
Enabling rapid cloud-based analysis of thousands of human
genomes via Butler
	
Sergei Yakneen1,3*, Sebastian M. Waszak1, Michael Gertz3, and Jan O. Korbel1,2*, on
behalf of the PCAWG Germline Cancer Genome Working Group, PCAWG Technical
Working Group, and the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Network.

1 European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg,
Germany; 2 EMBL, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK; 3

Institute of Computer Science, Heidelberg University, Heidelberg, Germany.

* Correspondence should be addressed to Sergei Yakneen (iakhnin@embl.de), and Jan
O. Korbel (korbel@embl.de).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

We present Butler, a computational framework developed in the context of the
international Pan-cancer Analysis of Whole Genomes (PCAWG)1 project to overcome
the challenges of orchestrating analyses of thousands of human genomes on the cloud.
Butler operates equally well on public and academic clouds. This highly flexible
framework facilitates management of virtual cloud infrastructure, software configuration,
genomics workflow development, and provides unique capabilities in workflow
execution management. By comprehensively collecting and analysing metrics and logs,
performing anomaly detection as well as notification and cluster self-healing, Butler
enables large-scale analytical processing of human genomes with 43% increased
throughput compared to prior setups. Butler was key for delivering the germline genetic
variant call-sets in 2,834 cancer genomes analysed by PCAWG1.
	
The cornerstones of Butler design are: full support of multiple cloud environments
including academic clouds, declarative infrastructure configuration management,
scalable, fault-tolerant operation, and comprehensive monitoring of the data processing.
One design principle setting Butler apart from other scientific workflow managers2-4 is its
heavy reliance on integration of generic open source frameworks to deliver its
capabilities. An integration layer brings these together to form a cohesive and
comprehensive cloud-computing framework with a focus on genomics applications
including in the context of sensitive patient data.

Butler can invoke a variety of analysis algorithms on any cloud. These can either be pre-
installed or run as Docker5 images, or Common Workflow Language (CWL)6 tools and
workflows. Each workflow admits parametrisation via JavaScript Object Notation
(JSON) configuration files, stored in a database for provenance tracking. Workflow tasks
scheduled for execution are deposited into a distributed task queue where available
workers can pick them up. This method of operation can scale analyses to thousands of
compute nodes.

A main lesson learned from PCAWG7 is that genomic data of heterogeneous quality,
generated in sequencing centers with varying standard operating procedures and
distributed across the globe, frequently suffers from artifacts that lead to numerous
compute job failures. These include anomalies due to unusual sequencing library
artifacts, failures of bioinformatics tools due to software defects, and inabilities to work
with “edge cases” involving sample contamination or non-uniform sequencing coverage,
leading cloud-based Virtual Machines (VMs) to fail operating at scale8. Delays in
recognizing and resolving these failures inevitably reduce the data processing rate, and
drive up project duration and costs. Butler enables the timely discovery and resolution of
these “expected failures” by providing an operational management toolkit
(Supplementary Figure 8) which functions at two levels of granularity – host-level, and
application-level. Host-level operational management is facilitated via a health metrics
system that collects system measurements at regular intervals from all deployed VMs.
These metrics are aggregated and stored in a time-series database within Butler’s central
Monitoring Server. A set of graphical dashboards reports system health to users
continuously while supporting advanced querying capabilities for in-depth
troubleshooting. Application level monitoring is facilitated via systematic log collection

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

and extraction, and logs are then stored in a queryable search index9. These tools provide
multidimensional visibility into operational bottlenecks and error conditions as they
occur, in a manner that is aggregated across hundreds of VMs. A rule-based anomaly
detection engine defines normal operating conditions which, when breached, trigger
handling routines that can notify the user by sending email, Slack or Telegram messages,
and enables automated restarting of offending workflows or entire VMs allowing the
cluster to self-heal. These monitoring and operational management capabilities, which
prepare cloud users for ‘expected failures’, set Butler apart from current scientific
workflow frameworks6,10-12(Supplementary Table 3). These capabilities enable highly
efficient use of Butler in studies comprising thousands of patient genomes, such as
PCAWG, where anomalies and infrastructure failures must be expected, and in fact occur
at high rates. These capabilities further facilitate deployment on preemptable
infrastructure (such as AWS spot-instance fleets) operating on short-lived VMs that can
be shut down by the provider at any time, which are available to users at 10% of the
regular cost.

Large genomics data sets are increasingly provisioned on different cloud computing
platforms utilizing a mix of public, private, and hybrid clouds13. In order to be successful,
workflow systems employed in global projects must be flexible in their ability to operate
on different environments, including academic clouds, to allow researchers to bring their
computational pipelines to the data – in particular, in cases where the raw data itself
cannot be moved. The recently developed cloud-based scientific workflow frameworks
Nextflow10, Toil11, and GenomeVIP12 focus their support largely on individual
commercial cloud computing environments – mostly Amazon Web Services (AWS) –
providing incomplete functionality for other major providers (especially academic
clouds), which would limit (or prevent) their use in globally pursued studies such as
PCAWG that require multi-cloud operation including a major academic cloud component
due to practical and regulatory requirements14,15. Butler provides full support for
operation on OpenStack-based commercial and academic clouds, AWS, Microsoft Azure,
and Google Compute Platform, thus enabling the next generation of global disease
genomics studies based on hundreds of thousands of patient genomes requiring globally
distributed cloud-based data processing in distinct institutions and jurisdictions14,15.

We assessed Butler’s ability to facilitate large-scale analyses of patient genomes in the
context of PCAWG, where Butler was deployed on 1,500 CPU cores, 5.5 TB of RAM,
and 1 PB of storage. We implemented and successfully tested workflows based on
BWA16, freebayes17, Delly18, as well as several tools for somatic variant calling including
Pindel19 and BRASS20 using Butler. Utilizing Butler’s suite of workflows we carried out
variant discovery and joint genotyping of >90 million germline genetic variants (SNPs,
Indels, and SVs) across a 725 TB dataset comprising the PCAWG cohort of 2834 high-
coverage tumour as well as normal whole genome sequences. Additionally, we carried
out sequence alignment and germline as well as somatic variant calling on 232 high-
coverage prostate cancer tumour-normal sample pairs collected within the International
Cancer Genome Consortium (ICGC). To accomplish these analyses we executed over 2.5
million compute jobs utilizing 546,552 CPU hours. The management overhead of
employing Butler for these analyses was less than 2% of the overall computational cost.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

We contrast the observed performance of Butler against the performance of the “core
somatic PCAWG pipelines” (Figure 2), which represent the current state-of-the-art in the
field achieving almost complete feature parity with other currently available cloud-based
scientific workflow frameworks6,10-12 (Supplementary Table 3). These PCAWG pipelines
used the same IT infrastructure and computed over the same samples – but did not utilize
Butler. Our metric to estimate the highest achievable processing rate for an analysis is
defined as the smallest proportion of time required to process 5% of all samples, calling it
the “target processing rate”. We calculate the ratio of the actual processing rate to the
target processing rate (Figure 2 a-b). Butler-operated pipelines were closer to the target
processing rate (mean actual/target rate ratio 0.696) than the core PCAWG pipelines
(mean actual/target rate ratio 0.490) (Figure 2 c). Butler-based analyses showed a
duration 1.43 times the ideal target duration, while core PCAWG pipelines showed a
duration of 2.04 times the ideal target duration – which is 43% slower. Additionally, core
PCAWG pipelines exhibited a highly non-uniform processing rate (Figure 2 d) deviating
23.1% on average (min 0.0%, max 57.8%, sd 15.0%) from the ideally uniform trajectory
of processing 1% of samples in 1% of analysis time, while Butler-based pipelines (Figure
2 e) performed in a significantly more uniform manner only deviating 4.0% (min 0.0%,
max 15.6%, sd 3.7%) over the same sample set on average (see Methods). These abilities
have resulted in the adoption of Butler for analyses carried out by the international Pan
Prostate Cancer Group, and in the European Open Science Cloud pilots
(https://eoscpilot.eu).

We have developed Butler to deal with the challenges of working with diverse cloud
computing environments in the context of large-scale patient genomic data analyses. The
operational management tools provided with Butler help overcome the key challenge that
impacts analysis duration – the ability to autonomously detect, diagnose and address
issues in a timely manner – thus allowing researchers to spend less time focusing on
resolving error conditions and considerably reduce analysis duration and cost. The
comprehensive nature of the Butler toolkit sets it apart from current scientific workflow
managers6,10-12 by offering an efficient and scalable solution for modern global cloud-
based big data analyses (see Supplementary Table 3 for feature comparison).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Methods	
	
Overall, the Butler system is composed of four distinct sub-systems:

Cluster	Lifecycle	Management	
	
This sub-system deals with the task of creating and tearing down clusters on various
clouds, including defining Virtual Machines (VMs), storage devices, network topology,
and network security rules. To fulfill these requirements in a cloud agnostic manner
Butler utilizes an open-source framework called Terraform, developed by Hashicorp.
Terraform uses a proprietary human- and machine-readable file format for specifying
cluster configurations that is called HashiCorp Configuration Language (HCL). Using
this language the end user can define a number of constructs for cluster management. The
key task of Terraform is to perform Create, Read, Update, and Delete on cluster
resources. Running Terraform causes the tool to inspect the current state and compare it
to the target state, issuing any necessary commands to update current state to the target.
Butler comes with a set of Terraform configuration files that define templates for all of
the VMs that constitute a functional Butler cluster, as well as configurations for network
security. A typical Butler cluster consists of Control VMs and Worker VMs and
templates for both are available. The users are expected to adapt the templates as needed
for their use case, providing their own credentials, cluster size, and other configurations.

Cluster	Configuration	Management

This sub-system deals with configuration and software installation of all VMs in the
cluster. VMs typically will have hundreds of programs installed and configured on them,
oftentimes with intricate interdependencies and inter-machine communication
requirements. The Saltstack open-source Configuration Management system integrated in
Butler allows managing these dependencies and installation details independently of the
Operating System (OS) chosen for the Virtual Machines for deployments involving
hundreds of servers (Figure 1). The Configuration Management System is controlled by a
Master node that acts as the authority on the state of a cluster of Minion nodes. The
Master has a set of configuration definitions defined and accessible through a git
repository. Each Minion can have a number of roles assigned to it, and the Master
maintains mappings between roles and configuration definitions. Once the Master has
determined what roles a Minion has it can issue the necessary commands to apply
relevant configurations to the Minion. Butler ships with configuration definitions
required to run Butler itself as well as those needed to execute the bundled workflows
(sequence alignment with bwa, germline variant calling with freebayes and Delly, and
somatic variant calling with Sanger Institute’s CGP tools). Additional configurations can
be defined by the user as necessary.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

Workflow	System	

The Workflow sub-system is responsible for allowing users to define and run scientific
workflows on the cloud. Butler integrates the open-source distributed workflow system
called Airflow developed by Airbnb for this purpose. The key component at the heart of
Airflow is the Airflow Scheduler (Figure 1). The airflow-scheduler is a service that runs
perpetually on a VM and examines the state of all running workflows. All workflow tasks
that meet the preconditions for being runnable are immediately "scheduled" for
execution. In the context of Airflow scheduling means depositing the task into a queue
(running on a separate Queue Server VM) from which a Worker VM (Figure 1) can
eventually pick it up. The Worker VMs run an airflow-worker service that periodically
polls the task queue for available tasks, and when the task is runnable by a particular
Worker, that Worker consumes the task message from the queue and assumes execution.
In order to keep track of the status of Workers and workflow execution each Worker
periodically sends heartbeat messages to the Scheduler to communicate its state. The
state is persisted by the Scheduler to a PostgreSQL database, which runs on a DB Server
VM (Figure 1).

The user can communicate with and commandeer Airflow via the Airflow CLI, as well as
a Web UI. The Web UI is provided via the airflow-flower, and airflow-webserver
services, which can run on the same VM as the Scheduler or on a separate VM,
depending on system load. Conceptually, an Airflow workflow is a Directed Acyclic
Graph whose vertices represent tasks and edges indicate task sequence. In its
implementation an Airflow workflow is a Python program that can use any Python
language construct or library. This allows the users to create workflows of arbitrary
complexity and functionality.

An Analysis Tracker module is built into Butler in order to allow the user to define
analyses, specify what workflows are part of these analyses, and track the status and
execution of Analysis Runs - instances of running a particular workflow on a particular
data sample within the context of an Analysis (Supplementary Figure 1).

When an Analysis Run is first created it is given a Ready status (Supplementary Figure
2), indicating that it is ready to be scheduled for execution. Once the Scheduler has
scheduled the Run for execution it is given a Scheduled status. When workflow execution
starts the Run is marked In-Progress. Once the Run is successfully completed it enters a
Completed status. If, at any point, the Run encounters an error condition it cannot recover
from, the Run Status is set to Error. When the error condition is addressed the Run status
should be set to Ready so that it can start from the beginning.

In order to fulfill the workflow configuration and parametrisation requirements	Butler
implements a tri-level configuration mechanism (Supplementary Figure 3), allowing the
user to specify configurations at Workflow, Analysis, and Analysis Run levels. At
runtime all three configuration levels are merged into one “effective” configuration that
applies within the execution context. Because it is important for configuration to be both
human-readable and machine-readable Butler uses the JSON format to encode

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

configuration information. PostgreSQL, in turn, has native support for storage and deep
querying of JSON values, thus making it an ideal choice for configuration persistence.

Operational	Management

This sub-system provides tools for ensuring continuous successful operation of the
cluster, as well as for troubleshooting error conditions. In general, the Operational
Management tools fall into two categories, those that collect observations about the state
of each component in the system at runtime, and those that aggregate this data and
present it to the user in the form of queryable databases and management reports. We
delineate two major sources of data that is indicative of system state - System Metrics,
and Server Logs. While metrics provide more of a coarse-grained view of the overall
health of a particular Virtual Machine, server logs can give much more of a fine-grained
view of the underlying system at an application level, and down to individual lines of
code that are running at any given time. Butler has dedicated components for the
collection and management of these data sets

Each VM runs a metric collection daemon called collectd, which is an open-source
package that is able to make periodic measurements of a large number of system metrics
and ship them off to a centralized Monitoring Server. The definition for which metrics
are collected is specified in a special configuration file.	Because we are interested in
observing not only the metrics as they are measured in the present, but also the dynamics
of how metric values change over time, we need a mechanism for persisting this
information. For this purpose the Monitoring Server component of Butler ships with an
instance of a database product called InfluxDB, which is an Open Source database system
that is optimized for recording time series data.

The metrics collection system is collecting 50 different metrics per host on average,
sampled at intervals of 10 seconds. Given a cluster of 200 Virtual Machines the
monitoring system collects and stores 86,400,000 data points in a 24 hour time period.
This volume of data is quite difficult for the user to comprehend and make use of, and
Butler provides visualization tools to enable the display of aggregate statistics based on
the monitoring data using a Graphical User Interface (Supplementary Figure 8). The main
goal of the visualizations is to give the user an overview of the trends observed within the
compute cluster with respect to a set of representative performance metrics, and to alert
the user to any conditions that threaten the health of Virtual Machines and the scientific
analyses they run.

Because of the potentially extremely high value of the information contained in server
logs, we deploy a system of log harvesting and centralized storage that enables the
Virtual Machines that are part of Butler to parse the logs that are being generated locally
for interesting events, and send those events to a centralized search index which is
amenable to efficient querying and visualization. These open-source tools are known as
the ELK stack (Elasticsearch, Logstash, Kibana).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

Each Virtual Machine in the cluster runs a log shipper - Filebeat. It is responsible for
finding, harvesting, and locally aggregating logs.	Logstash runs on a separate centralized
server and is responsible for parsing the logs forwarded from Filebeat and sending the
parsed information on to the Elasticsearch index.	Elasticsearch is a general-purpose
scalable text indexing and search engine that supports clustering and sharding of data.
Just as it is difficult to grasp and analyze performance metrics due to the number of data-
points generated, it is as difficult to grasp log messages from a large cluster. We utilize a
similar set of visualization tools to the ones we use for metrics, to solve this problem for
server logs within Butler. The Kibana dashboarding framework allows us to create
graphical dashboards that visualize log events of interest, as well as providing a web-
based query interface to the Elasticsearch log messages index (Supplementary Figure 4).

The Monitoring Server runs an anomaly detection and alerting library called Telegraf
which defines a series of rules that specify the normal operating conditions for the
cluster, such as all hosts regularly responding to ping, CPU below 80%, disk utilization
below 85%, workflow tasks sending heartbeats every minute etc. Coupled with the
application metrics gatherer statsd, the system builds an empirical distribution of the
duration of various workflow tasks and knows when tasks take longer than they
historically have. The anomaly detection software monitors the time-series database that
records all metrics and periodically evaluates the rule-set against it. When the system
detects a breach of one or more rules it can take remedial action, such as sending a
warning email, a message to a Slack topic, a Telegram, or schedule the restart of a
particular workflow or the reprovisioning of a particular VM. These abilities allow Butler
users to be always up to date about the health of the system and allow Butler clusters to
self-heal when they encounter problematic scenarios.

The Butler framework consists of many different services that reside on a number of
different servers and need to be able to communicate with each other. To accomplish this
in a flexible manner we needed to establish a Service Registry so that IP addresses of
servers that host particular services could be looked up by service name. To accomplish
this Butler uses an open-source service discovery framework called Consul. Consul
provides a cross-data-center distributed Service Name Registry that is available via
HTTP and DNS protocols. In addition to registry capabilities Consul provides basic
health checks for the underlying services, testing whether the IP and port the service is
supposed to be listening on are actually reachable.

Butler	Deployment	

Butler has been validated for production use on the EMBL-EBI Embassy Cloud - an
academic cloud computing center that runs an OpenStack-based environment (Figure 1).
The Embassy Cloud plays a key role in the PCAWG project by donating substantial
storage and cloud computing capacity over the course of 3 years. The total amount of
resources dedicated to the project by the Embassy Cloud is:

• 1 PB Isilon storage shared over NFS
• 1500 compute cores

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

• 6 TB RAM
• 40 TB local SSD storage
• 10 Gb network

These resources have been used to host one of the six PCAWG data repositories that exist
worldwide, as well as performing a number of scientific analyses for the project. We have
used Butler extensively on the Embassy Cloud in order to carry out the analyses for the
Germline Working Group of PCAWG.

To deploy Butler on the 1500 core cluster we set up five different profiles of VMs, each
playing a number of different roles (Supplementary Table 1).

We	observe	that	the	mean	𝑟!"# is	significantly	higher	for	Butler-based	pipelines	at	
0.46	than	for	the	core	PCAWG	pipelines	at	0.13	(Supplementary	Table	2).	For	each	
pipeline	and	each	1%	of	the	samples	under	analysis,	we	then	compute	a	metric	e	
(for	effectiveness),	defined	as	the	proportion	of	𝑟!"#	actually	achieved.	
	

𝑒 =
𝑟!"#
𝑟!"#

	

Comparing the core PCAWG and Butler pipelines with respect to e (Figure 3 a-c) we
observe that effectiveness is on average lower for PCAWG pipelines (𝜇!!"#$% = 0.49)
than Butler pipelines (𝜇!!"#$%& = 0.70). Assessing the expected analysis duration for the
two sets of pipelines we observe:

𝑑!"#$% =
!""

!!!"#$%
= 2.04𝑑!"#

𝑑!"#$%& =

!""
!!!"#$%&

= 1.43𝑑!"#

𝑑!"#$% = 1.43𝑑!"#$%&

Thus, the expected duration for PCAWG pipelines is 43% longer than that for Butler-
based pipelines.

We wish to further compare core PCAWG pipelines with Butler pipelines on the basis of
uniformity of rate of progress through an analysis. Given a constant resource allocation
an ideal analysis execution processes 1% of all samples in 1% of the analysis runtime.
We divide the sample set into 100 equal size bins and measure the percentage of overall
analysis time spent on processing each bin (Figure 3 d-e). Deviations from the diagonal
indicate inefficiencies in data processing. Measuring this deviation we observe that
PCAWG pipelines deviate 23.1% from the diagonal on average (min 0.0%, max 57.8%,
sd 15.0%) while Butler pipelines only deviate 4.0% (min 0.0%, max 15.6%, sd 3.7%)
from the diagonal on average, over the same sample set. This indicates that Butler
pipelines are impacted less by various causes that slow down an analysis (such as job and
infrastructure failures).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

Data	Availability	

All of the data is made available through the PCAWG data portal
(https://dcc.icgc.org/pcawg) as described in detail in the PCAWG marker paper1.

Code	Availability	
	
The source code for Butler is freely available at http://github.com/llevar/butler under the
GPL v3.0 license.

	 	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

References
	
	
1 Campbell, P. J., Getz, G., Stuart, J. M., Korbel, J. O. & Stein, L. D. Pan-cancer

analysis of whole genomes. bioRxiv, doi:10.1101/162784 (2017).
2 Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: a comprehensive approach for

supporting accessible, reproducible, and transparent computational research in the
life sciences. Genome biology 11, R86 (2010).

3 Wolstencroft, K. et al. The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud. Nucleic acids
research, gkt328 (2013).

4 Deelman, E. et al. Pegasus, a workflow management system for science
automation. Future Generation Computer Systems 46, 17-35 (2015).

5 Merkel, D. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal 2014, 2 (2014).

6 Leipzig, J. A review of bioinformatic pipeline frameworks. Briefings in
bioinformatics, bbw020 (2016).

7 Yung, C. K. et al. Large-Scale Uniform Analysis of Cancer Whole Genomes in
Multiple Computing Environments. bioRxiv, doi:10.1101/161638 (2017).

8 Soergel, D. A. Rampant software errors may undermine scientific results.
F1000Research 3 (2015).

9 Gormley, C. & Tong, Z. Elasticsearch: The Definitive Guide. (" O'Reilly Media,
Inc.", 2015).

10 Di Tommaso, P. et al. Nextflow enables reproducible computational workflows.
Nature biotechnology 35, 316-319 (2017).

11 Vivian, J. & Paten, B. Toil enables reproducible, open source, big biomedical data
analyses. Nature biotechnology 35 (2017).

12 Mashl, R. J., Scott, A. D. & Huang, K.-l. GenomeVIP: a cloud platform for
genomic variant discovery and interpretation. Genome research,
doi:doi:10.1101/gr.211656.116 (2017).

13 Habermann, N., Mardin, B. R., Yakneen, S. & Korbel, J. O. Using large-scale
genome variation cohorts to decipher the molecular mechanism of cancer.
Comptes rendus biologies 339, 308-313 (2016).

14 Stein, L., Knoppers, B., Campbell, P., Getz, G. & Korbel, J. Data analysis: Create
a cloud commons. Nature 523, 149 (2015).

15 Molnár-Gábor, F., Lueck, R., Yakneen, S. & Korbel, J. O. Computing patient data
in the cloud: practical and legal considerations for genetics and genomics research
in Europe and internationally. Genome Medicine 9, 58, doi:10.1186/s13073-017-
0449-6 (2017).

16 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics 25, 1754-1760 (2009).

17 Garrison E, M. G. Haplotype-based variant detection from short-read sequencing.
arXiv preprint, doi:arXiv:1207.3907 [q-bio.GN] (2012).

18 Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end
and split-read analysis. Bioinformatics 28, i333-i339 (2012).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

19 Raine, K. M. et al. cgpPindel: Identifying somatically acquired insertion and
deletion events from paired end sequencing. Current protocols in bioinformatics,
15.17. 11-15.17. 12 (2015).

20 Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-
genome sequences. Nature 534, 47-54 (2016).

	 	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgements	
	
The authors would like to acknowledge the EMBL-EBI Embassy Cloud, The Cancer
Genome Collaboratory, Amazon Web Services (AWS), Google Compute Platform, and
Microsoft Azure for providing compute infrastructure and cloud resources.

We kindly acknowledge the following EMBL-EBI employees for the invaluable
assistance with the EMBL-EBI Embassy Cloud: Andy Cafferkey, Charles Short, David
Ocaña, Dario Vianello, Erik van den Bergh, Steven Newhouse, Ewan Birney.

JOK was supported by the European Open Science Cloud Pilot study (European
Commission award number: 739563) and the BMBF (de.NBI project: 031A537B). SW
was supported through a SNSF Early Postdoc Mobility fellowship (P2ELP3_155365) and
an EMBO Long-Term Fellowship (ALTF 755-2014).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

Author	Contributions	
	
S.Y.	designed,	implemented,	and	executed	Butler	for	the	analyses	described	in	this	
manuscript.	
S.M.W.	designed	workflows,	and	assessed	the	integrity	of	the	framework.	
S.Y.	and	S.M.W.	performed	the	data	analysis.	
The	manuscript	was	written	by	S.Y.	and	J.O.K.,	with	input	from	all	authors.	
	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

EMBL/EBI Embassy Cloud

Monitoring

Tracking

Workflow
EngineScheduler

Worker

CPU HDDNetwork

CollectdFilebeat

CeleryAirflowFreebayes

GNOS
Data Repository

Configuration

DB Server

The Configuration VM manages software installation and settings for all VMs. Tracking VM runs the Workflow
Engine and Scheduler which transform workflow definitions into executable tasks and deposit them into a
queue. A fleet of Workers run tasks by picking them up from the queue and running the algorithms embedded
within the task definition. The Monitoring VM collects health metrics from all other VMs and aggregates them
into a set of operational management dashboards.

Figure 1: Butler framework architecture as deployed on the EMBL/EBI Embassy Cloud for PCAWG

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

a

(a-b) The target progress rate is the minimal proportion of time required to process 5% of samples for each
analysis pipeline. We compare the ratio of actual to target progress rates across the cohort for “core”
PCAWG Pipelines (a) vs Butler pipelines (b).
(c) Mean actual/target progress rate ratio across pipelines for “core” PCAWG (mean 0.49) vs Butler (mean 0.7)
pipelines.
(d-e) Given a constant allocation of resources the “ideal” progress rate is 1% of samples processed for each 1%
of total analysis runtime. All “core” PCAWG pipelines deviate significantly from the ideal trajectory (mean
deviation 21.3%, sd 15.0%) taking half of the overall analysis time to complete the last 15-30% of the samples.
Butler-based pipelines demonstrate a dramatically lower mean deviation from the ideal trajectory
(mean 4.0%, sd 3.7%) over the same sample set.

Figure 2: Comparison of analysis progress between “core” PCAWG pipelines and Butler-based pipelines.

b

c

d e

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/185736doi: bioRxiv preprint

https://doi.org/10.1101/185736
http://creativecommons.org/licenses/by-nc-nd/4.0/

