Analysis of the immunological biomarker profile during acute Zika virus infection reveals the overexpression of CXCL10, a chemokine already linked to neuronal damage

Short Title: CXCL10 overexpression in Acute Zika Virus Infection

Felipe Gomes Naveca^{1,2¶*}, Gemilson Soares Pontes^{3&}, Aileen Yu-hen Chang^{4&}, George Allan Villarouco da Silva^{2,7}, Valdinete Alves do Nascimento¹, Dana Cristina da Silva Monteiro², Marineide Souza da Silva², Lígia Fernandes Abdalla^{2,5}, João Hugo Abdalla Santos⁶, Tatiana Amaral Pires de Almeida¹, Matilde del Carmen Contreras Mejía¹, Tirza Gabrielle Ramos de Mesquita⁷, Helia Valeria de Souza Encarnação⁷, Matheus de Souza Gomes⁸, Laurence Rodrigues Amaral⁸, Ana Carolina Campi-Azevedo⁹, Jordana Graziela Coelho-dos-Reis⁹, Lis Ribeiro do Vale Antonelli⁹, Andréa Teixeira-Carvalho^{9&}, Olindo Assis Martins-Filho^{9¶*}, Rajendranath Ramasawmy^{7,10}

 Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane – Fiocruz Amazônia, Manaus, Amazonas, Brazil
 Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
 Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
 George Washington University, Washington, DC, United States of America
 Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
 Hospital Adventista de Manaus, Manaus, Amazonas, Brazil
 Fundação de Medicina Tropical – Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil

8 Universidade Federal de Uberlândia, Patos de Minas, Minas Gerais, Brazil

9 Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, Minas Gerais,

Brazil

10 Universidade Nilton Lins, Manaus, Amazonas, Brazil

* felipe.naveca@fiocruz.br (FGN)

* <u>oamfilho@cpqrr.fiocruz.br</u> (OAMF)

[¶]These authors contributed equally to this work.

[&]These authors also contributed equally to this work.

1 Abstract

2 Infection with Zika virus (ZIKV) manifests in a broad spectrum of disease ranging from 3 mild illness to severe neurological complications. To define immunologic correlates of 4 ZIKV infection, we characterized the levels of circulating cytokines, chemokines and 5 growth factors in 54 infected patients of both genders, at five different time-points after 6 symptoms onset using microbeads multiplex immunoassay; statistical analysis and data 7 mining compared to 100 age-matched controls. ZIKV-infected patients present a 8 striking systemic inflammatory response with high levels of pro-inflammatory 9 mediators. Despite the strong inflammatory pattern, IL-1Ra and IL-4 are also induced 10 during acute infection. Interestingly, the inflammatory cytokines, IL-13, IL-13, IL-17, 11 TNF-α, IFN-γ; chemokines, CXCL8, CCL2, CCL5; and the growth factor G-CSF 12 display a bimodal distribution accompanying viremia. While this is the first manuscript 13 to document bimodal distributions of viremia in ZIKV infection, bimodal viremia has 14 been documented in other viral infections with primary viremia peaks during mild 15 systemic disease and a secondary viremia with distribution of the virus to organs and

16	tissues. Moreover, biomarker network analysis demonstrated distinct dynamics in
17	consonance with the bimodal viremia profiles at different time-points during ZIKV
18	infection. Such robust cytokine and chemokine response has been associated with
19	blood-brain barrier permeability and neuroinvasiveness in other flaviviral infections.
20	High-dimensional data analysis further established CXCL10, a chemokine involved in
21	fetal neuron apoptosis and Guillain-Barré syndrome, as the most promising biomarker
22	of acute ZIKV infection for a potential clinical application.
23	
24	Author Summary

25 Infection with Zika virus manifests in a broad spectrum of disease ranging from mild

26 illness to severe neurological complications. This study characterized the levels of

27 circulating cytokines, chemokines and growth factors in Zika-infected patients showing

an inflammatory immune response. Specifically, this study identified a chemokine,

29 CXCL10, known to be involved in fetal neuron apoptosis and Guillain-Barré syndrome,

30 as the most promising biomarker to characterize acute Zika virus infection.

31

32 Introduction

33 The Zika virus (ZIKV) is an arthropod-borne *Flavivirus*, transmitted mainly by the bite

34 of female *Aedes* mosquitos, that usually causes a mild illness characterized by

35 conjunctivitis, pruritus, muscle and joint pain, rash and slight fever [1]. Outbreaks of

36 ZIKV infection were first recorded in Micronesia and later in French Polynesia, where

- 37 atypical manifestations were initially documented, including the Guillain-Barré
- 38 Syndrome [2,3]. In Brazil, ZIKV infection during pregnancy was linked to an unusual
- 39 increase in the number of microcephaly cases [4]. Following the Brazilian report of
- 40 congenital malformations, the number of microcephaly cases in French Polynesia were

41	reanalyzed, and a connection with ZIKV was further established [5]. The broad
42	spectrum of fetal clinical manifestations resulting from ZIKV infection lead to a new
43	classification termed Zika Congenital Syndrome [6].
44	Host immune response plays an important role in the clinical course of patients with
45	viral infection. Particularly, cellular immunity and key components of the innate
46	immune response, such as interferons and other cytokines/chemokines, play an essential
47	role in limiting the viral spread [7]. To date, only two studies describing immune
48	mediators in Zika-infected patients have been reported [8,9]. In Tappe et al, reliable
49	immunological biomarker profile during acute infection could not be established due to
50	the small sample size. Kam et al. describes immune markers from a cohort from
51	Campinas, Brazil showing inflammatory immune response and several immune
52	mediators specifically higher in ZIKV-infected patients, with levels of CXCL10, IL-10, and
53	HGF differentiating between patients with and without neurological complications. Kam et
54	al. also found higher levels of CXCL10, IL-22, MCP-1, and TNF- α were observed in
55	ZIKV-infected pregnant women carrying babies with fetal growth associated
56	malformations.
57	In this study, we evaluated the immune response during the acute ZIKV infection by
58	analysis the serum levels of cytokines, chemokines and growth factors from an adult

- 59 cohort from Manaus, Brazil of 54 ZIKV-infected cases and 100 controls over five time
- 60 points during symptomatic ZIKV infection. We present the time course of cytokine
- 61 response in relation to viremia and identify a chemokine that may serve as a biomarker
- 62 of acute ZIKV infection, providing new insights into ZIKV neuropathogenesis.

63

64 Methods

65 Study Population and Design

66	We used a non-probabilistic convenience sampling and a cross-sectional experimental
67	design, together with robust statistical analysis and data mining, for the evaluation of
68	the immunological biomarker profile during acute ZIKV infection. In the first semester
69	of 2016, a total of 54 suspected ZIKV-infected cases (29 non-pregnant females and 25
70	males, all adults) were recruited at Hospital Adventista de Manaus, Amazonas state,
71	Brazil. All patients presented a maculopapular rash, with or without fever, and at least
72	one of the following symptoms: pruritus, arthralgia, joint swelling or conjunctival
73	hyperemia, within five days after the symptoms onset. Age-matched non-infected (NI)
74	controls, females (46) and males (54), were enrolled for comparison and basic
75	characteristics, including physical examination and virological findings are provided.
76	Comprehensive laboratory records were available for 21 patients (15 male and six
77	female), including routine laboratory tests.
78	
78 79	Ethics Statement
	Ethics Statement The study protocol was approved by the Ethics Committee of the Universidade do
79	
79 80	The study protocol was approved by the Ethics Committee of the Universidade do
79 80 81	The study protocol was approved by the Ethics Committee of the Universidade do Estado do Amazonas (CAAE: 56745116.6.0000.5016) and all subjects included
79 80 81 82	The study protocol was approved by the Ethics Committee of the Universidade do Estado do Amazonas (CAAE: 56745116.6.0000.5016) and all subjects included
 79 80 81 82 83 	The study protocol was approved by the Ethics Committee of the Universidade do Estado do Amazonas (CAAE: 56745116.6.0000.5016) and all subjects included provided written informed consent.
 79 80 81 82 83 84 	The study protocol was approved by the Ethics Committee of the Universidade do Estado do Amazonas (CAAE: 56745116.6.0000.5016) and all subjects included provided written informed consent. Differential molecular diagnosis of Zika and viral load estimative
 79 80 81 82 83 84 85 	The study protocol was approved by the Ethics Committee of the Universidade do Estado do Amazonas (CAAE: 56745116.6.0000.5016) and all subjects included provided written informed consent. Differential molecular diagnosis of Zika and viral load estimative Serum samples were sent to Fiocruz Amazônia and tested for ZIKV (envelope coding
 79 80 81 82 83 84 85 86 	The study protocol was approved by the Ethics Committee of the Universidade do Estado do Amazonas (CAAE: 56745116.6.0000.5016) and all subjects included provided written informed consent. Differential molecular diagnosis of Zika and viral load estimative Serum samples were sent to Fiocruz Amazônia and tested for ZIKV (envelope coding region) [10], Chikungunya (CHIKV) [11] and Dengue (DENV) [12] by RT-qPCR.

91 **Dengue virus serology**

- 92 Serum samples were tested for previous exposure to DENV with Serion ELISA classic
- 93 Dengue Virus IgG (Institut Virion/Serion GmbH, Germany).
- 94

95 Microbeads assay for serum biomarkers

- 96 High-performance microbeads 27-plex assay (Bio-Rad, Hercules, CA, USA) was
- 97 employed for detection and quantification of multiple targets, including: CXCL8 (IL-8);
- 98 CXCL10 (IP-10); CCL11 (Eotaxin); CCL3 (MIP-1α); CCL4 (MIP-1β); CCL2 (MCP-
- 99 1); CCL5 (RANTES); IL-1β, IL-6, TNF-α; IL-12; IFN-γ, IL-17; IL-1Ra (IL-1 receptor
- 100 antagonist); IL-2; IL-4; IL-5; IL-7; IL-9; IL-10; IL-13; IL-15; FGF-basic; PDGF;
- 101 VEGF; G-CSF and GM-CSF. Samples were tested according to the manufacturer's
- 102 instructions on a Bio-Plax 200 instrument (Bio-Rad). The serum levels of IL-2, IL-7,
- and IL-15 were below the detection limits in several samples and were excluded of
- 104 further analysis. The results were expressed as pg/mL.
- 105

106 Statistical analysis and Data mining

- 107 Statistical analyses were initially performed using GraphPad Prism (GraphPad Software
- 108 6.0, San Diego, CA, USA). Outliers within each measurement group were identified by
- 109 the ROUT Method (Q=1%) and removed. Cleaned data was then used for the evaluation
- 110 of Gaussian distribution with D'Agostino & Pearson omnibus normality test.
- 111 Comparative analysis of the clinical records was carried out by Fisher's exact test. The
- analysis of biomarker levels between NI controls vs. ZIKV-infected cases, and between
- 113 genders, was performed by Mann-Whitney test. Multivariate correlations for biomarker
- 114 levels and routine laboratory tests were analyzed with the nonparametric Spearman's

115	test (alpha 0.05)) running on the JMI	Software, v	13.1.0 (SAS	Institute, O	Cary, NC,	USA).
-----	-------------------	----------------------	-------------	-------------	--------------	-----------	-------

116 Correlations (Spearman ρ) were represented by a color map matrix.

117 The dynamics of viremia, chemokines, cytokines and growth factors were evaluated 118 using the median value of each analyte. Comparative analysis of the biomarkers was 119 carried out by Kruskal-Wallis followed by Dunn's post-test. For all tests, significant 120 differences were considered at two-tailed p<0.05. 121 Data management strategies were applied to identify general and time-specific profiles. 122 Biomarker signature analysis was carried out as previously described [13]. Radar charts 123 were assembled to compile the biomarker signature of NI controls and ZIKV-infected 124 cases applying the 75th percentile as threshold. Venn diagram scrutiny was carried out to 125 identify attributes, along with the timeline of the symptoms onset 126 http://bioinformatics.psb.ugent.be/webtools/Venn/. Cytoscape software v3.2.0 127 (http://www.cytoscape.org/) was employed for visualizing and integrating multiple 128 attributes into circular nodal networks. Connecting edges were drawn to underscore the 129 association as positive (solid line) or negative (dashed line). The biomarker cluster 130 pattern was defined by heatmaps assembled using R software (heatmap.2 function; 131 v3.0.1). Decision tree algorithms were generated with WEKA software v3.6.11 132 (University of Waikato, New Zealand) to identify root and branch attributes, 133 segregating patients from controls. ROC curves were built to define the cut-off and 134 biomarkers with better performance to discriminate ZIKV-infected patients from NI 135 controls. Performance indices (co-positivity, co-negativity, positive and negative 136 likelihood ratio) were calculated using the MedCalc software v7.3 (Ostend, Belgium). 137

138 **Results**

139 Demographics, clinical records and virological data

140	The 54 Brazilian Zika cases, 29 non-pregnant females (median age 38 years, IQR 27.5 –
141	46.5) and 25 males (median age 37 years, IQR $30 - 50$), were enrolled between the first
142	and the fifth day after the symptoms onset. A group of 100 non-infected control subjects
143	who were residents of Manaus, Amazonas, Brazil were also included (46 females
144	(median age 28 years, IQR 23 – 36) and 54 males (median age 29.5 years, IQR 23 –
145	36)). The median viremia expressed as 1/Ct*100 was 2.9 (min=2.7; max=4.2; IQR: 2.8
146	- 3.0). The frequency of specific ZIKV symptoms was similar between men and woman
147	with the only exception that men had increase frequency of fever compared to woman
148	(100% versus 67%, p=0.005) (Table 1). The DENV IgG testing showed that 94.4%
149	(51/54) of the patients were positive; two had an undetermined result and one male
150	subject was negative.

151

Table 1. Demographical aspects, clinical records and virological status 152 of ZIKV-infected patients 153

Parameters	All	All Females		р
Non-infected controls				
n	100	46	54	NA
Age (years)	29.0 (23-36)	28.0 (23-36)	29.5 (23-36)	0.58
ZIKV-infected patients				
n	54	29	25	n.a.
Age (years)	37.5 (29-48)	38.0 (27.5-46.5)	37.0 (30-50)	0.79
Days of symptoms onset	2.5 (2-4)	2.0 (1-4)	3.0 (2-4)	0.32
Rash	95.0%	94.4%	95.5%	1.00
Fever	85.0%	66.7%	100.0%	<u>0.005</u>
Myalgia	82.5%	83.3%	81.8%	1.00
Conjunctival hyperemia	75.0%	66.7%	81.8%	0.30

Pruritus	70.0%	66.7%	72.7%	0.73
Headache	65.0%	66.7%	63.6%	1.00
Arthralgia	60.0%	72.2%	50.0%	0.20
Joint swelling	25.0%	33.3%	18.2%	0.30
Vomiting or nausea	25.0%	33.3%	18.2%	0.30
Diarrhea	17.5%	27.8%	9.1%	0.21
Lymphadenopathy	12.5%	11.1%	13.6%	1.00
Viremia	2.9 (2.8-3.0)	2.9 (2.8-3.0)	2.9 (2.8-3.0)	0.86

154Data are reported as median and Interquartile Range (IQR) for age, days of symptoms155onset and viremia. Statistical differences were assessed by Mann-Whitney test.156Comparative analysis of clinical records observed in females and males was carried out157by Fisher's exact test. Significant differences were considered at p<0.05 for</td>158comparisons between females vs males and are underscored by bold/underlined159format. Viremia is expressed as 1/Ct*100 as described in material and methods. "NA"=160not applicable.

161

162 Correlation of immunological biomarkers during acute ZIKV infection with

163 routine laboratory tests

164 The results of 45 continuous variables including immunological biomarkers; routine

- 165 laboratory tests; age; viremia and symptoms onset were analyzed (Fig 1). Overall,
- 166 moderate correlations were observed for several variables, whereas the strongest
- 167 correlations were observed between TNF- α and CCL5 (Spearman ρ 0.8245) and
- 168 Lymphocytes (%) and Neutrophils (%) (Spearman ρ -0.8084). All results were
- 169 represented in a color map matrix, where statistically supported associations (p<0.05),
- 170 regarding the routine laboratorial tests and immunological biomarkers, were highlighted
- 171 (inserted table in Fig 1).

173 Fig 1. Immunological biomarkers correlations with the results of routine 174 laboratorial tests, age, viremia, and symptoms. The nonparametric Spearman's test 175 was applied to evaluate multiple correlations between immunological biomarkers and 176 the results of routine laboratorial tests. A color map matrix was plotted showing the 177 strength and direction of these correlations (-1 blue, to +1 red). Strongly supported 178 correlations (p < 0.05) between immunological biomarkers and routine tests are 179 highlighted in the inserted table.

180

181 ZIKV-infected patients display high levels of circulating biomarkers

182 Elevated levels of pro-inflammatory cytokines (IL-1 β , IL-6, TNF- α , IFN- γ and IL-17,

183 except IL-12 that was higher in controls), chemokines (CXCL8, CCL11, CCL3, CCL4,

184 CCL2, CCL5 and CXCL10) and growth factors (FGF-basic, PDGF, VEGF, G-CSF and

185 GM-CSF) were found in ZIKV-infected cases (Fig 2, light gray panels), whereas higher

186 levels of IL-5 and IL-13 in controls (Fig 2, dark gray panels). Interestingly, the levels of

187 IL-4 and IL-1Ra were also higher among patients. No differences were observed for the

188 IL-9 and IL-10 (Fig 2, white panels). A similar pattern was observed when results were

189 stratified by gender, although infected males presented significant lower levels of

190 CCL3, CCL4, CCL5, IL-17, FGF-basic and GM-CSF. No significant differences were

191 observed between female and male controls (Table 2).

192

193 Fig 2. Panoramic Overview of Serum Chemokines, Cytokines and Growth Factors

194 Early After Zika Virus Infection in Adults. Serum biomarkers (CXCL8, CCL11,

195 CCL3, CCL4, CCL2, CCL5, CXCL10, IL-1β, IL-6, TNF-α, IL-12, IFN-γ, IL-17, IL-

196 1Ra, IL-4, IL-5, IL-9, IL-10, IL-13, FGF-basic, PDGF, VEGF, G-CSF and GM-CSF)

197 were measured in Zika virus-infected patients (ZIKV= ■, n=54) and non-infected

198	subjects (NI= \square , n=100) by high performance Luminex 27-plex assay as described in
199	methods. Data expressed as pg/mL are displayed in box and whiskers (10-90 percentile)
200	plots. Comparative analysis between NI vs. ZIKV was performed by Mann-Whitney test
201	and significant differences at p<0.05 underscored by connecting lines. Colored
202	backgrounds highlighted increased (light gray), decreased (dark gray) and unaltered
203	(white) levels of serum biomarkers in ZIKV as compared to NI.
204	

205 Table 2. Serum Chemokines, Cytokines and Growth Factors Early After

206 Zika Virus Infection in Adult Females and Males

Analytes	Femal	es (F), n=29	p (1)	Males ((M), n=25	p (2)	p (3)	Sco ZIK	
	NI	ΖΙΚΥ		NI	ZIKV			(F)	(M)
CXCL8	0.87 (0.54-1.67)	2.26 (1.57-3.26)	0.0001	0.98 (0.70-1.93)	2.30 (1.19-3.11)	0.0018	0.5669	2.6	2.3
CCL11	16.44 (9.29-22.22)	48.94 (30.12-61.91)	0.0001	16.65 (10.62-25.20)	43.82 (29.11-56.95)	0.0001	0.3488	3.0	2.6
CCL3	0.59 (0.41-0.86)	<u>1.15</u> (0.80-1.32)	0.0001	0.65 (0.45-1.13)	<u>0.89</u> (0.67-1.07)	0.0469	<u>0.0205</u>	1.9	1.4
CCL4	7.28 (4.56-12.20)	<u>28.76</u> (18.76-35.67)	0.0001	5.94 (3.75-9.79)	<u>20.18</u> (12.63-26.64)	0.0001	<u>0.0162</u>	4.0	3.4
CCL2	2.08 (1.00-4.97)	20.73 (13.45-34.70)	0.0001	2.46 (1.94-7.15)	21.98 (11.86-32.34)	0.0001	0.9862	10.0	8.9
CCL5	15.17 (11.36- 34.98)	<u>82.77</u> (64.75-108.00)	0.0001	17.00 (9.83-25.70)	<u>34.06</u> (23.66-65.81)	0.0001	<u>0.0001</u>	5.5	2.0
CXCL10	232 (128-434)	71,219 (32,899-148,407)	0.0001	218 (109-392)	44,645 (10,423- 69,757)	0.0001	0.1030	307	205
IL-1β	0.52 (0.24-0.96)	0.93 (0.56-1.19)	0.0176	0.52 (0.29-1.00)	0.77 (0.61-1.14)	0.1511	0.5374	1.8	1.5
IL-6	0.29 (0.20-0.57)	0.79 (0.63-1.00)	0.0001	0.28 (0.21-0.55)	0.81 (0.52-1.73)	0.0001	0.1944	2.7	2.9
TNF-α	9.76 (6.10-20.20)	35.87 (25.45-44.08)	0.0001	10.08 (6.45-22.62)	26.93 (15.02-41.84)	0.0015	0.1101	3.7	2.7
IL-12	1.26 (0.51-2.30)	0.63 (0.22-1.66)	0.0554	1.39 (0.96-2.17)	0.34 (0.09-1.08)	0.0001	0.1895	0.5	0.2
IFN-γ	14.97 (9.63-24.54)	31.91 (26.39-38.65)	0.0001	19.79 (14.14-27.31)	26.41 (23.61-35.97)	0.0035	0.4283	2.1	1.3
IL-17	3.84 (2.21-7.53)	<u>7.88</u> (6.28-9.02)	0.0001	3.57 (2.50-6.76)	<u>5.96</u> (4.41-7.15)	0.0114	<u>0.0092</u>	2.1	1.7
IL-1Ra	11.81 (7.81-28.66)	47.00 (34.03-65.59)	0.0001	12.33 (8.95-36.13)	54.94 (30.77-115.10)	0.0001	0.3623	4.0	4.5
IL-4	0.27 (0.20-0.39)	0.81 (0.59-0.86)	0.0001	0.26 (0.17-0.41)	0.73 (0.53-0.90)	0.0001	0.6890	3.0	2.8
IL-5	3.16 (1.67-5.02)	1.50 (0.40-1.61)	0.0001	4.70 (2.00-5.35)	1.38 (1.07-1.61)	0.0001	0.5792	0.5	0.3

IL-9	2.21 (1.19-4.11)	3.10 (1.69-5.72)	0.0783	2.62 (1.59-4.69)	1.42 (1.18-3.83)	0.0837	0.0518	1.4	0.5
IL-10	1.73 (0.75-3.39)	2.11 (1.65-3.22)	0.1046	1.95 (1.51-3.02)	2.25 (1.52-3.41)	0.5478	0.9571	1.2	1.2
IL-13	0.75 (0.37-1.34)	0.48 (0.22-0.57)	0.0135	0.98 (0.80-1.57)	0.57 (0.37-0.57)	0.0001	0.3634	0.6	0.6
FGF-basic	1.84 (1.01-3.14)	(3.71-5.27)	0.0001	2.24 (1.28-3.73)	<u>3.24</u> (2.13-4.24)	0.0468	<u>0.0014</u>	2.4	1.4
PDGF	359 (125-585)	1,012 (616-1,933)	0.0001	258 (196-403)	823 (416-1,578)	0.0001	0.3670	2.8	3.2
VEGF	2.87 (1.78-6.29)	6.72 (4.18-16.33)	0.0001	3.70 (2.17-4.97)	6.26 (3.66-15.21)	0.0005	0.5668	2.3	1.7
G-CSF	1.86 (1.04-2.86)	5.96 (4.43-8.05)	0.0001	1.83 (1.19-3.29)	4.94 (3.42-7.66)	0.0001	0.2400	3.2	2.7
GM-CSF	0.87 (0.52-2.00)	<u>3.76</u> (3.03-4.64)	0.0001	1.35 (0.54-2.16)	<u>2.88</u> (1.73-3.91)	0.0003	<u>0.0256</u>	4.4	2.1

207Data are reported as median levels (IQR) in pg/mL. Statistical analysis was performed by Mann-208Whitney test and significance reported as p(1), p(2) and p(3) values for comparisons between NI vs209ZIKV females, NI vs ZIKV males and ZIKV females vs ZIKV males, respectively. Significant210differences between NI vs ZIKV are underscored in **bold** format. Differences between ZIKV females vs211ZIKV males are highlighted by **bold-underlined** format. No significant differences were observed212between NI females vs NI males. Score represents the fold change (analyte median value in infected213patient divided by analyte median value in controls) segregated by gender.

214

215 Bimodal viremia is accompanied by increased levels of a defined group of

216 biomarkers

217	Viremia and biomarkers were assessed at different time-points (Day 1 post-infection
218	denoted as D1 etc.) D1 (n=11); D2 (n=13); D3 (n=10); D4 (n=09) and D5 (n=05). A
219	bimodal distribution was observed, with two viremia peaks at D2 and D4, reaching the
220	lowest levels at D5 (Fig 3, gray panel). Dynamics of CCL5, TNF- α , IFN- γ , IL-17 and
221	G-CSF were closely related to viremia (Fig 3A). A similar bimodal distribution was
222	observed for IL-1 β and IL-13 (Fig 3B). The highest levels of CXCL8 and CCL2 were
223	observed at D1 and D2 (Fig 3C). An inverse correlation was observed for IL-12, IL-10
224	and VEGF (Fig 3D), where the highest levels coincide with the lowest viremias. The
225	levels of CCL3, CXCL10, IL-6 and FGF-basic display a distinct pattern, with the lowest
226	levels observed at D3, coinciding with the first drop of viremia (Fig 3E). A valley at D4

followed by an increase at D5 was observed for CCL11, CCL4, IL-1Ra, and IL-4 (Fig.

228 3F), and unique patterns were observed for IL-5, IL-9, PDGF, and GM-CSF (Fig 3G).

229

230 Fig 3. Rhythms of Viremia, Chemokines, Cytokines and Growth Factors Early

231 After Zika Virus Infection in Adults. Cross-sectional follow-up of viremia and serum 232 biomarkers was carried out in Zika virus-infected patients categorized according to the 233 time (days) upon symptoms onset (D1, n=11; D2, n=13; D3, n=10; D4 n=09 and D5 234 n=05). Viremia (1/CT x 100) displayed a bimodal profile with similar waves at D2 and 235 D4 (gray panel). Distinct patterns were identified for clusters of biomarkers as they 236 displayed kinetic curves shaping a bimodal wave at D2 and higher wave $[\uparrow]$ at D4 237 (panel A, for CCL5, TNF- α , IFN- γ , IL-17 and G-CSF); a bimodal profile with similar 238 waves at D2 and D4 (panel B, IL-1 β and IL-13); a wave at D2 and a valley at D3 (panel 239 C, CXCL8 and CCL2); a midpoint wave at D3 (panel D, IL-12, IL-10 and VEGF); an 240 unimodal valley at D3 (panel E, CCL3, CXCL10, IL-6 and FGF-basic); a valley at D4 241 (panel F, CCL11, CCL4, IL-1Ra and IL-4) or an unique pattern (panel G, IL-5, IL-9, 242 PDGF and GM-CSF). Data are displayed as global maximum equalized median values 243 of the serum concentrations (pg/mL) for each biomarker.

244

Biomarkers were also evaluated in controls, and the IQR are represented by dashed lines

246 (Fig 4). Most of biomarkers' levels differ between patients and controls at all time-

247 points, except for IL-10 at D1 and D2, IL-1 β at D3. No differences were observed for

248 IL-9.

249

Fig 4. Kinetics of Viremia, Serum Chemokines, Cytokines and Growth Factors
Early After Zika Virus Infection in Adults. Cross-sectional analysis of viremia and

252 serum biomarkers was performed in Zika virus-infected patients categorized according 253 to the time (days) upon symptoms onset (D1, n=11; D2, n=13; D3, n=10; D4 n=09 and 254 D5 n=05). Data expressed as pg/mL are displayed in box and whiskers (10-90 255 percentile) plots. Multiple comparisons amongst distinct time-points upon symptoms 256 onset were performed by Kruskal-Wallis followed by Dunn's post-test and significant 257 differences at p<0.05 underscored by D1, D2, D3 and D4 as they correspond to specific 258 time-points. Comparative analysis with non-infected controls (NI) was also carried out 259 at each time-point by Mann-Whitney test and significant differences at p < 0.05260 underscored by asterisks (*). Reference ranges for each biomarker were established as interquartile ranges (25th-75th percentiles) observed in NI (dashed lines). Distinct 261 262 patterns were identified for clusters of biomarkers as they displayed kinetic curves shaping a bimodal wave at D2 and higher wave [\uparrow] at D4 (CCL-5, TNF- α , IFN- γ , IL-17 263 264 and G-CSF); a bimodal profile with similar waves at D2 and D4 (IL-1 β and IL-13); a 265 wave at D2 and a valley at D3 (CXCL8 and CCL2); a midpoint wave at D3 (IL-12, IL-266 10 and VEGF); an unimodal valley at D3 (CCL3, CXCL10, IL-6 and FGF-basic); a 267 valley at D4 (CCL11, CCL4, IL-1Ra and IL-4) or an unique pattern (IL-5, IL-9, PDGF 268 and GM-CSF).

269

270 ZIKV infection elicited a set of general and timeline-specific biomarkers

271 The biomarker levels were used to build a signature (Fig 5, left panels) as described in

the methods section. A significant difference in the overall profile was observed in

273 ZIKV-infected cases (Fig 5, top-left panel). Furthermore, the radar chart revealed that

274 19/24 (79%) biomarkers were highly induced by ZIKV infection (Fig 5, bottom-left

275 panel). Almost all biomarkers analyzed were found in levels above the global median in

276 more than 75% of the infected patients.

277	Venn diagram analysis showed that four chemokines (CCL4, CCL2, CCL5, CXCL10);
278	two cytokines (IL-6, IL-4) and two growth factors (PDGF, G-CSF) were significantly
279	induced in all time-points (Fig 5, right panel). Of note, TNF- α appears as a single
280	biomarker at the intersection of the viremia peaks (D2 and D4). In contrast, IL-10 is the
281	only unregulated biomarker at viremia valleys (D3 and D5) while increased levels of
282	IL-12 appears at D5 (Fig 5, inserted table).

283

284 Fig 5. General and Timeline Biomarkers upon Symptoms Onset Early After Zika 285 **Virus Infection in Adults.** Biomarker signatures of NI (\Box) and ZIKV (\Box) were 286 constructed as described in methods. Data are presented in radar charts as the proportion 287 of subjects with serum biomarker levels above the global population median values (NI 288 plus ZIKV). Biomarkers with levels above the global median in more than 75% of 289 subjects were highlighted by asterisks (*). The Venn diagram shows the intersections 290 with common attributes as well as selective biomarkers along the timeline of symptoms 291 onset (Day 1; Day 2; Day 3; Day 4 and Day 5). Venn diagram report summarizes 292 selected attributes with patterns labeled as (a) universal; (b) peak of viremia; (c) valley 293 of viremia or (d) late biomarkers (inserted table).

294

295 Distinct biomarker networks are observed at different time-points

296 Cytoscape software was used to assemble correlative analysis of immunological

297 biomarkers. The exploratory analysis demonstrated that earlier infection was associated

with more imbricate and complex biomarker networks. Most correlations at D1 and all

299 correlations at D2 were positive (solid lines). The level of complexity decreased from

300 D1 to D5. However, the interactions were more complex at D2 and D4, concomitant

301 with the viremia peaks (Fig 6).

302

303	Fig 6. Timeline Biomarker Networks Early After Zika Virus Infection in Adults.
304	Systems integrative biology analysis of attributes was assembled using Cytoscape
305	software platform to build circular nodal network layout for each time-point upon Zika
306	virus infection day 1 (D1) up day 5 (D5) based on Spearman's correlation matrices.
307	Significance was considered at p<0.05. The timeline of networks is displayed as circular
308	layouts to characterize the interaction along the early time-points. Colored nodes were
309	employed to identify chemokines (CH), pro-inflammatory cytokines (PI), regulatory
310	cytokines (RG) and growth factors (GF). Connecting edges were drawn to underscore
311	the association between attributes, classified as positive (solid line) or negative (dashed
312	line).
313	
314	High-dimensional data analysis elected CXCL10 as the most promising biomarker
315	for a putative clinical application
316	A heatmap matrix was constructed to evaluate the profile of biomarkers associated with
317	ZIKV infection. This analysis demonstrated that CXCL10 clustered most patients,
318	
010	segregating them from controls. Additionally, a decision tree was built to identify the
319	segregating them from controls. Additionally, a decision tree was built to identify the biomarker most able to segregate patients. This approach confirmed the heatmap
319	biomarker most able to segregate patients. This approach confirmed the heatmap
319 320	biomarker most able to segregate patients. This approach confirmed the heatmap observations indicating CXCL10 as the most relevant element, followed by IL-4 and
319320321	biomarker most able to segregate patients. This approach confirmed the heatmap observations indicating CXCL10 as the most relevant element, followed by IL-4 and VEGF. The analysis showed a very high global accuracy (99.4%) with a leave-one-out-
319320321322	biomarker most able to segregate patients. This approach confirmed the heatmap observations indicating CXCL10 as the most relevant element, followed by IL-4 and VEGF. The analysis showed a very high global accuracy (99.4%) with a leave-one-out- cross-validation of 96.8% (Fig 7). The significance of these attributes (CXCL10, IL-4
 319 320 321 322 323 	biomarker most able to segregate patients. This approach confirmed the heatmap observations indicating CXCL10 as the most relevant element, followed by IL-4 and VEGF. The analysis showed a very high global accuracy (99.4%) with a leave-one-out- cross-validation of 96.8% (Fig 7). The significance of these attributes (CXCL10, IL-4 and VEGF) was assessed by 3D-plots and the performance of the root attribute

327 patients, with no false-positive identification and outstanding indices (co-positivity, co-

- 328 negativity and likelihood ratio).
- 329

330 Fig 7. High-dimensional Data Analysis Early After Zika Virus Infection in Adults.

331 Machine-learning high-dimensional data approaches were applied to further explore and 332 identify feasible criteria applicable for the clinical follow-up of Zika virus infection. (A) 333 Heatmap panels were built to verify the ability of attributes to segregate ZIKV (\square) and 334 NI (\square) groups as they present low (\blacksquare) or high (\blacksquare) levels of serum biomarkers. Decision 335 tree algorithms were generated define root and branch attributes to segregate patients 336 (ZIKV=) from non-infected controls (NI=). Global accuracy and leave-one-out-337 cross-validation (LOOCV) values are provided in the figure. The root/branch attributes selected by the decision tree algorithm were compiled into a 3D-plot to verify their 338 339 clusterization strength. The performance of the selected root attribute to discriminate 340 ZIKV (\bullet) from NI (\bullet) was evaluated by scatter plot distribution and validated by 341 receiver operating-characteristic indices (Area under the curve, AUC; Co-positivity, Cp; 342 Co-negativity, Cn; Positive/Negative Likelihood Ratio, LR+/LR-).

343

344 **Discussion**

- 345 The pathogenesis of ZIKV infection is still largely unknown, and the main determinants
- 346 of disease manifestations are not yet well established. Understanding serum
- 347 immunomodulators during acute infection may be a first step to elucidate the
- 348 mechanisms underlying ZIKV-induced immunopathology.
- 349 We show that the immune response during the acute phase of ZIKV infection is
- 350 polyfunctional and broadly inflammatory as evidenced by significant elevated levels of
- 351 IL-4, IL-17, IFN- γ , IL-1 β , IL-1Ra, TNF- α and IL-6 in patients. This is consistent with

352	findings from Kam et al [9] that also found a robust pro-inflammatory cytokine response
353	during acute ZIKV infection with elevations of IL-18, TNF- α , IFN- γ , IL-8, IL-6, GRO- α ,
354	and IL-7. Alternatively, when we stratified the results by gender, ZIKV-infected males
355	presented lower levels of CCL3, CCL4, CCL5, IL-17, FGF-basic and GM-CSF. The
356	reason for this difference is unknown in the context of ZIKV infection, however this
357	finding is consistent with the literature demonstrating that females tend to mount a
358	higher innate and adaptive immune system response to viruses compared to men [14].
359	In addition, this result may also be explained as females were sampled on average one
360	day earlier than men with the median time from onset to diagnostic sampling (Females=
361	day 2; Males= day 3).
362	It is possible that previous exposure to Flavivirus antigens may affect the immune
363	response to ZIKV infection. In the present study, almost all patients (51/54) exhibited
364	positive DENV IgG antibodies. Manaus has had several dengue epidemics, including
365	co-circulation of different serotypes [15-17]. Moreover, the Amazonas State is endemic
366	for Yellow Fever virus (YFV) and has a very high YFV-vaccination coverage. Thus,
367	mostly individuals enrolled in this study have experienced previous Flavivirus exposure
368	potentially modulating the cytokine and chemokine responses. These differences in
369	prior Flavivirus exposure may account for some differences in cytokine and chemokine
370	profiles shown by Kam et al. that examined a Brazilian cohort of patients from
371	Campinas, Brazil where Yellow Fever vaccination was not required by the government
372	at the time of their study as it is in Manaus, Brazil.
373	Similar to our results, comparable immune response induced during the acute phase has
374	previously been described in infections caused by ZIKV and other Flaviviruses,
375	including YFV, DENV and West Nile virus [8,18-20]. In the case of ZIKV infection,
376	the mechanism of inflammatory immune response is not clearly delineated. The

377	immune response may be triggered by viral upregulation of expression of pattern
378	recognition receptors (PRRs) engaged in downstream pathways and inflammatory
379	antiviral response such as IRF7, IFN- α , IFN- β , and CCL5 [7]. Interestingly, we showed
380	a strong positive correlation between IFN- α and CCL5, suggesting that the synergistic
381	effect of these cytokines might be crucial on the outcomes of the acute inflammation
382	caused by ZIKV.
383	Our findings also revealed higher levels of growth factors and chemokines among
384	patients. Likewise, increased levels of CXCL10, CCL5, CCL3 and VEGF were
385	primarily demonstrated in patients acutely infected with ZIKV, while elevated levels of
386	GM-CSF, CCL4, and FGF-basic biomarkers only in the recovery phase [8]. Our study
387	demonstrated that all chemokines and growth factors analyzed were significantly
388	increased in the acute phase in comparison with non-infected controls. In fact, the role
389	of growth factors in the pathogenesis of arboviruses infections remains a matter of
390	debate [20-22]. We demonstrate that a remarkable increase of FGF-basic, PDGF,
391	VEGF, G-CSF and GM-CSF identifies the acute phase of ZIKV infection, which
392	suggests the importance of chemokines and growth factors in the initiation and
393	regulation of the acute-phase immune response.
394	Similarly, increased serum concentrations of both CXCL (CXCL8 and CXCL10) and
395	CCL chemokines (CCL2, CCL3, CCL4, CCL5, and CCL11) were found in acute ZIKV
396	infection. The role of CCL5 in the arbovirus-induced immunopathology remains a
397	controversial issue, but this chemokine along with CCL2 and CCL3 were previously
398	linked to severity of dengue and Japanese encephalitis virus infections, including
399	neurological diseases and impairment of neuronal survival [23-27].
400	Furthermore, we found strong correlations between TNF- α and CCL5 concentrations
401	and percentages of circulating neutrophils and lymphocytes in acute ZIKV infection.

402	This finding is likely due to the role of TNF- α and CCL5 in leukocyte chemo attraction
403	[28,29] and demonstrates the important role of this cytokine and chemokine in
404	stimulation of the innate and adaptive immune system in response to ZIKV infection.
405	In addition, this manuscript is the first to describe the bimodal nature of viremia in acute
406	Zika infection and corresponding peaks in inflammatory cytokine production. A
407	biological model explaining bimodal viremia was firstly described in the classical study
408	of Fenner's with the Mousepox virus [30]. Similarly, Flaviviruses are initially replicated
409	in Langerhans cells at the site of inoculation and in draining regional
410	lymph nodes. Despite a robust anti-viral innate immune response that eliminates viral
411	infected cells, some virus particles are disseminated by blood (primary viremia).
412	Therefore, several organs and tissues may become infected producing a second wave
413	of viral replication that reaches blood causing a secondary viremia [31]. The equine
414	infection by African Horse Sickness Viruses, another arbovirus of the Orbivirus genus,
415	Reoviridae family, also shows two viremia peaks. The first peak is observed after the
416	viral multiplication into lymph nodes, whereas the second peak is observed after viral
417	replication in spleen, lungs and endothelial cells [32]. Several arboviruses are known
418	to cause prolonged viremia into their natural hosts, and this is well documented for
419	encephalitic Alphaviruses [33,34] leading to higher transmission rates for mosquito
420	vectors. Interestingly, bimodal viremia has been found in patients after low dose live
421	attenuated 17DD Yellow Fever vaccine administration [35]. The low dose live
422	attenuated vaccine is hypothesized to elicit a less robust immune response in
423	comparison to the standard dosage vaccine that does not clear the initial viremia leading
424	to a second peak of viremia a few days later. Further research to determine if ZIKV
425	undergoes similar processes is needed.

426 In this manuscript, we reported high levels of pro-inflammatory mediators during 427 the acute phase of ZIKV infection. Paradoxically, although the inflammatory response 428 leads to viral clearance, the high levels of circulating pro-inflammatory biomarkers may 429 facilitate the transmission of viruses from circulation to the central nervous system by 430 increasing the permeability of the blood brain barrier. This phenomenon has been 431 already reported for the West Nile virus [36], another neurovirulent Flavivirus, and may 432 partially explain ZIKV neuroinvasiveness. 433 Remarkably, the CXCL10 was expressed greater than 200-fold in ZIKV-infected 434 subjects. Augmented serum levels of CXCL10 have been found during severe clinical 435 manifestations of dengue and Yellow fever [14,18,37]. CXCL10 has also been shown to 436 play an important role in CD-8+ T-cell recruitment as part of an anti-flaviviral response 437 in the central nervous system to West Nile virus [38] and dengue virus [39]. 438 Furthermore, CXCL10 has been previously associated as a biomarker of severity in 439 several diseases including those caused by bacteria like *Mycobacterium tuberculosis* 440 and Legionella pneumophila; protozoans like Trypanosoma brucei, Leishmania major, 441 *Plasmodium vivax* or *Plasmodium falciparum* [40]; viral diseases such as in Simian 442 Human Immunodeficiency Virus Encephalitis [41] and viral acute respiratory infection 443 in healthy adults, mainly those caused by Influenza virus [42]. 444 Of paramount importance, CXCL10 overexpression has been observed in non-445 infectious neuronal diseases like Alzheimer's and multiple sclerosis, and in infectious 446 diseases like HIV-associated dementia [43]. Furthermore, different studies showed that 447 the over-expression of CXCL10 leads to apoptosis in fetal neurons [40] that is triggered 448 by intracellular Ca(2+) elevation activating caspase-9 and caspase-3 [43]. CXCL10 has 449 also been strongly implicated in Guillain-Barré syndrome pathogenesis [44]. Thus, we 450 hypothesize that the high elevations of CXCL10 in ZIKV patients may contribute to

451	neuronal damage affecting the developing fetal brain and potentially targeting
452	peripheral nerves in Guillain-Barré syndrome as well. Consistent with this hypothesis,
453	Kam et al. specifically identified higher levels of CXCL10 in ZIKV-infected patients with
454	neurological complications compared to those without and higher levels of CXCL10 in
455	ZIKV-infected pregnant women carrying babies with fetal growth associated
456	malformations.
457	High levels of CXCL10 have been previously described at acute and convalescent
458	phases, with more prominent expression at the latter [8]. Unfortunately, although our
459	data strongly suggest CXCL10 as a biomarker of ZIKV acute infection, we were unable
460	to perform a longitudinal analysis to verify its kinetics across different stages of the
461	disease, to further confirm whether the concentrations of this chemokine would be down
462	or up-regulated. In addition, CXCL10 elevation is also observed in pre-eclampsia and
463	hypertension found in pregnancy resulting in a range of fetal injuries, including
464	intrauterine growth retardation and neurological damage induced by hypoxia [45,46].
465	Thus, it is reasonable to suggest that ZIKV-induced inflammation may increase fetal
466	injuries.
467	CXCL10 may also be an important therapeutic target [40]. For example, CXCL10
468	neutralization by specific antibodies or genetic deletion in CXCL10-/-mice protected
469	against cerebral malaria infection and inflammation [47]. Passive transfer of anti-
470	CXCL10 antibodies reduced inflammatory leukocyte recruitment across the blood brain
471	barrier. Furthermore, statin medications commonly used for cholesterol control have
472	been shown to decrease CXCL10 and to be effective in CXCL10 mediated Crohn's
473	disease [48].
474	Finally, we describe the relationship between the timing of viremia and cytokine

475 elevations. The acute phase of ZIKV infection lasts around five days [49]. This study

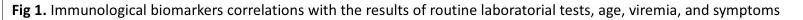
476	assessed the acute phase biomarkers and viral titers at different time-points (until day 5).
477	Augmented levels of CCL4, CCL2, CCL5, CXCL5, CXCL10, IL-6, IL-4, PDGF, and
478	G-CSF immunomodulators were observed at all time-points. The peak of viremia, at
479	Day 2 and Day 4, was accompanied by increased TNF- α levels. Instead, the IL-10
480	elevation appeared to be directly related to the lowest virus titers (Day 3 and Day 5),
481	while the highest levels of IL-12 were found at Day 5. These findings allow us to
482	deduce that the acute phase of ZIKV is characterized mainly by an innate immune
483	system inflammatory response, with the overlap of the inflammatory biomarkers and
484	viremia peaks, and anti-inflammatory response coinciding with viremia decay.
485	Altogether, this study identifies unique characteristics of the acute inflammatory and
486	multifactorial immune response induced by ZIKV and depicts CXCL10 as a potential
487	biomarker of the acute infection, perhaps, a predictor of severity. Nevertheless, further
488	longitudinal studies that measure the host immunopathological aspects at several time-
489	points is required to better characterize all the immunological factors involved in the
490	Zika disease. The elevated concentrations of serum biomarkers observed in this study,
491	may bring new insights to the ZIKV immunopathology puzzle.
492	
493	Acknowledgments

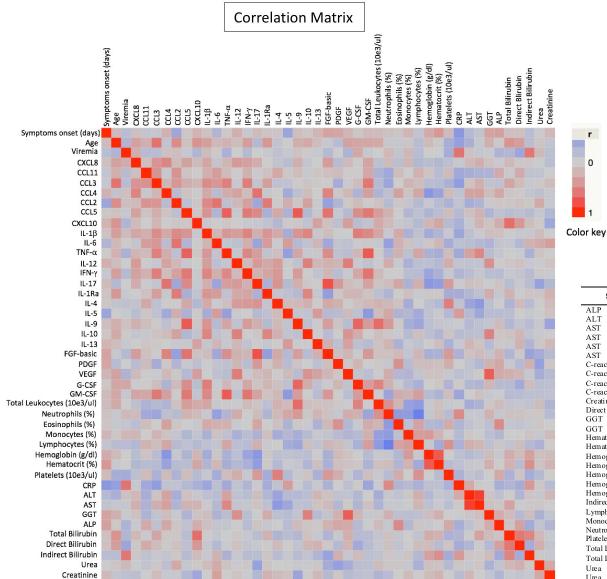
- 494 The authors are thankful to the Programa de Desenvolvimento Tecnológico em Insumos
- 495 para a Saúde PDTIS-FIOCRUZ for the use the flow cytometry (CPqRR) and Real-
- 496 Time PCR (ILMD) facilities.

497

498 **References**

 Musso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. American Society for Microbiology; 2016;29: 487–524. doi:10.1128/CMR.00072-15

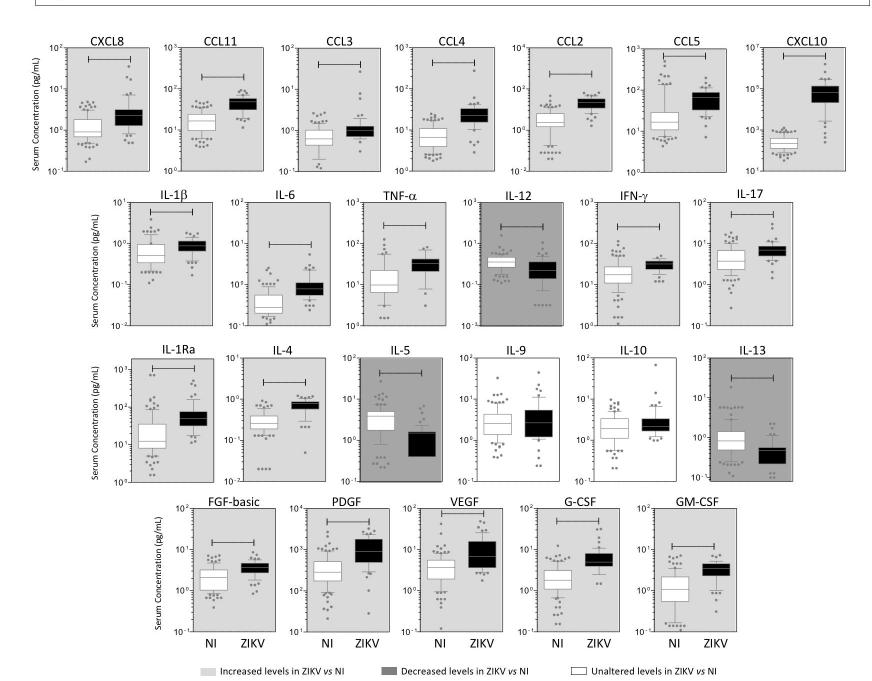

501 502 503	2.	Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360: 2536–2543. doi:10.1056/NEJMoa0805715
504 505 506	3.	Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastere S, Valour F, et al. Zika virus infection complicated by Guillain-Barre syndromecase report, French Polynesia, December 2013. Euro Surveill. 2014;19.
507 508 509 510 511 512	4.	Kleber de Oliveira W, Cortez-Escalante J, De Oliveira WTGH, do Carmo GMI, Henriques CMP, Coelho GE, et al. Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy - Brazil, 2015. MMWR Morb Mortal Wkly Rep. 2016;65: 242–247. doi:10.15585/mmwr.mm6509e2
513 514 515 516	5.	Cauchemez S, Besnard M, Bompard P, Dub T, Guillemette-Artur P, Eyrolle-Guignot D, et al. Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. The Lancet. Elsevier; 2016;387: 2125–2132. doi:10.1016/S0140-6736(16)00651-6
517 518 519 520	6.	França GVA, Schuler-Faccini L, Oliveira WK, Henriques CMP, Carmo EH, Pedi VD, et al. Congenital Zika virus syndrome in Brazil: a case series of the first 1501 livebirths with complete investigation. Lancet. Elsevier; 2016;388: 891–897. doi:10.1016/S0140-6736(16)30902-3
521 522 523 524	7.	Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, et al. Biology of Zika Virus Infection in Human Skin Cells. Diamond MS, editor. J Virol. American Society for Microbiology; 2015;89: 8880–8896. doi:10.1128/JVI.00354-15
525 526 527 528	8.	Tappe D, Pérez-Girón JV, Zammarchi L, Rissland J, Ferreira DF, Jaenisch T, et al. Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase. Med Microbiol Immunol. Springer Berlin Heidelberg; 2015;205: 1–5. doi:10.1007/s00430-015-0445-7
529 530 531	9.	Kam YW, Leite JA, Lum FM, Tan J. Specific biomarkers associated with neurological complications and congenital CNS abnormalities from Zika virus-infected patients in Brazil. The Journal of 2017.
532 533 534 535	10.	Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007. Emerging Infect Dis. Centers for Disease Control and Prevention; 2008;14: 1232–1239. doi:10.3201/eid1408.080287
536 537 538	11.	Lanciotti RS, Kosoy OL, Laven JJ, Panella AJ, Velez JO, Lambert AJ, et al. Chikungunya virus in US travelers returning from India, 2006. Emerging Infect Dis. 2007;13: 764–767. doi:10.3201/eid1305.070015
539 540 541	12.	Gurukumar KR, Priyadarshini D, Patil JA, Bhagat A, Singh A, Shah PS, et al. Development of real time PCR for detection and quantitation of Dengue Viruses. Virol J. BioMed Central Ltd; 2009;6: 10. doi:10.1186/1743-422X-6-10

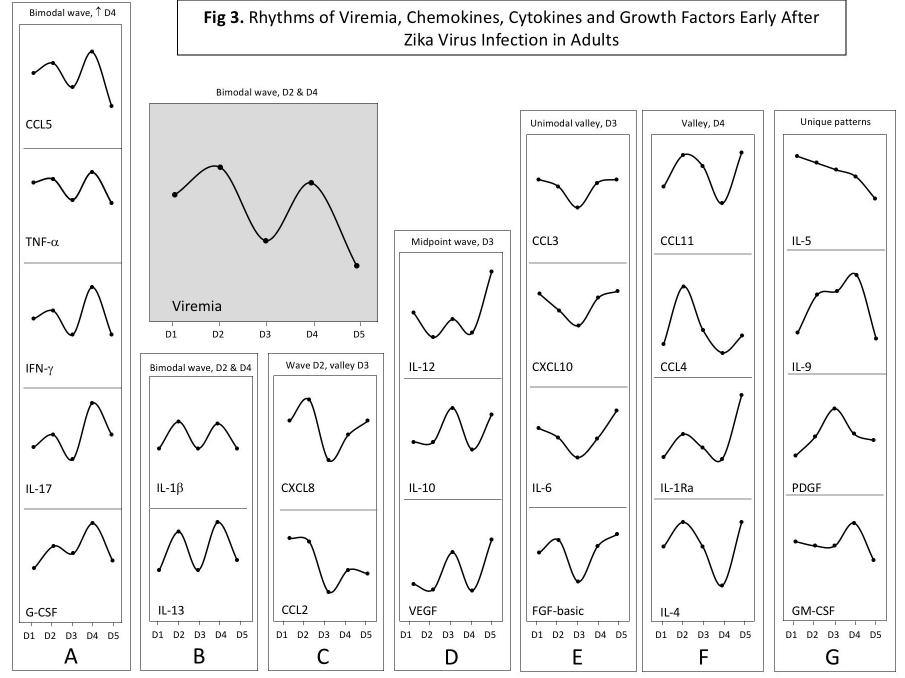

542 543 544 545 546	13.	Luiza-Silva M, Campi-Azevedo AC, Batista MA, Martins MA, Avelar RS, da Silveira Lemos D, et al. Cytokine signatures of innate and adaptive immunity in 17DD yellow fever vaccinated children and its association with the level of neutralizing antibody. J Infect Dis. Oxford University Press; 2011;204: 873–883. doi:10.1093/infdis/jir439
547 548 549	14.	Klein SL. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. Bioessays. WILEY-VCH Verlag; 2012;34: 1050–1059. doi:10.1002/bies.201200099
550 551 552 553	15.	De Figueiredo RMP, Thatcher BD, de Lima ML, Almeida TC, Alecrim WD, Guerra MV de F. [Exanthematous diseases and the first epidemic of dengue to occur in Manaus, Amazonas State, Brazil, during 1998-1999]. Rev Soc Bras Med Trop. 2004;37: 476–479.
554 555 556	16.	Figueiredo RMP de, Naveca FG, Oliveira CM, Bastos M de S, Mourão MPG, Viana S de S, et al. Co-infection of Dengue virus by serotypes 3 and 4 in patients from Amazonas, Brazil. Rev Inst Med Trop Sao Paulo. 2011;53: 321–323.
557 558 559	17.	Figueiredo RMP de, Naveca FG, Bastos M de S, Melo MDN, Viana S de S, Mourão MPG, et al. Dengue virus type 4, Manaus, Brazil. Emerging Infect Dis. 2008;14: 667–669. doi:10.3201/eid1404.071185
560 561 562 563 564	18.	de-Oliveira-Pinto LM, Marinho CF, Povoa TF, de Azeredo EL, de Souza LA, Barbosa LDR, et al. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever. Proost P, editor. PLoS ONE. Public Library of Science; 2012;7: e38527. doi:10.1371/journal.pone.0038527
565 566 567 568	19.	Meulen ter J, Sakho M, Koulemou K, Magassouba N, Bah A, Preiser W, et al. Activation of the cytokine network and unfavorable outcome in patients with yellow fever. J Infect Dis. Oxford University Press; 2004;190: 1821–1827. doi:10.1086/425016
569 570 571 572	20.	Kumar M, Verma S, Nerurkar VR. Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. J Neuroinflammation. BioMed Central; 2010;7: 73. doi:10.1186/1742-2094-7-73
573 574 575	21.	Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011;11: 532–543. doi:10.1038/nri3014
576 577 578 579	22.	Tseng C-S, Lo H-W, Teng H-C, Lo W-C, Ker C-G. Elevated levels of plasma VEGF in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol. The Oxford University Press; 2005;43: 99–102. doi:10.1016/j.femsim.2004.10.004
580 581 582	23.	Chirathaworn C, Poovorawan Y, Lertmaharit S, Wuttirattanakowit N. Cytokine levels in patients with chikungunya virus infection. Asian Pac J Trop Med. 2013;6: 631–634. doi:10.1016/S1995-7645(13)60108-X

583 584 585 586	24.	Sathupan P, Khongphattanayothin A, Srisai J, Srikaew K, Poovorawan Y. The role of vascular endothelial growth factor leading to vascular leakage in children with dengue virus infection. Ann Trop Paediatr. 2007;27: 179–184. doi:10.1179/146532807X220280
587 588 589	25.	Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. American Physiological Society; 2003;83: 835–870. doi:10.1152/physrev.00031.2002
590 591 592 593	26.	Hiley CT, Chard LS, Gangeswaran R, Tysome JR, Briat A, Lemoine NR, et al. Vascular endothelial growth factor A promotes vaccinia virus entry into host cells via activation of the Akt pathway. J Virol. American Society for Microbiology; 2013;87: 2781–2790. doi:10.1128/JVI.00854-12
594 595	27.	Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. Elsevier; 2012;36: 705–716. doi:10.1016/j.immuni.2012.05.008
596 597 598	28.	Ming WJ, Bersani L, Mantovani A. Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes. J Immunol. 1987;138: 1469–1474.
599 600 601 602	29.	Murooka TT, Rahbar R, Platanias LC, Fish EN. CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1. Blood. American Society of Hematology; 2008;111: 4892–4901. doi:10.1182/blood-2007-11-125039
603 604 605	30.	FENNER F. The pathogenesis of the acute exanthems; an interpretation based on experimental investigations with mousepox; infectious ectromelia of mice. The Lancet. 1948;2: 915–920.
606 607	31.	Murray PR, Rosenthal KS, Pfaller MA. Medical Microbiology. Elsevier Health Sciences; 2015.
608 609	32.	Mellor PS, Hamblin C. African horse sickness. Vet Res. EDP Sciences; 2004;35: 445–466. doi:10.1051/vetres:2004021
610 611	33.	Bowen GS. Prolonged western equine encephalitis viremia in the Texas tortoise (Gopherus berlandieri). Am J Trop Med Hyg. 1977;26: 171–175.
612 613	34.	Paessler S, Pfeffer M. Togaviruses Causing Encephalitis. Encyclopedia of Virology. Elsevier; 2008. pp. 76–82. doi:10.1016/B978-012374410-4.00630-0
614 615 616 617	35.	Campi-Azevedo AC, de Almeida Estevam P, Coelho-Dos-Reis JG, Peruhype- Magalhães V, Villela-Rezende G, Quaresma PF, et al. Subdoses of 17DD yellow fever vaccine elicit equivalent virological/immunological kinetics timeline. BMC Infect Dis. BioMed Central; 2014;14: 391. doi:10.1186/1471-2334-14-391
618 619 620	36.	Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10: 1366–1373. doi:10.1038/nm1140
621	37.	Melchjorsen J, Sørensen LN, Paludan SR. Expression and function of

622 623		chemokines during viral infections: from molecular mechanisms to in vivo function. J Leukoc Biol. 2003;74: 331–343.
624 625 626 627	38.	Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, et al. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol. American Society for Microbiology; 2005;79: 11457–11466. doi:10.1128/JVI.79.17.11457-11466.2005
628 629 630	39.	Hsieh M-F, Lai S-L, Chen J-P, Sung J-M, Lin Y-L, Wu-Hsieh BA, et al. Both CXCR3 and CXCL10/IFN-inducible protein 10 are required for resistance to primary infection by dengue virus. J Immunol. 2006;177: 1855–1863.
631 632 633	40.	Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011;22: 121–130. doi:10.1016/j.cytogfr.2011.06.001
634 635 636 637	41.	Sui Y, Potula R, Dhillon N, Pinson D, Li S, Nath A, et al. Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis. Am J Pathol. 2004;164: 1557–1566. doi:10.1016/S0002-9440(10)63714-5
638 639 640 641	42.	Hayney MS, Henriquez KM, Barnet JH, Ewers T, Champion HM, Flannery S, et al. Serum IFN-γ-induced protein 10 (IP-10) as a biomarker for severity of acute respiratory infection in healthy adults. J Clin Virol. 2017;90: 32–37. doi:10.1016/j.jcv.2017.03.003
642 643 644 645	43.	Sui Y, Stehno-Bittel L, Li S, Loganathan R, Dhillon NK, Pinson D, et al. CXCL10-induced cell death in neurons: role of calcium dysregulation. Eur J Neurosci. Blackwell Publishing Ltd; 2006;23: 957–964. doi:10.1111/j.1460- 9568.2006.04631.x
646 647	44.	Chiang S, Ubogu EE. The role of chemokines in Guillain-Barré syndrome. Muscle Nerve. 2013;48: 320–330. doi:10.1002/mus.23829
648 649 650 651	45.	Gotsch F, Romero R, Friel L, Kusanovic JP, Espinoza J, Erez O, et al. CXCL10/IP-10: a missing link between inflammation and anti-angiogenesis in preeclampsia? J Matern Fetal Neonatal Med. 2007;20: 777–792. doi:10.1080/14767050701483298
652 653 654	46.	Uzan J, Carbonnel M, Piconne O, Asmar R, Ayoubi J-M. Pre-eclampsia: pathophysiology, diagnosis, and management. Vasc Health Risk Manag. Dove Press; 2011;7: 467–474. doi:10.2147/VHRM.S20181
655 656 657 658	47.	Nie CQ, Bernard NJ, Norman MU, Amante FH, Lundie RJ, Crabb BS, et al. IP- 10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. Riley EM, editor. PLoS Pathog. Public Library of Science; 2009;5: e1000369. doi:10.1371/journal.ppat.1000369
659 660 661	48.	Grip O, Janciauskiene S. Atorvastatin reduces plasma levels of chemokine (CXCL10) in patients with Crohn's disease. Timmer A, editor. PLoS ONE. Public Library of Science; 2009;4: e5263. doi:10.1371/journal.pone.0005263

- 662 49. Nayak S, Lei J, Pekosz A, Klein S, Burd I. Pathogenesis and Molecular
- 663 Mechanisms of Zika Virus. Semin Reprod Med. Thieme Medical Publishers;
- 664 2016;34: 266–272. doi:10.1055/s-0036-1592071




	mit - xx	1994 C. 1997 C
Conno	lation	Indiana
Corre	lation.	Indices
00110	101011	11101000

r

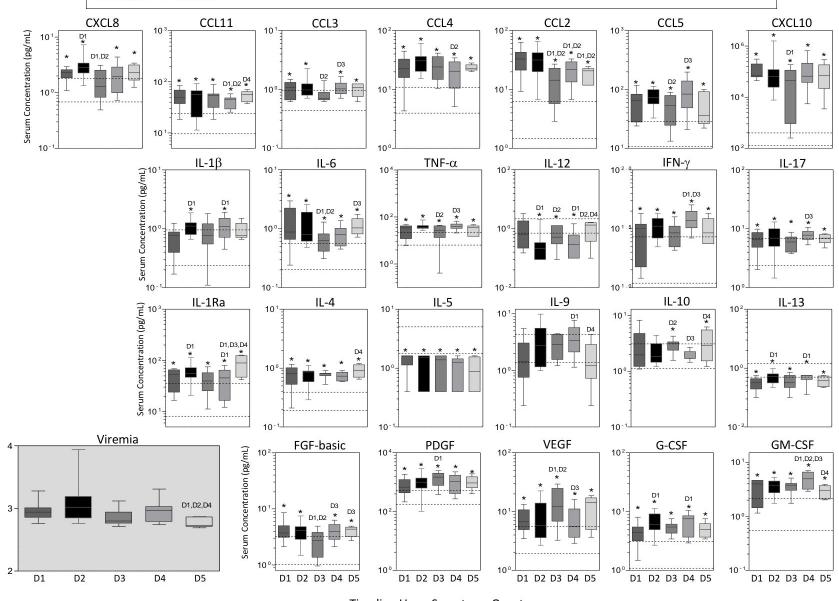

Source atributes	Target atributes	Spearman p	p values
ALP	Viremia	-0,5613	0,01
ALT	CCL4	0,4492	0,04
AST	IL-4	-0,5532	0,01
AST	CXCL10	0,457	0,04
AST	CCL4	0,4764	0,03
AST	CCL5	0,4554	0,04
C-react ive prote in (CRP)	Symptons onset (days)	-0,4886	0,03
C-react ive prote in (CRP)	Viremia	0,5449	0,01
C-reactive protein (CRP)	CXCL10	-0,4976	0,03
C-react ive prote in (CRP)	CCL3	-0,4645	0,04
Creatinine	IL-9	-0,6443	0,001
Direct Bilinubin	G-CSF	-0,5576	0,01
GGT	IL-10	0,4671	0,04
GGT	VEGF	0,5969	0,007
Hematocrit (%)	IL-17	-0,5144	0,01
Hematocrit (%)	CCL4	-0,4756	0,02
Hemoglobin (g/dL)	IL-1β	-0,437	0,04
Hemoglobin (g/dL)	IL-9	-0,4476	0,04
Hemoglobin (g/dL)	IL-17	-0,6159	0,003
Hemoglobin (g/dL)	IFN-γ	-0,4946	0,02
Hemoglobin (g/dL)	CCL4	-0,4678	0,03
Indirect Bili rubi n	FGF basic	-0,4542	0,04
Lymphocytes (%)	CCL8	-0,4811	0,03
Monocytes (%)	IL-9	-0,4497	0,04
Neutrophils (%)	IL-13	0,509	0,02
Platelets (10°3/ µL)	Viremia	-0,4333	0,04
Total Leukocytes (10 ³ / µL)	IL-9	0,6071	0,003
Total Leukocytes (10°3/ µL)	IL-10	0,4709	0,03
Urea	IL-17	-0,4564	0,04
Urea	PDGF-bb	-0,4928	0,02

Fig 2. Panoramic Overview of Serum Chemokines, Cytokines and Growth Factors Early After Zika Virus Infection in Adults

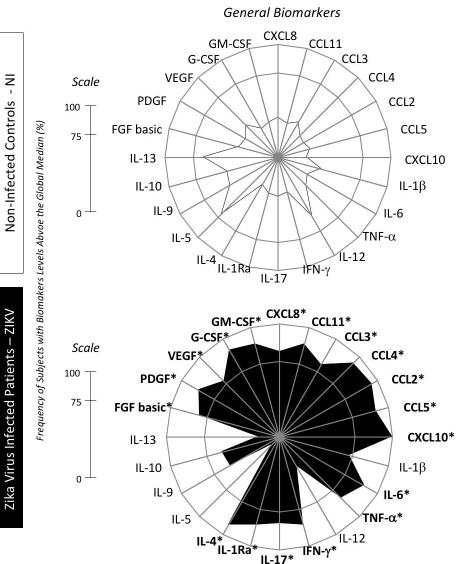

Timeline Upon Symptoms Onset

Fig 4. Kinetics of Viremia, Serum Chemokines, Cytokines and Growth Factors Early After Zika Virus Infection in Adults

Timeline Upon Symptoms Onset

1/CT × 100

^{*} Biomarkers with Levels Above the Global Median in >75% of Subjects

IL-10 D3,D5^c **FGF-basic** D4,D5 D5^d IL-12

Biomarkers Lables: ^a Universal; ^b Peak of Viremia; ^c Valley of Viremia; ^d Late Biomarker

Day2 0 Oat 0 Days 0 0 0 0 0 1 0 0 0 0 0

8^a

0 1°

1

1

0

Intersections

CCL4,CCL2,CCL5,CXCL10

IL-6, IL-4, PDGF, G-CSF

IL-1Ra

IL-17

CCL11

IFN-γ

CXCL8

VEGF

GM-CSF

CCL3,IL-1β

TNF-α

1^b

2

0

Dava

0

<u>1</u>^d

Days

Days of Symptoms

D1,D2,D3,D5

D1,D2,D4,D5

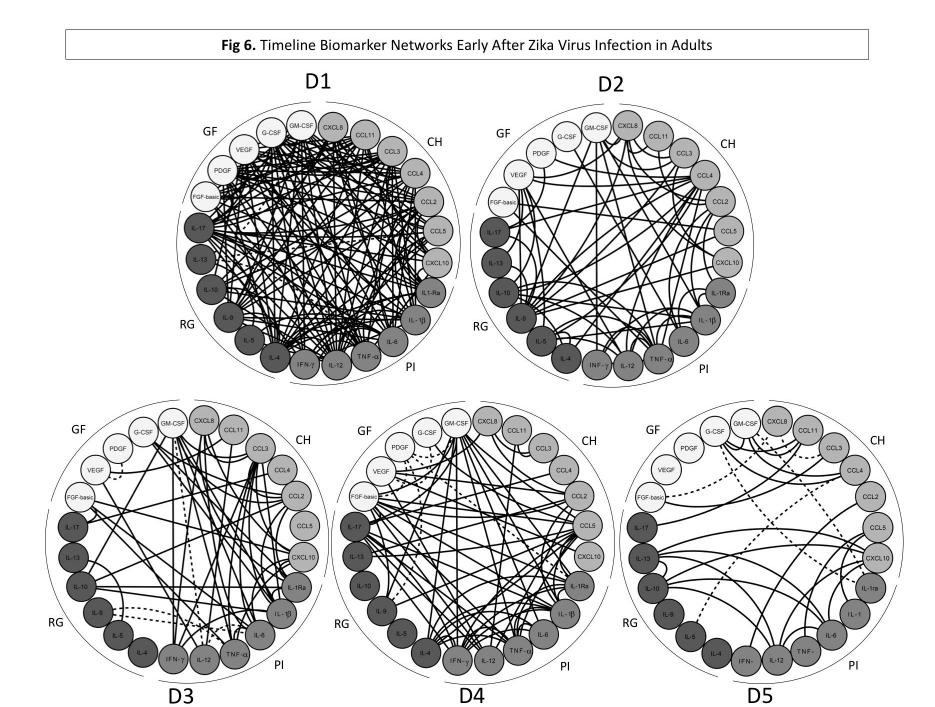
D1,D3,D4,D5

D2,D3,D4,D5

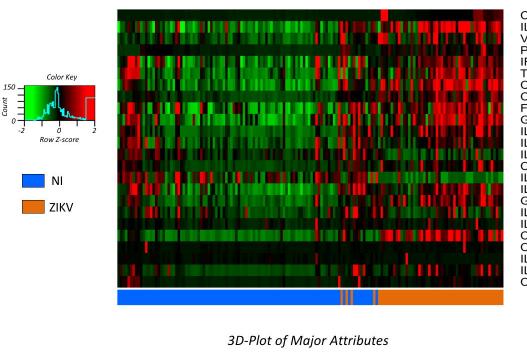
D1,D2,D5

D1,D3,D5

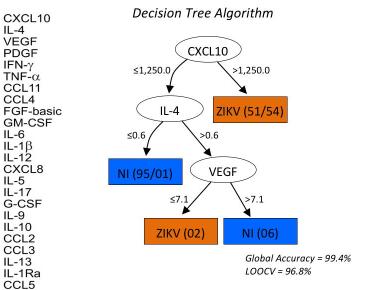
D2,D3,D4

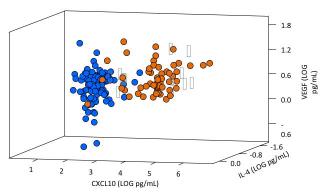

D2,D4,D5

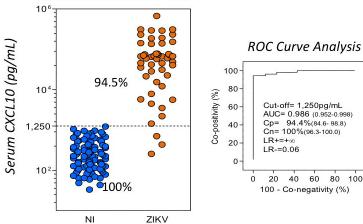
D2,D4^b


ALL^a

Timeline Biomarkers Upon Symptoms Onset




Fig 7. High-dimensional Data Analysis Early After Zika Virus Infection in Adults



Count

Heatmap Assemblage

Root Attribute Scatter Plot