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We present Butler, a computational framework developed in the context of the 
international Pan-cancer Analysis of Whole Genomes (PCAWG)1 project to overcome 
the challenges of orchestrating analyses of thousands of human genomes on the cloud. 
Butler operates equally well on public and academic clouds. This highly flexible 
framework facilitates management of virtual cloud infrastructure, software configuration, 
genomics workflow development, and provides unique capabilities in workflow 
execution management. By comprehensively collecting and analysing metrics and logs, 
performing anomaly detection as well as notification and cluster self-healing, Butler 
enables large-scale analytical processing of human genomes with 43% increased 
throughput compared to prior setups. Butler was key for delivering the germline genetic 
variant call-sets in 2,834 cancer genomes analysed by PCAWG1. 
	
The cornerstones of Butler design are: full support of multiple cloud environments 
including academic clouds, declarative infrastructure configuration management, 
scalable, fault-tolerant operation, and comprehensive monitoring of the data processing. 
One design principle setting Butler apart from other scientific workflow managers2-4 is its 
heavy reliance on integration of generic open source frameworks to deliver its 
capabilities. An integration layer brings these together to form a cohesive and 
comprehensive cloud-computing framework with a focus on genomics applications 
including in the context of sensitive patient data.  
 
Butler can invoke a variety of analysis algorithms on any cloud. These can either be pre-
installed or run as Docker5 images, or Common Workflow Language (CWL)6 tools and 
workflows. Each workflow admits parametrisation via JavaScript Object Notation 
(JSON) configuration files, stored in a database for provenance tracking. Workflow tasks 
scheduled for execution are deposited into a distributed task queue where available 
workers can pick them up. This method of operation can scale analyses to thousands of 
compute nodes. 
 
A main lesson learned from PCAWG7 is that genomic data of heterogeneous quality, 
generated in sequencing centers with varying standard operating procedures and 
distributed across the globe, frequently suffers from artifacts that lead to numerous 
compute job failures. These include anomalies due to unusual sequencing library 
artifacts, failures of bioinformatics tools due to software defects, and inabilities to work 
with “edge cases” involving sample contamination or non-uniform sequencing coverage, 
leading cloud-based Virtual Machines (VMs) to fail operating at scale8. Delays in 
recognizing and resolving these failures inevitably reduce the data processing rate, and 
drive up project duration and costs. Butler enables the timely discovery and resolution of 
these “expected failures” by providing an operational management toolkit 
(Supplementary Figure 8) which functions at two levels of granularity – host-level, and 
application-level. Host-level operational management is facilitated via a health metrics 
system that collects system measurements at regular intervals from all deployed VMs. 
These metrics are aggregated and stored in a time-series database within Butler’s central 
Monitoring Server. A set of graphical dashboards reports system health to users 
continuously while supporting advanced querying capabilities for in-depth 
troubleshooting. Application level monitoring is facilitated via systematic log collection 
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and extraction, and logs are then stored in a queryable search index9. These tools provide 
multidimensional visibility into operational bottlenecks and error conditions as they 
occur, in a manner that is aggregated across hundreds of VMs. A rule-based anomaly 
detection engine defines normal operating conditions which, when breached, trigger 
handling routines that can notify the user by sending email, Slack or Telegram messages, 
and enables automated restarting of offending workflows or entire VMs allowing the 
cluster to self-heal. These monitoring and operational management capabilities, which 
prepare cloud users for ‘expected failures’, set Butler apart from current scientific 
workflow frameworks6,10-12(Supplementary Table 3). These capabilities enable highly 
efficient use of Butler in studies comprising thousands of patient genomes, such as 
PCAWG, where anomalies and infrastructure failures must be expected, and in fact occur 
at high rates. These capabilities further facilitate deployment on preemptable 
infrastructure (such as AWS spot-instance fleets) operating on short-lived VMs that can 
be shut down by the provider at any time, which are available to users at 10% of the 
regular cost. 
 
Large genomics data sets are increasingly provisioned on different cloud computing 
platforms utilizing a mix of public, private, and hybrid clouds13. In order to be successful, 
workflow systems employed in global projects must be flexible in their ability to operate 
on different environments, including academic clouds, to allow researchers to bring their 
computational pipelines to the data – in particular, in cases where the raw data itself 
cannot be moved. The recently developed cloud-based scientific workflow frameworks 
Nextflow10, Toil11, and GenomeVIP12 focus their support largely on individual 
commercial cloud computing environments – mostly Amazon Web Services (AWS) – 
providing incomplete functionality for other major providers (especially academic 
clouds), which would limit (or prevent) their use in globally pursued studies such as 
PCAWG that require multi-cloud operation including a major academic cloud component 
due to practical and regulatory requirements14,15. Butler provides full support for 
operation on OpenStack-based commercial and academic clouds, AWS, Microsoft Azure, 
and Google Compute Platform, thus enabling the next generation of global disease 
genomics studies based on hundreds of thousands of patient genomes requiring globally 
distributed cloud-based data processing in distinct institutions and jurisdictions14,15. 
 
We assessed Butler’s ability to facilitate large-scale analyses of patient genomes in the 
context of PCAWG, where Butler was deployed on 1,500 CPU cores, 5.5 TB of RAM, 
and 1 PB of storage. We implemented and successfully tested workflows based on 
BWA16, freebayes17, Delly18, as well as several tools for somatic variant calling including 
Pindel19 and BRASS20 using Butler. Utilizing Butler’s suite of workflows we carried out 
variant discovery and joint genotyping of >90 million germline genetic variants (SNPs, 
Indels, and SVs) across a 725 TB dataset comprising the PCAWG cohort of 2834 high-
coverage tumour as well as normal whole genome sequences. Additionally, we carried 
out sequence alignment and germline as well as somatic variant calling on 232 high-
coverage prostate cancer tumour-normal sample pairs collected within the International 
Cancer Genome Consortium (ICGC). To accomplish these analyses we executed over 2.5 
million compute jobs utilizing 546,552 CPU hours. The management overhead of 
employing Butler for these analyses was less than 2% of the overall computational cost.   
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We contrast the observed performance of Butler against the performance of the “core 
somatic PCAWG pipelines” (Figure 2), which represent the current state-of-the-art in the 
field achieving almost complete feature parity with other currently available cloud-based 
scientific workflow frameworks6,10-12 (Supplementary Table 3). These PCAWG pipelines 
used the same IT infrastructure and computed over the same samples – but did not utilize 
Butler. Our metric to estimate the highest achievable processing rate for an analysis is 
defined as the smallest proportion of time required to process 5% of all samples, calling it 
the “target processing rate”. We calculate the ratio of the actual processing rate to the 
target processing rate (Figure 2 a-b). Butler-operated pipelines were closer to the target 
processing rate (mean actual/target rate ratio 0.696) than the core PCAWG pipelines 
(mean actual/target rate ratio 0.490) (Figure 2 c).  Butler-based analyses showed a 
duration 1.43 times the ideal target duration, while core PCAWG pipelines showed a 
duration of 2.04 times the ideal target duration – which is 43% slower. Additionally, core 
PCAWG pipelines exhibited a highly non-uniform processing rate (Figure 2 d) deviating 
23.1% on average (min 0.0%, max 57.8%, sd 15.0%) from the ideally uniform trajectory 
of processing 1% of samples in 1% of analysis time, while Butler-based pipelines (Figure 
2 e) performed in a significantly more uniform manner only deviating 4.0% (min 0.0%, 
max 15.6%, sd 3.7%) over the same sample set on average (see Methods). These abilities 
have resulted in the adoption of Butler for analyses carried out by the international Pan 
Prostate Cancer Group, and in the European Open Science Cloud pilots 
(https://eoscpilot.eu). 
 
We have developed Butler to deal with the challenges of working with diverse cloud 
computing environments in the context of large-scale patient genomic data analyses. The 
operational management tools provided with Butler help overcome the key challenge that 
impacts analysis duration – the ability to autonomously detect, diagnose and address 
issues in a timely manner – thus allowing researchers to spend less time focusing on 
resolving error conditions and considerably reduce analysis duration and cost. The 
comprehensive nature of the Butler toolkit sets it apart from current scientific workflow 
managers6,10-12 by offering an efficient and scalable solution for modern global cloud-
based big data analyses (see Supplementary Table 3 for feature comparison).  
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	Methods	
	
Overall, the Butler system is composed of four distinct sub-systems: 
 

Cluster	Lifecycle	Management	
	
This sub-system deals with the task of creating and tearing down clusters on various 
clouds, including defining Virtual Machines (VMs), storage devices, network topology, 
and network security rules. To fulfill these requirements in a cloud agnostic manner 
Butler utilizes an open-source framework called Terraform, developed by Hashicorp. 
Terraform uses a proprietary human- and machine-readable file format for specifying 
cluster configurations that is called HashiCorp Configuration Language (HCL). Using 
this language the end user can define a number of constructs for cluster management. The 
key task of Terraform is to perform Create, Read, Update, and Delete on cluster 
resources. Running Terraform causes the tool to inspect the current state and compare it 
to the target state, issuing any necessary commands to update current state to the target. 
Butler comes with a set of Terraform configuration files that define templates for all of 
the VMs that constitute a functional Butler cluster, as well as configurations for network 
security. A typical Butler cluster consists of Control VMs and Worker VMs and 
templates for both are available. The users are expected to adapt the templates as needed 
for their use case, providing their own credentials, cluster size, and other configurations. 
 
Cluster	Configuration	Management  
 
This sub-system deals with configuration and software installation of all VMs in the 
cluster. VMs typically will have hundreds of programs installed and configured on them, 
oftentimes with intricate interdependencies and inter-machine communication 
requirements. The Saltstack open-source Configuration Management system integrated in 
Butler allows managing these dependencies and installation details independently of the 
Operating System (OS) chosen for the Virtual Machines for deployments involving 
hundreds of servers (Figure 1). The Configuration Management System is controlled by a 
Master node that acts as the authority on the state of a cluster of Minion nodes. The 
Master has a set of configuration definitions defined and accessible through a git 
repository. Each Minion can have a number of roles assigned to it, and the Master 
maintains mappings between roles and configuration definitions. Once the Master has 
determined what roles a Minion has it can issue the necessary commands to apply 
relevant configurations to the Minion.  Butler ships with configuration definitions 
required to run Butler itself as well as those needed to execute the bundled workflows 
(sequence alignment with bwa, germline variant calling with freebayes and Delly, and 
somatic variant calling with Sanger Institute’s CGP tools). Additional configurations can 
be defined by the user as necessary. 
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Workflow	System	
  
The Workflow sub-system is responsible for allowing users to define and run scientific 
workflows on the cloud. Butler integrates the open-source distributed workflow system 
called Airflow developed by Airbnb for this purpose. The key component at the heart of 
Airflow is the Airflow Scheduler (Figure 1). The airflow-scheduler is a service that runs 
perpetually on a VM and examines the state of all running workflows. All workflow tasks 
that meet the preconditions for being runnable are immediately "scheduled" for 
execution. In the context of Airflow scheduling means depositing the task into a queue 
(running on a separate Queue Server VM) from which a Worker VM (Figure 1) can 
eventually pick it up. The Worker VMs run an airflow-worker service that periodically 
polls the task queue for available tasks, and when the task is runnable by a particular 
Worker, that Worker consumes the task message from the queue and assumes execution. 
In order to keep track of the status of Workers and workflow execution each Worker 
periodically sends heartbeat messages to the Scheduler to communicate its state. The 
state is persisted by the Scheduler to a PostgreSQL database, which runs on a DB Server 
VM (Figure 1).  
 
The user can communicate with and commandeer Airflow via the Airflow CLI, as well as 
a Web UI. The Web UI is provided via the airflow-flower, and airflow-webserver 
services, which can run on the same VM as the Scheduler or on a separate VM, 
depending on system load. Conceptually, an Airflow workflow is a Directed Acyclic 
Graph whose vertices represent tasks and edges indicate task sequence. In its 
implementation an Airflow workflow is a Python program that can use any Python 
language construct or library. This allows the users to create workflows of arbitrary 
complexity and functionality. 
 
An Analysis Tracker module is built into Butler in order to allow the user to define 
analyses, specify what workflows are part of these analyses, and track the status and 
execution of Analysis Runs - instances of running a particular workflow on a particular 
data sample within the context of an Analysis (Supplementary Figure 1). 
 
When an Analysis Run is first created it is given a Ready status (Supplementary Figure 
2), indicating that it is ready to be scheduled for execution. Once the Scheduler has 
scheduled the Run for execution it is given a Scheduled status. When workflow execution 
starts the Run is marked In-Progress. Once the Run is successfully completed it enters a 
Completed status. If, at any point, the Run encounters an error condition it cannot recover 
from, the Run Status is set to Error. When the error condition is addressed the Run status 
should be set to Ready so that it can start from the beginning. 
 
In order to fulfill the workflow configuration and parametrisation requirements	Butler 
implements a tri-level configuration mechanism (Supplementary Figure 3), allowing the 
user to specify configurations at Workflow, Analysis, and Analysis Run levels. At 
runtime all three configuration levels are merged into one “effective” configuration that 
applies within the execution context. Because it is important for configuration to be both 
human-readable and machine-readable Butler uses the JSON format to encode 
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configuration information. PostgreSQL, in turn, has native support for storage and deep 
querying of JSON values, thus making it an ideal choice for configuration persistence. 
 
 
Operational	Management  
 
This sub-system provides tools for ensuring continuous successful operation of the 
cluster, as well as for troubleshooting error conditions. In general, the Operational 
Management tools fall into two categories, those that collect observations about the state 
of each component in the system at runtime, and those that aggregate this data and 
present it to the user in the form of queryable databases and management reports. We 
delineate two major sources of data that is indicative of system state - System Metrics, 
and Server Logs. While metrics provide more of a coarse-grained view of the overall 
health of a particular Virtual Machine, server logs can give much more of a fine-grained 
view of the underlying system at an application level, and down to individual lines of 
code that are running at any given time. Butler has dedicated components for the 
collection and management of these data sets 
 
Each VM runs a metric collection daemon called collectd, which is an open-source 
package that is able to make periodic measurements of a large number of system metrics 
and ship them off to a centralized Monitoring Server. The definition for which metrics 
are collected is specified in a special configuration file.	Because we are interested in 
observing not only the metrics as they are measured in the present, but also the dynamics 
of how metric values change over time, we need a mechanism for persisting this 
information. For this purpose the Monitoring Server component of Butler ships with an 
instance of a database product called InfluxDB, which is an Open Source database system 
that is optimized for recording time series data. 
 
The metrics collection system is collecting 50 different metrics per host on average, 
sampled at intervals of 10 seconds. Given a cluster of 200 Virtual Machines the 
monitoring system collects and stores 86,400,000 data points in a 24 hour time period. 
This volume of data is quite difficult for the user to comprehend and make use of, and 
Butler provides visualization tools to enable the display of aggregate statistics based on 
the monitoring data using a Graphical User Interface (Supplementary Figure 8). The main 
goal of the visualizations is to give the user an overview of the trends observed within the 
compute cluster with respect to a set of representative performance metrics, and to alert 
the user to any conditions that threaten the health of Virtual Machines and the scientific 
analyses they run. 
 
Because of the potentially extremely high value of the information contained in server 
logs, we deploy a system of log harvesting and centralized storage that enables the 
Virtual Machines that are part of Butler to parse the logs that are being generated locally 
for interesting events, and send those events to a centralized search index which is 
amenable to efficient querying and visualization. These open-source tools are known as 
the ELK stack (Elasticsearch, Logstash, Kibana). 
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Each Virtual Machine in the cluster runs a log shipper - Filebeat. It is responsible for 
finding, harvesting, and locally aggregating logs.	Logstash runs on a separate centralized 
server and is responsible for parsing the logs forwarded from Filebeat and sending the 
parsed information on to the Elasticsearch index.	Elasticsearch is a general-purpose 
scalable text indexing and search engine that supports clustering and sharding of data. 
Just as it is difficult to grasp and analyze performance metrics due to the number of data-
points generated, it is as difficult to grasp log messages from a large cluster. We utilize a 
similar set of visualization tools to the ones we use for metrics, to solve this problem for 
server logs within Butler. The Kibana dashboarding framework allows us to create 
graphical dashboards that visualize log events of interest, as well as providing a web-
based query interface to the Elasticsearch log messages index (Supplementary Figure 4). 
 
The Monitoring Server runs an anomaly detection and alerting library called Telegraf 
which defines a series of rules that specify the normal operating conditions for the 
cluster, such as all hosts regularly responding to ping, CPU below 80%, disk utilization 
below 85%, workflow tasks sending heartbeats every minute etc. Coupled with the 
application metrics gatherer statsd, the system builds an empirical distribution of the 
duration of various workflow tasks and knows when tasks take longer than they 
historically have. The anomaly detection software monitors the time-series database that 
records all metrics and periodically evaluates the rule-set against it. When the system 
detects a breach of one or more rules it can take remedial action, such as sending a 
warning email, a message to a Slack topic, a Telegram, or schedule the restart of a 
particular workflow or the reprovisioning of a particular VM. These abilities allow Butler 
users to be always up to date about the health of the system and allow Butler clusters to 
self-heal when they encounter problematic scenarios.  
 
The Butler framework consists of many different services that reside on a number of 
different servers and need to be able to communicate with each other. To accomplish this 
in a flexible manner we needed to establish a Service Registry so that IP addresses of 
servers that host particular services could be looked up by service name. To accomplish 
this Butler uses an open-source service discovery framework called Consul. Consul 
provides a cross-data-center distributed Service Name Registry that is available via 
HTTP and DNS protocols. In addition to registry capabilities Consul provides basic 
health checks for the underlying services, testing whether the IP and port the service is 
supposed to be listening on are actually reachable. 
 

Butler	Deployment	
 
Butler has been validated for production use on the EMBL-EBI Embassy Cloud - an 
academic cloud computing center that runs an OpenStack-based environment (Figure 1). 
The Embassy Cloud plays a key role in the PCAWG project by donating substantial 
storage and cloud computing capacity over the course of 3 years. The total amount of 
resources dedicated to the project by the Embassy Cloud is: 
 

• 1 PB Isilon storage shared over NFS 
• 1500 compute cores 
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• 6 TB RAM 
• 40 TB local SSD storage 
• 10 Gb network 

 
These resources have been used to host one of the six PCAWG data repositories that exist 
worldwide, as well as performing a number of scientific analyses for the project. We have 
used Butler extensively on the Embassy Cloud in order to carry out the analyses for the 
Germline Working Group of PCAWG. 
 
To deploy Butler on the 1500 core cluster we set up five different profiles of VMs, each 
playing a number of different roles (Supplementary Table 1). 
 
We	observe	that	the	mean	𝑟!"# is	significantly	higher	for	Butler-based	pipelines	at	
0.46	than	for	the	core	PCAWG	pipelines	at	0.13	(Supplementary	Table	2).	For	each	
pipeline	and	each	1%	of	the	samples	under	analysis,	we	then	compute	a	metric	e	
(for	effectiveness),	defined	as	the	proportion	of	𝑟!"#	actually	achieved.	
	

𝑒 =  
𝑟!"#
𝑟!"#

	

 
Comparing the core PCAWG and Butler pipelines with respect to e (Figure 3 a-c) we 
observe that effectiveness is on average lower for PCAWG pipelines (𝜇!!"#$% = 0.49) 
than Butler pipelines (𝜇!!"#$%& = 0.70). Assessing the expected analysis duration for the 
two sets of pipelines we observe: 

𝑑!"#$% =
!""

!!!"#$%
= 2.04𝑑!"#      

 
𝑑!"#$%& =

!""
!!!"#$%&

= 1.43𝑑!"#      

 
𝑑!"#$% = 1.43𝑑!"#$%&       

 
Thus, the expected duration for PCAWG pipelines is 43% longer than that for Butler-
based pipelines. 
 
We wish to further compare core PCAWG pipelines with Butler pipelines on the basis of 
uniformity of rate of progress through an analysis. Given a constant resource allocation 
an ideal analysis execution processes 1% of all samples in 1% of the analysis runtime. 
We divide the sample set into 100 equal size bins and measure the percentage of overall 
analysis time spent on processing each bin (Figure 3 d-e). Deviations from the diagonal 
indicate inefficiencies in data processing. Measuring this deviation we observe that 
PCAWG pipelines deviate 23.1% from the diagonal on average (min 0.0%, max 57.8%, 
sd 15.0%) while Butler pipelines only deviate 4.0% (min 0.0%, max 15.6%, sd 3.7%) 
from the diagonal on average, over the same sample set. This indicates that Butler 
pipelines are impacted less by various causes that slow down an analysis (such as job and 
infrastructure failures).  
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Data	Availability	
 
All of the data is made available through the PCAWG data portal 
(https://dcc.icgc.org/pcawg) as described in detail in the PCAWG marker paper1. 
 
 

Code	Availability	
	
The source code for Butler is freely available at http://github.com/llevar/butler under the 
GPL v3.0 license. 
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The Configuration VM manages software installation and settings for all VMs. Tracking VM runs the Workflow
Engine and Scheduler which transform workflow definitions into executable tasks and deposit them into a 
queue. A fleet of Workers run tasks by picking them up from the queue and running the algorithms embedded 
within the task definition. The Monitoring VM collects health metrics from all other VMs and aggregates them
into a set of operational management dashboards.  
 

Figure 1: Butler framework architecture as deployed on the EMBL/EBI Embassy Cloud for PCAWG
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a

(a-b) The target progress rate is the minimal proportion of time required to process 5% of samples for each
analysis pipeline. We compare the ratio of actual to target progress rates across the cohort for “core”
PCAWG Pipelines (a) vs Butler pipelines (b).
(c) Mean actual/target progress rate ratio across pipelines for “core” PCAWG (mean 0.49) vs Butler (mean 0.7)
pipelines. 
(d-e) Given a constant allocation of resources the “ideal” progress rate is 1% of samples processed for each 1% 
of total analysis runtime. All “core” PCAWG pipelines deviate significantly from the ideal trajectory (mean 
deviation 21.3%, sd 15.0%) taking half of the overall analysis time to complete the last 15-30% of the samples. 
Butler-based pipelines demonstrate a dramatically lower mean deviation from the ideal trajectory 
(mean 4.0%, sd 3.7%) over the same sample set.

Figure 2: Comparison of analysis progress between “core” PCAWG pipelines and Butler-based pipelines. 

b

c

d e
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