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Abstract—We provide data-driven machine learning
methods that are capable of making real-time influenza
forecasts that integrate the impacts of climatic factors
and geographical proximity to achieve better forecasting
performance. The key contributions of our approach are
both applying deep learning methods and incorporation
of environmental and spatio-temporal factors to improve
the performance of the influenza forecasting models. We
evaluate the method on Influenza Like Illness (ILI) counts
and climatic data, both publicly available data sets. Our
proposed method outperforms existing known influenza
forecasting methods in terms of their Mean Absolute
Percentage Error and Root Mean Square Error. The
key advantages of the proposed data-driven methods are
as following: (1) The deep-learning model was able to
effectively capture the temporal dynamics of flu spread
in different geographical regions, (2) The extensions to
the deep-learning model capture the influence of external
variables that include the geographical proximity and
climatic variables such as humidity, temperature, pre-
cipitation and sun exposure in future stages, (3) The
model consistently performs well for both the city scale
and the regional scale on the Google Flu Trends (GFT)
and Center for Disease Control (CDC) flu counts. The
results offer a promising direction in terms of both data-
driven forecasting methods and capturing the influence of
spatio-temporal and environmental factors for influenza
forecasting methods.

Index Terms—ILI, forecasting, flu prediction, deep
learning, LSTM, data driven modelling.

I. INTRODUCTION

Seasonal influenza is a major global health issue that
affects many people across the world. According to the
Center for Disease Control (CDC) reports [1] in the

United States alone there were 9.2 million to 60.8 million
reported illnesses since 2010. Influenza can cause severe
illness and even death for high risk populations. For
instance, during 2012-2013 -which was a pretty bad
flu season- the outbreak has resulted in 56,000 deaths
and 710,000 hospitalizations. Prevention and control of
influenza spread can be a huge challenge, especially
without adequate tools that can monitor and also predict
future outbreaks in various populations. With accurate
and reliable prediction of influenza outbreaks, public
health officials would be able to mitigate the effects
of widespread outbreak through aggressive measures,
prioritizing resources in terms of staff, vaccines and
emergency rooms to prevent widespread outbreaks. Pre-
dicting influenza is a very difficult task given the com-
plicated stochastic characteristics of the influenza strain
and environmental conditions that affect the severity
of the spread. Given the importance of this problem,
many researchers have investigated various aspects of
influenza including the dynamics of spread and future
forecasting. CDC [2], [3], [4] and Defense Advanced Re-
search Projects Agency (DARPA) [5], [6] have launched
several competitions to solve the problem of real-time
forecasting of influenza and other infectious diseases.
Forecasting influenza remains an active research area
given the limited ability of existing models to effectively
capture the dynamics of the influenza spread across
different populations and environmental conditions while
improving the limited accuracy of existing forecasting
models.

Influenza forecasting research is broadly classified
into three categories. The first category includes tra-
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ditional compartment models such as Susceptible-
Infected-Recovered (SIR) [7], [8], Susceptible-Infected-
Recovered-Susceptible (SIRS) [9], [10], and Susceptible-
Exposed-Infected-Recovered (SEIR) [11], [12]. The
compartmental models are intuitive in terms of captur-
ing the different states of infected populations. These
models are deterministic and lack the flexibility to
be re-calibrated in terms of capturing the dynamics
of influenza spread. The models in the second cate-
gory employs statistical and time-series based method-
ologies such as Box-Jenkins, employing some vari-
ant of Auto-Regression Integrated Moving Average
(ARIMA) [13] and Generalized Autoregressive Moving
Average (GARMA) [14]. The Box-Jenkins based time-
series methods are flexible in terms of capturing the
trending behavior of affected populations, but suffer from
poor accuracy as the influence of external factors is
not well captured in existing forecasting models. The
third category models are machine learning methods
that have gained increased prominence in recent years.
Some popular machine learning methods include Stacked
Linear Regression [15], Support Vector Regression [16],
Binomial Chain [17], and Classification and Regression
Trees [18]. Machine learning based approaches are data-
driven approaches that offer more flexibility in terms of
capturing the influence of multiple external variables,
but are computationally expensive compared to statistical
models, as the model has to be retrained when new data
arrives. With advances in computational power, machine
learning based models offer a promising direction. Use
of machine learning methods in understanding influenza
dynamics are discussed in [19], [20], [21]. Additionally,
review of existing influenza forecasting methods is dis-
cussed in [22], [23], [24].

Recurrent Neural Networks (RNNs) have shown re-
markable performance in sequential (temporal) data pre-
diction [25]. However, the conventional RNNs have
shown practical difficulties in training the networks faced
with long interval temporal contingencies of input/output
sequences [26]. Therefore, an efficient gradient-based
method called Long Short Term Memory (LSTM) was
introduced to develop a stable recurrent architecture [27].
This new technology supersedes RNNs for time series
forecasting. In regard to recurrent networks, it solves the
vanishing/exploding gradient problem and gives much
more flexibility to the learning algorithm on when to
forget the past or ignore the current input. This net-
work has been successfully applied to various temporal
data processing problems, such as context free/sensitive
machine language learning [28], speech processing and

recognition [29], [30], and handwriting recognition [31].
An interesting property of this model is the ability of
LSTM to learn to selectively forget/remember historical
information. The forgetting ability stops the network
from growing indefinitely and breaking down [32]. In
time series prediction, the few recent value points convey
the most relevant information for predicting the future
points. The LSTM neural network can also be trained
effectively to predict the future points in time series
using the few available points [33]. The deep network
architecture of the LSTM cells can provide a powerful
model in temporal data processing. Recently, LSTM and
deep LSTM have attracted much interest in temporal
data prediction such as traffic speed prediction [34] and
classification of diagnoses given intensive care unit time
series [35]. In this paper we explore a deep LSTM
neural network for the flu prediction problem. The deep
architecture can be fulfilled by unrolling the LSTM cells
in which the input of the successor cell is provided by
the output of the predecessor cell.

Improving the accuracy of influenza forecasting re-
quires effective integration of external variables that are
shown to have strong influence on flu spread. Many
traditional and non-traditional data sources have been
explored to improve flu forecasting, including: historical
Influenza Like Illness (ILI) counts; climate and weather
information [14]; social media interactions such as Twit-
ter messages [15], [16] and Google searches involving flu
related words [10], Google Flu Trends [14]; and travel
patterns [36]. Several environmental factors are known to
affect or influence flu counts. These include population
size, climate and weather information, travel patterns,
infection status in neighborhood cities or regions, rural-
urban location differences, etc. Usually ILI or other in-
fectious disease transmission may occur [37], [38], [39],
[40] through (1) direct contact with infected subjects, (2)
intermediate objects, or (3) droplets and other particles
expelled from infected individuals. Previous studies have
clearly identified direct influence of weather variables
such as temperature, humidity, precipitation etc. on in-
fluenza virus transmission and survival [41], [42], [43].
As presented in [42], low relative humidity aids in faster
evaporation of expelled droplets or particles and longer
survival of the airborne virus. Also, geographical regions
that are in close proximity to infected regions have high
risk of becoming infected due to population movements
and high-likelihood of social interactions [44], [45],
[46]. The impact of environmental factors must be
integrated effectively into the flu forecasting model to
achieve better accuracy with influenza prediction models.
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Recent work from [14] tried to capture the influence
of environmental conditions for flu forecasting using
GARMA(3,0) model. Experimental studies in [47], [48],
however, demonstrated that temperature and humidity are
not linearly correlated with influenza spread. Our work
makes a few improvements in terms of how the influ-
ence of external environmental variables are captured to
further improve the prediction accuracy of our proposed
baseline LTSM model. First, we capture situational time
lags between the flu counts and the weather variables that
produce non-linear correlation. Second, we also capture
the influence of the spatial proximity of different geo-
graphical regions. We evaluated the model for different
spatio-temporal granularity and data sources.

The proposed multi-stage forecasting approach em-
ploys an LSTM neural network as a time series fore-
casting model to forecast influenza counts. The primary
contributions of the paper are the introduction of a deep-
learning approach to forecast influenza, and a multi-
stage approach to capture the influence of geographical
proximity and the impacts of environmental factors. Our
proposed method is evaluated on both GFT and CDC
data. The LSTM model performs better than the existing
baseline time series based ARIMA model. The LSTM
model is further improved in terms of its ability to
forecast influenza counts at different spatial and temporal
scales by capturing both the influence of geographical
proximity, and the impacts from environmental factors
in future stages.

II. MATERIALS AND METHODS

The proposed model consists of two stages. In the first
stage, a deep learning model based on the LSTM neural
network approach is used to estimate initial forecast.
In the second stage the error from the initial forecast
is reduced by incorporating two different factors: (1)
An impact factor obtained from the weather variables
(humidity, precipitation, temperature, sun exposure) by
extracting situational time lags using symbolic time
series approach; and (2) a spatio-temporal adjustment
factor obtained by capturing the influence of flu spread
from neighbouring regions that are in geographical prox-
imity.

A. Data description

For influenza activity, two different real-world data
sets are chosen. The CDC-reported ILI data for all ten
Health and Human Services (HHS) regions between
1997-2016 [1] is the only national level dataset available
for the United States. Google Flu Trends (GFT) [49]

data (available from 2009 to 2014) is a weekly estimate
of influenza activity derived from aggregated search
query data. A subset of the GFT dataset including the
flu count trends reported for 6 cities from Texas and
Louisiana (Austin, Dallas, Houston, San Antonio, Baton
Rouge and New Orleans) is selected. The weather data
is downloaded from Climate Data Online (CDO) [50],
which provides free access to the National Climatic
Data Center (NCDC) archive of historical weather and
climate data. The weather variables used include precip-
itation, maximum temperature, minimum temperature,
and sun exposure. For each city from the GFT dataset,
all available stations from the CDO within that city’s ge-
ographical limits are downloaded. For the CDC dataset,
all the stations within each HHS region boundary are
downloaded from the CDO. The data collected from
the CDO for both datasets are then aggregated, for
each city or region, by averaging into single weekly
summarized time-series. This aggregated data is then
cleaned to treat any further missing values, using simple
moving average based smoothing. At this time, all of
the collected datasets -ILI , GFT and respective weather
variables- are weekly summarized time series. For each
experiment a combination of training and validation set
approach is used, where training and validation sets
are in sequence and mutually exclusive. During each
training exercise approximately 600 samples are used
for training and immediately 20 samples are used for
validation with respect to the CDC dataset. At the same
time the GFT dataset training and validation sample sizes
are approximately 450 and 20 respectively.

B. Model

The proposed multi-stage forecasting approach in-
cludes the following steps. In the first stage, the LSTM
neural network is trained on the flu time series of nodes
to forecast the initial flu counts. A node refers to a
geographical region, which could be a HHS region or a
city. In the second stage, the impact of climatic variables
and spatio-temporal adjustment factor are added to the
flu counts estimated by the LSTM model to reduce the
error. The impact component from climatic variables is
computed using the time-delayed association analysis
between each symbolic time series of weather and flu
counts. The spatio-temporal adjustment factor is calcu-
lated by averaging the flu variations at nearby data nodes.
The proposed models, namely the baseline LSTM model,
the LSTM with climatic variable impact (LSTM+CI),
and the LSTM with climatic variable impact and spatial
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adjustment factor (LSTM+CI+SA) are compared with
the state-of-the-art ARIMA(3,0,3) model.

1) Deep Long Short Term Memory network:
a) LSTM Cell:: RNN computes an output se-

quence (y1,y2, ...,yT ) based on its input sequence
(x1,x2, ...,xT ) and its previous state (h1,h2, ...,hT ) as
shown in Eq. 1 and Fig. 1.

ht = σ(Wi · xt +Wh · ht−1 + bh) (1)

yt = θ(Wo · ht + by)

σ and θ are the hidden and output activation functions.
W and b determine the adaptive weight and bias vectors
of the RNN.

Fig. 1: Recurrent neural network.

LSTM is a variation of RNNs preserving back-
propagated error through time and layers. Furthermore,
the LSTM learning algorithm is local in both space and
time, with computational complexity of O(1) per time
step and weight [27], which is faster than the popu-
lar RNN learning algorithms (e.g. real-time recurrent
learning (RTRL) [51] and back-propagation through time
(BPTT) [52]). An LSTM cell performs as a memory
to write, read, and erase information according to the
decisions specified by the input, output, and forget gates,
respectively. The weights associated with the gates are
trained (adapted) by a recurrent learning process. Fig. 2
shows an LSTM cell containing the input gate, I , the
forget gate, F , and the output gate, Y .
The memory cell shown in Fig. 2 is implemented as
follows:

It = σ(Wxixt +Wmiot−1 + bi) (2)

Ft = σ(Wxfxt +Wmfot−1 + bf ) (3)

Yt = σ(Wxoxt +Wmoot−1 + bo) (4)

At =Wxcxt +Wmcot−1 + bc (5)

Bt = Ft �Bt−1 + It � θ(At) (6)

ot = Yt � θ(Bt) (7)

Fig. 2: An LSTM cell containing the input gate, the
forget gate, and the output gate. Each gate receives
two vectors as input: xt, and previous output, ot−1.

where, Wx and Wm are the adaptive weights, initialized
randomly in the range (0,1). xt and ot−1 denote the
current input and previous output vectors, respectively. b
parameters are bias vectors that are not shown in Fig. 2.
The cell state, Bt, is updated by the forget gate, the
input gate, and the current input auto-regression value
(At). σ and θ determine the Sigmoid and Tanh activation
functions.

b) Deep LSTM Architecture:: A number of ap-
proaches for developing the deep architectures of RNNs
and LSTMs have been discussed in the literature [29],
[30], [53], [54]. In this investigation, we construct an
LSTM network by unrolling the LSTM cells in time.
This model provides a suitable architecture for the time
series prediction problems due to its sequential frame-
work. Fig. 3 shows the network architecture consisting
of the unrolled LSTM cells that are trained by the back
propagation algorithm based on the mean-square-error
cost function (training criterion). The corresponding
LSTM cell at time t− i receives the flu count calculated
by the predecessor cell (ot−i−1) and the input, xt−i,
to calculate the flu count at t − i, ot−i. This process
is repeated for all the LSTM cells in the model. The
number of LSTM cells denotes the number of time steps,
T , before the current time. To calculate the flu count at
the current state, t, the data points from T previous time
steps are used. After different experimental setups, we
selected T = 20 time steps.

2) Climatic Variable Impact: Each of the climatic
variables such as humidity, sun exposure, precipitation,
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Fig. 3: LSTM neural network consisting of the unrolled LSTM cells. The red backward arrows show the
backpropagation algorithm and are not part of the network architecture.

and temperature have different degrees of impact on
influenza spread in a geographical region. The impact
of these variables has been well studied in the litera-
ture [41], [42], [43]. One can observe strong correlation
between minimum and maximum temperatures and in-
fluenza counts from CDC in Fig. 4. Linear integration
of multiple time series is not an effective way to capture
the impact of climatic variables because the magnitude
and the impact delay of temporal values can change
with respect to the geographical location. The composite
impact of climatic variables that is added to the original
LSTM model is computed by a weighted summation of
individual impacts. The overall procedure to obtain the
aggregated impact includes (1) Establishing non-linear
situational correlation between each weather variable
and the flu counts using symbolic time series to obtain
situational time lags, and (2) aggregating the individual
impacts.

To compute the situational time lags between each
weather variable and the flu count at a data node, the
numerical time-series are converted to symbolic time-
series. The symbols at each time step for any variable
are shown by a tuple created from the variable set
(high, normal, low) and change trend (increasing, stable,
decreasing). Once the symbolic time series are generated,
time delayed apriori associations are computed in time
delays ranging from 0 to 5 weeks, between the flu counts
and each weather variable. From these associations, the
most confident symbolic pairs for each possible symbol
combination are finally selected.

Once the time lags between flu counts and each
weather variable are computed for all the data nodes,
total impact, Itot, inflicted at time step t from the
weather variables for data node n is estimated using the
following formula.

Itot
n,t =

D∑
i=1

Wn,i × In,i,t (8)

Fig. 4: A plot showing correlation between minimum
and maximum temperatures and flu counts.

The aggregated impact Itot
n,t is basically the weighted

summation of impact (change) inflicted by D weather
variables. The weights, Wis, are trained using Widrow-
Hoff learning [55] with mean square error (MSE) cri-
terion as the cost function on the available data. The
target of this Widrow-Hoff learning is to reduce the MSE
to obtain the optimum weights (Wis). These weights
are independent, and trained separately for each data
node. The impact or change (I) inflicted by each of the
weather variables on the flu counts is estimated using
the following formula.

In,i,t =

(
Vn,t−lag − Vn,t−lag−1

)
max

(
Vn,t−lag, Vn,t−lag−1

) (9)

The impact value at node n coming from ith climatic
variable at time t is the ratio of change happening before
the appropriate situational time-lag (lag) from the time
step t to the actual numeric data, V , (not the symbolic
data) of ith weather variable. An appropriate lag value
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is retrieved from the time lags computed in the previous
step based on the flu count symbol at this time-step t.

3) Spatio-temporal adjustment factor: Geographical
proximity, in general, has a strong effect on the influenza
outbreak in a particular region. One can observe sim-
ilar flu trends between data nodes that are in spatial
proximity (as shown in Fig. 5) for both GTF and
CDC data. This impact is captured by computing an
adjustment factor from the nearby data nodes. Similar
to the weather variables, each neighboring data node
impacts on this data node independently from the other
neighboring data nodes. Thus, a weighted summation of
individual adjustment factors is used. Here, Widrow-Hoff
learning [55] is used to train those weights. Similar to the
impact weights, the mean square error (MSE) training
criterion is used as the cost function. An adjustment
factor coming from each neighboring node is the average
of flu variation difference during the previous three time
stamps at that node. The adjustment factor, γ, to be
applied at data node n on the initial forecast at time step
t is the average of changes in the flu counts obtained at
other nearby data nodes at time step t− 1.

γtot
n,t =

∑
i∈Neighbors(n)

Wn,i ×An,i,t (10)

Total adjustment γn,t at data node n and time t
is the average weighted summation of the individual
adjustments An,i,t coming from all its neighbors that are
in geographical proximity of n. Similar to the impact
weights, adjustment weights (Wn,i) are also trained using
the Widrow-Hoff algorithm on the historical data from
this node as well as its neighbors.

An,i,t =
1

y

y∑
j=1

(Fi,t−j − Fi,t−j−1) (11)

Individual adjustment (An,i,t) for the neighbor i to
data node n at time t is the average change in the
previous y time steps. Here Fi,t−j is the actual flu count
at neighbor i to n at time t− j. In our experiments we
selected y to be 3 as it gave us optimal results.

4) Forecast value estimation: The total impact, de-
fined in Eq. 8, is applied to the forecast value predicted
by the LSTM (FLSTM), to calculate initial forecast, F ini.

F ini
n,t =

(
1 + Itot

n,t

)
× FLSTM

n,t (12)

Final forecast after applying adjustment factor γn,t as
computed in Eq. 10, F final, of data node n at time t

F final
n,t =

(
1 + γn,t

)
× F ini

n,t (13)

III. RESULTS

The three proposed data-driven models (LSTM,
LSTM+CI, and LSTM+CI+SA) are compared with
three ARIMA based models (ARIMA, ARIMA+CI and
ARIMA+CI+SA) on two different publicly available data
sets related to influenza counts, namely the CDC and
GFT data sets. Both of these data sets represent a very
broad sample in terms of spatio-temporal granularity.
The models were evaluated by randomly generating 5
different samples from historical influenza counts. Each
sample selected in the experiment represents a time-step
(start week) from history that includes the training set
and 20 time steps that are the testing set. The samples
are selected in such a way that the 20 weeks to be
forecast do not overlap with the other 4 experiments
along this dataset. In other words, the validation sets
are separately selected. The data between 1997-2014
and 2004-2013 were used for training the CDC and
GFT data sets, respectively. The model was evaluated
on two widely accepted evaluation metrics: the Mean
Absolute Percentage Error (MAPE) and the Root Mean
Square Error (RMSE). These were used in [56], [57].
All of the implementation of various models was done
in R [58]. The LSTM model was implemented using the
Tensorflow library [59].

A. Evaluation criteria

The prediction performance of the proposed system is
evaluated using the following metrics:

Mean absolute percentage error (MAPE) measures the
average percent of absolute deviation between actual and
forecasted values.

MAPE =
1

N

∑ |A− F |
|A|

× 100 (14)

Root mean squared error (RMSE) captures the square
root of average of squares of the difference between
actual and forecasted values.

RMSE =

√
1

N

∑(
A− F

)2 (15)

Root mean squared percentage error (RMSPE) cap-
tures percentage of square root of average of squares of
the deviation between actual and forecasted values.

RMSPE =

√
1

N

∑(A− F
A

)2 × 100 (16)

where, N is the number of test samples, A is the actual
flu count, and F is its respective forecasted value.

We compared our results with the state-of-the-art
ARIMA method. We also compared the results of our
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Fig. 5: Flu count trends. A plot showing similar trends in flu counts in 2015 for different CDC regions (left). A
map showing the CDC-HHS regions (right).

model at different phases; (i.e. LSTM prediction vs.
LSTM with climatic variable impact vs. LSTM with
climatic variable impact and spatial adjustment factor).
We also tried to apply our climatic variable impact and
spatial adjustment factor on top of ARIMA to evaluate
their effectiveness. In experiments, we developed six
models, composed of LSTM, ARIMA, climatic variable
impact (CI), and spatial adjustment factor (SA), as
follow:
• LSTM (The value predicted by LSTM (FLSTM)

alone, that is without the variable impact or adjust-
ment factor applied to it.)

• LSTM+CI(The estimated value after climatic vari-
able impact factor is applied but not the spatial
adjustment factor (F ini

n,t), as computed in Eq. 12.)
• LSTM+CI+SA (This is the final forecast value

(F final
n,t ) after both climatic variable impact factor

and spatio-temporal adjustment factor are added to
LSTM, as computed in Eq. 13. This is the proposed
approach.)

• ARIMA (Flu count estimated using the state-of-art
ARIMA.)

• ARIMA+CI (Flu count after climatic variable im-
pact factor computed in Eq. 8 is applied to the
simple ARIMA forecast.)

• ARIMA+CI+SA (Flu count after climatic variable
impact factor as in Eq. 8 and spatio-temporal ad-
justment factor as in Eq. 10 are added to the simple
ARIMA forecast.)

B. Results for the CDC Dataset

Table I shows the comparison of the 6 forecasting
models when these models were applied on all the

ten geographical regions from HHS. The table com-
pares the prediction performance of the selected models
upto 20 weeks into the future. As mentioned earlier in
this section, at each data node 5 random experiments
were done making it 50 experiments overall for this
dataset (5 experiments at each of the 10 CDC regions).
The average performances of the proposed models in
terms of the MAPE, RMSPE, and RMSE (% ILI) are
shown in Table I. The LTSM model has the minimum
MAPE, RMSPE, and RMSE (% ILI) when compared to
ARIMA model. This itself is a significant improvement
in forecasting accuracy. By integrating the climatic and
spatio-temporal components into the LTSM model, we
observe further improvement in forecasting performance.
We also observe that by adding the climatic and envi-
ronmental components to the ARIMA model, while the
1 week ahead forecast does not show any significant
improvements, the 5 to 15 week forecasts have better
performance compared to the baseline ARIMA model.

Fig 6 shows 9 charts that compare all 6 models for
3 HHS regions, namely Region-2 (Row A), Region-5
(Row B) and Region-10 (Row C) with respect to MAPE,
RMSPE and RMSE (% ILI). Fig. 7 shows the actual and
predicted ILI counts for those three regions from one of
the test samples. It can be seen that the numbers from
Table I correlate with the plots from Fig 6, LSTM and
its variants outperforming ARIMA and its variants in
most of the cases. For Region-10 (plot from Row C of
Fig 6), in the later weeks (weeks 15 to 20) of forecasting
ARIMA performs better than LSTM. Fig. 7 also shows
that LSTM and its variants are able to follow the actual
ILI counts trend line during the first 5 weeks; this might
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TABLE I: ILI count predicted over 1, 5, 10 and 15 weeks using proposed models and ARIMA for the CDC
dataset.

Weeks 1-week 5-weeks 10-weeks 15-weeks
MODEL MAPERMSPERMSEMAPERMSPERMSEMAPERMSPERMSEMAPERMSPERMSE
LSTM 21.38 29.31 0.26 57.09 80.66 0.58 62.32 78.82 1.59 70.05 96.18 1.46
LSTM+CI 21.13 29.17 0.25 57.1 80.96 0.58 62.2 78.58 1.61 69.67 94.76 1.46
LSTM+CI+SA 16.69 23.13 0.22 51.49 72.58 0.55 60.47 76.28 1.54 65.86 87.93 1.41
ARIMA 44.69 83.58 0.3 68.99 95.75 0.68 79.89 100.46 1.78 109.6 154.32 1.93
ARIMA+CI 45.2 83.5 0.3 69.11 95.51 0.68 80.06 100.74 1.76 110.85 156.85 1.94
ARIMA+CI+SA 45.73 86.02 0.28 62.03 85.25 0.67 77.82 97.76 1.71 103.15 143.13 1.88

Fig. 6: MAPE, RMSPE and RMSE (%ILI) of the flu prediction models over 20 weeks applied on ILI count
of CDC dataset. A: Region 2, B: Region 5, and C: Region 10.
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Fig. 7: Actual and predicted ILI count for regions 2, 5, and 10 from left to right respectively.

be because of the proposed model being able to capture
the impacts from climate variables and spatio-temporal
factors accurately. Additionally, both the table and plots
show the importance of impact components used by the
proposed models to significantly reduce the error.

C. Results for the GFT dataset

Similar to the CDC results, Table II shows the com-
parison of the forecasting models discussed earlier for
the 6 cities from Google Flu Trends data. Again, 5 dif-
ferent experiments were conducted at each city, thereby
creating 30 test samples at each time step. The same
error metrics MAPE, RMSPE, and RMSE (% ILI) are
used to evaluate the 6 models. The proposed approach
(LSTM + CI + SA) is better than the other 5 models
compared in our analysis. Overall the LSTM and its
variants are more accurate than the ARIMA and its
variants. It can also be seen that impact component from
climate variables is adding noticeable improvement to
the base LSTM and ARIMA models, but the spatio-
temporal component is improving the accuracy of these
base models significantly. Unlike in CDC results, the
magnitude of these errors is much less with the GFT
datasets, because of the smoothness and high volumes
in GFT data.

Fig. 8 shows the error charts of MAPE, RMSPE, and
RMSE (% ILI) for three cities Austin (row A), Dallas
(row B), New Orleans (row C) and Fig. 9 shows the
comparison of the predicted values from these models
with the actual GFT volumes. Compared to CDC dataset,
the proposed approach is much better and outperforms
ARIMA significantly all along 20 weeks of prediction
and across all cities. Similarly, the addition of the impact
components from spatio-temporal and climate variables
improves the performance of both ARIMA and LSTM

base models. Fig. 9 also demonstrates that the proposed
models show strong correlation with actual data, at least
until 12 weeks.

IV. CONCLUSION

In this paper, we proposed data driven approaches to
improve influenza forecasting. The first key contribution
is the applicability of the LTSM based deep-learning
method which is shown to perform well compared to
existing time series forecasting methods. We further
reduced the error of the deep learning based forecast-
ing method by introducing an approach to integrate
the impacts from climatic variables and spatio-temporal
factors. We evaluated the proposed approach on publicly
available CDC-HHS ILI and GFT datasets. The results
also showed that the impact component integrated into
the baseline models (LSTM and ARIMA) significantly
improved their performances. The proposed method of-
fers a promising direction to improve the performance of
real-time influenza forecasting models. Additionally, the
proposed method may be useful for other serious viral
illnesses such as Ebola and Zika.

In this paper, we have implemented separate learning
components for the climatic variables and for the geospa-
tially proximal variables. Our future study seeks to
develop an end-to-end learning model incorporating all
the modules. This could be done by using a convolutional
LSTM [60] to learn spatio-temporal patterns.
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TABLE II: Flu count predicted over 1, 5, 10 and 15 weeks using proposed models and ARIMA for the GFT
dataset.

Weeks 1-week 5-weeks 10-weeks 15-weeks
MODEL MAPERMSPERMSEMAPERMSPERMSEMAPERMSPERMSEMAPERMSPERMSE
LSTM 23.50 26.14 0.28 28.18 23.84 0.33 45.11 40.78 0.50 60.64 56.48 0.68
LSTM+VI 23.37 26.77 0.28 28.08 23.65 0.32 44.86 40.56 0.50 60.49 53.42 0.68
LSTM+CI+SA 21.89 23.86 0.25 25.50 23.63 0.30 45.90 38.26 0.52 58.01 53.13 0.65
ARIMA 24.91 39.27 0.34 49.54 36.18 0.59 71.57 47.17 0.86 85.95 63.21 0.98
ARIMA+CI 24.45 39.46 0.33 49.49 36.43 0.59 72.11 47.24 0.86 85.94 57.31 0.98
ARIMA+CI+SA 22.76 29.94 0.31 47.37 37.98 0.55 73.47 45.45 0.89 82.26 57.00 0.92

Fig. 8: MAPE, RMSEP and RMSE (%ILI) of the flu prediction models over 20 weeks applied on the GFT
dataset. Austin, Dallas, and New Orleans are randomly selected.
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Fig. 9: Actual and predicted GFT for Austin, Dallas, and New Orleans from left to right respectively.
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