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ABSTRACT 

Mass cytometry enables simultaneous analysis of over 40 proteins and their modifications in 

single cells through use of metal-tagged antibodies. Compared to fluorescent dyes, the use 

of pure metal isotopes strongly reduces spectral overlap among measurement channels. 

Crosstalk still exists, however, caused by isotopic impurity, oxide formation, and mass 

cytometer properties. Spillover effects can be minimized, but not avoided, by following a set 

of constraining rules when designing an antibody panel. Generation of such low crosstalk 

panels requires considerable expert knowledge, knowledge of the abundance of each 

marker and substantial experimental effort. Here we describe a novel bead-based 

compensation workflow that includes R-based software and a web tool, which enables 

correction for interference between channels. We demonstrate utility in suspension mass 

cytometry and show how this approach can be applied to imaging mass cytometry. Our 

approach greatly simplifies the development of new antibody panels, increases flexibility for 

antibody-metal pairing, improves overall data quality, thereby reducing the risk of reporting 

cell phenotype and function artifacts, and greatly facilitates analysis of complex samples for 

which antigen abundances are unknown. 	

 

INTRODUCTION 

High-dimensional, single-cell flow cytometry has been broadly adopted by researchers and 

clinicians to analyze complex biological samples1–6. Fluorescence activated cell sorting 

(FACS) has dominated this field for decades, and, with the constant improvement of probes 

and laser systems, 18-color FACS experiments are now routine7, and 30-color cytometers 

have recently become commercially available7. Due to the overlapping excitation and 

emission spectra of the fluorescent dyes, signals are measured not only in the primary 

channel, but also in neighboring channels. This spillover is correlated with original signal in 

an approximately linear manner and can be corrected via a process called compensation8. 
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Single-stained controls for each dye are analyzed to determine the percentage of interfering 

signal in all the channels. These values are reported into a spillover matrix that is then used 

to correct for the spillover by solving a system of linear equations. As the number of 

parameters measured increases, however, it becomes challenging to detect proteins of low 

abundance due to the increased complexity of overlapping spectra of fluorochromes that 

interfere with detection in the affected channels7.  

The recent development of mass cytometry increased the number of parameters that can be 

analyzed in an experiment to over 409. In mass cytometry, heavy metal isotopes are used as 

reporters to label antibodies10–12. Currently, mass cytometers enable simultaneous detection 

of 135 channels ranging from 75 to 209 atomic mass units. To date, more than 55 different 

isotopes have been used for surface and intracellular protein epitope detection, DNA and 

transcript detection, cell-cycle analysis, dead-cell exclusion, and cell barcoding2,13–16. This 

technology has recently been exploited for imaging by coupling a laser ablation system to a 

mass cytometer17–19. Imaging mass cytometry (IMC) enables the analysis of tissue sections 

stained with metal-tagged antibodies to generate highly multiplexed images at subcellular 

resolution17,18.  

Due to the high mass resolution of the time-of-flight mass spectrometer and the fact that the 

ions are singly charged and thus differ by at least a full atomic mass unit, the interference 

between channels in mass cytometry is strongly reduced in comparison to the overlap 

observed in fluorescent flow cytometry20. Still, three sources of signal interference are 

observed in mass cytometry11. The first is imprecision in ion detection (at mass M) caused 

by small differences in ion positions and kinetic energy at the beginning of the mass analysis 

process leading to signal leakage into adjacent mass channels (M±1). This source of 

spillover is termed abundance sensitivity and is a fixed value for each instrument under a 

specific configuration. In current mass cytometers, the (M±1)/M ratio is low and optimized to 

not exceed 0.3% for 159Tb21. The second source of signal interference is oxide formation, 
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which generates a signal in the M+16 channel. The frequency of oxide formation after 

ionization depends on the strength of the oxygen-ion bond and the temperature of the 

plasma. The tuning procedure for mass cytometers ensures that the oxide ratio remains 

under 3% for lanthanum (139La), an easily oxidized isotope. The third source of spillover is 

due to the impurity of the isotopes used in mass cytometry. For relatively abundant isotopes, 

the isotopic purity is usually greater than 99%, whereas for less abundant isotopes, 

impurities in a single alternative channel can reach 4%11,20.  

Although the amount of spillover observed in mass cytometry is generally small, spillover 

can considerably complicate interpretation of data and potentially lead to false conclusions. 

For example, signal crosstalk can result in incorrect identification of cells as expressing an 

intermediate level of a marker22. In experiments conducted to date, the effects of spillover 

have been minimized by selecting only highly pure isotopes and by carefully designing 

antibody panels to optimize the signal to background ratio in each channel22. Generating a 

low crosstalk antibody panel is complex and time consuming, however. It requires that the 

approximate antigen abundance is known for each marker used in the panel, which is not 

possible in many types of experiments, particularly when a large variability of expression 

levels of a particular marker is expected or when the expression levels can unpredictably 

increase through an applied perturbation or a disease state. Thus, especially clinically 

important samples, such as complex tissue-derived samples, can suffer from spillover 

artifacts. Further, with a purely experimental approach to avoid spillover, antibody-isotope 

conjugates are not easily transferable between panels applied to different sample types. As 

spillover is proportional to the originating signal, it can be reduced by decreasing antibody 

concentrations; this also reduces the signal-to-noise ratio and is thus only applicable to 

channels with clear positive and negative populations. In practice, the above-mentioned 

strategies are not sufficient to completely prevent crosstalk between channels as shown in a 

recent study in which data from spillover-affected channels had to be excluded to avoid 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185744doi: bioRxiv preprint 

https://doi.org/10.1101/185744
http://creativecommons.org/licenses/by/4.0/


5	
	 	

potentially misleading conclusions23. Spillover-related issues have not yet been reported in 

IMC, but since the source and the measurement of metal signal in suspension mass 

cytometry and IMC are identical, both systems are expected to be affected in a similar 

manner. 

Here we present a comprehensive workflow to estimate and systematically correct for signal 

spillover across all the channels used in a given mass cytometry experiment. Polystyrene 

capture beads were single-stained with each antibody used in the experiment. Beads were 

then pooled and analyzed simultaneously in the mass cytometer. The CATALYST 

R/Bioconductor package and an interactive Shiny-based web application were developed to 

deconvolute the different bead populations, estimate spillover signal in all channels, and 

compensate the data. We demonstrate the utility of the approach in correction of signal 

interference in suspension mass cytometry and IMC experiments. Our approach will greatly 

facilitate the development of antibody panels, increase the flexibility of antibody-metal 

pairing, increase the number of usable isotopes, and enable generation of high-quality data 

void of spillover artifacts on poorly characterized samples. 

 

RESULTS 

Mass cytometry spillover is linear and can be corrected using compensation 

Fluorescent flow cytometry is affected by signal interference between channels. Since 

spillover signal is a defined fraction of the source signal, it can be corrected 

mathematically8,24. In mass cytometry, the interference between channels is reduced but is 

still present due to instrument properties (abundance sensitivity), isotopic impurities, and 

oxidation (Figure 1A). To determine whether channel crosstalk observed in mass cytometry 

can be corrected in a manner similar to the one used for flow cytometry, we first determined 

whether the crosstalk in mass cytometry experiments is linear. We stained peripheral blood 
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mononuclear cells (PBMCs) with anti-CD44 conjugated to 143Nd using antibody 

concentrations ranging from 0.01 µg/mL to 1 µg/mL (Figure 1B). As expected, signal was 

observed in other mass channels including -1 (142Nd), +1 (144Nd), +2 (145Nd), +3 (146Nd), and 

+16 (due to the oxidation product 143Nd16O measured in 159Tb). The signal in the source and 

in the spillover channels could be fitted by a linear model with a Pearson correlation 

coefficient (R) greater than 0.99 in all cases (Figure 1C). 	

In fluorescent flow cytometry, the slope of the linear regression is used to generate a 

spillover matrix. Flow cytometry compensation approaches apply this spillover matrix by 

solving a linear system of equations to infer the original signal values. Applying the 

traditional flow cytometry compensation on these single-stained cells efficiently removed the 

spillover (Figure 1D, middle panels). However, this strategy substantially modified the 

structure of the data by introducing artificial negative values, which specifically influenced 

channels strongly affected by spillover. Negative ion counts are not present in 

uncompensated mass cytometry data, and more importantly, data with negative values 

require different treatment than strictly non-negative abundance data. A recent study aimed 

at unmixing signals in multispectral fluorescent flow cytometry made similar observations 

and suggested use of approaches that specifically incorporate a non-negativity constraint for 

the compensation process, such as the 'Non Negative Least Squares' (NNLS) approach25. 

This method calculates the optimal non-negative solution for the compensation problem 

using the least-squares criterion. Applied to our data, the NNLS approach removed the 

spillover without changing the data structure (Figure 1D, right panels). Taken together, 

spillover in mass cytometry is linear and can be corrected while preserving the data structure 

using the NNLS approach.  

Systematic correction of spillover in mass cytometry 

Inspired by methods used in flow cytometry, in which controls stained with single antibodies 

are used to estimate signal crosstalk, we developed an approach to systematically correct 
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for signal interference in mass cytometry experiments. A 36-antibody panel was designed to 

detect the main immune cell populations in PBMCs (Figure 2A). This panel was not 

optimized to avoid spillover effects. We also labeled identical antibodies for detection in 

different mass channels to facilitate the identification of spillover artifacts and to validate our 

method. In parallel to sample staining with the panel, 36 control samples stained with 

individual antibodies were generated by staining polystyrene antibody-capture beads in a 

96-well plate (Figure 2B). After staining, beads were pooled and run as a single sample in 

the mass cytometer. 	

To apply our approach for semi-automatic spillover correction in mass cytometry, we created 

an R/Bioconductor package, CATALYST, and a web app (Figure S1A). In the first step, the 

FCS file containing data on the bead sample is deconvoluted to identify the individual single-

antibody-positive bead populations using a new implementation of the debarcoding 

algorithm from Zunder and colleagues114 that includes automated estimation of sample-

specific cutoffs (Figure S1B). In a second step, the spillover matrix is calculated based on 

the spillover observed for single-stained populations. Due to the mass cytometry data 

structure, we observed that spillover estimation was more accurate when the spillover was 

assessed at the single bead level rather than at the bead population level (Figure S2A - C; 

see Materials and Methods for details). By default, the method only takes into account 

interference between channels expected to interact based on abundance sensitivity, metal 

impurity, and oxidation (Figure S2D, E), but also allows to check for unexpected spillover. In 

a final step, the compensation matrix from the solved linear system (NNLS or classical) is 

applied to the bead and cell samples to remove interfering signal. This workflow provides a 

fully integrated and easy to use experimental and computational solution for compensation 

of mass cytometry spillover.	

Cellular metal load influences signal spillover  
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The spillover matrix generated by our bead approach revealed that the total amount of 

spillover originating from a single channel ranged from 0% for 165Ho to over 8% for 148Nd 

(Figure 3A). This spillover matrix also revealed important differences regarding the amount 

of spillover received by the different channels. Consistent with previous reports20, we found 

that oxidation was variable among the different metals, ranging from 0% to 2%, but that the 

spillover due to mixed effects of impurity and abundance sensitivity is most problematic and 

may exceed 4%. Signal interference due to abundance sensitivity alone was virtually absent 

on the machine used. To assess the stability of the spillover matrix over time and 

instruments, we measured single-stained beads on different mass cytometers over months 

(Figure S3). Although the spillover matrix could be stable over months, our results show that 

for optimal compensation the spillover matrix should be acquired simultaneously with the 

sample of interest.	

As expected, the application of the spillover matrix to beads stained with individual 

antibodies revealed virtually perfect compensation using both traditional and NNLS 

approaches (Figure 3B and C, left panels). When this matrix was applied to the multiplexed-

stained cell samples, the spillover was also efficiently compensated but traditional 

compensation systematically overcompensated (Figure 3B and C, right panels). One 

possible explanation for the difference observed in spillover among single stained beads and 

multiplexed-stained cells might be the difference in total ion load, with high ion loads leading 

to ion detector saturation effects. Indeed, we found that an increased amount of barcoding 

was associated with a progressive decrease of spillover, both in terms of percentage and 

absolute count (Figure 3D, E). For spillover below two counts the signal interference was 

completely abolished (Figure 3E). While this observation leads to a slight but systematic 

overestimation of the spillover present in multiplexed stained cells, the NNLS compensation 

is robust to this effect and preserves the count abundance nature of mass cytometry data.	

Compensation efficiently corrects for spillover-mediated artifacts in mass cytometry 
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To identify spillover-based artifacts in our mass cytometry dataset and to determine the 

ability of our approach to correct them, we analyzed PBMCs stained with the 36-antibody 

panel using the dimensionality reduction algorithm t-SNE26,27. This approach enabled us to 

identify the main immune cell populations based on individual marker expression (Figure 

S4A). The proteins CD3, CD8, and HLA-DR were each detected with antibodies paired to 

two different metal-labels. In uncompensated data, we observed strikingly different signal 

profiles that depended on the metal isotope used to label the antibody (Figure 4A, left 

panel). After compensation, spillover signals were removed and the signals observed for the 

same antibodies conjugated with different metal isotopes were virtually identical (Figure 4A, 

right panel and Figure S4B). This demonstrated that compensation efficiently removed 

artifactual signals in spillover-affected channels and therefore prevented data 

misinterpretation during t-SNE map visualization. 	

Identifying cell communities based on unsupervised clustering and investigating the marker 

expression profile of each population is an approach commonly used to analyze mass 

cytometry data. Applying the PhenoGraph1 clustering algorithm to our dataset led to the 

identification of 20 PBMC subsets (Figure 4B). Comparison of heat maps of signals in 

uncompensated versus compensated data highlighted how marker expression signatures of 

the different clusters can be misinterpreted without spillover correction (Figure 4C). Lack of 

compensation caused several clusters to be wrongly identified as having intermediate 

abundances of certain antigens even though the signal was actually due to channel 

crosstalk. In particular, an intermediate level of CD3-173Yb was observed on all the non T cell 

subsets (Figure 4C). Further, most T cell and natural killer cell subsets are wrongly identified 

as expressing intermediate levels of HLA-DR-171Yb. Artifacts caused by crosstalk were 

particularly strong in channels 158, 163, 168, 171, 173, and 174. 	

Characterization of newly identified clusters or signaling network inference often involves the 

systematic correlation analysis of markers at the single-cell level to identify co-regulated 
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markers, and this approach can be strongly affected by channel interference. Analysis of 

marker correlations within each cluster before and after compensation systematically 

reduced spurious correlations (Figure 4D-E). A systematic analysis over all the clusters 

showed that in our dataset, between 25 and 45% of the significant correlations were actually 

due to spillover (Figure 4D). Collectively, this set of analyses showed that spillover can be 

responsible for various artifacts and that our compensation approach efficiently removed 

them.	

Spillover observed in IMC can be corrected using a similar compensation approach. 

In IMC, tissue stained with metal-tagged antibodies is ablated with a laser, and the tissue 

aerosol is analyzed in a mass cytometer17. Images generated with the IMC system provide 

subcellular resolution and are high dimensional; information has been collected from 50 

different channels17,18. To determine how signal interference affects IMC measurements, 

metal isotopes were arrayed on a slide and measured by IMC. Using this approach, we 

demonstrated that a linear relationship exists between the original signal and the interfering 

signals (Figure 5A). This indicated that spillover in IMC could be corrected using the bead-

based compensation approach applied to suspension mass cytometry. We used the 

CATALYST package to calculate a spillover matrix based on the pixel values of the 

individually spotted heavy metals (Figure S5A). Comparing individual spillover values 

obtained in suspension and IMC, we found that spillover due to abundance sensitivity and 

impurities were in the same range for all metals except for 148Nd and 176Yb, which came from 

different batches for the IMC experiment than those used for the suspension analysis (Figure 

S5B-D). Values observed for oxidation in the M+16 channel were systematically lower in 

IMC than in suspension mass cytometry. This was expected given that the tissue aerosol is 

transported in an argon and helium gas stream and no water is used for sample introduction, 

thus much less oxygen is present in the plasma of the mass cytometer to generate oxides 

(Figure S5E).  
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Based on this spillover matrix, a breast cancer tissue section imaged by IMC was 

compensated at the pixel level using a custom written CellProfiler module28. This 

compensation approach efficiently removes the low signal due to spillover (Figure 5B). The 

carbonic anhydrase antibody, which was labeled with 166Er, showed a predominantly 

membranous signal. No antibodies were labeled with 167Er (the +1 channel) to enable 

assessment of the spillover. In the uncompensated data, there was a perfect, but lower 

intensity image of the 166Er channel in the 167Er channel. Thus, without compensation, the 

channel 167Er is not suitable for detection of a low level marker. 168Er was used to label an 

antibody against Ki67, a protein tightly regulated during cell cycle progression. Even though 

the spillover from 166Er into 168Er is only estimated to be 0.2% due to the low background in 

IMC, the carbonic anhydrase signal is still clearly visible in the KI67 channel. This could lead 

to the misinterpretation that Ki67 is localized on the membrane. Upon compensation, the 

shadow images of the 166Er channel in the 167Er and 168Er channels are gone (Figure 5B).  

IMC images are often segmented to identify individual cells in the images enabling single cell 

data analysis17,19. Upon segmentation, the mean signal intensities for the channels of 

interest were calculated using a customized CellProfiler module and subsequently analyzed 

and compensated in R using the CATALYST package (Figure 5C). A scatter plot of this 

image clearly shows the spillover artifact and how our compensation approach largely 

removed it (Figure 5C). Together, this set of data indicates that spillover observed in IMC 

data can be and should be corrected using the compensation approach developed for 

correction of suspension mass cytometry data. 	

 

DISCUSSION 

Relative to fluorescence leakage in flow cytometry, channel interference is considerably 

reduced in mass cytometry, but it is not absent. Two reports have highlighted the challenges 
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posed by spillover to mass cytometry data analysis and interpretation22,23. Although issues 

related to channel interference in IMC analyses have not yet been reported, our 

observations show that imaging and suspension mass cytometry are similarly affected by 

signal interference between channels. The main issue is the virtually absent background 

signal in mass cytometry, which enables the reliable detection of signals at low counts (~10 

counts). Given the dynamic range over four orders of magnitude in mass cytometry, even a 

few percent signal spillover from high ion count channel into low ion count channel can 

easily result in difficulties in data interpretation. Moreover, high-dimensional mass cytometry 

data are commonly analyzed using unsupervised approaches, which present many 

advantages but involve a risk of misinterpretation of the data due to such artifacts. Currently, 

mass cytometry is transitioning from an emerging to a well-established technology, and this 

step requires the development of common standards and improved data quality assessment. 

Here, we present a combined experimental and computational approach that can be used 

both in suspension and IMC to ensure accurate correction of signal spillover.	

In this study, we performed a comprehensive analysis of channel interference and showed 

that spillover is a linear function of the primary signal and therefore can be corrected using 

signal compensation similarly to flow cytometry. However, we found important differences 

between flow cytometry and mass cytometry data that prevented a direct transposition of the 

method used in flow cytometry. First, we found that assessing the spillover coefficient in 

single-stained beads using summary statistics at the population level tended to 

overcompensate the single-stained controls. Second, we observed that traditional 

compensation, by introducing negative values, changes the structure of the data. This 

artifact is not critical in fluorescent flow cytometry data as there are negative values in 

uncompensated data, but it has important consequences in mass cytometry data, in which 

negative events do not exist, but only events with zero or very low counts. The presence of 

physically impossible negative counts also changes the statistical properties of the data, as 
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data can no longer be interpreted as abundances. Although not widely acknowledged, this 

problem has been already addressed in flow cytometry compensation methods used in 

multiparametric data analysis25. Third, we observed that the usage of a compensation matrix 

based on single-stained beads tended to overcompensate the spillover observed in 

multiplexed-stained cells, likely due to a detector saturation effect observed at higher ion 

counts.  

The compensation method used in flow cytometry had therefore to be adapted to address 

these issues. To generate a more accurate compensation of the single-stained controls, we 

introduced a spillover estimation at the single-cell level, which was adapted to the mass 

cytometry data distribution and led to a perfect compensation of single-stained controls. To 

prevent appearance of negative data upon compensation, we applied the nonlinear least 

square method, previously used in multispectral fluorescent cytometry data compensation25. 

We found that this strategy preserved the structure of mass cytometry data. Finally, the 

overcompensation issue observed in multiplexed samples using the conventional 

compensation approach was virtually absent when using the NNLS approach, which 

strengthens the rationale for using this method.  

Using a well-controlled system where the same antibodies were used in channels affected 

and not affected by spillover, we demonstrated that our approach efficiently removed 

spillover artifacts in t-SNE and PhenoGraph analysis and when investigating marker 

correlation within a given cluster. In straightforward experiments, most of the artifacts we 

describe here would have been detected by an expert user and removed by changing the 

antibody panel. In a complex experimental setup involving a large-scale analysis of poorly 

characterized tissues such artifacts are almost unavoidable, however, and may have gone 

unnoticed.	
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Compensating a ~40-parameter experiment can be seen as a daunting task. Therefore, the 

process was streamlined by using beads instead of cells for single-stained controls and by 

developing an efficient computational workflow that allowed for the simultaneous acquisition 

of data on all single-stained bead samples. All necessary data on the single-stained controls 

were acquired in a few minutes and were algorithmically identified as single-positive 

populations; these were subsequently used to calculate the matrix using the R package 

CATALYST, which includes a browser-based graphical user interface. For a 36-parameter 

imaging experiment, each individual metal can be acquired in less than a minute and upon 

acquisition, the samples can be processed by applying the CATALYST package on pixels 

instead of beads. The spillover matrix can be directly applied to the samples of interest or 

exported to be applied in commercial or open-source solutions such as FlowJo, Cytobank, or 

the R package flowCore for suspension experiments or a newly available plugin in 

CellProfiler for imaging experiments.  

Mass cytometry is now broadly used in the scientific community. Our bead-based 

compensation workflow, including R-based software and a web tool, will make mass 

cytometry more reliable and easy to use. Minimizing spillover by careful design of the 

antibody panel is still advantageous, but our approach will offer a new level of flexibility, 

which is particularly needed for the analysis of complex and poorly characterized tissues 

such as tumor samples. 

 

DATA AVAILABILITY 

Upon publication, all raw mass cytometry data (.fcs files) can be downloaded from 

http://www.bodenmillerlab.org  and from the Cytobank repository. The R package developed 

in this study is available from Bioconductor (http://bioconductor.org/packages/CATALYST).  

The data processing pipeline can be run at the command line.  Alternatively, an interactive 
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shiny-based app can be run as either a local version (requires installation of several R 

packages in addition to CATALYST) or a file-size-limited online version.  Links, installation 

instructions, example datasets and vignettes are accessible from the CATALYST project 

page: https://catalyst-project.github.io/. 
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Figure 1 Spillover is a linear function of the original signal and can be compensated. A. 

Schematic view of sources of signal interference affecting mass cytometry. B. Histogram 

showing signal intensity upon staining of PBMCs with the indicated concentrations of anti-

CD44 antibody. C. The median intensities of signals obtained in the main channel (143Nd) 

and spill-affected channels for PBMCs stained with anti-CD44 antibody are displayed as 

scatter plots. For each relationship, the Spearman coefficient of correlation is indicated. D. 

Scatter plots showing the signals of the anti-CD44 antibody in the main channel and in the 

spillover-affected channels before compensation (left column), after compensation with the 

conventional fluorescent flow cytometry approach (middle column), and after compensation 

with the NNLS method (right column).	

Figure 2. Antibody panel and experimental and analytical workflow to correct spillover using 

single stained beads. A. List of the 36 antibodies used in the panel in this study, including 

the information regarding the metal, the mass, the antigen, and the clone. Asterisks indicate 

antibody grouping for the experiment shown in Figure 3C. B. Depiction of the workflow used 

to correct for spillover. Staining of control antibody-capture beads and samples are 

performed in parallel. Single stained beads are pooled, and data are acquired on the beads 

and the samples by mass cytometry. The CATALYST R package enables identification of 

the single-positive bead populations, calculates the compensation matrix, and applies the 

matrix to correction of sample data for spillover.	

Figure 3. Saturation effects cause overcompensation in multiplexed samples. A. Spillover 

matrix calculated based on single-stained beads. Values on the diagonals are one. By 

default, spillover is calculated only in potentially affected channels, which include M±1, those 

corresponding to known isotopes, and M+16 (Figure S2D). Numbers in the cells indicate 

percentages of spillover by channels in rows into channels in columns. Numbers in the last 

column show the total amount of signal received in the corresponding channels. B. Scatter 

plots showing signal due to anti-HLA-ABC labeled with 172Yb and anti-CD3 labeled with 173Yb 
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from pooled single-stained beads and multiplexed-stained PBMCs before and after 

compensation. The last row shows NNLS compensated data. C. Dot plots showing the 

median counts in each channel potentially affected by spillover for uncompensated data, 

compensated data, and NNLS compensated data obtained upon analyses of single-stained 

beads and multiplexed-stained PBMCs. For multiplexed-staining, cells were stained with two 

panels where half of the channels were left empty (see Figure 2A), to enable  spillover 

assessment in absence of staining. For each dataset, the average sum of squares is shown 

on top of the graph. D. Dot plots showing the spillover in percent for the indicated 

relationships assessed on cells stained with increasing amount of barcoding reagents. A 

linear model was fitted to each relationship (blue lines), and the slope is indicated above 

each plot. E. Dot plots showing the spillover in absolute counts for the indicated relationships 

assessed on cells stained with increasing amount of barcoding reagents as described in 

panel D. 	

Figure 4. Correction of spillover artifacts in mass cytometry data using compensation. A. t-

SNE map displaying data on a subset of 20,000 PBMCs analyzed with our 36-antibody 

panel and colored by marker expression for three pairs of antibodies labeled with two 

different metal isotopes before (left) and after (right) spillover correction based on NNLS 

compensation. The percentages of spillover affecting each channel in the uncompensated 

dataset are indicated. B. t-SNE map colored by PhenoGraph clusters identified on 

uncompensated data. C. Heat maps showing the expression of the indicated markers in the 

different clusters before compensation (upper panel) and after NNLS compensation (lower 

panel). Dashed boxes highlight regions in the plot that changed upon compensation. D. 

Plots showing the frequency of significant correlations (Spearman, p<0.005) between 

markers for each cluster containing more than 200 cells. Frequency was set to 1 for the 

uncompensated values. E. Correlation heatmap across all markers for cluster 12 before 

(upper panel) and after NNLS compensation (lower panel). 	
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Figure 5. Spillover affects IMC data and can be corrected using our compensation strategy. 

A. Binning the signals of an imaged 166Er metal spot (to the 95h percentile of the 166Er pixel 

values) into 20 bins with equal pixel numbers shows a linear relationship between 166Er and 

167Er over several orders of magnitude (upper panel). The relationship between 166Er and 

168Er appears linear but saturates at the higher counts (lower panel). B. Representative 

image of a breast cancer tissue sample imaged by IMC. Top row shows uncompensated 

images of 166Er (used to label antibody to carbonic anhydrase), 167Er (no antibody labeled 

with this metal), and 168Er (used to label anti-KI67). The bottom row shows corresponding 

NNLS compensated images. For visualization, a median filter was used to reduce noise. The 

yellow lines correspond to 20 µm. Red arrows indicate part of the image where low signal 

was removed by compensation. C. Segmentation mask shown on representative images 

described in panel B. The mean pixel intensities of the signals observed in the indicated 

channels per cell are displayed. D. Scatterplots from single cell segmentation data from the 

IMC images before (left) and after (right) compensation with CATALYST. Arcsinh 

transformed ion counts (cofactor of 2) are shown.	

Figure S1. Description of the main functions of the CATALYST package. A. Schematic of 

the workflow used in the CATALYST package to generate a compensated file based on 

beads stained with single antibodies. The graphical outputs generated during the process 

are indicated above the steps. B. Screen shot depicting the main features available with the 

Shiny app. The compensation module is used as an example. C. Description of the 

automatic cutoff estimation for each individual population. The bar graphs indicate the 

distribution of cells relative to the barcode distance, and the dotted line corresponds to the 

yield upon debarcoding as a function of the applied separation cutoff. Data were fitted with a 

linear regression (blue line) and a three parameter log-logistic function (red line). The cutoff 

estimate is defined as the mean of estimates derived from both fits, weighted with the 

goodness of the respective fit (see Materials and Methods). 	
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Figure S2. Description of the specificities of spillover matrix calculation for mass cytometry 

data. A. Scheme describing spillover estimates at the population level (upper panel) and at 

the single-cell level (lower panel). B. Dot plots showing the median counts in each channel 

potentially affected by spillover for beads compensated based on population estimates 

versus single-cell estimates compared to uncompensated data. C. Plots showing the 

spillover in percent for the main interactions as assessed at the population level and at the 

single-cell level (top panel) and the absolute difference (middle panel) and the relative 

difference (lower panel) in spillover percentages. D. Spillover matrix showing the interactions 

estimated by default in CATALYST. Only those interactions expected to occur based on 

impurities, abundance sensitivity, and oxidation are taken into consideration. E. Spillover 

matrix calculated for expected interactions versus all interactions using single-cell estimates 

(upper panels) versus population estimates (lower panels).	

Figure S3. Compensation matrix stability over stainings, measurements, and instruments. A. 

Scatter plot displaying the means and standard deviations of the spillover measured the 

same day (blue), after three days (green), and after four months (red). The origin of spillover 

(metal impurity vs. oxidation) is indicated. B. Spillovers observed in single-stained beads in 

absence of compensation and upon compensation with each of seven different matrices 

acquired at the indicated time points are displayed as a dot plot. For each dataset, the 

average sum of squares is shown on top of the graph. C. Spillovers observed in single-

stained beads without and upon compensation with each of four matrices acquired at the 

indicated time points on the indicated instruments are displayed as a dot plot. The 

compensation performed with the compensation matrix provided by Fluidigm is also shown. 

For each dataset, the average sum of squares is shown on top of the graph. D. Spillovers 

assessed for the individual relationships over stainings, measurements, and instruments are 

shown. Data are shown for M-1 and impurities (mean interaction > 0.5%), M+1 and 

impurities (>0.5%), impurities (>0.5%), and M+16 (all interactions). E. Scatter plot showing 
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the total amount of spillover in each individual channel for the seven matrices acquired 4 

months apart, for the four matrices acquired on two different machines, and for the 

theoretical matrix provided by Fluidigm.	

Figure S4. Compensation is necessary to ensure accurate interpretation of t-SNE maps. t-

SNE maps displaying data on a subset of 20,000 PBMCs analyzed with our 36-antibody 

panel and colored by marker expression for all the antibodies included in the analysis (A) in 

absence of compensation and (B) after compensation based on NNLS.	

Figure S5. Compensation matrix for IMC. A. Spillover matrix calculated based on single 

isotope containing pixels. Values on the diagonals are one. Spillover is calculated only in 

potentially affected channels (Figure S2D). Numbers in the squares indicate percentages of 

spillover by channels in rows into channels in columns. Numbers in the last column show the 

total amount of spillover received in the corresponding channels. B-E. Signal interference for 

the indicated interactions shown for two independent IMC measurements of single isotopes 

spotted on a slide. Box plots show the spillover values obtained across the 11 replicates 

performed in flow mass cytometry, as described in Figure 5D.	

 

MATERIALS AND METHODS	

Cell preparation 

PBMCs were isolated using histopaque (Sigma Aldrich) density gradient centrifugation of 

buffy coats from healthy donors obtained from the Zurich Blood Transfusion Service 

(www.zhbsd.ch). Cells at the interphase were harvested, washed twice in PBS, immediately 

fixed in 1.6% paraformaldehyde (Electron Microscopy Sciences) for 10 min at room 

temperature, and stored at -80 °C.	

Antibodies and surface staining 
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Provider, clone, and metal tag of each antibody used for suspension mass cytometry 

analysis are listed in Figure 2A. Antibody conjugations were performed using the MaxPAR 

antibody conjugation kit (Fluidigm) according to manufacturer’s instruction. After labeling, the 

concentration of each antibody was assessed using a Nanodrop (Thermo Scientific) and 

adjusted to 200 µg/mL in Candor Antibody Stabilizer. To determine the optimal concentration 

for PBMC staining, each conjugated antibody was titrated between 0.25 and 4 µg/mL. All 

antibodies used in this study were managed using the cloud-based platform AirLab29. 	

Cell barcoding 

To assess the effect of total metal load on spillover, 0.3-0.8 x 106 cells from each tumor 

sample were barcoded using a 60-well barcoding scheme consisting of unique combinations 

of four out of eight barcoding reagents as previously described14. Six palladium isotopes 

(102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, Fludigm) were conjugated to 

bromoacetamidobenzyl-EDTA (BABE) and two indium isotopes (113In and 115In, Fludigm) 

were conjugated to 1,4,7,10-tetraazacy-clododecane-1,4,7-tris–acetic acid 10-maleimide 

ethylacetamide (mDOTA) following standard procedures230. For each concentration (20, 40, 

80, 160, and 320 mM), cells were stained in triplicate using three random barcodes. Cells 

were barcoded using the transient partial permeabilization protocol described by Behbehani 

and colleagues31. Upon barcoding, cells were pooled and stained with the antibody mix.	

Cell and bead staining 

Before antibody staining, cells were incubated with FcR blocking reagent (Miltenyi Biotech) 

for 10 min at 4 °C. One million of PBMCs were stained with 100 µl of the antibody mix 

(Figure 2A) for 30 min at 4 °C. Cells were washed twice in cell staining medium (CSM, PBS 

with 0.5% bovine serum albumin and 0.02% sodium azide) and resuspended in 1 ml of 

nucleic acid Ir-Intercalator (Fluidigm) in 1.6% PFA/PBS for 1 h at room temperature. Cells 

were then washed twice in PBS and twice in water. Before acquisition, cells were diluted to 

0.5 x 106 cells/ml in water. For bead-based compensation, aliquots of BDTM Compbead Ig κ 
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beads (BD Biosciences) were stained individually with each of the antibodies used in the 

panel according to manufacturer’s instruction. Briefly, for each channel assessed in the 

panel, one full drop of BDTM Compbead was loaded in a well of a v-bottom 96 well plate and 

stained with 1 µg of the corresponding metal-labeled antibody. Beads were stained for 15 

min at room temperature. After staining, beads were washed three times in CSM and then 

pooled in a single tube. Beads were then fixed in 1.6% PFA/PBS for 1 h at room 

temperature. After fixation, beads were washed twice in PBS and twice in water. Before 

acquisition, beads were resuspended in 500 µL of water. Bead and cell data were acquired 

on a Helios mass cytometer (Fluidigm) using instrument-based dual-count calibration, noise 

reduction, and randomization. Cells were selected based on event length between 10 and 

75 pushes. When required, exported flow cytometry standard (FCS) files were uploaded into 

Cytobank, populations of interest were manually gated, and events of interest were exported 

as new FCS files. 

 

IMC 

To assess signal interference in IMC, metal isotopes were diluted to a concentration of 0.05 

mM in Trypan Blue and arrayed on an agarose-coated microscopy slide. For each individual 

metal spot, an area of 400 x 5 pixels was ablated at a frequency of 200 Hz using the 

Hyperion mass cytometry system (Fluidigm) 

For acquisition of multiplexed stained cells in imaging, breast cancer tissue sections (Ethic 

approval: StV 12-2005) were stained with a combination of anti-carbonic anhydrase-166Er 

(polyclonal, R&D Systems) and anti-KI67-168Er (8D5, CST) as previously described19. Upon 

staining, a region was analyzed by IMC using the Hyperion system (Fluidigm). 

 

Data analysis 

Single-cell deconvolution 
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In order to identify single-positive populations from beads acquired as a pool, we applied the 

single-cell deconvolution (SCD) algorithm described in Zunder et al.14. In brief, events were 

preliminarily assigned to the sample for which their signal was strongest. Subsequently, 

doublet events (i.e., events whose separation between the primary channels and second 

highest signal fell below a threshold value) were excluded. We optionally allow for i) 

population-specific separation thresholds and ii) automated estimation of these thresholds. 

For the estimation of cutoff parameters, we considered yields upon debarcoding as a 

function of the applied cutoffs. Commonly, this function will be characterized by an initial 

weak decline, where doublets are excluded, and subsequent rapid decline in yields to zero. 

In between, low numbers of counts with intermediate barcode separation give rise to a 

plateau. As shown in Figure S1C, to facilitate robust estimation of an optimal cutoff, we fit a 

linear and a three-parameter log-logistic function32 to the yields function: 

𝑓(𝑥) =
d

1 + exp (b(log x − log e )
 

 

The goodness of the linear fit relative to the log-logistic fit is weighted as follows:  

w =
𝑅𝑆𝑆!"#!!"#$%&$'

𝑅𝑆𝑆!"#!!"#$%&$' + 𝑅𝑆𝑆!"#$%&
 

The cutoffs for both functions are defined as: 

𝑐!"#$%& = −
β!
2β!

 

𝑐!"#!!"#$%&$' = argmin
!

|𝑓! 𝑥 |
𝑓(𝑥)

> 0.01 

The final cutoff estimate c is defined as the weighted mean between these estimates: 

𝑐 = 1 − 𝑤 ∗ 𝑐!"#!!"#$%&$' + w ∗ 𝑐!"#$%& 

 

Estimation of the spillover matrix	
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To estimate the spillover matrix (SM), we made use of controls stained with individual 

antibodies. Because any signal not in a single-staining experiment’s primary channel j 

results from channel crosstalk, each spill entry sij can be approximated by the slope of a 

linear regression with channel j signal as the response, and channel i signals as the 

predictors, where i ∈ wj .  

In a population-based fashion, this slope can be approximated as the ratio between the 

median signal of channel i positive events in channels j and i, 𝑚!!! and 𝑚!
!!, respectively. 

The expected background signal in these channels is computed as the median (or trimmed 

mean) signal of events that are i) negative in the channels i and j for which the spillover is 

investigated, ii) not assigned to interacting channels, and iii) not unassigned. These medians 

are indicated as 𝑚!!! and 𝑚!
!!, and subtracted, according to:  

𝑠!" =
m!!! −m!!!

m!
!! −m!

!! 

Due to mass cytometry data structure, we found that the following single-cell derived 

estimate is more accurate: Let i+ denote the set of cells that are positive in channel i, and s!"!  

be the channel i to j spill computed for a cell c that has been assigned to this population. We 

approximate s!"!  as the ratio between the signal in the unstained spillover receiving and 

stained spillover emitting channel, Ij and Ii, respectively. Background signal is computed as 

above, and subtracted from all measurements:  

𝑠!"! =
I! −m!!!

I! −m!
!! 

Each entry sij in SM is then computed as the median spillover across all cells c ∈ i+:  

𝑠!" = med(𝑠!"!  | 𝑐 ∈ 𝑖!)  

On the basis of their additive nature, spill values are estimated independently for every pair 

of interacting channels. By default, the current framework exclusively takes into account 

interactions that are sensible from a chemical and physical point of view: M±1 channels 
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(abundance sensitivity), the M+16 channel (oxide formation), and channels measuring 

potentially contaminated metals (isotopic impurities). Optionally, all n·(n−1) possible 

interactions may be considered, and estimates below a threshold can be set to 0.  

To generate the spillover matrix for imaging data, the single-stained images were imported 

into R and processed with the CATALYST package using individual pixels instead of 

individual cells as a readout.  

 

Calculation of spillover and compensation 

As demonstrated in Figure 1C, spillover is linear. In particular, the intensity observed in a 

given channel j is a linear combination of real signal and contributions from other channels 

that spill into it. If sij denotes the proportion of channel j signal that is due to channel i and wj 

the set of channels that spill into channel j, then,  

𝐼!,!"#$%&$' = 𝐼!,!"#$ + 𝑠!"
!∈!!

· 𝐼!,!"#$  

In matrix notation, measurement intensities may be viewed as the convolution of real 

intensities with a squared spillover matrix of dimensions p x p where p denotes the number 

of measurement parameters:  

𝐼!"#$%&$' = 𝐼!"#$ ∙ 𝑆𝑀 

Note that diagonal entries sii = 1 for all i ∈ 1, ..., n, where n denotes the number of 

measurement parameters, so that spill is relative to the total signal measured in a given 

channel. Assuming the correctness of this relationship, the resulting system of linear 

equations is traditionally solved exactly using linear algebra.	

While mathematically exact, the solution to this equation does not account for measurement 

error or for the fact that the real signal would result in strictly non-negative counts. A simple 

and computationally efficient way to address this is to use non-negative least squares 
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(NNLS)25. In brief, NNLS solves for Ireal such that the least squares criterion is optimized 

under the constraint of non-negativity:  

𝑚𝑖𝑛 𝐼!"#$%&$' − 𝑆𝑀 ∙ 𝐼!"#$ ! ∙ 𝐼!"#$%&$' − 𝑆𝑀 ∙ 𝐼!"#$  

𝑠. 𝑡. 𝐼!"#$ ≥ 0 

To arrive at such a solution we applied the Lawson-Hanson algorithm for NNLS as 

implemented in the 'nnls' R package.	

For the image pixel compensation, the spillover matrix was exported as a tiff image and used 

for compensation using a custom written CellProfiler plugin 

(https://github.com/BodenmillerGroup/ImcPluginsCP)28. The images were visualized using 

ImageJ. 

 

Segmentation and single-cell measurements	

For segmentation, image stacks containing channels useful for segmentation were 

generated from the IMC raw data using the 'imctools' python package 

(https://github.com/BodenmillerGroup/imctools). The images were scaled up two fold using a 

CellProfiler pipeline and re-exported as tiff files suitable for Ilastik pixel classification. Using 

Ilastik the pixels of the image were classified as nuclei, cytoplasm/membrane, or 

background. The class information was exported as probability maps and used in CellProfiler 

for single-cell segmentation. The multiplexed images were measured in CellProfiler using a 

customized CellProfiler plugin (https://github.com/BodenmillerGroup/ImcPluginsCP). The 

single-cell data were then exported as csv files and imported into R for compensation with 

CATALYST and plotting.	

 

CATALYST R package 
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Installation instructions and open-source code are available through Bioconductor 

(http://bioconductor.org/packages/CATALYST). Detailed examples are included in the 

package vignette. Using flowCore33 infrastructure, CATALYST provides a user-friendly R 

implementation of the SCD algorithm. Furthermore, the package includes a function for 

estimation of the SM from a priori identified single-positive populations. The matrix returned 

by this workflow may be directly applied to the measurement data or exported for further use 

(e.g., to FlowJo or Cytobank). 	
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B. Depiction of the workflow used to correct for spillover. Staining of control antibody-capture beads and samples are 
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cytometry. The CATALYST R package enables identification of the single-positive bead populations, calculates the 
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Figure 3. Saturation effects cause overcompensation in multiplexed samples. A. Spillover matrix calculated based on 
single-stained beads. Values on the diagonals are one. By default, spillover is calculated only in potentially affected channels, 
which include M±1, those corresponding to known isotopes, and M+16 (Figure S2D). Numbers in the cells indicate percent-
ages of spillover by channels in rows into channels in columns. Numbers in the last column show the total amount of signal 
received in the corresponding channels. B. Scatter plots showing signal due to anti-HLA-ABC labeled with 172Yb and 
anti-CD3 labeled with 173Yb from pooled single-stained beads and multiplexed-stained PBMCs before and after compensa-
tion. The last row shows NNLS compensated data. C. Dot plots showing the median counts in each channel potentially 
affected by spillover for uncompensated data, compensated data, and NNLS compensated data obtained upon analyses of 
single-stained beads and multiplexed-stained PBMCs. For multiplexed-staining, cells were stained with two half panels, the 
spillover was assessed in the empty channels. For each dataset, the average sum of squares is shown on top of the graph. 
D. Dot plots showing the spillover in percentage for the indicated relationships assessed on cells stained with increasing 
amount of barcoding reagents. A linear model was fitted to each relationship (blue lines), and the slope is indicated above 
each plot. E. Dot plots showing the spillover in absolute counts for the indicated relationships assessed on cells stained with 
increasing amount of barcoding reagents as described in panel D. 

B

HLA-ABC 172Yb

Single-stained
beads

U
nc

om
pe

ns
at

ed
C

om
pe

ns
at

ed

Multiplexed 
stained-cells

HLA-ABC 172Yb

ED

C

N
N

LS
 c

om
pe

ns
at

ed

C
D

3 
17

3 Y
b

C
D

3 
17

3 Y
b

Uncompensated

Compensated

176Yb
175Lu
174Yb
173Yb
172Yb
171Yb
170Er

169Tm
168Er
167Er
166Er
165Ho
164Dy
163Dy
162Dy
161Dy
160Gd
159Tb
158Gd
157Gd
156Gd
155Gd
154Sm
153Eu
152Sm
151Eu
150Nd
149Sm
148Nd
147Sm
146Nd
145Nd
144Nd
143Nd
142Nd
141Pr
140Ce
139La

17
6 Y

b
17

5 L
u

17
4 Y

b
17

3 Y
b

17
2 Y

b
17

1 Y
b

17
0 E

r
16

9 T
m

16
8 E

r
16

7 E
r

16
6 E

r
16

5 H
o

16
4 D

y
16

3 D
y

16
2 D

y
16

1 D
y

16
0 G

d
15

9 T
b

15
8 G

d
15

7 G
d

15
6 G

d
15

5 G
d

15
4 S

m
15

3 E
u

15
2 S

m
15

1 E
u

15
0 N

d
14

9 S
m

14
8 N

d
14

7 S
m

14
6 N

d
14

5 N
d

14
4 N

d
14

3 N
d

14
2 N

d
14

1 P
r

14
0 C

e
13

9 L
a

A

134.5
0.009

0.009
6.479

0.706
1.216

0

25

50

75

Single−stained 
beads

Muliplexed 
cells

M
ed

ia
n 

co
un

ts

2.0

1.9
0.3 0.2 1.6

0.7 1.8 0.1 0.1 2.0
0.2 0.2 1.1 0.4 2.0
0.1 0.1 1.0 3.3 1.9
0.1 0.2 0.1 0.1 1.9

2.0 0.4 0.1 0.2 0.1 0.1
1.3 0.7 1.6 0.5 1.5 1.2 1.8

0.1 0.6 1.3 0.2 0.1 0.2
0.3 0.2 0.4 0.1 0.3 0.2 1.5

0.7
0.1 0.1 0.6 0.1

0.6
0.5 0.1

0.3
0.7 2.6 0.7 0.2 0.3

0.1 0.8 0.5 0.2
0.2

0.1 0.1 0.5 0.2
0.2 2.4 0.6 0.2

1.4 3.8 0.6
0.3 1.1 1.3
0.4 0.8 2.8

1.1 0.2
1.3 3.0
0.1 0.4 0.2

0.7 0.5 0.9
0.1 3.6 0.2 0.2

0.7 3.5 0.9 0.1
0.3 1.4 3.0 0.1

0.1 0.4 0.4
0.2

0.3 0.6 0.4 1.9 3.2
0.2
0.9
4.8
5.2
4.1
2.1
0.0
0.7
4.3
1.3
0.0
4.0
2.7
5.8
3.4
0.9
0.2
1.6
0.0
4.5
0.3
0.6
0.6
0.9
0.7
3.0
2.5
8.6
2.9
2.4
6.4
3.9
4.7
2.1
1.9
0.0
2.0

30
00

45
00

60
00

30
00

45
00

60
00

30
00

45
00

60
00

30
00

45
00

60
00

30
00

45
00

60
00

0.0

2.5

5.0

Sp
illo

ve
r (

%
)

0

10

20

30

Sp
illo

ve
r (

co
un

ts
)

Total ion load (counts)

-0.00368 -0.00151 -0.00062 -0.00046 -0.00014-0.00034 -0.00017 -0.00023 -0.00001 -0.00017

173Yb    174Yb 173Yb    172Yb 158Gd    160Gd 173Yb    176Yb 144Nd    160Gd173Yb    174Yb 173Yb    172Yb 158Gd    160Gd 173Yb    176Yb 144Nd    160Gd

30
00

45
00

60
00

30
00

45
00

60
00

30
00

45
00

60
00

30
00

45
00

60
00

30
00

45
00

60
00

Total ion load (counts)

NNLS compensated

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185744doi: bioRxiv preprint 

https://doi.org/10.1101/185744
http://creativecommons.org/licenses/by/4.0/


U
nc

om
pe

ns
at

ed
N

N
LS

 c
om

pe
ns

at
ed

0.00

0.25

0.50

0.75

1.00

Normalized 
intensity

B

C

139La (0%) 174Yb (6.7%)

147Sm (0.1%) 173Yb (4.9%)

175Yb (0.5%) 171Yb (1.9%)

Figure 4.  Correction of spillover artifacts in mass cytometry data using compensation. A. t-SNE map displaying data on a 
subset of 20,000 PBMCs analyzed with our 36-antibody panel and colored by marker expression for three pairs of antibodies 
labeled with two different metal isotopes before (left) and after (right) spillover correction based on NNLS compensation. The 
percentages of spillover affecting each channel in the uncompensated dataset are indicated. B. t-SNE map colored by 
PhenoGraph clusters identified on uncompensated data. C. Heat maps showing the expression of the indicated markers in 
the different clusters before compensation (upper panel) and after NNLS compensation (lower panel). Dashed boxes high-
light regions in the plot that changed upon compensation. D. Plots showing the frequency of significant correlations 
(p<0.005) between markers for each cluster containing more than 200 cells. Frequency was set to 1 for the uncompensated 
values. E. Correlation heatmap across all markers for cluster 12 before (upper panel) and after NNLS compensation (lower 
panel). 

A PhenoGraph clustering

D E

U
nc

om
pe

ns
at

ed

M
ar

ke
rs

M
ar

ke
rs

Markers               

−1 0 0.5 1-0.5

139La 174Yb 

147Sm 173Yb

175Yb 171Yb 

Uncompensated NNLS compensated
C

D
8

C
D

3
H

LA
-D

R

12
1
6
8
4
19
10
11
2
3
7
16
9
13
14
15
18
20
17
5

17
0 E
r−
C
D
7

16
4 D

y−
C
D
7

14
7 S
m
−C

D
3

17
3 Y
b−
C
D
3

17
4 Y
b−
C
D
8b

13
9 L
a−
C
D
8

16
0 G

d−
C
D
45

17
6 Y
b−
C
D
45

17
2 Y
b−
H
LA

−A
BC

16
9 T
m
−C

D
99

15
2 S
m
−C

D
99

16
5 H

o−
C
D
4

14
5 N

d−
C
D
4

17
1 Y
b−
H
LA

−D
R

17
5 L
u−
H
LA

−D
R

14
8 N

d−
C
D
20

14
9 S
m
−C

D
20

16
3 D

y−
C
D
22

16
7 E
r−
C
D
16

16
1 D

y−
C
D
66
ac
e

15
4 S
m
−C

D
15

15
8 G

d−
C
D
15

15
6 G

d−
C
D
93

14
1 P
r−
C
D
64

16
8 E
r−
C
D
14

14
2 N

d−
C
D
23

14
3 N

d−
C
D
68

15
0 N

d−
C
D
68

15
3 E
u−
C
D
68

14
6 N

d−
C
D
68

14
4 N

d−
C
D
36

15
9 T
b−
C
D
19
2

15
1 E
u−
C
D
12
3

16
2 D

y−
C
XC

R
4

16
6 E
r−
C
D
32

12
1
6
8
4
19
10
11
2
3
7
16
9
13
14
15
18
20
17
5

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

−40

−20

20

40

−40 −20 0 20 40

bh
-S

N
E 

2

0

bh-SNE 1

0 2 4 6 8

N
N

LS
 c

om
pe

ns
at

ed

0.00

0.25

0.50

0.75

1.00

U
nc

om
pe

ns
at

ed

N
N

LS
 c

om
pe

ns
at

ed

2

4

5

6

7

8

9

11

12

13

15

17

18

19

20

Arcsinh transformed counts Spearman R

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185744doi: bioRxiv preprint 

https://doi.org/10.1101/185744
http://creativecommons.org/licenses/by/4.0/


●●●●●●●●●●
●●
●●

●
●
●

●

●

●

R2=0.990

25

●●●●●●●●●●●
●●
●
●
●
●

●

●

●

0

200

400

600

0 2.104

Empty -167ErCarbonic anhydrase - 166Er KI67 - 168Er
16

7 E
r

166Er

16
8 E

r

6324743161580 86420 129630

104

0 2.104104

50

75

Em
pt

y 
-1

67
Er

Carbonic anhydrase - 166Er 

KI
67

 - 
16

8 E
r

Empty -167ErCarbonic anhydrase - 166Er KI67 - 168Er

128520ns43210ns261195130640ns

Ion counts Ion counts Ion counts

Ion counts Ion counts Ion counts

Figure 5. Spillover affects imaging mass cytometry data and can be corrected using our compensation strategy. A. 
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pixel numbers shows a linear relationship between 166Er and 167Er over several orders of magnitude (upper panel). The 
relationship between 166Er and 168Er appears linear but saturates at the higher counts (lower panel). B. Representative 
image of a breast cancer tissue sample imaged by IMC. Top row shows uncompensated images of 166Er (used to label 
antibody to carbonic anhydrase), 167Er (no antibody labeled with this metal), and 168Er (use to label anti-KI67). The 
bottom row shows corresponding NNLS compensated images. For visualization a median filter was used to reduce 
noise. The yellow lines correspond to 20 µm. Red arrows indicate part of the image where low signal was removed by 
compensation. C. Segmentation mask shown on representative images described in panel B. The mean pixel intensities 
of the signals observed in the indicated channels per cell are displayed. D. Scatterplots from single cell segmentation 
data from the IMC images before (left) and after (right) compensation with CATALYST. Arcsinh transformed ion count 
(cofactor of 2) is shown.
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Figure S1. Description of the main functions of the CATALYST package. A. Schematic of the workflow used in the CATA-
LYST package to generate a compensated file based on beads stained with single antibodies. The graphical outputs gener-
ated during the process are indicated above the steps. B. Screen shot depicting the main features available with the Shiny 
app. The compensation module is used as an example. C. Description of the automatic cutoff estimation for each individual 
population. The bar graphs indicate the distribution of cells relative to the barcode distance, and the dotted line corresponds 
to the yield upon debarcoding as a function of the applied separation cutoff. Data were fitted with a linear regression (blue 
line) and a three parameter log-logistic function (red line). The cutoff estimate is defined as the mean of estimates derived 
from both fits, weighted with the goodness of the respective fit (see Materials and Methods). 
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Figure S2. Description of the specificities of spillover matrix calculation for mass cytometry data. A. Scheme describing 
spillover estimates at the population level (upper panel) and at the single-cell level (lower panel). B. Dot plots showing the 
median counts in each channel potentially affected by spillover for beads compensated based on population estimates 
versus single-cell estimates compared to uncompensated data. C. Plots showing the spillover in percent for the main 
interactions as assessed at the population level and at the single-cell level (top panel) and the absolute difference (middle 
panel) and the relative difference (lower panel) in spillover percentages. D. Spillover matrix showing the interactions 
estimated by default in CATALYST. Only those interactions expected to occur based on impurities, abundance sensitivity, 
and oxidation are taken into consideration. E. Spillover matrix calculated for expected interactions versus all interactions 
using single-cell estimates (upper panels) versus population estimates (lower panels).
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Figure S3. Compensation matrix stability over stainings, measurements, and instruments. A. Scatter plot displaying the 
means and standard deviations of the spillover measured the same day (blue), after three days (green), and after four 
months (red). The origin of spillover (metal impurity vs. oxidation) is indicated. B. Spillovers observed in single-stained 
beads in absence of compensation and upon compensation with each of seven different matrices acquired at the indicat-
ed time points are displayed as a dot plot. For each dataset, the average sum of squares is shown on top of the graph. 
C. Spillovers observed in single-stained beads without and upon compensation with each of four matrices acquired at 
the indicated time points on the indicated instruments are displayed as a dot plot. The compensation performed with the 
compensation matrix provided by Fluidigm is also shown. For each dataset, the average sum of squares is shown on top 
of the graph. D. Spillovers assessed for the individual relationships over stainings, measurements, and instruments are 
shown. Data are shown for M-1 and impurities (mean interaction > 0.5%), M+1 and impurities (>0.5%), impurities 
(>0.5%), and M+16 (all interactions). E. Scatter plot showing the total amount of spillover in each individual channel for 
the seven matrices acquired 4 months apart, for the four matrices acquired on two different machines, and for the 
theoretical matrix provided by Fluidigm.
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Figure S4. Compensation is necessary to ensure accurate interpretation of t-SNE maps. t-SNE maps 
displaying data on a subset of 20,000 PBMCs analyzed with our 36-antibody panel and colored by 
marker expression for all the antibodies included in the analysis (A) in absence of compensation and 
(B) after compensation based on NNLS.
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Figure S5. Compensation matrix for imaging mass cytometry. A. Spillover matrix calculated based on single isotope 
containing pixels. Values on the diagonals are one. Spillover is calculated only in potentially affected channels (Figure 
S2D). Numbers in the squares indicate percentages of spillover by channels in rows into channels in columns. Num-
bers in the last column show the total amount of spillover received in the corresponding channels. B-E. Signal interfer-
ence for the indicated interactions shown for two independent IMC measurements of single isotopes spotted on a 
slide. Box plots show the spillover values obtained across the 11 replicates performed in flow mass cytometry, as 
described in Figure 5D.
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