANOVA) using the amplitude of the LPP as the dependent 

variable, the eight picture categories (food-predictive, erotica, romantic, food non-
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predictive, neutral, pollution, violence, mutilations) as a within subjects factor, and the 

two groups (goal-trackers vs. sign-trackers) as a between subjects factor. To account 

for a violation of sphericity, we used multivariate ANOVA22. We used pairwise 

comparisons with Bonferroni correction to test for the presence of significant differences 

among categories within and between groups. 

Self-report questionnaires and demographics 

To test whether sign-trackers and goal-trackers differed in age, gender, BMI, 

impulsivity, and mood, we conducted ANOVAs on these variables. The level of satiety 

before and after the session was compared between the two groups using ANOVA and, 

for each group, we tested whether there was a significant difference from the “neither 

hungry nor full” anchor point before and after the session. 

Eating behavior 

To test for the presence of statistically significant differences between sign-trackers and 

goal-trackers in the number of candies eaten by each participant during the experiment, 

we used the nonparametric Mann-Whitney U test. Then, to take into account over-

dispersion in the data, we also assessed the statistical significance of the differences in 

eating behavior in the two clusters using a quasi-Poisson generalized linear regression 

model with a scale dispersion parameter. Finally, we adjusted the analysis for the 

influence of potential confounding variables on eating behavior, by considering age, 

gender, BMI, and level of appetite pre-experiment as additional covariates in the 

Poisson generalized linear regression model. 

Supplementary Results 

Demographics and Self-report Questionnaires 

Supplementary Table 1 shows demographic and self-report variables separated by 

sign- and goal-trackers. The two groups did not differ in terms of gender distribution 

(P=.18), age (P=.35), or BMI (P=.74). On the Barratt Impulsivity scale (BIS), the total 

score suggested that sign-trackers were somewhat more impulsive than goal-trackers, 

but the differences were not statistically significant (P=.15). The analyses conducted on 

the BIS subscales showed that sign-trackers were significantly (P<.05) more impulsive 

than goal-trackers in the attentional impulsiveness subscale (i.e., “focusing on the task 

at hand” and “thought insertion and racing thoughts”) and the non-planning 
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impulsiveness subscale (i.e., “planning and thinking carefully” and “enjoying challenging 

mental tasks”), but not on the motor impulsiveness subscale (i.e., “acting on the spur of 

the moment” and “a consistent life style”). Mood questionnaires (CES-D, PANAS, 

SHAPS) did not show any significant difference between groups (all Ps>.18). The 

WREQ total score and the scores to its subscales were similar in the two groups (all 

Ps>.27). The level of satiety in the two groups was similar before (P>.44) and after the 

session (P>.49).  

Cluster analysis 

Supplementary Figures 3 and 4 show the results of the silhouette method and the gap 

statistic method to choose the optimal number of clusters on the k-means clustering 

algorithm, as implemented in the R module “factoextra”23. Both criteria indicated that the 

two-cluster solution is the most appropriate. 

Analysis of eating behavior patterns and brain reactivity 

Supplementary Table 2 shows the results of an unadjusted quasi Poisson generalized 

linear regression model (quasi-Poisson GLM) relating the number of candies eaten by the 

participants to their cluster assignment. The quasi Poisson GLM relies on a log link to 

relate the regression equation to the count response, by positing 𝐸(𝑌|𝑋) = 𝜇, 𝑙𝑜𝑔(𝜇) =

𝑋′𝛽. The coefficients of the regression identify changes in the response rate for a unit-

increase in the corresponding covariate on the log-scale, with respect to the reference 

baseline. Table 3 shows the results of the quasi-Poisson GLM when adjusting for known 

potential confounders (age, gender, BMI and level of appetite at the beginning of the 

experiment). 
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Supplementary Table 1 

Participant demographic information and questionnaire scores by cluster 

membership 

 

Characteristic 
All 

(n=49) 

Goal-
trackers 
(n=29) 

Sign-
trackers 
(n=20) 

P-value 

Age (years) 47 48 46 P=.46 
Women 45% 51% 35% P=.25 
Race     

African 
American 

67% 62% 75%  

Caucasian 26% 31% 20%  
Other 7% 7% 5%  

BMI 31 31 31  
BIS     

Attentional 14.16 13.07 15.75 P=.01 
Motor 21.49 21.14 22.00 P=.49 

Non planning 23.06 21.62 25.15 P=.04 
CESD 7.20 6.48 8.25 P=.24 
SHAPS 47.55 47.14 48.15 P=.53 
PANAS + 34.63 34.14 35.35 P=.65 
PANAS - 17.39 16.21 19.10 P=.18 
WREQ     

Routine 
Restraint 

1.76 1.88 1.58 P=.27 

Compensatory 
Restraint 

2.09 2.16 1.98 P=.33 

Susceptibility 
to External 

Cues 
1.94 1.83 2.09 P=.55 

Emotional 
Eating 

1.60 1.57 1.64 P=.72 

 
NOTE: P-values estimated by independent t-tests or chi-square analyses. BMI=Body 
Mass Index; BIS = Barratt Impulsiveness Scale1; CESD=The Center for Epidemiological 
Studies Depression Scale3; SHAPS = Snaith-Hamilton Pleasure Scale6; PANAS = 
Positive and Negative Affect Schedule4; WREQ=Weight-Related Eating Questionnaire2. 
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Supplementary Table 2  

The Unadjusted quasi Poisson Regression Analysis showed a significant (P=.01) 

difference in eating behavior by cluster allocation. 

term estimate std.error statistic P value 

Intercept 2.130 0.255 8.338 0.00 

Cluster Allocation  
(baseline: sign-trackers) 

0.868 0.324 2.680 0.01 
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Supplementary Table 3  

The quasi-Poisson Regression Analysis showed the presence of significant (P=.024) 

differences in eating behavior by cluster allocation after adjusting for age, gender, BMI, 

and pre-experiment lever of appetite.  

term estimate std.error statistic P value 

Intercept 3.417 0.819 4.170 0.000 

Cluster Allocation  
(baseline: sign-trackers) 

0.802 0.343 2.337 0.024 

Age -0.031 0.014 -2.156 0.037 

Gender -0.283 0.346 -0.819 0.417 

BMI 0.008 0.018 0.460 0.648 

Pre-experiment 
Level of Appetite 

-0.003 0.005 -0.594 0.555 
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Supplementary Figure 1 
 

 
 
During the cued food delivery task, images appear on the screen (A). The M&M’s® 
dispenser (behind box B) delivers one candy at a time in the receptacle (C). Participants 
can either eat or discard the candy. Using the button box (D), the participant can 
resume the task after eating or discarding the candy. 
 
  

A 

B 

C 

D 
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Supplementary Figure 2 
 

 
A schematic example of the experimental time course. Note that food predictive cues 
were presented until the participant decided whether to consume or discard the M&M® 
candy. 
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Supplementary Figure 3 
 

  
The silhouette method indicated that two was the optimal number of clusters identified 
by the k-means cluster analysis using the 8 LPP values. 
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Supplementary Figure 4 
 
 

 
The gap statistic method indicated that two was the optimal number of clusters identified 
by the k-means cluster analysis using the 8 LPP values. 
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