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Abstract 

Neural oscillations are important for memory formation in the brain. The de -synchronisation of 

Alpha (10Hz) oscillations in the neo-cortex has been shown to predict successful memory encoding 

and retrieval. However, when engaging in learning, it has been found that the hippocampus 

synchronises in Theta (4Hz) oscillations, and that learning is dependent on the phase of Theta. This 

inconsistency as to whether synchronisation is ‘good’ for memory formation leads to confusion over 

which oscillations we should expect to see and where during learning paradigm experiments.  This 

paper seeks to respond to this inconsistency by presenting a neural network model of how a well-

functioning learning system could exhibit both of these phenomena, i.e. desynchronization of alpha 

and synchronisation of theta during successful memory encoding. 

We present a spiking neural network (the Sync/deSync model) of the neo-cortical and hippocampal 

system. The simulated hippocampus learns through an adapted spike-time dependent plasticity rule, 

in which weight change is modulated by the phase of  an extrinsically generated theta oscillation. 

Additionally, a global passive weight decay is incorporated, which is also modulated by theta phase. 

In this way, the Sync/deSync model exhibits theta phase-dependent long-term potentiation and 

long-term depression. We simulated a learning paradigm experiment and compared the oscillatory 

dynamics of our model with those observed in single -cell and scalp-EEG studies of the medial 

temporal lobe. Our Sync/deSync model suggests that both the de-synchronisation of neo-cortical 

Alpha and the synchronisation of hippocampal Theta are necessary for successful memory encoding 

and retrieval. 
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Significance statement  

A fundamental question is the role of rhythmic activation of neurons, i.e. how their firing oscillates 

between high and low rates. A particularly important question is how oscillatory dynamics between 

the neo-cortex and hippocampus contribute to memory formation. We present a spiking neural-

network model of such memory formation, with the central ideas that 1) in neo-cortex, neurons 

need to break-out of an alpha oscillation in order to represent a stimulus (i.e. alpha desynchronises), 

while 2) in hippocampus, the firing of neurons at theta facilitates formation of memories (i.e. theta 

synchronises). Accordingly, successful memory formation is marked by reduced neo-cortical alpha 

and increased hippocampal theta. This pattern has been observed experimentally and gives our 

model its name – the Synch/deSynch model. 
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Introduction  

Brain oscillations, via their ability to synchronize and desynchronize neuronal  populations, play a 

crucial role in the formation and retrieval of episodic memories. However, little is known about how 

oscillations implement the necessary mechanisms for encoding and retrieval of such memories. This 

knowledge gap is partly due to a lack of computational models simulating oscillatory behaviours as 

observed in human EEG/MEG recordings during memory tasks. The link between oscillations and 

memory is further complicated by empirical data, which has fuelled a conundrum as to how 

oscillations relate to memory. Specifically, hippocampal theta (~3-8 Hz) and gamma (~40-80 Hz) 

synchronisation (Fell & Axmacher, 2011) and the de-synchronisation of alpha and beta (8-30 Hz) in 

cortical regions (Hanslmayr, et al., 2012) have both been reported as important for memory 

encoding and retrieval. Classic computational models theorise that hippocampal and neo-cortical 

regions offer functionally distinct mechanisms to form episodic memory  (O'Reilly, et al., 2014), 

where a sparsely connected hippocampus learns new information quickly and a dense neo-cortex 

incorporates this information slowly. Building on these complementary learning systems we recently 

presented a potential solution to the synchronization/de-synchronization conundrum (Hanslmayr, et 

al., 2016), suggesting that hippocampal theta synchronisation (~4Hz) mediates the binding of 

concepts, while neocortical alpha de-synchronisation (~10Hz) is due to the representations of these 

concepts becoming active. We here present a first computational network model which implements 

these mechanisms and simulates the opposing synchronizing and desynchronizing behaviours in the 

hippocampus and neocortex during a typical episodic memory task. Our model, while being very 

simple, successfully simulates a number of empirical findings ranging from human single neuron 

recordings, intracranial EEG recordings, to non-invasive EEG/MEG recordings and therefore 

represents a useful theoretical link between different levels of human electrophysiological 

recordings. 
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Theta oscillations in medial temporal lobe are assumed to play a key role in the formation of 

memories, where learning is dependent on the power of theta oscillations and the timing of action 

potentials in relation to the ongoing theta cycle (Rutishauser, et al., 2010) (Backus, et al., 2016) 

(Staudigl & Hanslmayr, 2013) (Heusser, et al., 2016). Studies in rodents have provided a mechanism 

by which theta oscillations exert their influence on memory in showing that Long-Term-Potentiation 

(LTP) and Long-Term-Depression (LTD) occur at opposite phases of the theta cycle (Huerta & Lisman, 

1995) (Pavlides, et al., 1988). Building on theories of synaptic plasticity, it has been postulated that 

LTD occurs whilst most neurons in region CA1/CA3 are active in the excitatory phase of theta (as 

recorded from CA1/CA3 hippocampal regions), whereas LTP occurs in the inhibitory phase of theta 

when most neurons are silent (Hasselmo, 2005). We henceforth refer to maximum excitation and 

inhibition during these phases of theta as the peak and trough, respectively. The model we describe 

here shows that stimulated hippocampal cells demonstrate a phase shift forward in theta, enabling 

LTP to occur in the trough of theta where other non-stimulated cells are silent.  

Concerning alpha oscillations, it can be assumed that there is a negative relationship between alpha 

power and discriminating neural activity (Haegens, et al., 2011), leading to the notion that alpha 

provides functional inhibition (Klimesch, et al., 2007) (Jensen & Mazaheri, 2010). Supporting this 

notion, alpha power decreases (i.e. desynchronizes) are often localized in cortical regions relevant 

for a given task, whereas alpha power increases occur in competing areas which are being inhibited 

(Jokisch & Jensen, 2007) (Wardhauser, et al., 2012). These findings suggest that the de-

synchronisation of alpha represents the flow of information to a targeted group of neurons. 

Consistent with this general gating function of alpha, power decreases are strongly evident in 

episodic memory tasks where cortical alpha power decreases predict successful encoding 

(Hanslmayr, et al., 2012) and retrieval (Khader, et al., 2010) (Waldhauser, et al., 2016). In addition to 

the hippocampal theta dynamics, our model also simulates the memory dependent alpha power 

decreases in the neocortex during the encoding and retrieval of episodic memories. 
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Figure 1: Experimental paradigm (A). A non-preferred (NP) and preferred (P) image are found that 

the neuron does not and does respond to. These are then combined and presented in a composite 

(C) stimulus. Both P and NP images are presented again after this learning phase. Network 

connectivity (B). The architecture of the network (a) shows how a group of neo-cortical (NC) neurons 

and a group of Hippocampal neurons receive input from a 10Hz and 4Hz tonic wave, respectively, 

and both groups receive (background) noise from a Poisson distribution of spikes. Two subgroups of 

NC neurons receive input from higher level areas that represent the P and NP image. Each subgroup 
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of NC and Hip neurons have reciprocal connectivity between themselves. Hippocampal neurons also 

receive an after-de-polarisation (ADP) function. Hippocampal neurons are interconnected, and 

spike-time-dependent-plasticity (STDP) is enabled with a Theta phase dependent learning rate (b). 

Materials and methods 

Computational model 

Here we describe a simple computational neural network model, which takes inspiration from the 

complementary learning systems framework (CLS), and lends credence to the previously theorised 

notion that opposing oscillatory behaviour in cortical and Hippocampal regions both contribute to 

episodic memory formation (Hanslmayr, et al., 2016). We do not describe in detail complex 

Hippocampal, entorhinal or neo-cortical cell assemblies, as in other models (Hasselmo & 

Eichenbaum, 2005) (O'Reilly, et al., 2014), choosing instead to model a simple mechanism to 

simulate a typical episodic memory paradigm where an association between stimuli has to be learnt 

in one trial. A principal of our modelling endeavour has been to identify the simplest neural 

instantiation of our theory under an Ockham’s razor principle.  

Experimental paradigm 

We chose to compare our model to an experiment that recorded from medial -temporal-lobe (MTL) 

neurons within epilepsy patients (Ison, et al., 2015). As depicted in Figure 1A, the experimenters 

screened many images of people to each participant for the purpose of finding one that the neuron 

under observation responded to, denoted from here on as the preferred (P) image. A separate 

image of a location was chosen that the neuron did not respond to, denoted as the non-preferred 

(NP) image. The P image of the person was then digitally superimposed onto the NP image of the 

location (denoted here as the composite (C) image), before being presented to the participant in 

what is termed here as the learning phase. The experimenters then conducted the screening process 

again, presenting both the NP & P images, to assess the impact of learning on the activity of the 
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Hippocampal neuron. Figure 1A shows how we simulated this paradigm, where there is a screening 

phase before and after the presentation of the composite stimulus.   

Neuron physiology  

Our model comprises two groups of neurons representing the neo-cortex (NC) and the hippocampus 

(Figure 1Ba), split again into two subgroups coding for the P and NP images (where the number of 

neurons in each group was 𝑁𝑁𝐶 = 20,𝑁ℎ𝑖𝑝 = 10). All neurons are simulated using an Integrate-and-

Fire equation (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1, 𝑉𝑡ℎ = −55𝑚𝑉,  𝐸 = −70𝑚𝑉,  𝐶𝑚 = 240𝑛𝐹, 𝑉𝑟𝑒𝑓 = 2𝑚𝑠,𝜏𝑚 = 20𝑚𝑠). 

A spike event is sent to other downstream connected neurons if the membrane potential (𝑉𝑚(𝑡)) of 

a neuron surpasses the threshold for firing (𝑉𝑡ℎ). After a spike, the neuron goes into a refractory 

period, where the membrane potential is clamped to the resting potential (𝐸) for a set period (𝑉𝑟𝑒𝑓). 

With this equation, the membrane potential of a neuron is constantly decaying to its resting 

potential (𝐸) at a rate dictated by the membrane time constant (𝜏𝑚). The sum of all inputs at t is 

divided by the capacitance (𝐶𝑚) of the membrane potential. Inputs originate from constant 

alternating currents (𝐼𝑡𝑜𝑛𝑖𝑐), the sum of excitatory-post-synaptic-potentials (EPSPs) from spikes at 

each input synapse (𝐼𝑠𝑦𝑛) and an after-de-polarisation function (𝐼𝐴𝐷𝑃), which will be described in 

more detail later. 

∆𝑉𝑚(𝑡) =
𝐸 −𝑉𝑚(𝑡 − 1)

𝜏𝑚
+
𝐼𝑡𝑜𝑛𝑖𝑐(𝑡)+ 𝐼𝑠𝑦𝑛(𝑡)+ 𝐼𝐴𝐷𝑃(𝑡)

𝐶𝑚
 

Equation 1: The integrate-and-fire model 

An alpha function (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) was used to model EPSPs for incoming spike events, where ∆𝑡 is 

equal to the current time (t) minus the time of the eliciting spike (𝑡𝑓𝑖𝑟𝑒). The higher the synaptic time 

constant 𝜏𝑠, the larger the integral of the EPSP, ensuring that a spike has a more sustained effect on 

the receiving neuron’s membrane potential. As shown in Figure 1Ba, b i-directional excitatory 

connections coupled each P & NP subgroup between the NC and Hippocampus. Synapses from the 

NC had a smaller constant (𝜏𝑠 = 1.5𝑚𝑠) with a larger weight, whilst synapses from the Hippocampus 
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had a larger constant (𝜏𝑠 = 15𝑚𝑠) with a smaller weight. Therefore, spikes from the NC to the 

Hippocampus had an immediate and large effect, whilst spikes in the opposite direction had a 

smaller yet more sustained effect, emphasising their ability to cause ERD of alpha frequencies upon 

memory retrieval. Synapses within the Hippocampus also had slightly larger synaptic time constants 

(𝜏𝑠 = 5𝑚𝑠) to allow them to more easily interact with one another. Spikes originating from external 

noise generators had a synaptic time constant of 1.5𝑚𝑠.  

𝐸𝑃𝑆𝑃(𝑡) = (𝑒 ∙
∆𝑡

𝜏𝑠
) ∙ exp (−

∆𝑡

𝜏𝑠
) , ∆𝑡 = 𝑡 − 𝑡𝑓𝑖𝑟𝑒 

Equation 2 : The Excitatory-Post-Synaptic-Potential (EPSP) 

Neocortical system 

Based on CLS, the NC system learns slowly from repeated presentations. As our model emphasises 

the effect of oscillations on a single learning event, we assumed the existence of two pre -established 

NC populations, one representing the P and the other the NP concept, where synaptic modification 

was not implemented due to an assumed slow cortical learning rate, and there was no connectivity 

between neurons in each population (Figure 1Ba). Each NC neuron received background noise, 

representing “chatter” from other brain regions, in the form of a Poisson distributed spike-events 

(~45k spikes/s). We do not explicitly model a neural mechanism for oscillations, thus a cosine wave 

of frequency 10Hz (amplitude = 21pA) was fed into NC neurons via 𝐼𝑡𝑜𝑛𝑖𝑐 to model ongoing Alpha. 

Two separately generated Poisson distributed spike-trains (~100k spikes/s) were then paired with 

each NC subgroup upon stimulus presentation, modelling the activation of the P and/or NP images 

from higher cortical and visual areas.  

 

 

Hippocampal system 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 6, 2017. ; https://doi.org/10.1101/185231doi: bioRxiv preprint 

https://doi.org/10.1101/185231


10 
 

Hippocampal neurons were similarly organised into two subgroups (Figure 1Ba), where each neuron 

received background noise (4k spikes/s) and a cosine wave of 4Hz (amplitude = 25pA) to model 

ongoing Theta. Based on CLS, the Hippocampal system learns quickly from a single presentation.  

Therefore, Hippocampal synaptic modification was enabled via an adapted Spike -Time-Dependent-

Plasticity (STDP) learning rule (Song, et al., 2000). We adjusted this rule to relate to empirical 

evidence that Hippocampal learning is Theta phase dependent (Huerta & Lisman, 1995), with LTD 

occurring in the peak and LTP in the trough of theta, as recorded in CA1/CA3 (Hasselmo, 2005). To 

this end, synaptic LTP was implemented by multiplying STDP weight modifications by the phase of 

the Theta cosine wave, with a value between 0 and 1 during the peak and trough, respectively 

(Figure 1Bb).  

When a neuron spiked, a reward (𝐴+) for contributing synapses was calculated as the product of a 

constant learning rate (𝜀 ∈ ℝ. 0 ≤ 𝜀 ≤ 1), Theta at time t (𝜃 ∈ ℝ.0 ≤ 𝜃 ≤ 1) and the maximum 

weight (𝑊𝑚𝑎𝑥), whilst punishments for competing synapses were calculated as 𝐴− = 1.1 ∙ 𝐴+ 

(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3). The greater strength for 𝐴− compared to 𝐴+ reflected a preference for synaptic 

weakening in order to maintain a stable network. Whenever a spike event occurs, at unit 𝑖 or 𝑗, an 

accumulated STDP update 𝑣𝑖𝑗(𝑡) for synapse 𝑖 to 𝑗 is calculated from its history of previous spiking (𝑖 

then 𝑗 or 𝑗 then 𝑖) (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5). A function was then used to calculate the STDP acting on the 

synapse (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4), where an exponential weighting of 𝐴+ was applied if the pre-synaptic spike 

occurred before the post-synaptic spike and of 𝐴− if the post-synaptic spike occurred first. All 

Hippocampal weights were subject to STDP updates, along with an exponential passive decay, which 

was multiplied by the negative phase of Theta (1− θ(t)) (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6). The presence of this decay is 

consistent with the non-specific LTD that might occur during oscillatory spiking in the peak of Theta 

(Hasselmo, 2005). This decay was larger for smaller weights, establishing a transition point whereby 

weakly interacting synapses were pruned (𝜏𝑤 = 20).  A piecewise linear bounding function was also 

used to protect against sign reversal and run-away weights (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7;  𝑊𝑚𝑎𝑥 = 120; 𝑊𝑚𝑖𝑛 = 0).  
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𝐴+ =  𝜀 ∙ 𝜃(𝑡) ∙ 𝑊𝑚𝑎𝑥, 𝐴−= 1.1 ∙ 𝐴+ 

Equation 3 : Reward (𝐴+) and punishment (𝐴−) of synapses. 

𝐹(∆𝑡) = {
𝐴+ ∙ exp (∆𝑡/𝜏𝑠), 𝑖𝑓 ∆𝑡 < 0

−𝐴− ∙ exp (−∆𝑡/𝜏𝑠), 𝑖𝑓 ∆𝑡 ≥ 0
 

Equation 4 : Function for STDP between pre and post-synaptic spikes (Song, et al., 2000), where ∆𝑡 is 

always the difference between the time of a pre-synaptic and post-synaptic spike. 

∀𝑖, 𝑗 ∈ ℵ (𝐶(𝑖, 𝑗)) .  

𝑣𝑖𝑗(𝑡) =

{
 
 

 
 ∑ 𝐹(𝑡′ − 𝑡 )

𝑡′∈ 𝑇(𝑖,𝑡)

, 𝑖𝑓 𝑆(𝑡)𝑗

∑ 𝐹(𝑡 − 𝑡′)

𝑡′∈ 𝑇(𝑗,𝑡)

, 𝑖𝑓 𝑆(𝑡)𝑖

        0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑇(𝑘, 𝑡) =  { 𝑑 ∈ ℝ0,+  |  𝑆(𝑑)𝑘  ∧  𝑡 ≥ 𝑑 } 

Equation 5 : SDTP synaptic modification at time 𝑡 for a network with node labels ℵ = {1, …,𝑛}. 

𝐶(𝑖, 𝑗) is true if and only if 𝑖 and 𝑗 are connected. 𝑆(𝑡)𝑖  indicates a spike event at the 𝑖th neuron at 

time 𝑡. 𝑇(𝑘) determines the set of all times, at which there was a spike at neuron 𝑘 at a time before 

𝑡. This is used to provide spike events paired, across synapse 𝑖, 𝑗, with the spike at time 𝑡. In 

addition, we use auxiliary weight variables 𝑣𝑖𝑗 and 𝑉𝑖𝑗 to enable application of a piecewise linear 

bounding function, see eqn 7. 

 

 

∀𝑖, 𝑗 ∈ ℵ (𝐶(𝑖, 𝑗)) .  𝑉𝑖𝑗(𝑡) = 𝑊𝑖𝑗(𝑡 − 1)+ 𝑣𝑖𝑗(𝑡) −
(1− θ(t)) ∙ exp (−

𝑊𝑖𝑗(𝑡 − 1)

𝜏𝑤
)

𝜏𝑤
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Equation 6 : Update of auxiliary weight variable and implementation of non-specific passive decay of 

synapses. 

𝑊𝑖𝑗(𝑡) = {

𝑊𝑚𝑖𝑛, 𝑖𝑓 𝑉𝑖𝑗(𝑡) < 𝑊𝑚𝑖𝑛

𝑊𝑚𝑎𝑥, 𝑖𝑓 𝑉𝑖𝑗(𝑡) > 𝑊𝑚𝑎𝑥
𝑉𝑖𝑗(𝑡),                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 7 : Piecewise linear bounding function 

Hippocampal neurons were interconnected with a probability of 40% to form a connection. 

Additionally, as it was assumed that both images were previously known to the participants but not 

associated, a random 50% of synapses within each subgroup had initial  synaptic weights of 𝑊𝑚𝑎𝑥 

whilst all others were set to 0. This ensured the random assignment of pre -established sets of 

winning and losing pathways within the subgroups coding for the P & NP image.  

Hippocampal neurons received additional input from an After-De-Polarisation (ADP) function 

(Jensen, et al., 1996) to control activation (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8; 𝐴𝐴𝐷𝑃 = 100𝑝𝐴, 𝜏𝐴𝐷𝑃 = 250𝑚𝑠). This 

provided exponentially ramping input, which was reset after each spike -event (𝑡𝑓𝑖𝑟𝑒). Evidence for 

an ADP function in hippocampal neurons has been found experimentally during cholinergic  

(Andrade, 1991) (Caesar, et al., 1993) (Libri, et al., 1994) and serotonergic (Araneda & Andrade, 

1991) modulation, and has the effect here of modelling an effectively inhibitory input for each 

Hippocampal neuron, which wanes the further one is from the eliciting spike.  

𝐼𝐴𝐷𝑃(𝑡) =
𝐴𝐴𝐷𝑃 ∙ ∆𝑡

𝜏𝐴𝐷𝑃
∙ exp (1 −

∆𝑡

𝜏𝐴𝐷𝑃
) , ∆𝑡 = 𝑡 − 𝑡𝑓𝑖𝑟𝑒 

Equation 8 : After-De-Polarisation (ADP) function 

 

 

Local Field Potential (LFP) and Time Frequency Analysis (TFA) methods 
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The LFP measures the activity of a group of neurons by first aggregating spikes through time. This 

was then filtered twice, first by using a Hanning filter with a 30ms window and then again with a 

sampling frequency between 2-6Hz or 8-12Hz dependent on whether we are filtering by Theta or 

Alpha, respectively. The LFP was analysed in time-frequency space using a Gabor filter with an upper 

and lower bound of 2-6Hz or 8-12Hz for Theta or Alpha analysis (γ = 0.5 for <30Hz or γ = π/2 for 

>30Hz). The absolute values were then taken and plotted in time-frequency space. 

Results  

Simulation procedure 

We simulated our model based on a learning paradigm used in an MTL single cell recording 

experiment (Ison, et al., 2015). During the initial screening phase, both the P & NP images were 

presented individually. This was simulated by independently creating two Poisson distributed spike 

trains (~100k/s for 2 seconds) that fed into each respective P & NP subgroup of NC neurons (Figure 

1A; P = blue, NP = magenta). An inter-stimulus interval of 2 seconds was used. Afterwards, we 

presented both images in a composite stimulus (green), where both subgroups of NC neurons 

concurrently received spike-trains. Following this learning phase, we repeated the screening phase 

to assess the capability of the network to associate these stimuli together. The whole process was 

simulated 1000 times to assess the variability of the network, where for each simulation the Alpha 

and Theta cosine waves began at a different random phase and new noisy spike trains were 

generated. The following results take an average over all simulations.  

Hippocampal weight change 

Maximal synaptic modification occurs between Hippocampal neurons that are stimulated to shift 

forward in phase and fire towards the trough of an ongoing Theta oscillation (Hasselmo, 2005). Due 

to this, synaptic modification only occurs during the screening and learning phases of the stimulation 

(Figure 2; NP stimulus-magenta; P stimulus-blue; C stimulus-green) and not during the inter-stimulus 
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intervals. Due to the maximisation of a random 50% of synapses within each P & NP subgroup, the 

average weights of these groups begin at 𝑊𝑚𝑎𝑥/2 (Figure 2A). Throughout the entire simulation, 

there is weight change within each subgroup (P-blue line; NP-magenta dash) when the respective 

image they are coding for is presented. With the competitive STDP rule, winning and losing weights 

are pushed towards 𝑊𝑚𝑎𝑥 or 𝑊𝑚𝑖𝑛 respectively, causing a capping effect where a weight in one 

direction can still change whilst its competitor is capped. Here, this means that the average weight 

of each subgroup rises a small amount to stabilise just above 𝑊𝑚𝑎𝑥/2 every time the respective 

image is presented, effectively reinforcing both P & NP concepts.  

When the composite stimulus is presented (green), there is only marked synaptic change between 

both subgroups (Figure 2B; P->NP-blue line; NP->P-magenta dash). Here, weights go up bi-

directionally as both subgroups of neurons are concurrently stimulated to become active towards 

the trough of Theta. When the screening phase is repeated after the learning phase, weights 

increase in the direction from the active population to the non-active population and decrease in the 

reverse direction. This is due to STDP competition taking place within a pool of shared synapses, 

where winning pathways that once spanned across neurons in both directions during the learning 

phase, are pulled in a direction whereby the most active neurons are presynaptic during the 2nd 

screening phase.  

Weights passively decay very slowly according to an exponential pattern to model the effect of a 

large population of neurons spiking during the peak of Theta, where LTD has been found to occur 

(Hasselmo, 2005). As LTP occurs over a spectrum of 1 to 0, small weight increases occur as neurons 

spike on either side of the peak of Theta. The passive decay implemented here is stronger for 

smaller weights (equation 6), to mitigate these gradual weight increases and prune irrelevant 

synapses. LTD weight decay is also prominent in the inter-stimulus periods, where all weights slowly 

reduce over time.  
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Figure 2 : Hippocampal weight change throughout the simulation both within (A) and between 

subgroups (B) that code for the P and NP stimulus. Weights within each subgroup increase when the 

relevant image is presented (A), where the magenta and blue periods indicate the presentation of 

the NP and P images, respectively, and the green period indicates the presentation of both images 

that have been combined into a composite image. During this learning period, weights from the NP 

to the P subgroup (magenta dashed) and vice-versa (blue solid) increase (B). Outgoing weights then 

increase upon the presentation of the relevant stimulus.  

Hippocampal activity 

Activity is measured as the average output of spikes per subgroup (10 neurons per item) that occur 

within a time period. Figure 3 shows activity of the Hippocampal preferred (P) subgroup at different 

stages of the simulation, taking an average over 1000 simulations to mitigate the random phase 

starts of Theta and Alpha oscillations, using a bin width of 20ms. The mean firing rate is shown with 

bootstrapped confidence intervals.  
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During the first screening phase, P neurons become active when the P image is presented but not 

when the NP image is presented (Figure 3A-B; P before learning (BL) – blue, NP before learning (BL) - 

magenta). Stimulus onset phase resets the ongoing Theta oscillation, which then synchronises the 

ADP function, generating a damped oscillation that is phase consistent across replications (Figure 3A, 

0-500ms). After a few cycles, activity averages out across replications, as neurons re -synchronise 

ADP input with their relative 4Hz tonic input.   

A similar pattern occurs when the C image is presented during learning (Figure 3C), where not only is 

there an oscillatory evoked transient but activity increases over time. This is due to the large amount 

of weight change occurring between the P & NP subgroups (Figure 2B; 10-12s), with activity feeding 

back into each subgroup.  

After this learning phase, the P & NP images are independently presented again (Figure 3D-E; P after 

learning (AL) – blue dashed, NP after learning (AL), magenta dashed). Due to the  aforementioned 

weight change, the P subgroup now responds when the NP image is presented, replicating 

experimental evidence from a recent human single unit learning paradigm (Ison, et al., 2015). This 

result also shows that our model efficiently learns associations between two arbitrary stimuli in one 

short presentation, a crucial requirement for a model of episodic memory. It is interesting to note 

the slight increase in activity pre-stimulus (Figure 3D-E; -500-0ms), caused by increased weights 

between the P & NP subgroups leading to feedback activation. This is followed by the typical burst of 

activity at stimulus onset (0-50ms), yet the aforementioned damped oscillation is mitigated due to 

this reciprocal feedback of activity between P & NP subgroups negating the ADP function’s recovery 

period (50-100ms). In experimental research, encoding neurons become less active with successive 

presentations of the same stimulus (Ison, et al., 2015), perhaps due to a repetition suppression 

mechanism (Pedreira, et al., 2010). In our model, the P subgroup responds more strongly to the P 

image when it is presented again after the learning phase, due to an increase in weights causing 
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feedback activation. This could be countered by implementing a habituation mechanism that lies 

outside of the scope of this model. 

 

Figure 3 : Activity of the Hippocampal subgroup encoding for the preferred (P) image, when both the 

P (A) and NP (B) images are presented before the learning phase (C), and then the P (D) and NP (E) 

images are presented again afterwards. Increasing weight change during the learning phase (C) 

causes gradually increasing activity. This increase in weights between both subgroups then causes 

the P subgroup to respond to the NP image (E). 

Theta phase 

Figure 4 shows Theta phase within the P subgroup of Hippocampal neurons, in response to the 

presentation of the NP image during the 3 stages of the simulation. The  red and green halves of the 

polar distribution represent the excitatory and inhibitory phases of the 4 Hz cosine wave used to 

model Theta, where 0° is the peak and 180° is the trough of Theta as recorded in the Hippocampal 

region CA1/CA3 (Hasselmo, 2005). The total number of spikes occurring within each phase quadrant 

of Theta was recorded (Figure 4Aa-c), as well as the first spike of each neuron after maximum 

inhibition (>180°) (Figure 4Ba-c). The latter analysis was performed to show how Hippocampal 

neurons shift forward in Theta phase once stimulated. Spike numbers were normalised over 1000 

simulations.   

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 6, 2017. ; https://doi.org/10.1101/185231doi: bioRxiv preprint 

https://doi.org/10.1101/185231


18 
 

Before learning, P neurons are un-responsive to the NP image and oscillate at Theta, where most 

spikes occur just after maximum excitation (Figure 4Aa; 0-90°), with the first spikes generally 

occurring just before maximum excitation (Figure 4Ba). When the C image is presented during the 

learning phase, the P subgroup becomes active across all phases of Theta (Figure 4Ab). Importantly, 

in order for activation to overcome inhibition, more activity will occur during the peak of Theta. The 

least number of spikes occur early on in the inhibitory phase (90-180°) due to the effect of the ADP 

function, which prolongs the recovery time of neurons that spiked late during the excitatory phase 

(0-90°). Neurons also exclusively spiked first immediately after the trough (Figure 4Bb; 180-270°), 

indicating that all neurons in the P subgroup successfully phase -shifted forward once stimulated 

during learning.  

When the NP image is presented again after learning, P neurons now respond. Spikes occur in most 

phase quadrants of Theta (Figure 4Ac), mostly during the excitatory phase as inhibition is overcome, 

allowing spikes to first occur during the negative phase of Theta (Figure 4Bc) and demonstrating a 

phase shift forward in Theta. This shift in phase is an index of successful learning and has been well 

documented in rodents for neurons encoding a particular place when the rodent approaches that 

place (Huxter, et al., 2003). Our model shows a similar behaviour and predicts that this shift in phase 

is responsible for associative memory formation. Importantly, this phase shift is most evident when 

analysing only the first spike within a theta cycle, starting at the theta trough (i.e. where inhibition is 

maximal). This prediction can be tested in studies recording single units and local field potentials in 

human epilepsy patients (Ison, et al., 2015).  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 6, 2017. ; https://doi.org/10.1101/185231doi: bioRxiv preprint 

https://doi.org/10.1101/185231


19 
 

 

Figure 4: Polar histogram of all spikes (A) from the preferred (P) Hippocampal subgroup before 

learning (a BL), during learning (b DL) and after learning (c AL). Theta is maximal and minimal at 0 

and 180 degrees, where LTD and LTP occur in the red and green halves, respectivel y. The same 

analysis is shown for the first spikes of each neuron during a Theta phase (B).  

Alpha De-Synchronisation 

Figure 5Aa-e shows time-frequency power spectra (8-12Hz) of the LFP of the NC P subgroup of 

neurons throughout each stage of the simulation. A thick band at 10Hz shows non-stimulated NC P 

neurons oscillating at Alpha (Figure 5Aa), as they do not respond to the NP image at this time. When 

the P image is presented, a de-synchronisation of Alpha is exhibited (Figure 5Ab/c/e; 0-1s), 

simulating the well-documented effect of Alpha suppression upon visual stimulation (Berger, 1929). 

The same effect can be seen when the C image is presented, replicating findings that Alpha de -

synchronisation can predict successful memory encoding (Hanslmayr, et al., 2012). A similar, but 

weaker effect can be seen when the NP image is presented after learning (Figure 5Ad; 0-1s). This de-

synchronisation is due to learning driven activation of Hippocampal neurons caused by the 

association to the NP stimulus. This low-frequency drive (from Hippocampus to Neo-cortex) is 
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magnified by the high time constant on those synapses (𝜏𝑠), thus de-synchronising Alpha by causing 

substantial activation in the inhibitory phase. The effect can be more clearly seen in Figure 5B, where 

a 10% relative decrease in Alpha power from pre to post stimulus is exhibited (Figure 5Bb; 0-1s), 

consistent with the findings that memory retrieval can be predicted by this same Alpha de -

synchronisation (Hanslmayr, et al., 2012). Pre stimulus Alpha power is also slightly weaker (Figure 

5Aa; -1-0s), due to stronger weights within the P Hippocampal subgroup causing more activation.  

This behaviour of our model mimics several findings in the literature showing memory dependent 

Alpha power decreases during the reinstatement of episodic memories (Khader, et al., 2010) 

(Waldhauser, et al., 2016) (Michelmann, et al., 2016). Here, the de-synchronisation of Alpha 

represents the flow of information in the NC caused by activation of relevant stimuli (Jensen & 

Mazaheri, 2010), (Klimesch, et al., 2007). 

 

Figure 5 : Time-frequency-analysis (TFA) of Neo-Cortical Alpha for the preferred (P) subgroup (A) 

when the non-preferred (NP) (a) and P (b) images are presented before learning (BL), during learning 

(DL) (c), and both presented individually again (d-e) after learning (AL). A time-course of Alpha 
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power is shown (B) for the highlighted boxes (Aa, Ad), where pure power (Ba) and percent change in 

pre-post stimulus power (Bb) are shown. 

Theta Synchronisation 

Figure 6Aa-e shows time-frequency power spectra (2-4Hz) of the LFP of the Hippocampal P subgroup 

of neurons throughout each stage of the simulation. Initially, P neurons do not respond to the NP 

image and oscillate at Theta (Figure 6Aa). An increase in Theta power accompanies increased 

activation, as P neurons respond to the P image before and during learning (Figure 6Ab -c). Theta 

synchronisation is stronger during learning, corresponding with experimental evidence (Backus, et 

al., 2016) (Lega, et al., 2012) (Staudigl & Hanslmayr, 2013). This is due to the rapid increase in 

synaptic weights during this period (Figure 2B; 10-12s) causing feedback activation, which, in turn, 

causes more neurons to fire above threshold, but according to the theta rhythm. 

After the learning phase, P neurons are responsive to the NP image, where a synchronisation of 

Theta occurs due to an increase in activity post stimulus (Figure 6Ad). This can be seen more clearly 

in Figure 6Bb, where there is up to a 10% increase in Theta power relative to the pre stimulus period. 

Due to stronger weights between the P & NP cluster, there is increased feedback activity during the 

normal oscillatory rhythm. This activity is amplified by a higher synaptic time constant, causing an 

increase in pre stimulus Theta power (Figure 6Ba; -1-0s). The same changes in Theta power are 

passed through to the NC (Figure 6Bc-d), which is consistent with experimental evidence of increases 

of Theta in NC areas after learning paradigm experiments (Burke, et al., 2014) (Klimesch, et al., 

2005). 
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Figure 6 : Time-frequency-analysis (TFA) of Hippocampal Theta for the preferred (P) subgroup (A) 

when the non-preferred (NP) (a) and P (b) images are presented before learning (BL), during learning 

(DL) (c), and both presented individually again (d-e) after learning (AL). A time-course of Theta 

power is shown (B) for the highlighted boxes (Aa, Ad), where pure power (Ba) and percent change in 

pre-post stimulus power (Bb) are shown. The same analysis is shown for neo-cortical Theta power 

during the same time periods (Bc-d). 

Varying Stimulus Strength 

We next varied how strongly our simulated participant perceived the P & NP images during the 

screening phases, allowing us to explore the sync/de-sync of Hippocampal Theta and NC Alpha over 

time at different strengths. This is achieved by varying stimulus strength, i.e. the rate of spikes per 

second being fed into NC neurons at stimulus onset, and taking the average power during the post -

stimulus period across frequencies (0-30Hz). It can be shown that for weakly perceived stimuli, the 

NC actually synchronises in Alpha within the model (Figure 7A). This is due to input activity being too 
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weak to overcome the trough of the 10Hz cosine input, but strong enough to cause more spiking in 

the peak. As stimulus strength increases, a de-synchronisation of Alpha is obtained as neurons 

overcome inhibition to spike across all phases of Alpha, indicating why Alpha de -synchronisation is a 

marker of successful memory encoding (Hanslmayr, et al., 2012). 

In contrast, the Hippocampus exhibits a strong synchronisation of 4Hz (Figure 7B) with increasing 

stimulus strength. This is due to the ADP function preventing neurons recovering quickly after a 

spike event. Not only does this mean that there will not be e nough spikes during the inhibitory 

phase of Theta to cause de-synchronisation, but the additional spikes over the excitatory phase will 

cause an increase in Theta power as activity increases.  

 

Figure 7 : Increasing stimulus strength plotted against Neo-Cortical (NC) Alpha power (A) and 

Hippocampal Theta (B) power. NC Alpha power initially increases when stimulus strength has a small 

increase, before de-synchronising with increasing stimulus input. Hippocampal Theta power 

gradually increases with stimulus strength. 

Synch/De-Synch Predicts Learning 

Having demonstrated that our model mimics the described behaviour of Alpha power decreases in 

the NC, and Theta power increases and phase dynamics in the Hippocampus, we now link these 

contrasting synchronisation behaviours with learning (see Figure 8). By varying the learning rate of 
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STDP weight change (ε) between 0-1, it was possible to assess how the model behaves with different 

learning outcomes. The average of all bi-directional Hippocampal weights between subgroups P & 

NP are used to assess learning, i.e. the stronger the weight change the better the memory. We then 

calculate recall power (P response to NP + NP response to P) as a percent change in power at a 

particular frequency from before learning to after learning, effectively allowing us to isolate the 

effect of learning on power. Recall powers were binned according to the P<->NP weights of each 

simulation, where the distribution of weights over 1000 simulations can be seen in the inset 

histogram within Figure 8D. A bootstrap then provided the confidence intervals (solid lines) around a 

mean (dashed line) of recall power for each weight bin, allowing quadratic lines of best fit to be 

plotted through these points for pre-stimulus (black) and post-stimulus (red) periods.  

From this we can use power at a particular frequency to predict whether learning has successfully 

occurred in our model. In respect of the sync/de-sync theory (Hanslmayr, et al., 2016), the model 

indicates that both a de-synchronisation of Alpha in NC areas (Figure 8A) and a synchronisation of 

Theta in Hippocampal areas (Figure 8B) during recall can predict successful memory retrieval.   

Interestingly, one could also look at pre-stimulus Theta and Alpha power in the Hippocampus to 

predict whether learning has occurred (Figure 8B & 8D; black), where both increase up to 30% due 

to stronger weights within the Hippocampus and reciprocal connectivity between the Hippocampus 

and NC. This is consistent with evidence that reports the importance of pre -stimulus Theta for 

learning (Gyderian, et al., 2009) (Fell, et al., 2011). The effect of feedback activity plays a smaller role 

in NC areas, where a small decrease (<5%) in pre-stimulus Alpha power (Figure 8A; black) and an 

increase (<20%) in pre-stimulus Theta power (Figure 8C; black) can also predict learning. 

Importantly, there is a large synchronisation of Theta (<60%) at recall (Figure 8C; red) in NC areas, 

agreeing with experimental findings (Burke, et al., 2014) (Klimesch, et al., 2005). 
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Figure 8 : The effect of increasing synaptic efficacy between preferred (P) and non-preferred (NP) 

subgroups on neo-cortical (NC) alpha power (A), Hippocampal Theta power (B), NC Theta power (C) 

and Hippocampal Alpha power (D). The inset in D shows the distribution of weights from 1000 

simulations, where the learning rate (𝜀) was incremented gradually from 0 to 1.  

Discussion  

We have presented a relatively simple spiking neural network model, which captures the complex 

synchronizing and desynchronizing behaviours of hippocampus and neocortex during encoding and 

retrieval in a typical memory task. This model, which we term the Sync/deSync (SdS) model, 

simulates hippocampal theta synchronization and neocortical alpha desynchronization in the service 

of encoding and retrieving novel stimulus associations – a key requirement of episodic memory. 

Consistent with the notion that one-shot learning occurs in the hippocampus, but not in the 

neocortex (O'Reilly, et al., 2014), our model only implements synaptic modifications in the 

hippocampus. This hippocampal learning uses two well -described synaptic modification 

mechanisms. The first is spike-timing-dependent-plasticity (Song, et al., 2000), where synaptic 
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modifications increase exponentially with decreasing time lag between the firing of pre and post-

synaptic neurons. The second mechanism is theta phase-dependent plasticity, where synapses 

between neurons firing at the trough of theta (i.e. inhibitory phase) are strengthened, whereas 

synaptic connections between neurons firing at the peak of theta (i.e. excitatory phase) are 

weakened (Hasselmo, 2005). In the model neo-cortex, neurons fire phase-locked to an alpha 

oscillation at 10 Hz when they receive no input (Jensen & Mazaheri, 2010) (Klimesch, et al., 2007). 

When these neurons are driven by a stimulus, they increase their firing rate and gradually 

desynchronize from the ongoing alpha, especially when the input is strong enough to overcome 

maximum inhibition. Therefore, alpha power decrease is negatively related to the neural firing rate 

(apart from the subtle power increase at very low stimulus intensities), thereby mimicking the well-

known negative relationship between alpha and neural firing (Haegens, et al., 2011). 

The Sync/deSync model draws inspiration from and resonates with a number of previous models 

that seek to incorporate oscillations into the complementary learning systems framework. In 

particular, the concept of theta phase-dependent plasticity in the Hippocampus has inspired aspects 

of a number of influential neural models (Hasselmo, et al., 2002) (Ketz, et al., 2013) (Norman, et al., 

2005). For example, Norman et al. (2005) present an important refinement of the basic 

complementary learning systems model, in which the strength of k Winner-Take-All (kWTA) 

inhibition is varied across theta phases. The effect of this modulation of inhibition is to provide a 

theta-phase dependent learning, with parallels to the Sync/deSync model. That is, in the Norman et 

al. (2005) model, the high inhibition phase of theta generates selective activation, restricting above-

threshold activation to strongly responding units. LTP is then applied just to the active units, 

enabling selective weight update. This has similarities to the Sync/deSync idea that strongly active 

units move their spiking forward in the phase of theta, enabling LTP (which only obtains in the 

inhibitory phase) to be selectively applied. 
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The match between the Norman et al and Sync/deSync models for the low inhibition phase of theta 

is a little weaker than for the high inhibition phase, but there are still parallels. Specifically, both 

models exhibit activation of a broader profile of units in the low inhibition phase. In the Norman et 

al model, this enables LTD to be applied to competitor units (that are not strongly tuned to the 

memory being encoded). Sync/deSync similarly applies LTD in this low inhibition phase, however, it 

is a non-specifically applied, passive, decay. 

Our model also takes inspiration from the influential Jensen & Lisman (2005) model, which uses 

phase precession to realise a working memory buffer. Our use of an ADP function to reduce the 

capacity for units to spike multiple times in quick succession is inherited from the Jensen & Lisman 

model. Additionally, while advancing the phase of theta at which a unit spikes plays a key role in the 

Sync/deSync model, it is somewhat different to precession in the Jensen & Lisman model, where it 

encodes serial order. 

The Sync/deSync model is also able to capture a number of human electrophysiological findings 

during memory tasks. We consider these findings, starting with studies focusing on the human MTL 

(i.e. hippocampal layer in our model). Human single neuron recordings revealed that hippocampal 

neurons can change their tuning, by showing an increase in firing rate to a non-preferred stimulus 

after this stimulus has been associated with a preferred stimulus (Ison, et al., 2015). Furthermore, 

the response of these hippocampal neurons is transiently phase-locked to theta (Rey, et al., 2014). 

Both of these results are consistent with our modelled responses of hippocampal neurons (see 

Figure 3). The transient theta phase-locked response of these hippocampal neurons is due to the 

ADP function (Jensen, et al., 1996), which resets when a stimulus is presented, putting it out of 

synchrony with the ongoing theta rhythm (i.e. the 4Hz sine wave). This phase-locked response 

vanishes as the ADP function resynchronises to the ongoing theta, which randomly varies in phase 

with respect to stimulus onset and therefore averages out over trial repetitions. Such interactions 

between an ongoing rhythm (i.e. 4Hz sine wave) and in-built timing mechanisms (e.g. ADP function) 
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in neurons provide a possible mechanism for the generation of transient phase -locked responses, 

i.e. ERPs (Mazaheri & Jensen, 2005).  

Rutishauser et al. (2010) showed that a significant portion of neurons in the MTL are phase-locked to 

the ongoing theta rhythm during memory encoding, with an increase in theta phase-locking 

predicting later memory performance. Our model is consistent with these findings in showing theta 

phase-locked neural responses, and increased theta synchronicity to be related to later memory 

performance. However, Sync/deSync also suggests that responsive neurons during learning are less 

locked to the ongoing theta phase (Figure 4A), which seems at odds with Rutishauser et al. (2010). 

This decrease in theta phase-locking is present for responsive neurons only, occurring since these 

units overcome maximum inhibition and thus fire at the LTP phase of theta.  Importantly, Rutishauser 

et al. (2010) did not separate neurons into stimulus responsive (i.e. showing an increase in firing 

rate) or not, therefore these findings cannot be directly linked to our model. However, an interesting 

prediction that arises from the model is that the preferred phase of firing differs between responsive 

and non-responsive neurons, and that this phase difference is related to later memory performance. 

Indeed, Rutishauser et al. (2010) found that different neurons were locked to different phases of 

ongoing theta. In our model, this difference is most prominent when only the first spike occurring 

after maximum inhibition is considered, a specific prediction that can be tested in future 

experiments.  

Non-invasive studies in humans using MEG and source modelling showed theta power increases 

during successful encoding of stimulus associations in the MTL (Kaplan, et al., 2012) (Staudigl & 

Hanslmayr, 2013) (Backus, et al., 2016). However, there are also other studies that found the 

opposite pattern, i.e. MTL theta power decreases predicting successful encoding of memories 

(Fellner, et al., 2016) (Crespo-Garcia, et al., 2016) (Greenberg, et al., 2015). The reasons for these 

discrepant findings may lie in the specifics of the paradigm (i.e. type of stimuli used) or analysis (i.e. 

whether 1/f correction was applied). Indeed, importantly, Lega et al. (2012) found both increases 
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and decreases in MTL theta power during successful memory encoding, with the increases occurring 

at a slower theta frequency (3-4Hz) and the decreases at a higher frequency (~8Hz). This finding is in 

line with MEG studies showing increased power at lower theta (3-5Hz) predicting associative 

memory formation (Kaplan, et al., 2012) (Staudigl & Hanslmayr, 2013) (Backus, et al., 2016). It was 

these studies that led us to choose a 4Hz sine wave as the pacemaker for hippocampal neurons. 

Together, our model nicely captures this positive relationship between 4Hz theta power and 

memory performance (Figure 6-8). 

With respect to alpha, many studies have shown that a decrease in alpha power coincides with 

successful encoding and retrieval of episodic memories (see Hanslmayr et al., 2012; Hanslmayr & 

Staudigl, 2014 for reviews). In most previous studies, these effects extend also to beta. For this 

reason, and to ensure model simplicity, we have assumed only one cortical alpha rhythm, we, 

though, see no reason why the same principles would not also apply to beta. During successful 

encoding of episodic memories, alpha/beta power decreases have been found in left frontal areas 

for verbal material (Hanslmayr, et al., 2009) (Hanslmayr, et al., 2011) (Meeuwissen, et al., 2011) and 

occipital for visual material (Noh, et al., 2014). During retrieval, alpha/beta power decreases indicate 

the areas that are being reactivated, i.e. house the memory representation (Waldhauser, et al., 

2016) (Michelmann, et al., 2016) (Khader & Rosler, 2011). This targeted alpha/beta power decrease 

is exactly what is modelled here, with only neural assemblies that actively process the stimulus 

during encoding or retrieval showing power decreases, and the degree of this power decrease 

predicting memory performance. An interesting model prediction is that the degree of alpha power 

decrease should correlate with the degree of hippocampal theta power increase, and the degree of 

phase precession of responsive neurons in the hippocampus. This prediction can be tested in 

intracranial EEG studies, which often record simultaneously from the neocortex and the 

hippocampus. 
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