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Abstract	
Experimental detection of RNA splicing branchpoints, the nucleotide serving as the nucleophile 

in the first catalytic step of splicing, is difficult. To date, annotations exist for only 16-21% of 3’ 

splice sites in the human genome and even these limited annotations have been shown to be 

plagued by noise. We develop a sequence-only, deep learning based branchpoint predictor, 

LaBranchoR, which we conclude predicts a correct branchpoint for over 90% of 3’ splice sites 

genome-wide. Our predicted branchpoints show large agreement with trends observed in the 

raw data, but analysis of conservation signatures and overlap with pathogenic variants reveal 

that our predicted branchpoints are generally more reliable than the raw data itself. We use our 

predicted branchpoints to identify a sequence element upstream of branchpoints consistent with 

extended U2 snRNA base pairing, show an association between weak branchpoints and 

alternative splicing, and explore the effects of variants on branchpoints.	

Introduction 
Following transcription, which produces RNA molecules identical to the DNA sequence, vast 

stretches of RNA, called introns, are ‘spliced out’ leaving a string of ‘exons’, which comprise the 
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final messenger RNA. Splicing involves three mechanistically essential sites: the 5’ and 3’ splice 

sites (5’ss and 3’ss), which define the up and downstream end of an intron, respectively, and a 

branchpoint, which serves as the nucleophile in the first catalytic step of splicing (Fig. 1a) and is 

generally located 18 to 45 nucleotides upstream of the 3’ss (Fig. 1g). The branchpoint is 

recognized by base pairing of the surrounding nucleotides to U2 snRNA and selection on the 

branchpoint nucleotide itself through a poorly understood mechanism1. Overall 3’ss recognition 

is facilitated by a combination of this selection on the branchpoint, U2AF65 binding the poly-

pyrimidine tract (PPT), U2AF35 recognizing the core 3’ss signal (Fig. 1a), and a diverse cast of 

supporting factors2. 

The locations of the 5’ss and 3’ss can be easily recovered from RNA sequencing (RNA-seq) 

reads spanning between exons. Similarly, RNA-seq reads spanning 5’ss-branchpoint junctions 

provide the positions of branchpoints3 (Fig. 1b). However, the branched intron byproduct is 

quickly degraded making these reads exceptionally rare. In fact, a study analyzing a massive 

collection of internally generated and ENCODE RNA-seq data only provided annotations for 

16% of the genome4 and even when specialized sequencing was employed only 21% of 

branchpoints were identified5. Furthermore, the small number of reads that are generated from 

5’ss-branchpoint junctions provide imprecise information about branchpoint location due to 

nucleotide skipping and transcript switching caused by the unusual 2’ OH linkage present4. 

Together, these factors have caused the characterization of branchpoints to lag far behind that 

of 5’ and 3’ splice sites. 

The lack of branchpoint annotations has slowed our understanding of the basis of 3’ss 

selection and diseases caused by mutations to branchpoint sequences themselves and the 

trans-acting factors that recognize them. However, even with our limited knowledge, it has been 

shown that branchpoints play a role in Mendelian disease5,6, as well as more complex diseases, 
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such as splicing factor 3b associated cancers7 and recent reports that expression levels of 

splicing factor 1 play a vital role in aging8. 

In response to the lack of experimental methods to effectively provide genome-wide 

branchpoint annotations and the importance of knowing branchpoints for understanding the 

basis of 3’ss selection and branchpoint related diseases, we developed a computational method 

to predict branchpoints, LaBranchoR (Long short-term memory network Branchpoint Retriever). 

Specifically, we focus on the problem of predicting the most likely branchpoint given the 

associated 3’ss, which we took to be the most salient task given the widespread availability of 

3’ss positions. LaBranchoR is based on a bidirectional long short-term memory network (LSTM), 

a ‘deep learning’ algorithm shown to be wildly successful in modeling sequential data such as 

time-series and natural language9,10. The use of a LSTM allowed us to build a model based on 

solely the RNA sequence, free from the biases of hand-engineered features. 

Throughout our study, we compare LaBranchoR to two recently proposed computational 

methods, which focus on two distinct tasks: a machine learning approach for branchpoint 

prediction, branchpointer6, and a method to remove noise in the experimental data proposed by 

Taggart et. al., 20174. Branchpointer employs an ensemble of support vector machines and 

gradient boosting tree classifiers, which take as input a library of engineered features. 

Branchpointer is trained on the same set of experimental branchpoints as our model: the ‘high 

confidence’ set of branchpoints reported by Mercer et. al. 2015. Taggart et. al. explicitly 

modeled U2 snRNA base pairing potential, ignoring the branchpoint position itself, and the 

likelihood of observing a given nucleotide skipping distance to resolve noise introduced by 

nucleotide skipping. They used this model to produce maximum likelihood branchpoint 

predictions for an independent set of RNA-seq data, including a diverse range of cell lines. 
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In this study, we show that LaBranchoR has strong predictive performance, exceeding that 

of previous methods. It also disregards noise in the experimental data leading to robust 

predictions that are often more accurate than the raw data itself. After showing the accuracy of 

our predictions, we use them to evaluate genome-wide properties of branchpoints and find that 

we recover known trends, as well as several novel insights. We conclude that branchpoint 

strength plays a role, similar to that of 3’ss strength, in alternative splicing. We identify a novel 

upstream recognition element, which is consistent with a recent cryo-EM model of the 

spliceosome depicting the relevant bases in duplex with U2 snRNA11. Finally, we show that 

LaBranchoR predictions overlap with more pathogenic variants than previous computational 

predictions, as well as the raw data itself. 

Results	
We used a bidirectional LSTM network to learn a mapping between RNA sequence and 

branchpoint locations (Fig. 1c). We trained our model on the high confidence set of 

branchpoints annotated by Mercer et. al. 2015. The RNA sequence 1 to 70 base pairs upstream 

of each 3’ss was encoded as a ‘one-hot’, 70 x 4-dimensional matrix and served as the sole input 

to our model. All branchpoints 5 to 60 base pairs upstream of a 3’ss were encoded into a length 

70 binary vector. We reserved chromosome 1 for testing, chromosomes 2, 3, 4 for model 

selection and the remaining data were used for model training. While our model predicts a 

length 70 vector of branchpoint probabilities for each 3’ss, we chose to focus our analysis on a 

single predicted branchpoint per 3’ss, corresponding to the argument maximum of the 

predictions. 

LaBranchoR	provides	accurate	genome-wide	branchpoint	annotations 
We found that our model’s predictions generally agreed with branchpoints implicated by 

both Mercer et. al. 2015 and Taggart et. al. 2017. On a test set held-out from model training and 

parameter tuning, we found that our predicted branchpoint coincided with a high confidence 
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Mercer site for 75% of 3’ss (Fig. 1d). Expanding this analysis to consider low confidence sites 

and cases where we predict within 4 nucleotides of a Mercer site yields an accuracy of 84% and 

91%, respectively. Our predictions have a lower agreement with the Taggart set, where we find 

that we overlap an experimental site for only 56% of 3’ss and 80% of the time we are within 4 

nucleotides. Notably, restricting to Taggart sites with an A at the branchpoint yields a stronger 

overlap of 71% and 84%, respectively (Supplementary Fig. 1a). 

These performances represent a 5 to 12 percentage point improvement over the current 

state-of-the-art branchpoint prediction software, branchpointer6 (Fig. 1d). Comparing to them on 

our test set yielded a 7 percentage point advantage and even when only considering 

branchpoints in positions -18 to -45 from the 3’ss, where branchpointer makes predictions, we 

maintain a 5 percentage point increase in performance. However, this evaluation of their 

performance is overly-optimistic, as branchpointer had seen roughly 80% of the data from our 

test set in its training. On the intersection of our test sets, LaBranchoR outperforms 

branchpointer by a 7 and 12 percentage point margin for the -18 to -45 and -5 to -60 ranges, 

respectively (Supplementary Fig. 2b). Area under receiver-operator curve and precision-recall 

curve statistics for all mentioned evaluations are in Supplementary Figure 2c. 

 We found that the bulk trends in sequence motifs, positional distribution, and 

conservation signatures are similar, but display a few key differences between our predicted, 

Mercer, and Taggart branchpoints (Fig. 1e-g). Our predictions and the Taggart set have a 

similar sequence motif with stronger nucleotide content biases than the Mercer set, which 

closely match the motif expected for base pairing with U2 snRNA (Fig. 1e). However, our 

predictions show a higher rate of A branchpoint nucleotides. While this could represent a “modal 

collapse” of our model or bias against C branchpoints in our training data, a strong bias to an A 

at the branchpoint is supported by a study of positional k-mer enrichment12. Additionally, the 

branchpoint nucleotide was not considered in the Taggart et. al. denoising strategy, so there 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185868doi: bioRxiv preprint 

https://doi.org/10.1101/185868
http://creativecommons.org/licenses/by-nd/4.0/


	 6	

could exist cases where a slightly stronger U2 base pairing sequence without an A was 

incorrectly selected over a different position with an A nucleotide at the branchpoint. 

 Branchpoints have previously been observed to have a distinct conservation signature, 

closely aligning with the bias in nucleotide content at each position5. Since conservation was not 

seen by LaBranchoR during training, it can be used as an independent validation metric. We 

found that our predicted branchpoints have the strongest PhastCons and PhyloP 

(Supplemental Fig. 2a and Fig. 1f) conservation signature, followed by the Taggart sites. 

LaBranchoR	disregards	noise	in	the	experimental	data	leading	to	robust	predictions 
Considering these observations, we performed a more fine-grained analysis of the 

conservation signatures and sequence motifs where we agree and disagree with the Mercer 

and Taggart set for 3’ss in our test set (and validation set for the Taggart set to arrive at roughly 

equal numbers). For both the Taggart and Mercer set, the strongest conservation signatures are 

present where predictions match the experimental data (Fig. 2c-d). Interestingly, the 

intersection of LaBranchoR and Taggart sites results in the strongest conservation signature 

and a -2 U and branchpoint A are nearly always present (Fig. 2c and Supplementary Fig. 1b). 

We found that predictions matching a Mercer low confidence branchpoint resulted in only a 

slightly weaker conservation signature than those matching high confidence sites (Fig. 2c). 

The next strongest conservation signatures were present for cases where LaBranchoR 

diverges from a Mercer or Taggart site by a small shift, which we defined as 4 nucleotides or 

less. For both experimental sets, we found that indexing by our predicted branchpoint results in 

a stronger conservation signature than indexing by the experimental coordinate (Fig. 2c-d). The 

Mercer sites were enriched for small shifts further into the intron, representing nucleotide 

skipping, whereas the Taggart sites were enriched for shifts towards the 3’ss, perhaps 

representing over-compensation for nucleotide skipping. The correctness of our predictions in 

these cases is supported by the sequence motifs and conservation signatures present (Fig. 2a-
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b). In all cases, when indexing by our predicted branchpoint, a strong branchpoint A and -2 U 

signature is present, but this same trend did not hold when indexing by the experimental 

coordinates (Fig. 2a-b). Similarly, the PhyloP and PhastCons signatures more closely resemble 

the consensus pattern when centered on our predictions as opposed to the experimental 

coordinates (Fig. 2c-d). 

 In cases where our predictions disagree by larger shifts (4+) from an experimental 

branchpoint, we found that our predicted branchpoints display a stronger PhastCons signature. 

For both the Mercer and Taggart data, the conservation signature centered on the experimental 

coordinate showed no clear increase in relation to the branchpoint (Fig. 2c-d). However, the 

story was not as clear for PhyloP conservation scores, as we found that all three sets show an 

increase at the -2 position, although the signature appears to be more similar to the consensus 

signature when indexing by our predicted coordinate than the experimental coordinates. Due to 

this ambiguity, we refrain from making strong statements about the accuracy of our predictions 

deviating by more than 4 nucleotides from an experimental branchpoint. However, we think that 

it is safe to conclude that a non-negligible proportion of these predictions are likely correct, 

implying that our performance estimates are loose lower bounds. 

Cytosine	branchpoints	and	branchpoints	without	a	-2	uracil	have	distinct	properties 
The strong trend towards A nucleotides at the branchpoint and U at the -2 position in our 

predicted set led us to consider if branchpoints lacking these properties displayed any distinct 

patterns. While C branchpoints represented only 1.5% of predicted branchpoints and 10% of 

Taggart branchpoints, about a fifth of predicted and Taggart branchpoints lack a U at the -2 

position, so this subset represents a significant proportion of branchpoints in the genome. We 

chose to analyze the properties of these sites in parallel as they both likely represent weaker 

than average branchpoints and were, in fact, found to follow many of the same trends. 
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Both sets present sequence and conservation signatures diverging from the bulk trends. 

Branchpoints lacking a -2 U show an increased rate of U at the -3 position and C at the -1 and   

-4 positions (Fig. 3a). Meanwhile, C branchpoints have an increased rate of C nucleotides at the 

-3 and +1 position, consistent with the Taggart C branchpoints (Fig. 3a). For C branchpoints, 

the conservation signature shifts to form bumps at the positions of these increased nucleotide 

biases (Fig 3b). For branchpoints lacking a -2 U, the previous bump at the -2 position is entirely 

lost and, inexplicably, the branchpoint nucleotide also lacks an increase in conservation (Fig. 

3b). 

We went on to examine if these sets of branchpoints were enriched for particular types 

of splicing events. We found that both sets were associated with short introns with median intron 

lengths shifting from 1654 to 1314 nucleotides for branchpoints with and without a -2 U and from 

1603 to 807 nucleotides for A and C branchpoints (Wilcoxon Rank Sum test p < 10^-100 and p 

< 10^-120) (Fig. 3d). Additionally, we found that both sets were enriched in retained introns and 

upstream of skipped exons (Fig. 3e and Supplementary Table 1). Interestingly, these sets 

were de-enriched from introns downstream of skipped exons (enrichment of 0.9 for both, p < 

10^-9 for -2 U, no -2 U and p = 0.065 for A, C). The enrichment of weak branchpoints upstream 

of skipped exons was previously observed in the Mercer branchpoints, albeit at a lower 

confidence5. Interestingly, this same study found that there was no enrichment of weak 

branchpoints in retained introns, likely due to the small number of branchpoints and occurrences 

of retained introns in the genome. 

Both subsets of branchpoints are associated with strong 3’ss sequences, as determined 

by MaxEntScan13 (Fig. 3f). This trend was previously observed for C branchpoints4, however, 

we add the observation that C branchpoints are associated with strikingly C-rich poly-pyrimidine 

tracks with a 1.42 fold enrichment of C’s in positions -20 to -5 from the 3’ss (p ≅ 0 by two-sided 

Fisher Exact test) (Fig. 3c). 
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A	nucleotide	content	signature	consistent	with	extended	base	pairing	to	U2	snRNA	is	
present	upstream	of	branchpoints 

Analysis of the sequence upstream of our predicted and experimental branchpoints 

revealed peaks in G content centered at positions -6 to -7 and -12 and a peak in C content at 

position -9 (Fig. 4a-c and Supplementary Fig. 3a-c). To the best of our knowledge, this 

sequence motif has not been previously observed in association with branchpoints and perhaps 

represents a novel sequence feature aiding in branchpoint recognition. A recent cryo-EM 

spliceosome structure shows these bases in duplex with U2 snRNA11 (Fig. 4e). There is a 

guanine at positions -12 and -7 and cytosine at -9 of U2 snRNA in position for Watson-Crick 

base pairing to these peaks (Fig. 4d). Interestingly, the cryo-EM structure shows a distorted 

helix between the canonical branchpoint recognition sequence and this region of extended base 

pairing. This distortion could allow for shifts in the alignment of the intronic RNA and U2 snRNA 

resulting in the smooth observed peaks. 

This signature is significantly stronger for branchpoints lacking a -2 U than for 

branchpoints with a -2 U present with a 1.190, 1.145, 1.192 fold increase in the strength of 

peaks at -6, -9 and -12, respectively (Fisher Exact 2-tailed P < 10^-54, 10^-40, 10^-59). This 

trend is stronger still in C branchpoints as opposed to A branchpoints, although in this case the 

increase in C content seems to dominate the G content signature and the upstream sequence is 

overall more C-rich making enrichment analysis challenging (Fig. 4c). 

Branchpoints	are	enriched	for	pathogenic	variants,	whereas	likely	benign	variants	are	
excluded 

We assembled a set of pathogenic variants by taking the union of variants labeled 

‘Pathogenic’ in ClinVar and ‘DM’ in HGMD and filtering out any variant with a nonsynonymous 

effect on a protein coding sequence14,15. We found that LaBranchoR predictions display a strong 

overlap with these sites with 52 variants directly overlapping the branchpoint, 15 at the -2 

position, and 25 in positions -1, -3, and +1 for a total of 92 pathogenic variants (Fig. 5c). In 
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comparison, despite predicting 69,617 (133%) more branchpoints (as they allowed for multiple 

branchpoints per 3’ss), branchpointer predictions have only 46 variants directly overlapping the 

branchpoint, 10 at the -2 position, and 27 in positions -1, -3, and +1 for a total of 88 pathogenic 

variants. Tuning LaBranchoR to predict the same number of branchpoints resulted in the 

prediction of 106 total pathogenic variants in the -3 to +1 interval (Despite this observation, we 

stuck with predicting one branchpoint per 3’ss as our primary task because the rate of overlap 

with pathogenic variants is much lower in the additional branchpoints (1 in 4,273) than the initial 

predictions (1 in 2,174)). Additionally, when considering regions upstream of 3’ss where Mercer 

and Taggart branchpoints exist, our predictions overlap a larger number of pathogenic variants 

than the experimental data (Fig. 5a-b). 

Conversely, we reaffirm that variants present in the general population, as reported by 

the ExAC consortium16, are excluded from branchpoints5,6. To circumvent sequence and 

distance biases in variation rate, we compared the variation rate at predicted branchpoints with 

sequence UNA to UNA tri-nucleotides not implicated as branchpoints from a matched distance 

distribution. We found that branchpoints show a 0.776 and 0.815 fold enrichment of common 

variants (occurring in at least one in 10,000 people) at the -2 and branchpoint positions (p < 

10^-40, 10^-33 by two-sided Fisher Exact Test) (Fig. 5d). Furthermore, these trends are 

stronger for common variants than for rare variants and for branchpoints in genes with 

probability of loss of function intolerance (pLI) >= 0.9 than genes with pLI < 0.9 (p < 10^-5, 10^-6 

by two-sided Fisher Exact Test) (Fig. 5e-f)16. Interestingly, we found that for all sets there is a 

marked enrichment in variation in the +1 to +4 positions, which is mirrored by a lull in 

pathogenic variants, perhaps indicating that this region generally plays little functional role apart 

from serving as a linker between the PPT and branchpoint sequence (Fig. 5a-f). 

We quantified the effect of variants on branchpoint strength by comparing predictions for 

the reference and alternative sequences: a technique often referred to as in silico mutagenesis 
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(ISM)6. Specifically, we calculated the change induced by the variant on the score of the 

branchpoint predicted for the reference sequence (Fig. 5g). We found that pathogenic variants 

located 18 to 45 nucleotides upstream of a 3’ss have significantly lower mutagenesis scores 

than likely benign, ExAC variants (Fig. 5h). In fact, our ISM scores outperform a state-of-the-art 

model for predicting changes in splicing induced by variants, SPIDEX17, in separating 

pathogenic variants from ExAC variants in the -18 to -45 nucleotide range, achieving an area 

under the receiver-operator curve statistic of 0.718, as compared to 0.585 for SPIDEX (Fig. 5h). 

Discussion	
While it is hard to precisely evaluate our model’s performance due to pervasive noise in the 

experimental data, our analysis suggests that LaBranchoR is able to correctly predict a 

branchpoint for over 90% of 3’ss. We arrive at this conclusion based on explicit agreement with 

experimental annotations (75% high confidence, 84% low confidence), analysis of conservation 

signatures in cases where we deviate from experimental annotations by less than 5 nucleotides 

(91%), and slightly less compelling conservation signatures in the remaining case. Furthermore, 

it appears that having a reliable way to remove noise introduced by nucleotide skipping and 

transcript switching will continue to be valuable even as more experimental data becomes 

available. 

It has been previously shown that 3’ss strength correlates with alternative splicing 

outcomes18 and our analysis shows that the same trends hold for branchpoint strength. Our 

genome-wide branchpoint predictions allowed us to assess the properties of two groups of weak 

branchpoints: those lacking a -2 U and those with a C at the branchpoint. We found that these 

weak branchpoints are enriched for two types of conditionally used splice sites: those involved 

in intron retention and upstream of skipped exons. Additionally, we found that weak 

branchpoints are excluded from introns downstream of skipped exons, supporting that 

branchpoint strength helps enable competition between the two relevant 3’ss. This 
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complements a report that branchpoints abnormally far upstream of 3’ss enable exon skipping 

by slowing the upstream splicing reaction between the first and second catalytic steps4. We 

additionally observe that weak branchpoints are generally associated with stronger than 

average splice sites, supporting that 3’ss selection is a holistic process where the strength of the 

branchpoint, PPT and core signal interact to result in the overall strength of the 3’ss.  

We found a distinct signature in G and C nucleotide content upstream of branchpoints, 

consistent with an extended region of base pairing with U2 snRNA. This extended base pairing 

is observed in a recent cryo-EM structure of the human spliceosome11 and is consistent with an 

early biochemical study showing that “SAP 145, together with four other SF3a/SF3b subunits, 

UV cross-links to pre-mRNA in a 20-nucleotide region upstream of the BPS”19. This region of U2 

snRNA shares 100% sequence identity with U2 snRNA in budding yeast, albeit in humans 4 of 

these bases are modified to form psuedouridines, while in yeast only 2 have this modification 

(Fig. 4d)20. Indeed, we observed a similar pattern in G, C content in a dataset of 718 budding 

yeast branchpoints21 (Supplementary Fig. 3d). The extensive pseudouridylation, a modification 

resulting in stronger base pairing to all bases22, of this stretch of U2 snRNA could provide a 

mechanism by which this region is able to interact favorably with a diverse set of RNA 

sequences. 

Mirroring the trends in 3’ss strength, we found that this signature was on average stronger 

for weak branchpoints, supporting that it plays a positive role in branchpoint selection and 

enables usage of otherwise weak branchpoints. Together with the biochemical data showing 

that SF3b contacts this region, disruption of this extended interaction in SF3b mutants presents 

a potential mechanism of the erroneous splicing in SF3b associated cancer. Disruption of the 

extended interaction could require a stronger core branchpoint for stable U2 binding, resulting in 

the observed usage of novel 3’ss, characterized by stronger than average branchpoints7. 

The initial motivating factor for developing LaBranchoR was to aid in the identification of 

pathogenic genetic variants and we found that LaBranchoR has state-of-the-art performance in 
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this area. While the strong overlap between our predicted branchpoints and variants associated 

with Mendelian disease is not surprising based on past work3,5,6, our predictions overlap 

pathogenic variants at a higher rate than both previous computational predictions and the raw 

experimental data. Furthermore, we found that LaBranchoR in silico mutagenesis scores are 

better able to distinguish pathogenic variants from variants in the general population than 

SPIDEX scores, showing that explicit branchpoint prediction provides information not captured 

by generic splicing models. 

Online	Methods	

Preparation	of	Annotations 
A bed file of high confidence branch points implicated by Mercer et. al. (their 

Supplementary data table 2) was downloaded from Genome Research, as were the Taggart et. 

al. branchpoint predictions. We did not consider Taggart predictions whose “binding model” was 

‘none’, ‘transcript_skipping’, or ‘circle’. A set of 718 budding yeast branchpoints were obtained 

from Gould et. al. 2016. 

Introns were extracted from the Gencode v19 annotations for all protein coding genes. 

Bedtools was used to link branch points to three prime splice sites using the intersect -loj 

command. Branchpoints were considered to be associated to a 3’ss if they lie between 5 and 60 

base pairs upstream of it. The Mercer high confidence set of branchpoints was used to produce 

a training, validation, and test set split by chromosome. Chromosome 1 was used as a test set. 

Chromosomes 2, 3, and 4 were used as a validation set and all others were used for training. 

PhyloP and Phastcons 100-way scores were downloaded from the UCSC website. They 

were used to produce average conservation plots using in house scripts with the help of 

bedtools. 
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Model	training 
For each 3’ss, a target vector was composed to have a 1 in each position with a high 

confidence Mercer et. al. branch point and zeros elsewhere. An input vector was composed by 

one-hot encoding the 70 base pairs of genomic sequence immediately upstream of the 3’ss. 

The model used was a two-layer bidirectional LSTM. The model was implemented using 

keras version 2.0.4. The final model has 32 hidden nodes in each direction for both layers. The 

output of both LSTM layers are stacked to form a 70x64 tensor that is passed to the next layer. 

At the top of the network is a time distributed 1D convolution with sigmoid activation mapping 

the 64 outputs per position to a single number. A binary cross entropy loss function was 

employed in training. Both recurrent (0.05) and normal dropout (0.15) were employed. The 

model was trained with the Adam optimizer with default keras parameters. The model was 

trained until the number of validation set branch points that overlap with Mercer et al branch 

points did not increase for 15 epochs. 

Model	Testing 
Model performance was tested using the 4306 3’ss on chromosome 1 that were held out 

from the training and validation set. The fraction of the top scoring branchpoints for a given 3’ss 

overlapping an experimental branch point was reported using an in house script. Sklearn 

functions were used to compute receiver-operating curve and precision-recall curve statistics. 

For each of these statistics, we calculated them separately for considering all bases in the -70 to 

-1 positions that were assigned branch point scores as well as for the -45 to -18 positions in 

which the vast majority of branch points fall. As was done in Signal et. al., we masked positions 

corresponding to low confidence branchpoints from the negative set, when computing area 

under curve statistics.  
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Comparison	to	branchpointer 
We compared our model to predictions from the branchpointer R package created by 

Signal et. al. (https://bioconductor.org/packages/release/bioc/html/branchpointer.html)6. 

Predictions were prepared for our test set by closely following the example given in the 

reference manual. We additionally downloaded a precomputed file of genome-wide predictions 

in Gencode v19 introns for analysis of overlap with pathogenic variants. We obtained the 

training and test set used by Signal et. al. from https://osf.io/hrqvq/. 

Variants 
A set of pathogenic variants was composed by taking the union of ClinVar ‘Pathogenic’ 

and HGMD PRO 2017 ‘DM’ variants. We removed all variants that affected a protein coding 

sequence. ANNOVAR v527 was used to annotate variants with predicted effect on protein-

coding genes using gene isoforms from Ensembl gene set version 75 for the hg19/GRCh37 

assembly of the human Genome 35. All coding isoforms were used where the transcript start 

and end sites were marked as complete and the coding span was a multiple of three. 

Likely benign variants were obtained through the ExAC browser. For simplicity, in this 

set we considered only single nucleotide polymorphisms. Variants were split into ‘common’ and 

‘rare’ based on the maximum allele frequency present in any population with allele frequency of 

greater than 1 in 10,000 being defined as common and all others as rare.  The March 16, 2017 

release 3 of probability of loss of function intolerant predictions were also obtained from the 

ExAC browser. 

When computing enrichments of ExAC variants, we wished to control for nucleotide 

content and distance from the 3’ss. This was particularly important as we noticed that T’s are 

overall less prone to variation, leading to an artificially strong signal at the -2 position. To 

accomplish this, we compared variant frequency at branchpoints with a UNA motif to variant 

frequency at UNA motifs not implicated as branchpoints. We then defined a variant enrichment 
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as rate of variants for branchpoint UNAs divided by rate of variants for non-branchpoint UNAs. 

We computed the statistical significance at each position relative to the branchpoint using the 

two-sided Fisher Exact test available through Scipy. We computed these statistics for both allele 

frequency > 0.0001 and allele frequency <= 0.0001, branchpoints in pLI >= 0.9 genes and 

branchpoints in pLI < 0.0001 genes. We again used a fisher exact test to assess statistical 

significance between these cases at each nucleotide. 

Exon	Type	Annotations 
 The 2013 version 2 build of MISO exon skipping and intron retention event annotations 

were downloaded from the MISO wiki (https://miso.readthedocs.io/en/fastmiso/). We made no 

attempt to filter these annotations based on additional functional data. 

3’ss	Strength	Quantification 
 We used the MaxEntScan package, as available at 

http://genes.mit.edu/burgelab/maxent/download/, to quantify the strength of 3’ss. An in-house 

script was developed to invoke the program cleanly in Python, but no functional changes were 

made. 

Data	Access 
Code to recreate all components of our study and final trained model weights are 

available at https://github.com/jpaggi/labranchor. A bed file of predicted branchpoints for 

Gencode v19 protein coding genes is available in Supplemental Table 2. A file of LaBranchoR 

scores for all positions 70 base pairs upstream of a 3’ss is in Supplement Table 3. In silico 

mutagenesis scores for the 70 base pairs upstream of all exons in Gencode v19 protein coding 

genes are in Supplement Table 4. 
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Figure	1.	Overview	of	branchpoints	and	their	genome-wide	prediction	using	LaBranchoR.	(A)	Overview	
of	the	role	of	branchpoints	in	splicing	and	the	factors	involved	in	3’ss	recognition.	(B)	5’ss-branchpoint	
junction	reads	implicate	branchpoints.	(C)	Cartoon	of	information	flow	in	a	bidirectional	LSTM.	(D)	
Model	performance	on	a	held	out	test	set.	A	*	indicates	a	significant	difference	with	p	<	1e-6	by	a	one-
sided	Fisher	Exact	test.	Local	sequence	context	(E),	PhyloP	conservation	signature	(F),	and	position	
relative	to	3’ss	(G)	for	predicted	and	experimentally	determined	branchpoints.	
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Figure	2.	LaBranchoR	disregards	noise	by	applying	robust	genome-wide	patterns.	(A)	Sequence	motifs	
and	PhyloP	conservation	signatures	corresponding	to	1	and	2	nucleotide	shifts	further	into	the	intron	in	
the	Mercer	et.	al.	high	confidence	branchpoints	and	(B)	1	and	2	nucleotide	shifts	towards	the	3’ss	in	the	
Taggart	et.	al.	data.	(C,	D)	PhastCons	and	PhyloP	conservation	signatures	for	cases	where	our	prediction	
agrees	with	the	Mercer	(C)	and	Taggart	(D)	data,	is	within	4	nucleotides,	and	is	off	by	more	than	4	
nucleotides.	Where	our	prediction	and	the	experimental	data	diverge,	a	signature	indexed	by	both	our	
predictions	and	the	experimental	coordinate	is	presented.	
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Figure	3.	Cytosine	branchpoints	and	branchpoints	lacking	a	-2	uracil	display	distinct	properties.	(A)	
Sequence	motifs	for	C	branchpoints	(top)	and	branchpoints	lacking	a	-2	U	(bottom).	(B)	Conservation	
signatures	for	C	and	no	-2	U	branchpoints.	(C)	3’ss	nucleotide	content	for	A	and	C	branchpoints.	C	
branchpoints	have	1.43	times	more	C	nucleotides	in	the	-20	to	-5	range	than	A	branchpoints.	(D)	Both	C	
and	no	-2	U	branchpoints	display	significantly	shorter	introns	than	expected.	(E)	Both	groups	have	
stronger	than	expected	average	3’ss	MaxEntScan	scores	(two-sided	Wilcoxon	Rank	Sums	test).	(F)	Both	
groups	are	enriched	upstream	of	cassette	exons	and	de-enriched	in	introns	downstream	of	cassette	
exons	(two-sided	Fisher	Exact	Test).	
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Figure	4.	Branchpoints	display	a	nucleotide	content	signature,	consistent	with	extended	base	pairing	
with	U2	snRNA.	This	signature	is	stronger	in	branchpoints	lacking	a	-2	U	(B)	than	in	branchpoints	with	a	-
2	U	(A).	(C)	C	branchpoints	display	a	strong	increase	in	C	nucleotide	content	in	this	same	position.	(D)	
The	human	and	yeast	U2	snRNA	sequence	positioned	for	interacting	with	this	upstream	recognition	
element	(top).	P	represents	psuedouridines	and	*	corresponds	to	the	branchpoint	position.	The	
canonical	branchpoint	motif	(upper	case)	and	positions	of	G,	C	content	signature	(lower	case).	(E)	A	
image	from	a	cryo-EM	structure	of	the	spliceosome	(PDB	5mfq)	shows	an	extended	intron-U2	snRNA	
duplex.	The	intronic	sequence	is	shown	in	gray,	except	for	the	branchpoint	which	is	shown	in	red.	The	
U2	snRNA	sequence	is	colored	by	base	(red,	blue,	green	and	magenta	for	A,	C,	G	and	T,	respectively).	
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Figure	5.	LaBranchoR	predicted	branchpoints	overlap	pathogenic	variants	and	exclude		common	
variants.	(A)	Overlaps	with	pathogenic	variants	for	Mercer	high	confidence	branchpoints	and	
LabBranchoR	predictions	for	3’ss	with	a	Mercer	high	confidence	site.	(B)	Similar	for	Taggart	
branchpoints.	(C)	Genome-wide	pathogenic	variant	overlaps	for	the	current	state-of-the	art	branchpoint	
predictor,	branchpointer,	LaBranchor,	and	LaBranchor	tuned	to	predict	the	same	number	of	
branchpoints	as	branchpointer	(LaBranchoR	+).	(D)	Comparison	of	common	variant	rate	in	ExAC	for	
distance	from	3’ss	matched	UNA	trinucleotides,	where	the	A	is	implicated	as	a	branchpoint	(BP)	and	not	
a	branchpoint	(not	BP).	(E)	Enrichments	in	variation	rate	of	branchpoint	UNAs,	as	compared	to	non-
branchpoint	UNAs	for	common	and	rare	variants.	(F)	Similar	comparing	branchpoints	in	high	probability	
loss	of	function	intolerant	(pLI)	genes	to	low	pLI.	(G)	In	silico	mutagenesis	scores	are	defined	as	the	
change	in	score	of	our	predicted	branchpoint	induced	by	the	variant.	(H)	LaBranchoR	in	silico	
mutagenesis	(ISM)	scores	effectively	classify	pathogenic	variants.	A	receiver-operator	curve	for	HGMD	
and	ClinVar	variants	sorted	by	LaBranchoR	ISM	scores	and	SPIDEX	scores.	
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Supplementary	Figure	1.	Overlap	with	Taggart	branchpoints.	(A)	Fraction	of	predictions	matching	
Taggart	branchpoints	with	an	A	at	the	branchpoint	position.	(B)	The	overlap	of	Taggart	and	predicted	
branchpoints	nearly	invariantly	have	an	A	at	the	branchpoint	position	and	U	at	the	-2	U	position.		
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Supplementary	Figure	2.	Evaluation	of	predictive	performance	and	comparison	to	branchpointer.	(A)	
PhastCons	conservation	signature	for	experimental	and	predicted	branchpoints.	(B)	Fraction	of	
predictions	agreeing	with	Mercer	branchpoints	for	positions	-18	to	-45	(top)	and	-5	to	-60	(bottom)	on	
our	test	set	(left)	and	the	intersection	of	our	test	set	and	the	branchpointer	test	set	(right).	A	*	indicates	
a	significant	difference	with	p	<	1e-4	by	a	one-sided	Fisher	Exact	test.	(C)	Area	under	the	precision-recall	
(auPRC)	and	receiver-operator	(auROC)	curve	statistics	for	branchpointer	(BPTR)	and	LaBranchoR	(LBR).	
‘Mercer’	refers	to	all	Mercer	high	confidence	sites.	‘Test	Intersect’	is	the	intersection	of	our	test	set	and	
the	branchpointer	test	set.	‘Taggart’	is	the	set	of	Taggart	et.	al.	2017	branchpoints	on	chromosome	1-4.	
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Supplementary	Figure	3.	Experimentally	determined	branchpoints	display	a	nucleotide	content	
signature,	consistent	with	extended	base	pairing	with	U2	snRNA.	(A,	B,	C)	Identical	to	Figure	3a-c,	except	
for	Mercer	et.	al.	experimental	data	instead	of	predicitons.	(D)	G,	C	nucleotide	content	signature	for	a	
set	of	718	experimentally	determined	budding	yeast	branchpoints.	
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EVENT	 A	AT	BP	 C	AT	BP	 ENRICH	 P-VALUE	
UP	SE	 0.1199	 0.1452	 1.210	 1e-5	
DOWN	SE	 0.1093	 0.0990	 0.906	 0.062	
RETAINED	 0.0308	 0.0727	 2.356	 8e-39	
	

EVENT	 T	AT	-2	 NOT	T	AT	-2	 ENRICH	 P-VALUE	
UP	SE	 0.1179	 0.1311	 1.1120	 9e-13	
DOWN	SE	 0.1111	 0.1003	 0.902	 6e-10	
RETAINED	 0.0294	 0.0406	 1.380	 5e-28	
	

Supplementary	Table	1.	Weak	branchpoints	play	a	role	in	alternative	splicing.	‘Up	SE’	correspond	to	
branchpoints	upstream	of	a	conditionally	skipped	exon	and	‘Down	SE’	corresponds	to	branchpoints	in	
introns	downstream	of	conditionally	skipped	exons.	‘Retained’	refers	to	conditionally	retained	introns.	
Columns	2	and	3	refer	to	the	fraction	of	branchpoints	associated	with	each	alternative	splicing	event.	
The	enrichment	and	associated	p-value	(determined	by	a	two-sided	Fisher	exact	test)	correspond	to	the	
ratio	of	columns	3	and	2.	

Please	see	http://bejerano.stanford.edu/labranchor/	for	the	below	tables.	

Supplemental	Table	2.	Genome-wide	branchpoint	predictions.	A	bed	file	of	branchpoint	predictions	for	
all	introns	in	protein	coding	genes	in	the	Gencode	v19	annotations.	Each	entry	corresponds	to	the	
nucleotide	with	highest	predicted	probability	of	being	a	branchpoint	for	each	3’ss.	

Supplemental	Table	3.	Genome-wide	branchpoint	probabilities.	Similar	to	Supplementary	Table	2,	
except	contains	branchpoint	probabilities	for	all	70	nucleotides	upstream	of	each	3’ss.	

Supplemental	Table	4.	Genome-wide	in	silico	mutagenesis	scores.	Mutagenesis	scores	for	all	possible	
single	nucleotide	polymorphisms	in	the	70	nucleotides	upstream	of	all	3’ss	in	protein	coding	genes	in	the	
Gencode	v19	annotations.	
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