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The Online Algorithmic Complexity Calculator implements the perturbation analysis method introduced in
this paper: http://complexitycalculator.com/ and an online animated video explains some of the basic
concepts and motivations for general understanding: https://youtu.be/ufzq2p5tVLI

Abstract:

We introduce a conceptual framework and an interventional calculus to steer, manipulate, reconstruct
the dynamics and produce generating mechanisms of dynamic systems from observations based on the
evolution and contribution of each of the system’s components to their intrinsic algorithmic complexity
exploiting universal principles from the theory of computability and algorithmic information. This
calculus consists in finding and applying controlled interventions to a system/network to estimate how
their algorithmic information content is affected in terms of positive or negative shifts towards and
away from randomness. We find that the algorithmic information landscape of a system’s degree of
freedom runs in parallel to its dynamic space-time evolution providing a path to move systems on the
algorithmic information landscape having effects on the system’s dynamics landscape. Based on this
causal algorithmic calculus, we advance methods for reprogramming systems that do not require the
full knowledge or access to the system’s actual kinetic equations or probability distributions. This new
dimension unmasks a separation between components providing a suite of powerful parameter-free
algorithms of wide applicability ranging from causal discovery, dimension reduction, feature selection,
model generation, maximal randomness analysis and system’s control in application to molecular
biology and genetic regulatory networks. We find that the methods can identify key elements on static
and dynamic regulatory networks related to function and cell development and a correspondence
between the elements moving the network towards and away from randomness with the capabilities of
the represented cell to be reprogrammed conforming with the biological knowledge of cell
differentiation demonstrating how this causal calculus can help reshape a system’s dynamics in a
controlled manner by manipulating its generating mechanisms by way of its algorithmic content.
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Introduction

How to make optimal predictions about the behaviour of dynamic evolving systems is a
fundamental problem in science. It remains a challenge how to understand and ultimately
reprogram the behaviour of such systems with access to partial knowledge and incomplete or
noisy data. Based on established knowledge drawn from the mathematical theories of
computability and algorithmic probability that describe the limits of optimal characterization
and algorithmic inference, we introduce a conceptual framework with specific methods and
applications to demonstrate the use and advantage of a powerful calculus based on the change
of a system’s algorithmic content over time and under perturbations.

At the core of the causal calculus is the estimation of the specific sequence of events—
in the form of perturbations—that rank a system’s elements by the effects they can exert on the
whole system needed to manipulate the fate and function of the system. We will demonstrate
that manipulating and reprogramming systems on the algorithmic-information space runs in
parallel to the dynamic state/attractor space on which a network or a system can be moved
through optimized paths in different directions. Based on universal principles of the most
powerful theory of induction and inference (namely algorithmic probability) and recent
numerical advances to produce estimations, we introduce a suite of powerful parameter-free
algorithms to tackle the challenge of causal discovery of generating mechanisms to effectively
and efficiently control the dynamics of general systems.

The main idea behind the algorithmic causal calculus can be illustrated by the following
oversimplified example. Let S be a non-random binary file with the following contents, in binary:

01010101010101010101010101010101010101010101010101010101010101010101010
10101010101010101010101010101010101010101010101010101010101010101010101
Clearly, S is algorithmic compressible with ps =“Print(01) 71 times” the shortest computer
program generating it. Let S’ be equal to S, except for a bit shift in say position 24, where the

existing bit will be shifted to look as follows:

01010101010101010101010001010101010101010101010101010101010101010101010
10101010101010101010101010101010101010101010101010101010101010101010101

Now, a short computer program that generates S’ can be written involving ps that can already
account for most of the observed data except for the shifted bit, which ps has thus to account
for. A possible candidate would then be of the form ps =“Print(01) 12 times; Print(00); Print(01)
58 times”. Clearly, the length in binary of the computer program ps generating S is upper
bounded by |pgs|, the length, in bits, of the computer program ps generating S’, otherwise said,
assuming shortest computer programs, we have C(S) < ~ C(S’) for any single-bit mutation of S,
where C(S) is the length of the shortest computer program generating S. Now, let R be a binary
file of the same size but consisting of, assumed, random data:

01101100100011001101010001110110001100011010011100010000110011001100011
11011110000111010010010111111010110100100110010100101000101101001101110
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where R is algorithmically not compressible. This means that R has no generating mechanism
shorter than the string itself and can only be mechanistically generated by a computer program
of the form pg = Print(R), which is not shorter than R itself. Let R’ be the result of flipping any bit
in R just as we did for S and S/, then pg = Print(R’). Then we have 2 possibilities, either pg<pg or
pr > pr if the mutation in R” moves R towards or away from randomness. However, R was
assumed to be algorithmic random and thus flipping only 1 bit cannot result in a much less
random R’ because pg = BitShift(Print(R’),n) to reverse R’ into R, but both BitShift and n (the bit
index to be shifted) are of fixed and small length and so do not contribute much hence in
contradiction with the original assumption that R is algorithmic random (or not compressible).
In summary, perturbations to an algorithmically random object have lower impact to the
generating mechanism of the mutated object with respect to the generating mechanism of the
original but they have a greater impact if the object is of low algorithmic randomness and thus
highly causal with a short generating mechanism because in highly causal objects, every
segment gets compressed into an object that contains information of other segments of the
original data, it can be said that it is integrated. In contrast, in an algorithmic random object, any
change goes mostly unnoticed because no perturbation can lead to a dramatic change of
algorithmic content. Interesting cases, far from these simplistic examples, will move in the
middle towards both directions, towards and away from randomness. The algorithmic calculus
consists thus in performing all possible perturbations and comparing every mutated version to
the original, and evaluating and the impact of each element and its algorithmic information and
causal content contribution to the original generating mechanism thereby ranking all the
elements with respect to their capabilities to move the object, such as a file, towards or away
from algorithmic randomness. Interesting real-world systems are, however, usually not static
like stored files, and the application of this kind analysis becomes more powerful when applied
to systems evolving over time characterizing the ways in which a system evolves and produces
an algorithmic-information trajectory with relevant information about it's causal mechanisms
similar to the way in which perturbations operate.

As we will demonstrate, such information can effectively be used to find and unveil first
principles of a system such as initial and boundary conditions and, more important, help infer
the (most algorithmic likely) generating mechanism of a system from a sequence of (partial and
even disordered) observations (see Fig. 3). Because estimating the so-called algorithmic
complexity, denoted by C(s), implies by definition finding short computer programs, the method
entails finding a set of (small) mechanistic models that can generate the space-time data
generated by s itself, or partial versions of s. In practice, however, computing C(s;) is
characterized as lower semi-computable meaning that it can only be approximated from above.
Nevertheless, recent numerical advances—alternative to lossless compression algorithms—have
led to sound estimations®® of Algorithmic Probability** that can better relate theoretical aspects
of algorithmic probability known to be deeply associated to causality to actual tools and
methods that can be applied but were not entirely possible before due to limitations of
previously followed approaches mostly based on statistical properties (such as lossless
compression in the most popular compression algorithms)® away from the algorithmic
properties that are needed in the challenge of causation. The use of such novel methods have
found a new and wide range of applications in areas such as cognition’®. Here we take
advantage of these concepts and numerical advances to tackle the problem of finding
mechanisms of design and control of systems.
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An Algorithmic Causal Perturbation Analysis for Systems and Networks

Algorithmic Probability (AP)**° deals with the challenge of inductive inference', and it is
the obverse of the rigorous mathematical formalization of (algorithmic) randomness****" by
way of the so-called (algorithmic) Coding theorem® formally described by C(s) ~ — log, AP(s)
Supplement Section 1) relating complexity C and probability AP. For example, the AP(G) of a
causal graph or network G can be defined'? as the probability that a random computer program
constructed bit by bit—by, e.g., random flips of a coin—outputs a (lossless) description of G, d(G),
e.g. its adjacency matrix. Because AP is upper semi-computable it allows algorithmic complexity
C to be approximated. Among the most remarkable properties of AP and C is that they cannot
be refuted at an arbitrary significance level by any computable measure®, and estimations of
C(d(G)) asymptotically converge to C(G), independently of d, up to a relatively small constant®>***
(Supplement Section 1, invariance theorem). The idea behind the numerical methods to
estimate AP* is to enumerate the set of computer programs that explain and generate in full or
part the generating system representing the predictive computational model of the observables
(Supplement Section 1, CTM and BDM methods).

In a deterministic dynamic system s, the length of the shortest generating mechanism f
describing a system’s state (in binary) at time t, denoted by C(s;), can only grow by a function of
t, more specifically log,(t). This is because in a deterministic dynamic system, every state si,; can
be calculated from s; from sy = f(s,t). This trivial but fundamental property of deterministic
dynamic systems can be exploited to find the set of perturbations on a system’s state s; related
to a set of perturbations sy such that deviations from log,(t) indicate non-causal trajectories and
disconnected patches unrelated to the original dynamic system upon performing observations.
When a system is not completely isolated and some of its parts seem to be not explained by any
other state of the system thereby appearing non-deterministic, those patches can be exposed
and identified as foreign to the system’s normal cause in the algorithmic perturbation analysis.

We estimate the change of algorithmic information in a network G after an intervention.
We define an element e to be negative if C(G) - C(G\e) < 0, where G\e is a mutated network G
without element e, moving G towards algorithmic randomness, positive if C(G) — C(G\e) > 0, and
neutral otherwise (Fig. 1a-e). A maximally random network (Fig. 1c) has only positive (blue)
elements because there exists no perturbation that can increase the randomness of the network
either by removing a node or an edge, as it is already random (and thus non-causal). We denote
by spectra(G) the list of non-integer values quantifying the information-content contribution of
every element (or subset of elements) of G (Fig. 1f), while o(G), denotes the signature of G, the
sorted version from largest to smallest value in spectra(G). This simple set is informative enough
to allow an ab-initio identification of the vulnerable breaking points in regular S-W networks
(Fig. 1k), whereas the removal of neutral elements (Fig. 11) minimizes the loss of information
relevant to the description of a network, if important, such as graph theoretic properties (Fig. 1)
and its graph spectra (by design), as it preserves the overall algorithmic information content and
thus establishes a powerful optimal parameter-free method for dimensionality reduction
(Supplement Section 2 & Methods).
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Fig1l. Networks as Computer Programs: (a) Nodes and edges identified according to their

information contribution to each network by evaluating the effect they may have upon
removal. (b) Neutral information set: removal of node 1 is equivalent to removal of all edges
connecting to node 1, even though all its individual edges are negative. (c) An algorithmic-
random graph has only individual neutral nodes because no node can significantly move the
network further to randomness or significantly towards simplicity. (d) A random connection
between two complete graphs is a positive edge because its removal makes the generating
mechanism of 2 complete graphs shorter than 2 complete graphs randomly
connected. (e) Information analysis on a directed graph identifies changes of
direction. (f) The information spectrum identifies the contribution of every element with respect
to the ability to move the whole towards or away from randomness. (g,h,i) The signature of a
graph is the information spectrum sorted from highest to lowest information content. (j) Causal
discovery gain by algorithmic complexity versus other methods such as Entropy and Compress
over a set of fixed size strings normalized by maximum Entropy. (k) Inverse spectrum colouring
identifies breaking points in randomly rewired regular graphs. (I) Node removal by neutrality in
graphs preserves signature and other properties such as edge betweenness (i top), degree
distribution (I bottom) and clustering coefficient (n,p) and is thus an optimal method for
dimensionality reduction (see MILS SI).
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Since neutral elements do not contribute to the algorithmic content of a system they do
not affect the length of the underlying generating program, which means that the network can
recover those neutral elements at any moment by simply running the system back to the point
when the elements were removed (Fig. 2a). This process of identification of algorithmic
contributing elements allows systems to be ‘peeled back’ to their most likely causal origin,
unveiling their generating principles (Supplement Section 2), which can then be used as a handle
to causally steer a system (Fig. 2b,c) where other measures fail (Fig. 2d, Extended Data Fig. 2) °.
Analogously, elements can be added to a network to increase or maximize its algorithmic
information content, thus approximating a Perfect Algorithmic- Random (PAR) graph that can be
used for maximum-entropy modelling purposes, with the advantage of discarding false maximal
entropy instances (Supplement Section 2). In contrast to neutral elements, extreme (negative or
positive) valued network elements hold and drive the network towards or away from
algorithmic randomness. This extends our view of the nature of a network (Extended Data Fig.
1).

Networks and Systems as Computer Programs
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Figure 2. (a) The same methods help reveal the generating mechanisms, despite the different
representations of the same dynamical system. (b) A one-dimensional evolving system displays
the same information elements determining the different causal regions after an instantaneous
observation following a perturbation analysis. In a Cellular Automata, after 2 random row
perturbations a new information analysis reveal which are the rows that have been artificially

disruptiveness

6


https://doi.org/10.1101/185637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/185637; this version posted October 2, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

perturbed, with grey cells showing the identified neutral row, the last (top-down) in the dynamic
evolution, indicating the time direction of the system. See Fig. 3 (c) Unlike (a), Entropy is not
invariant to different object descriptions. Shown here is a tree-like representation of a
constructed causal network with low algorithmic randomness but near maximum Entropy
degree sequence (S| 8), a contradiction, given the recursive nature of the graph and the zero
Shannon entropy rate of its adjacency matrix. (d) Latest nodes in the same graph depicted in (c)
are identified by their more neutral contribution, revealing the time order and thereby exposing
the generating mechanism of the recursive network in (c) (for details see Sl 8, and Sl 4).

In Fig. 3 we demonstrate how the algorithmic calculus can help reconstruct discrete
dynamic systems (illustrated using 1-dimensional cellular automata called Elementary Cellular
Automata or ECA) with high accuracy from disordered states and even index observations
correctly effectively providing a mechanistic generating model that can be run backward and
forward in time. This is because late perturbations are more akin to a neutral information value
(as established, in deterministic systems they should contribute at most log n, with n
representing the step index of the dynamical). That we can reconstruct the space-time
evolutions and rules from the disordered output of an abstract computing model (cellular
automata) by using an empirical distribution constructed from a different model of computation
(Turing machines) is an indication of the robustness of both theory and methods.

That we can reconstruct the space-time evolution of discrete dynamical systems with
high accuracy from an instantaneous non-ordered set of observations (rows) demonstrates that
we identify them as causal even among those random-looking such as ECA rules 73, 45 and 30
for which correlation values rho (Fig. 3) may be lower but reconstructions are still qualitatively
close. By using the results that the latest steps in time in a dynamical system such as an
elementary cellular automata the less disruptive the effect of the perturbation respect to the
algorithmic-information of the original system, we were able not only to reconstruct the cellular
automata after row-scrambling but we gave each row a time index (Fig 3b). The automatic
reconstruction of possible generating mechanisms by quantifying how disruptive is a
perturbation in the algorithmic information content of the space-time evolution of a CA, we can
extract the generating mechanism from the order in which perturbations are less to more
disruptive in the hypothesized generating mechanism inferred from an instantaneous
observation. Apparent simpler rules have simpler hypotheses with an almost perfect
correspondence in row order (Fig. 3a,b second columns from each pair). Some systems may look
more disordered than others but locally the relationship between single rows is mostly
preserved even among the more random-looking, either in the right or exact reverse order
(indicating possible local reversibility).
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Figure 3. (a) Reconstruction of the space-time evolution of dynamic systems (Elementary
Cellular Automata or ECA™). Normal space-time evolution is displayed on the left-hand-side, on
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the right-hand-side are the reconstructed space-time after row scrambling by finding the lowest
algorithmic complexity configuration among all possible 9! = 362880 row permutations (8 steps
+ initial configuration). All followed by Spearman correlation values for row order. (b) Row time
inference in linear time by generation of an algorithmic model that can run forward and
backward thus revealing the dynamics and first principles of the underlying dynamic systems
without any brute force exploration or simulation. (c¢) As predicted, the later in time a
perturbation is performed the less disruptive (change of hypothesized generating mechanism
length after perturbation) compared to the length of the hypothesized generating mechanism of
evolution of the original system. Each pair shows the statistic rho and p values between the
reconstructed and original space-time evolutions. With some models separating the system into
different apparent causal elements. (d) Depicted is the reconstruction of one of the simplest
elementary cellular automata (rule 254) and (e) one of the most random-looking ECAs both after
280 steps illustrating the perturbation-based algorithmic calculus for model generation in 2
opposite behavioural cases. (f) and (g): The accuracy of the reconstruction can be scaled and
improved at the cost of greater computational resources by going beyond single row
perturbation up to the power-set (all subsets), here depicted are reconstructions of random-
looking cellular automata (30 and 73 running for 200 steps) from single (1R) and double-row-
knockout (2R) perturbation analysis. Errors inherited from the decomposition method (see SI,
BDM) look like ‘shadows’ and are explained (and can be counteracted) by numerical deviations
from the boundary conditions in the estimation of BDM?. (h) Variations of the magnitude of the
found effect is different in systems with different qualitative behaviour, the simpler the less
different the effects of deleterious perturbations at different times.

Algorithmic Information Connection to Dynamical Properties

Since our calculus can trace the generative structure in an algorithmic sense, we have
shown that we can distinguish causal systems from non-causal systems (Fig. 1j). From a
mathematical standpoint we have it that for every non-random network, there exists a
generative (causal) program of a certain size (represented, e.g., by its degree sequence or any
lossless matrix representation). In contrast, if a network has no shorter (lossless) description
than itself, then it has no generative causal program and is defined as algorithmic random. This
very generative program and the number of possible halting states, which it can be driven into,
determine the number of attractors in a dynamical system. In a network with internal dynamics,
both topological and kinetic details can be encoded in a full lossless description, and can thus be
handled by the algorithmic causal calculus introduced here. Observations over time are the
result of these two factors, but with no access to the generative program, deconvolution of all
the measured elements contributing to the underlying system’s dynamics is impossible, and we
usually only keep a partial account of the system’s dynamic output (see Fig. 2a; Supplement
Section 2).
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Figure 4. (a) Numerically pushing a complete graph away from randomness by edge deletion
produces complete graphs (after 10 and 19 steps from step 1) as theoretically expected. (b)
Pushing a network towards randomness produces ER graphs approaching edge density (d = 0.5).
(c) Pushing a random graph towards simplicity reveals (after 32 and 41 steps) structured
subgraphs nested in the original random one. (d) Distributions (SI 6) of the number of attractors
for all possible 5-node Boolean networks. The small difference is significant because the number
of attractors in such small graphs is tightly bounded. (e) Numerical calculation of the change in
number of attractors in simple directed complete graphs, ER and scale-free networks converted
into Boolean networks (SI 5 and 6). Scale-free networks, like regular networks, are more resilient
in the face of perturbations.

This algorithmic calculus enables the identification of a system’s causal core and
facilitates the assessment of the causal contribution of a system’s elements (detailed in
Supplement Section 1 and 2). We evaluated whether this calculus could serve as a guide to
reprogramming a system represented by a network corresponding to qualitative shifts in the
attractor landscape associated with the system’s behaviour, even in the absence of access to
the dynamical system’ s equations. In low algorithmic content networks such as a complete
graphs, all nodes are immune to perturbations up to a logarithmic effect, leaving the basins of
attraction and number of attractors the same (as a function of graph size only). MAR graphs
(Supplement Section 2), however, have no (algorithmic or statistical) structure (by definition),
and are thus predicted to have numerous shallow attractors. Moving an ER MAR network away
from randomness will thus have an effect on the number and depth of its attractors, as it moves
all the way away from randomness. Conversely, networks removed from randomness (e.g. a
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simple directed regular graph) have fewer but deeper attractors, but moving them towards
randomness will eventually increase the number of attractors and decrease their average
depth. These theoretical inferences are confirmed through simulation of Boolean networks (see
Fig. 4d-g; Supplement Section 2). Based upon these principles, using, e.g., complete graphs as a
model, we could predictively push networks towards and away from randomness (Fig. 4a-c). We
also emulated Boolean dynamic networks with different topologies, predicting the nature and
change in number of attractors (Extended Data Fig. 4 & Sl Section 1) after pushing networks
towards or away from (algorithmic randomness).

Application to Networks, Reconstruction of Epigenetic Landscapes, and (Re)Programmability

From these first principles, where systems which are far from random, displaying an
inherent regular structure, have relatively deeper attractors and are thus more robust in the
face of stochastic perturbations, we derived a (re)programmability index according to which
algorithmic causal perturbations of network elements pushing the system towards or away from
algorithmic randomness reveal qualitative changes in the attractor landscape in the absence of a
dynamical model of the system. A network is thus more (re)programmable if its elements can
freely move the network towards and away from randomness. Formally, the relative
programmability of a system G, R,(G) is defined by P,(G) := MAD(c) / n or 0 if n =0, where n :=
max(|o|) and MAD is the median absolute deviation (Supplement Section 1).

If oN(G) are the elements that move G towards randomness, and oN(G) the elements
that move G away from randomness, then the absolute programmability PA(G) of G is defined
as Pa(G) := |S(oP(G)) - S(oN(G)) | / m, where m := max(S(oP(G)), S(oN(G))) and S is an
interpolation function. In both cases, the more removed from 0 the more reprogrammable, and
the closer to 1 the less reprogrammable. We then take as the combined reprogrammability of G
the norm of the vector ||Vk(G)|| on a programmability space given by the Cartesian product
P.(G) x PA(G) (Supplement Section 1). These indices assign low values to simple and random
systems and high values only to systems with non-trivial structures, and thus constitute what
are known as measures of sophistication, in this case quantifying the algorithmic plasticity and
resilience of a system in the face of causal perturbations (Extended Data Fig. 3).

K Maximal absolute ‘ : Maximal
(re)programmability mmability

o o o
EN o ™

Absolute (Re)Programmability:
IS(0p(G))-[S(an(G)I / m

o
()
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rammability (re)programmability

0.0k
0.0 0.2 04 0.6 0.8 1.0

Relative (Re)Programmability:
median(MAD(a(G))) /' n

Figure 5. (previously Extended Figure 7.) lllustration of the (re)programmability space defined
by the Cartesian product of (P,(G) x PA(G)), i.e. the (re)programmability indexes P,(G) and P4(G)
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in a 2-dimensional vector space. Relative (re)programmability P,(G) takes into account the sign
of the different segments of o(G), i.e. how much of a signature segment is below or above zero
not immune to small (convergent) numerical errors due to boundary conditions', whereas the
absolute (re)programmability PA(G) accounts for the shape of the signature o(G), i.e. how much
the signature deviates from e.g. a normal or uniform distribution (Supplement, section1). Both
of these indices contribute to the information about the (re)programmability capabilities of a
system such as a network. The combined version is, effectively, a weighted index between the
two (re)programmability measures that maximizes certainty measured by the magnitude of the
vectors, where the closer to (1,1) or (re)programmability vector of magnitude V2 the greater
the certainty of G to be (re)programmed.

We tested whether this algorithmic causal calculus can provide biological insight and has
any explanatory power. First, we applied the calculus to an experimentally validated TF network
of E-coli*® (Fig. 4a). The negatively labelled genes (nodes) protect the network from becoming
random and they were therefore found to be the genes that provide specialization to the
cellular network, whereas positive nodes (genes) contribute to processes of homeostasis,
pinpointing the elements of the network that make it prevail, since their removal would deprive
the network of all its algorithmic content and thus of its most important properties. Then we
analyzed a network controlling cell differentiation to assess the informative value of the
qualitatively reconstructed attractor/differentiation landscape.

Proceeding from an undifferentiated cell state towards a more mature cell state, our
calculus predicts fewer but deeper attractors in the differentiated state (Supplement Section 3).
In Figure 4b-d, we follow the process from a naive T cell differentiating into a Th17 cell
signature™. This revealed an information spectrum with significantly different values over time
and the reprogrammability (ratio of negative versus positive edges) was significantly higher in
the first two time-points than in the final terminal time-point. Interestingly, the Th17 network
signatures suggest information stability at the 48th point where only 3 nodes (STAT6, TCFEB and
TRIM24) can further move the network towards greater randomness. After a gene enrichment
analysis (Fig. 4b,c,d; Supplement Section 3, Extended Data Fig. 4), genes classified as having the
most positive or negative information values comprised many genes known to be involved in T
cell differentiation, such as transcription factors from the IRF and STAT families. Finally,
retrieving network data from CellNet®®, we reconstructed heights in a corresponding epigenetic
Waddington landscape for different cell types conforming to the biological developmental
expectation (Fig. 4e; Supplement Section 3).
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Figure 6. (a) K-medoid clustering of transcription factors by algorithmic-information node
perturbation analysis on a validated e.coli network (Sl 7) according to GO, KEGG and EcoCyc.
Positive genes were found to be related to homeostasis while negative genes to processes of
specialization. (b-d) Distribution of genes according to their causal information value in the
differentiation process from CD4+ to Th17 cells. (e) Uneven distribution of genes by information
value strengthens the significance of the enrichment analysis (see Extended Figure 3). (f)
Heatmap of normalized information values with approximately half the genes (Early) able to
move the early network towards or away from randomness. Genes turn positive at the
differentiated stage. (g) Charting the regulatory networks (for different cell-types from the
Cellnet database using their complexity and combined programmability. (h) A sketch of the
suggested epigenetic differentiation landscape reconstructed from the average of the
reprogrammability and the algorithmic randomness (BDM) (see Sl 1) for each cell network.

Conclusion

To summarize, the prevailing paradigm in system identification and control*®'” can
broadly be described as aiming to understand what the relevant features are in a system to
formulate models to fit some properties of interest and then maximize the fitting of the model
with respect to these properties. An unbiased identification of features is an NP complete
problem, unless additional assumptions are made on the nature of the underlying data-
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distribution®®. Thus despite advances in computational tools and fitting data—big or not—to a
particular model, the issue of which the relevant properties are upon which to perform the
model maximization or error minimization is unresolved. Since the causal calculus here
introduced is based on fundamental mathematical results in algorithmic information theory, in
combination with novel schemes for numerical evaluations, we have advanced a model-free
proxy with which to estimate the qualitative shape of the dynamic possibilities of a system and
thus make educated assumptions beyond current statistic approaches. Such an approach gives
us a handle to intervene in and steer a system using these powerful parameter-free algorithms.
Our results bridge concepts across disciplines and connect mature mathematical theories such
as computability, algorithmic complexity and dynamic systems with the challenge of causality in
science.
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Supplementary Information
Section 1: Theory and Definitions

Algorithmic causality: The causal content ¢ of a dynamic system s, running over t is given by the
smallest ¢ such that C(s;) = |s;| — ¢, where | X | denotes the size of X. The difference |s;| — C(s;)
is an approximation of the causal content c of s.. The causal content c of a non-causal system
approximates log t, i.e. is very small, meaning that C(s;) ~ |s:|, and that the trajectory of s; is
algorithmic random. For causal systems we have that C(s;) — C(si+1) ~ log t, i.e. the complexity of
a causal system s is driven only by its evolution time t. All logarithms are in base 2 if not
otherwise established.

Algorithmic perturbation analysis: Is the estimation of the effects of perturbations (e.g. by
removal/knockout) of an element e (or set of elements) from s, denoted by S\e, on the original
algorithmic information content C(s). Without loss of generalization, let’s take as a system s, a
network G = {V(G), E(G)} as a dynamic system, with V(G) a set of nodes and E(G) a set of links
connecting nodes in V(G).

Negative information element (e.g. a node or edge): an element (or set) e in G such that:
C(G) — C(G\e) < —log,|V(G)] , i.e. the removal of e moves G towards randomness.

Positive information element (e.g. a node or edge): an element (or set) e in G such that:
C(G) — C(G\e) > log,|V(G)|, i.e. the removal of e moves G away from randomness.

Neutral information element (e.g. a node or edge): an element (or set) e in G such that e is
neither positive or negative:
—log, |V(G)| < C(G) — C(G\e) < log; |V(G)|, where |V(G)| is the size of the system, e.g. the
vertex count of a network G.

Algorithmic system inference of its generating mechanism: If C(s;) — C(s\e) ~ log, t then we call
e a neutral perturbation. This means that perturbation e does not compromise the generating
mechanism of s and thus s; can be recovered from s)\e because s.;;\e = s, e is disruptive
(positive or negative) otherwise with degree of disruptiveness C(s;\e) — C(s;). In general, C(s;) —
C(sin) ~ n log t providing the means to reverse a system in time and reveal its possible
generating mechanism in the process. If the system is not reversible, a number of generating
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models may be generated thereby producing optimal hypotheses in the form of generative
models.

Spectra(G): the list of all non-integer algorithmic-information contribution values of each
element of G (e.g. edges or nodes, or both).

Powerset spectra(G): the list of all non-integer algorithmic-information values of each element
in the powerset of elements of G (e.g. edges or nodes or both).

Red shifted spectra(G): a spectra(G) that contains more elements whose removal move G
towards randomness than away from randomness.

Blue shifted spectra(G): a spectra(G) that contains more elements whose removal move G away
from randomness than towards randomness.

o(G): the information signature (or just signature) of G is spectra(G) list sorted from largest to
smallest value. (see Extended Data Figures. 1-2).

A(s): the instantaneous programmability value of an element s in o(G) indicating how fast or
slow s can move G towards or away from randomness. Formally,
A(s) = | 6(G) = 614(G) / P(0i(G)) — P(0i4(G)) |.

Information incoherent set: a set whose individual elements or subsets are of different
information contribution value than the whole set.

Information coherent set: a set whose individual elements or subsets are of same information
contribution value than the whole set.

Information sensitivity: the derivative of the absolute max value of the programmability of a
graph in the (re)programmability curve (see Extended Data Figures 1-4). But numerically
calculated by the rate of change of 6(G\e) versus o(G), for all element (or set) e in G, i.e. the list
of signatures for all e (or signature of signatures of G) capturing the non-linear effects of
perturbations on G.

MILS: Minimal Information Loss Sparsification is a method to identify neutral elements that have
zero or negligible algorithmic-information content value in a system or network and can thus
safely be removed ensuring minimal information loss.

MAR: a Maximal Algorithmic Random graph (or system) G is an ErdGs -Rényi (E-R) graph that is
algorithmically random, i.e. whose shortest possible computer description is not (much) shorter
than |E(G)|, where |E(G)]| is the number of edges of G; or, |E(G)| — C(G) <c.

1* Order randomness deficiency: The algorithmic-information distance between a
network/system and its algorithmically randomized version, e.g. a MAR graph for networks.

2" Order randomness deficiency: The difference between information signatures by e.g.

Kolmogorov-Smirnoff distance, i.e. how removed a network is from its algorithmic (non-causal)
randomization.
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Simply directed graph: is the transformation of an undirected graph into a directed one such
that the edge directions are chosen to minimize the number of independent paths and number
of path collisions.

MAD: denotes the median absolute deviation, and is defined by:
MAD = median (|X;— median(X) |).
MAD is a robust measure of the variability of a univariate sample.

Relative (re)programmability: P,(G) := MAD(0(G))) / n or 0 if n =0, where n = max(|o(G)|). This
index measures the shape of op(G) and how it deviates from other distributions (e.g. uniform or
normal).

Absolute (re)programmability: PA(G) := | [ S(0p(G)) — [ S(on(G))| / m, where m =
max( [ S(O‘p(G)), f S(GN(G))) and S is an interpolation function. This measure of

reprogrammability captures not only the shape of 6, (G) but also the sign of 0p(G) above and
below x = 0.

Programmability landscape: the Cartesian product P(G) x PA(G).

Combined (re)programmability: ||[Vz(G)|| = \/Pﬁ(G) —P2(G) < V2.

The combined reprogrammability is a metric induced by the norm | |V_R (G)| | defined by the
Euclidian distance between two (re)programmability indexes. This metric combines the relative
and absolute (re)programmability indexes, which takes into equal account both the sign of the
signature o(G) of G and the shape of 6(G), and consequently minimizes the impact of uncertain
sign estimations due to (convergent) errors in the calculation of algorithmic complexity® due to
boundary conditions (see Graph Algorithmic Probability as Upper Bounds to Graph
Randomness).

Natural (re)programmability: is the expected theoretical (re)programmability of a system or
network, compared to its estimated, e.g. for a complete graph all nodes, and all edges, should
have the same algorithmic-information contribution and thus o(G) can be analytically derived (a
flat uniform distribution x = log |V(G)| with |V(G)| the node count of G). A complete graph has
thus all its nodes as ‘slightly’ positive (or more precisely neutral if they are ‘positive’ by only log
IV(G)]).

Algorithmic (Kolmogorov-Chaitin-Solomonoff) Complexity. The theory of Algorithmic
Information? provides the (ultimate) refinement upon what constitutes to be a cause (or causal).
The causal origin of an event gamma is a generating mechanism alpha such that alpha #
gamma, and gamma is mechanistically generated/computed from alpha. Formally, the
algorithmic complexity®* of a string s is given by C(s|e) := min{|p| : U(p,e) = s}, where p is the
program that produces s and halts running on a (prefix-free’) universal Turing machine U with
input e which can be empty and represented by simply C(s). C (s) is the length of the description
of the generating mechanism. An object s is referred to as random and thus non-causal if the
algorithmic complexity C(s) of s is about the length of s itself (in bits), i.e. it has no generating
mechanism other than a print(s) function. Algorithmic complexity C is the accepted
mathematical measure of intrinsic randomness of an object (independent of probability
distributions), which is a generalization of statistical randomness and a refinement over the
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concept of Shannon entropy as it does not depend on choice of probability distribution.
Moreover, it has been proven to be mathematically robust (by virtue of the fact that
independent definitions converge*®’ unlike the case of Shannon Entropy' and because no
computable measure can fully characterize (non-statistical) randomness (and therefore causal
versus non-causality) due to the lack of universal computational power to test for every possible
non-random feature®. C can also be seen as a measure of compressibility, but compression
algorithms (e.g. LZ, LZW) are rather entropy rate estimators and thus behave exactly like
Shannon entropy (Fig. 1j) despite their generalized use as estimators of C.

The Invariance theorem>*° guarantees that complexity values will only diverge by a constant
(e.g. the length of a computer compiler, i.e. a translating program between universal reference
Turing machines U, and U,) and will asymptotically converge. Formally, | C(s)y1- C(s)u2| < c.

C(s) as a function that takes s to the length in bits of the length of the shortest program p that
generates s (and halts) is lower semi-computable, which means it can only be approximated
from above. Proper introductions to the areas of finite algorithmic complexity and applications
are provided in%,and to algorithmic (infinite sequence) randomness can be found in %™,

Algorithmic Probability
Let U denote a universal machine and let |p| denote the length of a program p. The Halting
probability Q *? is the probability that U halts for random computer program p constructed bit
by bit by random flips of a coin. That is,
Qu= Zp:ThaIts onp 2-|p|

Q is rather a family of probabilities as it depends on the enumeration of programs or reference
universal Turing machine U, but optimal choices exist due to invariance-type of theorems 3. The
Algorithmic Probability (AP) 3 (also known as Levin's semi-measure or Universal Distribution™)
of a sequence s is the probability that s is produced by a computer program p, constructed bit by
bit by flipping a coin, running on a reference universal Turing machine U divided by their Halting
probability. Formally,

AP(S) = (1/ QU) Zp:T(p):s 2—|p|
Algorithmic probability allows reaching a consensus of possible explanations of an underlying
generating mechanism explaining the system (e.g. a network) at any time thereby providing the
most robust hypothesis for the available observable data. Algorithmic probability establishes
and shows™® that the consensus of several algorithmically likely solutions is the most likely
one.
The chief advantage of algorithmic indices is that causal signals in a sequence may escape
entropic measures if they do not hold statistical regularities but they do not escape the metric of
AP as there will be a Turing machine T capturing every statistical but also algorithmic aspect of s
that compresses s but produces s in full with no less or more information than s itself (thus
being lossless).

Numerical approximations to Algorithmic Complexity (C) using Algorithmic Probability
(AP)

The Coding Theorem Method (CTM)

Lossless compression has traditionally been used to estimate the algorithmic content of an
object s. The algorithmic complexity of a sequence s is then defined as the length of the shortest
compressed file producing s when decompressing it (the file must contain the decompression
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instructions and thus comes always with a natural overhead). While lossless compression is an
approximation to algorithmic complexity, actual implementations of lossless compression
algorithms (e.g. Compress, Bzip2, gzip, PNG, etc) are purely based upon entropy rate™” and thus
can only deal with statistical regularities of up to a window length size, thus not being more
related to algorithmic complexity than entropy alone itself. Entropy and entropy rate, however,
are not sufficiently sensitive and are not inherently invariant to object description™"’.
AP, however, constitutes a true algorithmic approach to numerically estimate C(s) by way of the
algorithmic coding theorem [Levin] formally relating these two seminal measures as follows:
C(s) =—log AP(s) + O(1)
The Coding Theorem Method (or simply CTM)*® is rooted in the relation between C(s) and
AP(s) i.e. between the frequency of production of a sequence and its algorithmic probability.
Unlike other computable measures, such as Shannon Entropy, CTM has the potential to identify
regularities that are not only statistical (e.g. a sequence such as 1234...), that has as shortest
program (and generating model) n:= n+1, that is even sequences with high Entropy but no
statistical regularities that are not random, have low algorithmic complexity and are thus causal
as the result of an evolving computer program.
As previously demonstrated™, an exhaustive search can be carried out for a small-enough
number of Turing machines for which the halting problem is known, thanks to the Busy Beaver
game’®. One strategy to minimize the impact of the choice of T is to average across a large set of
different Turing machines all of the same size™*°. Let (n, k) be the space of all n-state m-symbol
Turing machines, n, k >. Then:
D(n, k)(s) = | {Tiin (n, k): T produces s} | / | {Tin (n, k)} |
is the function that assigns to every finite binary sequence s, where T is a standard Turing
machine as defined in the Busy Beaver problem®®. We remark that 0 < D(n, k)(s) < 1, D(n, k)(s)
and is thus said to be a semi-measure, just as AP(s) is because the probability measure does not
reach 1 due to non-halting machines. Then using the relation established by the coding
theorem [Eq 1], the measure of complexity which is heavily reliant upon AP used throughout
this paper can therefore be defined™'®, as follows:
CTM(s, n, k) =—logn(D(n, k)(s)) [Eq 2]
CTM is thus an upper bound estimation of algorithmic complexity'’. For small values n and k,
D(n, k) is computable'®?® whereas for larger objects the estimation is based on an informed
cutoff runtime based on both theoretical and numerical grounds asymptotically capturing most
of the halting Turing machines in polynomial time .

The Block Decomposition Method (BDM)

Because CTM is computationally very expensive (equivalent to the Busy Beaver problem), the
algorithmic complexity for only short sequences (currently all up to length k = 12) have thus far
only been estimated by the CTM method. To approximate the complexity of a longer sequence
is therefore necessary to aggregate the various computer programs that generate the string in a
clever fashion by taking advantage of Shannon entropy; the new hybrid measure thus calculates
local algorithmic complexity and global Shannon entropy at the same time. Formally, the BDM
of a string or finite sequence s is as follows *:

BDM(s, I, n, k) = Z{ CTM(x;,n, k) + log(s;) [Eq 3]

where s; is the multiplicity of x;, and x; is the subsequence i after decomposition of s into
subsequences x;, of length |, with a possible sequence remainder vy if |y| < | if its length is not a
multiple of the decomposition length |. The parameter k runs from 1 to | that CTM can handle, m
is an overlapping parameter to deal with the boundary conditions (the remainder sequence).
The boundary conditions were studied in ** where it is shown that BDM errors due to boundary
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conditions are convergent and vanish asymptotically, and that BDM is lower bounded by
Shannon entropy and upper bounded by algorithmic complexity thereby providing local
estimations of algorithmic complexity and global estimations of entropy.

Graph Algorithmic Probability as Upper Bounds to Graph Randomness
We have shown that not all measures are robust to object description® but that algorithmic
probability and algorithmic complexity are up to a constant term****. An adjacency matrix thus
can be taken as the lossless description of a network as it is invariant (up to automorphisms).
We look at the algorithmic probability of such a matrix to be produced by a computer program
working on a grid (e.g. a so-called Turmite emulated by a Turing machine) by chance. For every
network or graph G, we can therefore estimate the algorithmic information content K(G) based
on the likeliness of such adjacency matrix to be produced from an empirical distribution after
application of the algorithmic Coding theorem.
The algorithmic complexity K of a graph G is defined as follows, . Let A(G) be the adjacency
matrix of G and Aut(G) its automorphism group, i.e. the set of isomorphic graphs of G to itself,
then the algorithmic complexity of the graph is K(G) = min{K(A(G))|A(G) € A(Aut(G))}, where
A(Aut(G)) is the set of adjacency matrices for each G € Aut(G). Since K(D(G)) ~ K(A(G)) for any
computable lossless description D of G ** we can safely write K(G) and it can be proven® that if
G and G’ are isomorphic graphs, then | K(G) — K(G’) | < ¢, that is they have both similar
algorithmic information content. It has been proven using numerical approximations that graphs
in large automorphism groups have similar low algorithmic complexity and graphs with small
automorphisms groups can have both low and high complexity®®, thereby establishing a one-
way numerical relationship between algebraic complexity by group symmetry and algorithmic
complexity approximated by BDM with results conforming with the theoretical expectation. Let
call such approximation of K(G) with BDM, C(G):
The algorithmic complexity C(G) of graph G is defined by

C(G, xi) = Z(s, ) Xi log (s1) + CTM(r;) [Eq 4]
where set x; is composed of the pairs (r, n) with r an element of the decomposition of G in
square sub-arrays of equal and s; the multiplicity of each submatrix x; by using 2-dimensional
Turing machines in the calculation of CTM.
Theorem: There exists ER graphs that are not maximal algorithmic random graph:s.
Proof: Let p(t) be a binary pseudo-random number generator with seed t shown to produce
good statistical randomness. Let G be an ER graph of size n with edge density r. There are

22,23,34

therefore rn(n - 1)/2 edges. Let every edge ei € {ey,...,emn-12} € G be connected to node vi €
{vi,...,vn} if p(t) = 1 and disconnected otherwise. G is clearly ER but not maximal algorithmic
random because G is recursively generated by p with seed t.

To this date, there were no alternatives to apply non-linear interventions to complex systems in
the phase space other than to actually simulate dynamical trajectories of a system assumed on
little to no knowledge or assume them to be linear and in fixed points, and even so requiring
computationally intractable resources. This new calculus, however, requires much less
information to provide educated causal interventions promising to be useful and powerful.

Algorithmic-information Causal Interventional Calculus

The core of the causal calculus is based upon the change of complexity of a system subject to
perturbations, particularly the direction (sign) and magnitude of the difference of algorithmic
information content C between two graphs G and G’, e.g. the removal of e from G (denoted by
G\e). The difference | C(G) — C(G\e) | (see Supplement, Section 1) is an estimation of the shared
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algorithmic mutual information® of G and G\e. If e does not contribute to the description of G,
then | C(G) — C(G\e) | ~ log,|V(G)|, where |V(G)] is the node count of G, i.e. the difference will
be very small and at most a function of the graph size and thus C(G) and C(G\e) have almost the
same complexity. If, however, | C(G) — C(G\e) | < log,|V(G)| bits, then G and G\e share at least
n bits of algorithmic information in element e, and the removal of e results in a loss of
information. In contrast, If C(G) — C(G\e) > n, then e cannot be explained by G alone nor is it
algorithmically not contained/derived from G, and it is therefore a fundamental part of the
description of G with e as a generative causal mechanism in G, or else it is not part of G but has
to be explained independently , e.g. as noise. Whether it is noise or part of the generating
mechanism of G depends on the relative magnitude of n with respect to C(G) and to the original
causal content of G itself. If G is random then the effect of e will be small in either case, but if G
is richly causal and has a very small generating program, then e as noise will have a greater
impact on G than would removing e from the description of an already short description of G.
However, if | C(G) — C(G\e) | < log, |V(G)|, where |V(G)]| is the vertex count of G, then e is
contained in the algorithmic description of G and can be recovered from G itself (e.g. by running
the program from a previous step until it produces G with e from G\e).

For example, in a complete graph Kyq (Fig. 1a,b), the removal of any single node leads to a
logarithmic reduction in its algorithmic complexity, but the removal of any single edge leads to
an increase of randomness. The former because the result is simply another complete graph of a
smaller size, and the latter because the deleted link would need to be described after the
description of the complete graph itself. However, the removal of node 1 (Fig. 1 b) is equivalent
to the removal of the set of all edges connecting to node 1, so the set of all these edges is a
positive information set even though all its individual edges are negative, a nonlinear
phenomenon that we call information incoherence. Connecting two complete graphs at a
random node (Figure 1c) designates the connecting link as positive because its removal pushes
the network towards simplicity, the minimal description of 2 K,y graphs being shorter than the
minimal description of 2 Ky graphs plus the description of the missing link at random points.
Such a link can also be seen as an element connecting 2 networks, hence a network of networks.
Its identification and removal would thus reveal the separation between two networks. In
general, positive elements will identify the major structures generated by the most likely (and
simplest) generating mechanism given the observation, and odd elements will stand out as
negative, thereby identifying layers of networks that are independent of separable generating
mechanisms, even removing apparent noise (external information) from the signal (the system’s
natural evolution) when such networks are richly causal. Random graphs are node- and edge-
blueshifted (see Fig. 1g)—; simple graphs such as complete or wheel graphs are edge-redshifted.
Perturbing (e.g. knocking-out) a node and recalculating the spectra changes the original
spectrum in what is clearly a non-reductionistic approach to characterizing networks. All the
methods introduced here also work on directed (e.g. Fig. 1d) and weighted graphs without any
loss of generality.

Real-world networks as generated by physical laws are recursive according to classical
mechanics (deterministic and reversible), and are thus on the left side in the schematic
Extended Data Figure. 1, but they may also contain information about other interacting systems
or be captured in a transient state that incorporates external signals pushing the networks
towards randomness. We have quantified this concept by proposing different (Re)
Programmability indices (see Supplement Section 1). Extended Data Figure. 1 summarizes
some of the theoretical expectations and numerical results. The curve is negatively skewed
because of a thermodynamic argument: while it is easy and fast to move regular networks
towards randomness as a function of the number of edges—there being about |E(G)| ways to
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move the network towards randomness such that the description of G moves to |G| + |e], i.e.
the description of, say, an edge removed, where |E(G)| is the edge count of G-- there are far
fewer ways to move a random network away from randomness. A MAR graph, for example,
cannot be moved by edge or node deletion more than log |E(G)|. The result is compatible with
the asymmetries in energy landscapes between moving systems towards fewer future attractors
versus moving them back to states of a greater number of attractors, the latter requiring much
more energy than the former.

Minimal Information Loss Sparsification (MILS)

Our causal algorithmic calculus defines an optimal parameter-free dimension reduction
algorithm, which minimizes information loss while reducing the size of the original (network)
object. The Minimal Information Loss Sparsification (or MILS) method is based on removing
neutral elements while preserving the information content of a network, and therefore its
properties, and it can be used for reduction by minimizing the loss of any informational feature
of G that needs to be described and cannot be compressed into some shorter description of G
(see Supplement Section 2 for the pseudocode and evaluation).

Maximal Algorithmic Randomness Preferential Attachment (MARPA) algorithm

The Maximal Algorithmic Randomness Preferential Attachment (MARPA) algorithm (MARP) (see
Supplement Section 2 for the pseudocode and evaluation) can be viewed as a reverse algorithm
in comparison to MILS. MARPA seeks to maximize the information content of a graph G by
adding new edges (or nodes) at every step. The process approximates a network of a given size
that has the largest possible algorithmic randomness and is also an ErdGs-Rényi (ER) graph. An
approximation of a ‘Maximal’ Algorithmic- Random (MAR) graph can be produced as a reference
object whose generating program is not smaller than the network (data) itself and can better
serve in maximum (algorithmic-) entropy modelling. See Supplement Section 1 for the proof of
the existence of ER graphs that are not maximal algorithmic-random graphs

Dynamical simulations using Boolean networks

We conducted a first experiment: single-node and single-edge deletion effects on all possible

Boolean networks with XOR, AND, and OR as functions with up to the size of 5 nodes. A Boolean

network consists of a discrete set of Boolean variables each of which has a Boolean function

(here, always the same for each node), which takes inputs from a subset of those variables. The

output of a Boolean network is the state of the numbered sequence of states of its nodes. In a

Boolean model in which a network is represented by a set of N Boolean variables, either Off (0)
n

or On (1), the number of attractors cannot exceed 2nz

In general, in a connected network, each node is controlled by a subset of other nodes. The size
of the controlling subset for each network depends on the connectivity pattern in the network
[3, 4]. For example, in an E-R random graph with edges equally distributed with edge density p,
if we change the state of any arbitrary node in the initial state, the effect on the dynamics of a
network should be about the same on average, and this means the basin of attraction remains
mostly unchanged. If the basin of attraction is of size M, the number of attractors is (2")/M. The
size of M will depend on the network density p with M<<2". However, in a simply connected
complete graph, all other nodes control all nodes and there is only one attractor with basin of
attraction size 2'. In modular scale-free networks, not all edges are statistically equally
distributed and few nodes control many others, unlike an E-R random network, and they show
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significantly greater basins of attraction sizes and therefore have a smaller number of
attractors”™.

We estimated the algorithmic-information contribution of every node n (and every edge e) over
all possible 33,554,432 5-node graphs. The estimation of the algorithmic-information
contribution (see Supplement Section 1)) considered all vertices in the same orbit of the
automorphism group of G, Aut(G), and the min of the information value C(G\n) with respect to
the largest component of G according to the unlabelled definition of algorithmic complexity for
unlabelled graphs in [2], thus correcting minor deviations of estimations of the complexity of
C(G\n) by BDM due to boundary conditions [1]. The calculation of C(G’) for every G’ in Aut(G) is,
however, not feasible in general as the production of Aut(G) and thus the calculation of C(G’) for
all G in Aut(G) is believed to be in NP, thereby making the brute force exploration
computationally intractable (in [2 and 3]. However, it has also been shown that estimations of
K(G) are similar to K(Aut(G))).

We performed the same edge perturbation experiments, removing all edges, one at a time,
from larger graphs, [Fig3e] and comparing with state-of-the-art algorithms [4] the largest
eigenvalue, number of different eigenvalues and number of attractors on the largest remaining
connected component of the larger graphs. The experiment was repeated with Boolean
functions OR, XOR and AND, leading to the same results.

One can then apply uninformed perturbations to move networks towards statistical randomness
based on this algorithmic-information calculus, and in a controlled fashion towards and away
from algorithmic randomness, thus taking into account non-statistical and non-linear effects of
the system as a generating algorithmic mechanism, providing a sequence of causal interventions
to move networks and systems at the level of the (hypothesized) generating model in order to
reveal first principles and to control the side effects of such a system’s manipulation at every
step.

Random versus regular networks are sensitive in different ways. While an algorithmic- random
network is hard to move fast along its algorithmic -random location (Extended Data Fig. 1-4),
other changes in simple regular graphs have more dramatic effects (Figla v Figlc), displaying
different degrees of linear v. non-linear behaviour for different perturbations. In low
algorithmic-content networks such as simply directed complete graphs, all nodes are immune to
perturbations, leaving the basins of attraction and number of attractors the same (only
proportional to their new size). From these principles, it is evident that systems that are far from
random display inherent regular properties, and are thus more robust in the face of random
perturbations because they have deeper attractors (See Supplement Section 2).

Algorithmic Causal Reconstruction of Dynamic Systems
The theory of algorithmic complexity provides means to find mechanistic causes through most
likely (simplest) algorithmic models, helping to reverse engineer partial observations from
dynamic systems and networks.
The causal reconstruction method of a system (e.g. a network or cellular automaton) M is as
follows:
1) Estimate the information contribution of every element e in O(n), the sequence of
instantaneous observations O from time 0 to n.
2) The set of neutral elements {e} is the set of those elements whose algorithmic-
information content contribution to the complexity O(n) is of a logarithmic nature only
with respect to C(n).
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Remove neutral elements {e} from O(n) and repeat (1) with reassigned O(n) := O(n)\{e}.
After m iterations the reverse sequence of observations O(n)\{e} provides an indication
of the evolution of the system in time, thereby yielding a hypothesis about the
generating mechanism P producing O(n) for any n, and unveiling the initial condition in
the last element of the above iteration, or the first after reversing it ( see supplement,
section 2 for more details and an example).
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Section 2: Parameter-free Algorithms: pseudo-codes and evaluations

Dynamical simulations using Boolean networks

We first explored whether the algorithmic content, or more precisely the information spectrum,
of a system/network, influences transitions between different stable states thereby effectively
providing a tool to steer and reprogram networks. We observed an average decrease of size of
reachable states for all nodes (mean value), and the distribution of reachable states becomes
more clustered (standard deviation), and more symmetrical (skewness) for all graphs with 5
nodes and single deletion. Positive info nodes had a similar effect as a deletion of a hub in the
network. Absolute and relative negative have similar effect, whereas neutral (no information
change) nodes preserve the distribution skewness closest to original.

Histograms of perturbation effects on all graphs of size 5 nodes using functions XOR, AND, and
OR produced similar results (see Fig3d & raw data infoedgesmotifs5.csv). Due to the small size
of the graph we were able to control for graph automorphisms to correct minor BDM errors
produced by boundary conditions*’. Two objects x, y are in the same orbit if there is an
automorphism @ in Aut(G) such that @(X) = Y (equivalently, X = ¢ * (Y)). In the algorithmic
perturbation analysis, if elements ey, ..., e, in E are in the same orbit in Aut(G) we take as the
perturbation of every element in E to be all equal to min{| C(G\e;) — C(G) |,

.., | C(G\e,) = C(G) |, ...}. In other words, the effect of every element e;in E on G is the same.
The automorphism group Aut(G) was generated with help of public software?*? for this
experiment. For larger networks, however, this becomes computationally expensive in the
context of the perturbation analysis and thus, because we have shown that K(G) ~ K(Aut(G))**,
we continued calculating C(G) only.

In the exhaustive experiment over all connected graphs of node count 5, deleting the largest
versus smallest node degree produced statistical differences as expected as previously
suggested®®. More relevant to our purposes, it was found that positive versus negative versus
neutral information node/edge removal led to statistically different effects when executed in
connected networks. Negative information node removal was interestingly not similar to lowest
degree removal, yet statistically significant different to control (random) node removal.
Absolute and relative negative information removal had similar effects, and neutral (no
information change) nodes/edges kept the distribution skewness closest to the original
distribution, in concordance with theory. For negative edges, the number of attractors was
significantly increased (Fig3d) as the theory predicted.

Minimal Information Loss Sparsification (MILS)

Below we provide the pseudo-code for the MILS algorithm. MILS allows dimensionality
reduction of a graph (or any object) by deletion of neutral elements, thus maximizing
preservation of the most important properties of an object as the algorithmic information
content is invariant under neutral node perturbation. Let G be a graph, then:

1. Calculate the powerset spectra(G) and let E; be the subset j in the set of all non-empty

proper subsets of edges {eq, ..., ep}in G.
2. Remove the subset Ej such that C(G\Ej) < |C(G\E;)| for all E; in powerset spectra(G),
where |C| is the absolute value of C.

3. Repeat 1suchthatG := G\Ej until final target size is reached.

The algorithm time complexity class is in O(Zp(")) (if there are no subsets with same information
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value) because of the combinatorial explosion of the power set, but a more efficient suboptimal
version of MILS iterates over only singletons:

1. Calculate G\ejforalli € {eq,....en}i.e. spectra(G).
2. Remove edge ejin spectra(G) such that C(G\ej) < |C(G\ej)|.
3. Repeat 1 with G := G\ej until final target size is reached.

We call e; a neutral information edge because it is the edge that contributes with less
information content (in particular, minimizes information loss or introduction spurious
information) to the network according to the information difference when removed from the
original network.

Assuming that the estimations of C(G) and spectra(G) are definite and fixed (in reality one can
always find tighter upper bounds though due to C's semi-computability), and MILS is a
deterministic algorithm. Let G be a network and i(e) = C(G) - C(G\e) be the information value of
element e in G with respect to G. If i(e’) > i(e) then MILS algorithm removes e first (by definition)
because it minimizes the loss of information if the choice is to remove either e or e¢’. We have
thus that C(G\e;) = C(G\e,) if, and only if, i(e;) = i(e,). However, it does not hold in general that
C(G\es\e;) = C(G\e,\e1), that is, the removal of e, followed by the removal of e, from G, is not
equal to the removal of e, followed by the removal of e; from G, even for i(e;) = i(e,) because of
non-linear effects (i.e. the removal of e; may modify the information contribution of all other e;
in G\e;). This suggest that the only way to deal with these cases for MILS to be deterministic is
the simultaneous removal of the set of elements {e,, ... e,} such that i(e;) = ... = i(e,). The time
complexity of MILS thus ranges between the original O(n?) in the worst case to O(1) when all
nodes have the same information value/contribution to G and are thus removed in a single step.
Therefore, set removal turns MILS into a proper deterministic algorithm that yields the same
object for any run of MILS over an object G. Because any property of a network ultimately
contributes to its information content (the amount of information to describe it), information
minimization will preserve any potential measure of interest. We show in the following section
that minimizing loss of information maximizes the preservation of graph theoretic properties of
networks such as edge and node betweenness, clustering coefficient, graph distance, degree
distribution and finally information content itself.

Experimental evaluation of MILS using real-world networks

Depicted in Figl(i) and (j), an example of a scale free network with 100 nodes and its original
information signature (see Supplement section 1) which after neutral edge removal preserves
the information signature (by design) after deleting 30 neutral edges but also preservation of
graph theoretic properties such as edge betweenness, clustering coefficient and node degree
distribution after deleting all graph edges better than several other common sparsification
methods (validated on 20 other gold-standard networks (*’ & see Supplement Section 1). This is
because an element that is deleted will lead to a reduction of its algorithmic information
content, so in the maximization attempt to preserve its algorithmic information content only the
less informative or most redundant properties of a network/system will be removed.

When MILS is applied to a set of well-known networks used before in pioneering studies 2’ we
find that not only the loss information signatures and thus the non-linear algorithmic
information content of the system was minimized, but also that all the tested and most common
graph-theoretic measures are maximally preserved versus random deletion and other common
dimension reduction methods .
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Maximal Algorithmic Randomness Preferential Attachment (MARPA) algorithm

MARPA allows constructions of a maximally random graph (or any object) by filling out the
blanks, i.e. adding edges, for any given graph in such a manner that randomness increases. Let G
be a network and C(e) the information value of e with respect to G such that C(G) — C(G\e) = n.
Let P = {p1, p2, ..., pn} the set of all possible perturbations. P is finite and bounded by P < yAl
where E(G) is the set of all elements of G, e.g. all edges of a network G. We can find the set of
perturbations e’ in P such that C(G) — C(G\e’) = n” with n’ < n. As we iterate over all e in G and
applying the perturbations that make n’ < n, for all e, we go through all 2IE@l possible
perturbations (one can start by all |E(G)| single perturbations only) maximizing the complexity
of G’ = max{G | C(G) — C(G\e) = max among all p in P and e in G}. Alternatively, there is a
configuration of all edges in G that maximizes the algorithmic randomness of G, let such a
maximal complexity be denoted by maxC(G), then we find the sequential set of perturbations
{P} such that maxC(G) - C(G) = 0, where C(G) - maxC(G) is a measure related to randomness
deficiency’®*® of how removed G is from it (algorithmic-) randomized version maxC(G) (notice
that C(G) is upper bounded by maxC(G) and so the difference is always positive). Fig. 3a-c, shows
how we numerically (single-element wise) moved a regular network towards randomness (in
particular an E-R graph). Notice that while an ER network with edge density 0.5 is of maximal
entropy, it can be of high or low algorithmic randomness, i.e. recursively generated or not’ but a
high algorithmic random graph is also ER because, if not, then by contradiction it would be
statistically compressible and thus non-algorithmic random, this is because a graph with any
statistical regularity would also not be algorithmic random nor ER. One can also consider the
absolute maximum algorithmic random graph, denoted by amaxC(G) and disconnected to the
number of elements of G (thus not a randomization of G), that is the graph of same number of
nodes, but edge arrangement such that C(G) < C(amax(G)) < 2* where k = (|E(G)|( |E(G)|-1))/4
is the maximum number of edges in G divided by 2 (at edge density 0.5 reaches max algorithmic
randomness. The process approximates a network of some size that has the greatest possible
algorithmic randomness and is also an Erd6s-Rényi (ER) graph. The pseudo-code is as follows:

1. Start with graph G (can be empty).
2. Attach edge ejto edge ej’ in G such that C(GUej’) > C(G).

3. Repeat1lwithG:=GU ej’ until final target size of graph is reached.

Generating a MAR graph is computationally very expensive with exponential time complexity in

0(2nz ) because at every step all possible attachments have to be tested and evaluated (i.e. all
possible permutations of the adjacency matrix of size n x n), but small MAR graphs are
computationally feasible, and they represent approximations of “perfect” ER random graphs,
that unlike some ER graphs they cannot, in principle, be recursively generated with small
computer programs. The intuition behind the construction of a MAR graph is that the shortest
computer program (measured in bits) that can produce the adjacency matrix of the MAR graph,
is of about the size of the adjacency matrix and not significantly shorter, thus it can in some
strict sense it can be considered the perfect ER graph. Every time that a larger graph, and
therefore the addition of new edges, is needed, the computer program that generates it grows
proportionally to the size of the adjacency matrix (See Supplement section 1 for algorithm and
more details).

Algorithmic Causal Reconstruction of Dynamic Systems
In general, observers (see Fig2a) have only limited access to any system’s generating mechanism
denoted by P or to the precise dynamics D of the same system. To each system’s perturbation,
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or observation O(n), in time 0 to n, can correspond to an estimation of the complexity C(n) of
O(n) based upon the likelihood of P to explain O(n). The objective when attempting to identify a
system is access P by inspecting the system at observation intervals (or the consequences of
system perturbations) capturing possible features to associate with P. Because knowledge about
D, the dynamics governed by a system e.g. ODEs or a discrete mapping such as a cellular
automaton, is as a rule beyond reach, network-based approaches can conveniently focus on the
relationships among a system’s elements represented by a timeline T, thus serving as a
topological projection of the system’s dynamics based on e.g. correlation (apparent row-column
correlation from an observation in time).

Computer programs with empty inputs can encode both the dynamics and changing initial
conditions of a system over time, constituting a true causal generating mechanism for all
system’s timelines, see Fig. 2a, where dynamics and topology are included. Not all systems are
equally dependable of their internal kinetic dynamics. For example, network-rewriting systems
updated according to replacement rules have no dynamics (See Fig2d). On the other hand, there
are systems whose internal kinetics fully determines the system’s behaviour i.e. attractor
structure, such as Hopfield networks®® and Boltzmann machines®, which is independent of their
fixed topology (complete graphs). Other networks are, however, more dependent on topology
or geometry (e.g. disease networks or geographical communication networks). Boolean
networks, governed both by their topological and internal kinetic properties as encoded by the
connectivity of the node with the assigned Boolean function®* to that very node. Each
observation of a system is necessarily only a partial snapshot of the system’s trajectory in phase
space and it reveals only certain aspects of the generating cause, yet without any loss of
generality one can use the causal calculus here introduced either on T, D or a combination of T
and D in order to produce algorithmic models of causal generating mechanisms approaching P
and producing T and D. While the focus of the causal calculus here introduced focuses on T, it
can readily incorporate D by moving to the phase space without any essential modification and
for which we have included some examples using discrete dynamics systems such as cellular
automata to show how the same calculus can be utilized. The same elements in D that move a
system towards, or away, from randomness are, conversely, positive and negative elements like
those defined for T ( See Fig2a,b,c,d ) in the application to networks.

Reverse-engineering discrete dynamical systems from disordered observations:

A cellular automaton (CA) is defined by a rule for computing the new value of each position in a
configuration based only on the values of cells in a finite neighborhood surrounding a given
position. Commonly a CA evolves on a square grid or lattice of cells updated according to a finite
set of local rules which are synchronously applied in parallel. A snapshot in time of the symbols
of the cells is called a configuration. A snapshot in space and time (the characteristic CA grid) is
called an evolution.

A local and a global function f and A can therefore define a cellular automaton. Let S be a finite
set of symbols of a cellular automaton (CA). A finite configuration is a configuration with a finite
number of symbols, which differs from a distinguished state b (the grid background) denoted by
0”b0™ where b is a sequence of symbols in S (if binary then S = {0, 1}). A stack of configurations
in which each configuration is obtained from the preceding one by applying the updating rule is
called an evolution. Formally, Let f : S = S” where Z is the set of positive integers and n, i € N
then f(ry) = A(xi—r . . . Xi. . . Xisr), Where f is a configuration of the CA and r; a row witht € N and rgy
the initial configuration (or initial condition). The function f is also called the global rule of the
CA, with A : S" > S the local rule determining the values of each cell and r the neighborhood
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range or radius of the cellular automaton, that is, the number of cells taken into consideration
to the left and right of a central cell x; in the rule that determines the value of the next cell x.
All cells update their states synchronously. Cells at the extreme end of a row must be connected
to cells at the extreme right of a row in order for f to be considered well defined. The function A4
indicates the local state dependency of the cellular automata and f updates every row. Depicted
(Extended Data Figures 7-13) is the Elementary Cellular Automaton (ECA) rule 254 (in Wolfram’s
enumeration®®) that generates a typical 1-dimensional cone from the simplest initial condition
(black cell) running downwards over time for 20 steps. ECA are CA that considers only the
closest neighbors to the right and left and itself therefore 3 cells each with a binary choice for A.
Every ECA such as rule 254 can thus be seen as a 2° = 8-bit computer program represented by its
rule icon representing its function f (Figla P(t)) or a function determining its local and global
dynamics (Fig. 2 D(t)). Any perturbation to the simple evolution of the rule leads to an increase
of its complexity because a rule with a longer description than rule 254 would be needed to
incorporate the introduced random perturbation (blue rows), thus every row in rule 254 is
information negative except for the random rows whose deletion would bring the rule to its
simplest description (rule 254). Unlike the rest of the dynamic system, the last step in the
evolution of a dynamic system is information neutral because it does not add or removes any
complexity, so removal of neutral elements reverses the system’s unfolding evolution to its
original cause (the black cell) and the rule can be derived by reversing the sequence of the
neutral elements at every step, effectively peeling back the dynamic system from a single
instantaneous of a sequence of observations (in optimal conditions, e.g. no noise and full
accuracy, and good enough approximations of algorithmic-information content).
When clustering consecutive rows of the evolution of all Elementary Cellular Automata (256
rules) we found that the later the perturbations in time the more neutral thus conforming to the
theoretical expectation (Fig. 3 and Extended Data Figure 7). When taking a sample of
representatives ECAs this was also clearly the case (Figure 3). We proceeded to reverse engineer
the rule of an ECA by:
1) Produce the space-time diagram O(n) of an ECA from time 0 (initial condition) to time n.
2) Scramble the observations from O(n) (worse case of an observation, to loose track of
their order)
3) Sort the scrambled observations to maximize algorithmic probability to find the most
likely generating mechanism (with lowest algorithmic complexity).
4) From 2 and 3 estimate the algorithmic-information content of every (hypothesized)
step.
5) Compare among all them and sort from lowest contribution to highest.
6) Find the initial condition and generating rule by reversing the order of the sequence of
neutral elements from O(n).

Finding the lowest complexity configuration of disordered observations and above we show how
we found the correct times, thus providing a most powerful method to reverse engineer and
find design principles and the generating mechanism of evolving systems. Running the sequence
forward one can also make predictions of the phase space configuration of the dynamic evolving
system. Fig. 3 and Extended Data Figure 7 shows that the predicted point in the phase space
does not diverge from the actual position of the system in phase space, thus providing good
estimations of the evolution of the system both backward and forward.

In what follows in the paper, we choose to work at the level of T for the same convenient
simplifying reasons followed by other network-based approaches, but unlike other possible
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approaches, the theory and methods holds in general for non-linear dynamical systems and not
only static or evolving networks. When working on T only, we assume that lossless descriptions
are of the observations (e.g. only T) and not of full descriptions of T and D or even P (the true
generating mechanism, e.g. a computer program P) that is the unknown. To this date, there
were no other alternatives to apply non-linear interventions to complex systems in the phase
space other than to actually calculate dynamical properties of a system often assumed with little
knowledge or assumed to be linear and in fixed states, requiring computationally intractable
simulations. This new calculus, however, requires much less information to make educated
causal interventions proving to be extremely useful and powerful.

Entropy-deceiving graphs

We introduced a method® to build a family of recursive graphs of which one is denoted by ‘ZK’
with the property of being recursively constructed and thus of low algorithmic (Kolmogorov-
Chaitin-Solomonoff) complexity (and thus causal) but would appear statistically random and
thus as having maximal Entropy for an uninformed observer. These graphs were proven to have
maximal Entropy for some lossless descriptions but minimal Entropy for other lossless
descriptions of exactly the same object, thereby demonstrating how Entropy fails at
unequivocally and unambiguously characterize a graph independent of a particular feature of
interest reflected in the choice of natural probability distributions. A natural probability
distribution of an object is given by the uniform distribution suggested by the object dimension
and its alphabet size. For example, if a graph G is losslessly (with no loss of information)
described by its adjacency matrix M, then in the face of no other information, the natural
distribution is the probability space of all matrices of dimensions |M| and binary alphabet. If,
however, G is losslessly described by its degree sequence S with no other information provided
about G, the natural distribution is given by probability space of all sequences of length |S| and
alphabet size |{S}|, where {S} denotes the number of n-ary different symbols in S. The natural
distribution is thus the less informative state of an observer with no knowledge about the
source or nature of the object (e.g. its recursive nature). We denote by ‘ZK’ the graph
(unequivocally) constructed as follows:

1. Let1 -> 2 be astarting graph G connecting a node with label 1 to a node with label 2. If
a node with label n has degree n, we call it a core node, otherwise, we call it a
supportive node.

2. lteratively add a node n + 1 to G such that the number of core nodes in G is maximized.

3. The resulting graph is typified by the one in Fig2d.

Clearly supporting nodes are always the latest to be added at each iteration, perturbing
elements of the network other than the last elements will break the generating program and
thus these elements will move the network towards randomness whereas removing the latest
nodes has little to no impact because it only moves the network back in time, but the originating
program remains the same and only needs to run again to reach the same state as before. Thus
by inspecting elements that do not contribute or make the network slightly more simpler one
can reverse the network in time thereby revealing its generating mechanism (See Algorithmic
Causal Reconstruction of Dynamic Systems subsection).

We have shown that Entropy is highly observer dependent even in the face of full accuracy and
access to object lossless descriptions. These specific complexity-deceiving graphs for which
Entropy produce disparate values when the same object is described in different ways (thus
with different underlying probability distributions), even when the descriptions reconstruct
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exactly the same, and only the same, object. This drawback of Shannon Entropy ultimately
related to its dependence of distribution is all the more serious because it is especially
overlooked for objects other than strings, such as graphs. For an object such as a graph, we have
shown that changing the descriptions does not only may change the values but divergent
contradictory values are produced. This means that one not only need to choose a description of
interest to apply a definition of Entropy, such as the adjacency matrix of a network (or its
incidence or Laplacian) or its degree sequence, but as soon as the choice is made, Entropy
becomes a trivial counting function of the feature, and only the feature, of interest. In the case
of, for example, the adjacency matrix of a network (or any related matrix associated to the
graph such as the incidence or Laplacian matrices), Entropy becomes a function of edge density,
while for degree sequence Entropy becomes a function of sequence normality. Entropy can thus
trivially be replaced by such functions without any loss but it cannot be used to profile the
object (randomness, or information content) in any way independent of an arbitrary feature of
interest. The measures introduced here are robust measures of (graph) complexity independent
of object description based upon the mathematical theory of randomness and algorithmic
probability (that includes statistical randomness), which are sensitive enough to deal with
causality and provide the framework for a causal interventional calculus.

Section 3: Evaluation and validation of the causal calculus using transcriptional data and
genetic regulatory networks.

E-Coli Transcription Factor Network Ontology Enrichment Analysis

We estimated the information node values of a highly curated E. coli transcriptional network
(only experimentally validated connections) from the RegulonDB
(http://www.ccg.unam.mx/en/projects/collado/regulondb). Info values were clustered into 6
clusters by using partitioning around K-medoids and optimum average silhouette width. Gene
clusters were tested for enrichment of biological functions according to Gene Ontology, KEGG
and EcoCyc databases, using topGO “weight01” algorithm for GO or hypergeometric enrichment
test for KEGG and EcoCyc. BDM values did not correlate with degree distribution, compression
or Shannon entropy. The numerical results suggest that more positive information genes in E-
Coli are related to homeostasis processes while more negative info genes are related to
processes of specialization, in agreement with the idea that cellular development is an unfolding
process in which core functions are algorithmically developed first than more specialized
enabling training-free and parameter-free gene profiling and targeting. Extended Figures 8-16
show that other measures fell short at producing statistically significant groups for a gene
ontology analysis, and also provides details of the found clusters and elements in them.

Information spectral and enrichment analysis of Th17 differentiation

We applied our method to a dataset on differentiation of T-helper 17 (Th17) cells®. Th17 cells
are one of the major subsets of T-helper cells, which in addition to Th17 comprise several sub-
types such as Thl, Th2 and Treg cells. These subsets all differentiate from a common naive CD4+
T cell precursor cell type based on environmental signals and are classified by certain lineage-
defining markers. Th17 cells are necessary to protect the host from fungal infections, but at the
same time are involved in the pathogenesis of several autoimmune diseases, hence the
processes driving Th17 differentiation are of great interest to the scientific community*®. From
the gene ontology analysis taking the experimentally known genes involved in the process of
differentiation from T naive to Th17 (Fig. 4e), it is shown that exactly those genes are distributed
non-uniformly and in different ways along the 3 time points thereby suggesting that the
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algorithmic perturbation analysis succeeds at identifying such genes (otherwise, the
distributions would have appeared uniform in all cases).

Information spectral analysis

The information spectral analysis used a reconstructed regulatory network from functional
perturbation and transcriptional data corresponding to the Th17 differentiation. The data was
divided into three time windows; 0.5 to 2 hours, 4 to 16 hours, and 20 to 72 hours, here referred
to as EarlyNet, IntermediateNet and FinalNet respectively. We were interested in investigating
whether genes with strongly negative or positive information values would include genes knows
to be crucial in Thelper cell differentiation and/or novel putative Th17 regulators, and whether
those genes would according to our predictions change their information content throughout
the Th17 differentiation process. We noted that in general, genes classified as having the most
positive or negative information values covered several genes known to be involved in T cell
differentiation such as transcription factors from the IRF or STAT families (see Extended Data
Figure 5). The genes assigned in the Th17 regulating modules® were present along the spread of
information values with some enrichment at extreme positive values. However, not all genes
with extreme information values were identified in the original study®® suggesting that our
method may identify additional regulators (Extended Data Figure 5). When analyzing those
genes that are present in all 3 networks and determining their evolution over time (Extended
Data Figure 5), we noted that genes for chemokines/chemokine receptors were switching from
negative values in EarlyNet to positive values in FinalNet. In the gene group switching from
positive in EarlyNet via negative in IntermediateNet back to positive in FinalNet, many
transcription factors from the STAT family were represented. Extreme (mostly positive)
information values were assigned for many members of the IRF family of transcription factors,
which comprises well-known regulators of Thelper differentiation (Extended Data Figure 5),
including Th17-inhibiting roles for IRF8 which appears on top of the lists in IntermediateNet and
FinalNet (Extended Data Figure 5). Only three genes were assigned negative information values
in FinalNet, namely STAT6, TCFEB and TRIM24, suggesting that removing these might be able to
enhance the Th17 profile.

Clustering

The networks were clustered using the k-means algorithm with 5 clusters per network
(Extended Data Figure 5). The list of genes that changed from most negative information values
in EarlyNet (cluster 5) towards most positive information values in FinalNet (cluster 1) contained
several genes involved in T helper cell subset differentiation and function, for example, HIF1a,
FOXO01, IKZF4, 1L2, IL21, IL2RA, IL6ST. Conversely, the list of genes with highest information
values in EarlyNet overlapping with lowest information values in FinalNet was more restricted in
number and contained some general transcription factors such as RelA and Jun.

We noted that in general, genes classified as having the most negative or positive information
values comprised many genes known to be involved in T cell differentiation, such as
transcription factors from the IRF or STAT families, chemokine receptors, cytokines and cytokine
receptors; this was particularly evident for networks 1 and 3. When analyzing those genes that
have negative information values in network 1 and change towards positive information values
in network 3, we found that the common elements in both lists contain several such genes
involved in T helper cell subset differentiation and function, for example, HIF1a, FOXO1, IKZF4,
IFNg, IL2, IL21, IL2RA, IL6ST, CXCL10, CXCR3, CXCR5. Interestingly, the list of genes with positive
information values in network 1 or with negative information values in network 3 was much
more restricted in number and did not overlap, yet contained highly interesting genes. In
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network 1, these were mostly transcription factors including several IRFs, STATs as well as
RUNX1 and SMAD?2, all known to be important in T cell differentiation. The few genes with
negative information values in network 3 were STAT6, TCFEB and TRIM24 (interestingly these 3
genes, STAT6, TCFEB, TRIM24 are amongst the few ones centered around 0, i.e. neutral, in
network 1), and it is tempting to speculate that over-activation of these might be able to
reprogram differentiated Th17 cells to another lineage. Indeed, STAT6 is a well-known factor in
IL-4 response and Th2 induction. Notably, in network 2, which may be viewed as a transition
state, 3 genes were assigned the most positive information values and all of these belonged to
the IRF family of transcription factors, which comprises well-known regulators of Thelper
differentiation, including Th17-inhibiting roles for IRF8 which appears in said list.

Enrichment Analysis

To assess to what extent our informational spectral analysis identifies genes, which are relevant
to the differentiation process in Th17 cells we perform an enrichment analysis based on a
literature survey. To this end we collected 9 landmark papers in the Th17 literature *>*7*,

From each paper a list of genes is extracted (manually), trying to select the set of genes, which
the text identifies as relevant for Th17 differentiation. The script calculates all the intersections
between these sets, genes in a greater number of intersections is given a higher weight as more
relevant in the Th17 literature (the list of genes is in Sup. file output_with_kuchroo.txt). The
data is represented in a network diagram (Extended Data Figure 6) where a co-co-occurrence
analysis highlighted genes that were commonly identified in across several studies.

The enrichment analysis revealed that positive and negative information elements were not
distributed equally thus indicating information values were not distributed by chance in any of
the three time steps, and that these changed over time according to the theoretical and
biological expectations. That is, at early stages the naive cell has two strong set of genes that act
as handles to steer the network towards or away from randomness with a larger component of
negative elements that indicate signals that are either activating the cells or perturbing cells of
the stable naive cells that are key to the original (undifferentiated steady state) program, then
cells are activated and less number of negative genes are present while there is a distribution
skew of the positive patch towards neutral elements that pinpoint the evolving genes from the
cell activation for differentiation (high peak in the enrichment analysis), at the final step the cells
do not longer have negative elements indicating the program has reached some steady state
and the cells have mostly been fully differentiated with all remaining elements either positive or
closer to information neutral.

CellNet Waddington landscape

CellNet is a network biology-based computational platform that more assesses the fidelity of
cellular engineering and claims to generate hypotheses for improving cell derivations®. We
merged networks of same tissue type into a single larger. The result led to a set of network of
networks of the following 16 Homo Sapiens cell types: B-cell, colon, endothelial, esc (embryonic
stem cell), fibroblast, heart, hspc (Hematopoietic stem cells), kidney, liver, lung, macrophage,
muscleSkel, neuron, ovary, skin and tcell each of the following vertex count: 12006, 4779, 5098,
16581, 8124, 6584, 21758, 5189, 4743, 1694, 5667, 6616, 10665, 1623, 3687 and 11914 on
which we applied the causal calculus and reprogrammability measures (Supplement Section 1).
A Waddington landscape can be derived from the location in the complexity and
programmability quadrants according to the theoretical expectation. According to Fig. 4e, more
differentiated cells tend to be closer to x = 0 while non-differentiated ones tend to be farther
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away because they start from a state of randomness with shallow attractors and are very
sensitive to perturbations but they can only move in one direction towards creating functions
represented by structures moving away from randomness. And this is exactly what we found
when calculating and plotting the CellNet networks from 16 cell lines in Homo Sapiens. The cells
from the CellNet networks were organized in about the same shape as in the theoretical sketch
(Extended Data Figure 3) describing the thermodynamic-like behaviour and in agreement with
the biological stage expectation placing stem cells in order (hspc and esc) closer to randomness
and high in reprogrammability conforming with the theoretical expectation to have the greatest
number of possible shallow attractors with the network only possible move away from
randomness followed by blood-related cells (bcell and tcell) that are known to be highly
programmable and adaptable followed by the bulk of differentiated cells on first and second
guadrants. The distribution of (re)programmability of cells as represented by networks from
CellNet fit the natural expected (re)programmability (c.f. Supplement Section 1 and Fig. 4e).
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Extended Figure 1: Algorithmic complexity (numerically approached by way of Algorithmic
Probability) adds an additional dimension (depth), complementary but different from to the
notion of entropy, when performing network analysis. Unlike statistical mechanical approaches
such as Shannon Entropy (for strings or networks), algorithmic complexity improves over
Entropy by assigning lower Entropy and thus higher causal content to objects that do not only
appear statistically simple but also algorithmically simple by having a short generating
mechanism capable of reproducing the causal content of a network. Without such additional
dimension, causal and no-causal networks are collapsed into the same typical Bernoulli
distribution. Indeed, a random-looking network with maximal Shannon entropy can be
recursively be generated by a short algorithm that Entropy would misclassify as random. This
additional dimension that we introduce in the study of dynamic systems, in particular networks,
together with methods and tools, is thus key to better tackle the problem of revealing first
principles and discover causal mechanisms in dynamic evolving systems. The new dimension can
account for all type of structures and properties and is sensitive in both directions where
computable or statistical measures would not. Indeed, for example, an Erdds-Rényi graph can be
either recursive or not, recursive means that it is actually pseudo-random and only has the
properties of a random graph but is not algorithmic random. This distinction is key in science,
where evolving systems may be random-looking but are governed by rules that are otherwise

concealed by apparent noise.
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Extended Figure 2: Entropy can easily be fooled; here is a preferential attachment algorithm (B-
A) creating networks of growing density (edge number per node) showing how Entropy when
calculated on adjacency matrices by only capturing graph density by assigning dense B-A graphs
higher entropy than Erdods-Rényi (E-R) graphs. This result was reproduced in 30 replicates using
20 node graphs 20 replicates/graph and experiment was repeated approximately 10 times®.
Main Fig2c shows another graph created recursively (and thus of low algorithmic complexity)
that suggests divergent values of Entropy for the same object but with different descriptions
suggesting different probability distributions. A different more robust approach to characterize
networks and systems is thus needed to be able to tell these cases apart and improve over
traditional techniques that are heavily based upon statistical mechanics by moving into the
algorithmic mechanics/calculus here introduced.
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Extended Figure 3. A thermodynamic-like effect based on (re)programmability, a measure of
sophistication: Moving random networks by edge removal is significantly more difficult than
moving simple networks towards randomness. For random graphs, there are only a few
elements, if any, that can be used to move it slowly towards simplicity. In contrast, a greater
number of elements can move a simple network faster towards randomness. This relationship,
described by the reprogrammability rate A(G) < A(G’) (see Sup Mat) for G simple and G’ random
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graphs of the same size (vertex count), induces a thermodynamic-like asymmetry based on
algorithmic probability and reprogrammability. A MAR graph, which is of highest algorithmic
randomness, has A(MAR) = log n for all its elements after n element removals and thus cannot
be easily moved towards greater randomness. This reprogrammability landscape is thus also
expected to be related to the dynamical space (epigenetic) landscape with controlled effects in
the phase space according to the complexity and the reprogrammability indexes of a system
because simple connected graphs have fewer attractors than random graphs of the same size.
As we have found and reported in the main text and S.l., moving connected networks towards
randomness tends to increase the number of attractors (and therefore make them shallower)
providing key insights into the epigenetic Waddington landscape and a tool to move systems
and networks hitherto impossible to perform in optimal ways other than by actual simulation.
Conversely, moving connected networks away from randomness will tend to reduce the number
of attractors (and thereby increase the depth of the remaining ones).
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Extended Figure 4: Network Venn diagram of genes (square nodes) occurring in the 9 major
papers in the literature (black elliptic nodes) covering investigations of Th17 cells >°. These
papers cover the majority genes which have been associated to Th17 cells. Linked genes in the
figure are genes found in common between two or more papers. Black lines show the number
of genes found in common between two papers (with the thickness denoting the size of the

39


https://doi.org/10.1101/185637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/185637; this version posted October 2, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

overlap). These genes were used in main Figure 4f,g,h in the gene enrichment analysis of the
Th17 differentiation network.
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Extended Figure 5: Evaluating MILS using 9 benchmark networks common in the literature Min
the ability of MILS to preserve the clustering coefficient of the original networks while removing
up to 60% of all the network edges against two state-of-the-art network dimensionality
reduction methods 2. Similarly, MILS preserved edge betweeness, degree distribution (see Main
Figure 1 I-p) and information signatures (by design) better than other methods such as random
edge/node deletion and lowest degree node deletion. This is expected because all these
properties of a network are part of its description, MILS thus minimizes the loss of information
by maximizing the preservation of all the properties of the original networks.
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Extended Figure 6. Histograms showing the preservation of degree distributions by MILS against
a benchmark dimensionality-reduction algorithm based on graph spectra that maximizes the
preservation of the graph eigenvalues when removing 20% of the edges (blue), 40% (yellow),
60% (orange) and 80% (pink). The green colour represents the overlapping of areas for each
graph and each method. The graphs used are a set of benchmarking graphs in the literature™.

125 57

50

{

I

100
75 75
73
45
30

I B

100 57

50

i

f

50

75
73
45
30

10

I B

1 1 1 1

0 20 40 60

Extended Figure 7. Qualitative reconstruction by representing each row in a CA as a binary
vector, which produce a 2n+1 dimensional phase space, where n is the CA runtime for a sample
of representative ECAs. The hamming distance between the binary vectors, is used to calculate
the behaviour of the moving particle indicating the state of the ECA (top plot). Applying the
same procedure to the hypothesized generating mechanism, as identified from our causal
calculus, we find that the moving average (bottom plot) of the predicted particle qualitatively
moves in a similar fashion (e.g. increasing v decreasing/constant) than the original ECA, and the
order among the lines correspond to the original one.
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Extended Figure 8. Six clusters were selected using partitioning around medoids clustering. The
number of clusters was estimated by optimum average silhouette width.

gluconeogenesis 1.60E-06
glycolysis 0.00036
pyridoxine biosynthetic process 0.0124
Entner-Doudoroff pathway 0.0124
taxis 0.02035
carbohydrate catabolic process 0.02911
G0:0006793 phosphorus metabolic process 2.10E-08
G0:0009252 peptidoglycan biosynthetic process 2.90E-07
GO:0006777 Fl\)/l(c:))-crgsc;lybdopterin cofactor biosynthetic 1.20E-05
G0:0009086 methionine biosynthetic process 0.0027
G0:0009242 colanic acid biosynthetic process 0.0124
G0:0006164 purine nucleotide biosynthetic process 0.0196
G0:0009228 thiamine biosynthetic process 0.0254
G0:0009243 O antigen biosynthetic process 0.0254

Extended Figure 9. Gene Ontology GO database (Biological Process category): over-represented
categories tested with TopGO weight01 method (Fisher p<0.05)
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Glycolysis / Gluconeogenesis 1.76E-08
Fructose and mannose metabolism  |7.13E-06
Bacterial chemotaxis 6.32E-05
Two-component system 7.55E-04
Pyruvate metabolism 4.08E-03
Pentose phosphate pathway 5.14E-03
Phosphotransferase system (PTS) 5.45E-03
Methane metabolism 6.70E-03

Biosynthesis of secondary metabolites [9.59E-03

Microbial metabolism in diverse

environments 1.44E-02
00550 Peptidoglycan biosynthesis 1.01E-07
01100 Metabolic pathways 6.74E-04
04122 Sulfur relay system 4.11E-03
00621 Dioxin degradation 9.20E-03
00622 Xylene degradation 9.20E-03
00360 Phenylalanine metabolism 1.48E-02
00300 Lysine biosynthesis 2.48E-02
00230 Purine metabolism 3.50E-02
00670 One carbon pool by folate 3.73E-02

Extended Figure 10. Over-represented KEGG pathways database (p<0.05)

superpathway of glycolysis and Entner-Doudoroff 5.37E-07
Sugar Alcohols Degradation 4.82E-06
superpathway of hexitol degradation (bacteria) 1.91E-05

glycolysis | (from glucose-6P) 1.91E-05

glycolysis Il (from fructose-6P) 1.91E-05

gluconeogenesis | 2.56E-04

Gluconeogenesis 2.56E-04
Sugar Derivatives Degradation 0.003115401
Secondary Metabolites Degradation 0.003131693
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superpathway of glycolysis, pyruvate dehydrogenase, TCA,
and glyoxylate bypass

0.004830985

CA cycle

0.004830985

Glycolysis

0.005196795

Generation of Precursor Metabolites and Energy

0.005701038

sedoheptulose bisphosphate bypass

0.037381258

Entner-Duodoroff Pathways

0.037381258

Entner-Doudoroff pathway |

0.037381258

CpxAR Two-Component Signal Transduction System

0.037381258

Signal transduction pathways

0.045972995

methylphosphonate degradation | 9.40E-06
Phosphorus Compounds Metabolism 9.40E-06
Methylphosphonate Degradation 9.40E-06

Pyrimidine Nucleobases Degradation

0.003167986

Uracil Degradation

0.003167986

uracil degradation Il

0.003167986

peptidoglycan biosynthesis (meso-diaminopimelate

containing)

0.003167986

Peptidoglycan Biosynthesis

0.003167986

Cell Wall Biosynthesis

0.003167986

putrescine degradation Il

0.005063846

3-phenylpropionate and 3-(3-hydroxyphenyl)propionate

degradation

0.018877832

proline to cytochrome bo oxidase electron transfer

0.019695489

UDP-N-acetylmuramoyl-pentapeptide biosynthesis | (meso-
DAP-containing)

0.028546946

UDP-N-Acetylmuramoyl-Pentapeptide Biosynthesis

0.028546946

2-oxopentenoate degradation 0.04015748
Putrescine Degradation 0.0413727
Pyrimidine Nucleotides Degradation 0.06959294

superpathway of ornithine degradation

0.075477235

Purine Nucleotides De Novo Biosynthesis

0.075477235

superpathway of purine nucleotides de novo biosynthesis Il

0.075477235

superpathway of arginine, putrescine, and 4-aminobutyrate

degradation 0.09681385
L-rhamnose degradation | 0.09815362
L-rhamnose Degradation 0.09815362

Extended Figure 11. Over-represented EcoCyc pathways (FDR<0.05)
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Extended Figure 12. Three clusters (above baseline, baseline, below baseline) were identified
for Entropy which proved to be less sensitive, clustering most elements over the X axis. Non-
baseline nodes are enriched for Transcription Factors.
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Extended Figure 13. Gene Ontology (Biological Process): over-represented categories tested

with TopGO weight01 method (Fisher p<0.05) using Shannon Entropy. No significant groups
after GO enrichment analysis were found.
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Extended Figure 14. Two clusters identified using Compress (above baseline, baseline). Above-
baseline nodes are enriched for Transcription Factors. No significant groups after GO
enrichment analysis were found.
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Entner-Doudoroff pathway 0.014

regulation of transcription, DNA-dependent  |0.029

Extended Figure 15. Gene Ontology (Biological Process): Over-represented categories tested
with TopGO weight01 method (Fisher p<0.05) using lossless compression (Compress algorithm).
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Extended Figure 16. Unlike graph-theoretic measures that can be described as single or
composed function of other graph-theoretic measures, BDM was not found to correlate with
any of these measures, just as it did not correlate with lossless compression and Shannon
entropy. Control Experiments: All attempts to produce statistical significant clusters from graph-
theoretic measures, lossless compression and Shannon entropy failed when tested against the
same Gene Ontology databases.
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