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Antibiotic resistance represents a growing health crisis that necessitates the im-

mediate discovery of novel treatment strategies. One such strategy is the identifica-

tion of sequences of drugs exhibiting collateral sensitivity, wherein the evolution of

resistance to a first drug renders a population more susceptible to a second. Here,

we demonstrate that sequential multi–drug therapies derived from in vitro evolu-

tion experiments can have overstated therapeutic benefit – potentially suggesting

a collaterally sensitive response where cross resistance ultimately occurs. The evo-

lution of drug resistance need not be genetically or phenotypically convergent, and

where resistance arises through divergent mechanisms, the efficacy of a second drug

can vary substantially. We first quantify the likelihood of this occurring by use of

a mathematical model parametrised by a set of small combinatorially complete fit-

ness landscapes for Escherichia coli. We then verify, through in vitro experimental

evolution, that a second–line drug can indeed stochastically exhibit either increased

susceptibility or increased resistance when following a first. Genetic divergence is

confirmed as the driver of this differential response through targeted sequencing.

These results indicate that the present methodology of designing drug regimens

through experimental collateral sensitivity analysis may be flawed under certain

ecological conditions. Further, these results suggest the need for a more rigorous

probabilistic understanding of the contingencies that can arise during the evolution

of drug resistance.

The emergence of drug resistance is governed by Darwinian dynamics, wherein resistant

mutants arise stochastically in a population and expand under the selective pressure of therapy [23].

These evolutionary principles underpin resistance to the presently most effective therapies for

bacterial infections [4], cancers [8], viral infections [2] and disparate problems such as the

management of invasive species and agricultural pests [14]. Biological mechanisms of drug

resistance often carry a fitness cost in the absence of the drug and further, different resistance

mechanisms can interact with one another to produce non–additive fitness effects, a phenomenon

known as epistasis [20]. These trade–offs can induce rugged fitness landscapes, potentially

restricting the number of accessible evolutionary trajectories to high fitness [21, 25] or rendering

evolution irreversible [24].

Identifying evolutionary trade-offs forms the basis of an emerging strategy for combating drug

resistance; prescribing sequences of drugs wherein the evolution of resistance to the first induces

susceptibility to the next [10, 12, 17]. Where this occurs, the first drug is said to induce collateral

sensitivity in the second. Conversely, where the first drug induces increased resistance in the

second, collateral (or cross) resistance has occurred. Recently, in vitro evolution experiments

have been performed, in both bacteria [5, 10, 16] and cancers [7, 29], to identify drug pairs or
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sequences exhibiting collateral sensitivity. These experiments proceed by culturing a population

in increasing concentrations of a drug to induce resistance and then assaying the susceptibility of

the resultant population to a panel of potential second–line therapies. From these experiments,

sequences or cycles of drugs in which each induces collateral sensitivity in the next have been

suggested as potential therapeutic strategies to extend the therapeutic efficacy of a limited pool

of drugs [7, 10]. For some cancer therapies, which often have severe side–effects and high toxicity,

such sequential therapies may be the only way combine the use of multiple drugs.

We argue that collaterally sensitive drug pairs identified from a small number of in vitro

evolutionary replicates likely do not always induce collateral sensitivity. This hypothesis arises

from the observation that evolution is not necessarily repeatable; resistance to a drug can arise

through multiple different mechanisms, as has been observed in cancers [28] and bacteria [1]. An

a priori reason to assume that these different mechanisms will have correlated fitness effects

under a second drug is not evident – just like the grade school lesson of convergent evolution:

bats and birds can both fly, but their predators often differ. Indeed, one mutation may confer

resistance to a second drug, whilst another may induce increased susceptibility (in comparison

to the susceptibility of the wild–type), as was recently demonstrated in a drug screen of over

3000 strains of Staphylococcus aureus [11]. The potential impact of such divergent evolution

can be conceptualised in the classical fitness landscape model of Wright [26], wherein genotypes

are projected onto the two dimensional x− y plane and fitness represented as the height above

this plane. Evolution can be viewed as a stochastic ‘up–hill’ walk in this landscape wherein

divergence can occur at a saddle. Figure 1 shows such a schematic fitness landscape annotated to

demonstrate the capacity for divergent evolution and the potential effects on collateral sensitivity.

Previous studies have attempted to empirically determine the structure of the fitness landscape

for a number of organisms and under different drugs [6]. In these studies, a small number of

mutations associated with resistance are first identified. Strains are engineered corresponding

to all possible combinations of presence and absence of these mutations and the fitness of each

strain is measured by a proxy value, for example minimum inhibitory concentration (MIC) of a

drug or average growth rate under a specific dose. These measurements are combined with the

known genotypes to form a fitness landscape. However, to derive fitness landscapes through this

method, the number of strains that must be engineered grows exponentially with the number of

mutations of interest. Thus only small, combinatorially complete, portions of the true fitness

landscape can be measured, for example consisting of 2-5 alleles [6, 19, 25]. Nevertheless, these

restricted fitness landscapes can provide valuable insight into the evolution of drug resistance.

Mira et al. [15] derived fitness landscapes for E. coli with all combinations of four fitness

conferring mutations (M69L, E104K, G238S and N276D) in the TEM gene and measured fitness

under 15 different β-lactam antibiotics (See Supplementary Table 1), using the average growth
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Figure 1. Evolutionary saddle points can drive divergent collateral response. A) A
schematic fitness landscape model in which divergent evolution can occur. Following Wright [26],
the x − y plane represents the genotypes and the height of the landscape above this plane
represents fitness. Two evolutionary trajectories, both starting from a wild–type genotype (yellow
circle), are shown. These trajectories diverge at an evolutionary saddle point (blue triangle) and
terminate at distinct local optima of fitness (purple pentagon, green star). As the saddle point
exists, evolutionary trajectories need not be repeatable. B) Schematic landscapes for a potential
follow–up drug are shown, the collateral response can be (i) always cross-resistant, (ii) always
collaterally sensitive or (iii) dependent on the evolutionary trajectory that occurs stochastically
under the first drug. C) A potential evolutionary branching point in the TEM gene of E. coli
identified in the fitness landscape for cefotaxime derived by Mira et al. [15].

rate (over 12 replicates) as a proxy of fitness. Of these 15 landscapes, 14 were identified as

having multiple local optima of fitness, indicating the potential for the divergence of evolutionary

trajectories. We utilised these landscapes, coupled with a previously published mathematical

model [17] (see Methods), to estimate the likelihood of the different evolutionary trajectories

from a wild–type genotype (denoted 0000) to each of the fitness optima. Using this model,

we performed in silico assays for collateral sensitivity mirroring the approach taken Imamovic

and Sommer [10] (Figure 2). For each drug, we first stochastically simulated an evolutionary

trajectory from the wild–type genotype to a local fitness optimum genotype and then, for all

other landscapes, compared the fitness of this local optimum genotype to that of the wild–

type. A schematic of this simulation is shown in Figure 2(A). Figure 2(B) shows an example

of two evolutionary trajectories, which are modelled as sequences of randomly arising fitness

conferring substitutions achieving fixation, that can arise stochastically in the fitness landscape
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for Ampicillin as derived by Mira et al. [15].

We exhaustively enumerated all tables of collateral response that can arise under this model.

Figure 2(C) shows the best case (most susceptible following evolution), worst case (highest

resistance following evolution) and most likely (mean and median values arising for each pair)

collateral response tables that arose. In these tables, columns indicate the the drug landscape

under which the evolutionary simulation was performed and rows indicate the follow-up drug

for which fold-change from wild-type suspecitibility was measured. This analysis shows the

remarkable variation in collateral response that can arise from divergent evolution under a first

drug. Indeed, we find a total of 82,944 unique tables can arise, of which the most likely occurs

with probability 0.0023. Amongst the 225 ordered drug pairs, only 29 show a guaranteed pattern

of collateral sensitivity, whilst a further 94 show a pattern of guaranteed cross resistance. For 88

pairs, the first drug can induce either collateral sensitivity or cross resistance in the second as a

result of divergent evolution under the first drug. Critically, if a table of collateral response table

is generated by stochastic in silico simulation of the methodology of Imamovic and Sommer [10],

and a collaterally sensitive drug pair chosen at random from this table, then the first of these

two drugs will induce cross resistance in the second with probability 0.52.

The mathematical model used to derive these results represents a simplification of biological

reality, owing to the assumptions of a monomorphic population and a parametrisation using only

small fitness landscapes. To experimentally validate our predictions, we verified the existence of

divergent collateral response through experimental evolution. Mirroring previously experimental

approaches [5, 7, 10, 16, 29], we performed in vitro evolution of E. coli in the presence of the

β−lactam antibiotic cefotaxime. The bacterial populations were grown using the gradient plate

method with concentrations of cefotaxime varying between 0.06µg/ml and 256µg/m over a course

of 10 passages lasting 24 hours (See Figure 3(A) and Methods for details). For each replicate, and

after every second passage, aliquots were taken such that the minimum inhibitory concentration

(MIC) for a panel of second line drugs could be determined. A time–series for the MIC of the

12 replicates under cefotaxime is shown over the 10 passages in Figure 3,(B) indicating that

each replicate exhibited increased drug resistance after the 10th passage, although with varying

magnitude and trajectory.

For each of a panel of 40 second–line antibiotics, the MIC for the strains X1-X4 was determined

following passage 10, in addition to the MIC for the wild–type strain (Supplementary Table 2).

From these MIC values, a smaller panel of second-line antibiotics appearing to exhibit divergent

collateral response was identified and the MIC of these drugs calculated for each of the 12

evolutionary replicates. Figure 3(C) shows the table of collateral response for this restricted

panel following the final passage in the experiment. As predicted, we identify divergent collateral

response for the commonly prescribed antibiotics piperacillin (PIP), ticarcillin/clavulanic acid
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Figure 2. Mathematical modeling predicts highly variable collateral response. A)
A schematic of the model used to derive collateral response. Sequential mutations are simulated
to fix in the population until a local optimum genotype arises. The fitness of this resultant
genotype is compared to the fitness of the wild–type genotype for each of the panel of antibiotics.
B) The landscape for ampicillin derived by Mira et al. [15] represented as a graph of genotypes.
Arrows indicate fitness conferring mutations between genotypes represented as nodes. Cyan
nodes indicate genotypes from which evolution can stochastically diverge, grey nodes indicate
genotypes from which there is only a single fitness conferring mutation. Squares indicate local
optima of fitness with colour indicating the ordering of fitness amongst these optima (darker
red indicates higher fitness). Two divergent evolutionary trajectories, in the sense of the model
shown schematically in A, are highlighted by coloured arrows. C) The best, worst, median and
mean tables of collateral response derived through stochastic simulation of the experimental
protocol. Columns indicate the drug landscape under which the simulation was performed and
rows indicate the follow-up drug under which the fold-change from wild-type susceptibility is
calculated. Bar charts indicate, for each labelled first drug, the number of follow-up drugs
exhibiting collateral sensitivity (blue) or cross resistance (red) in each case.
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(TIC) and ampicillin/sulbactam (AMS). The patterns of collateral response exhibited between

these drugs are not identical, for example, the replicate X12 exhibits increased sensitivity to PIP

and AMS but increased resistance to TIC whilst X2 exhibits increased sensitivity to all three

drugs and X1 exhibits increased resistance to all three drugs.

Differential patterns of drug resistance could be driven by the different strains having

experienced different numbers of sequential mutations along a single trajectory wherein each

induces a shift in response (temporal collateral sensitivity [29]), by competition along individual

trajectories [18], by evolutionary divergence at a saddle point in the landscape or by non–genetic

mechanisms of resistance. To elucidate the underlying mechanism, we performed targeted

sequencing of the gene SHV for each of the 10 passage time points and the 12 evolutionary

replicates (Figure 3(B)). We identified five variants of SHV amongst the 12 replicates. X1, X5,

X7-X9 and X11 all exhibit wild–type SHV, X2 exhibits the substitution G242S, X3 exhibits

G238C, X4 and X6 both exhibit G238A, and X10 and X12 both exhibit G238S. Our analysis

revealed no evidence of double substitutions in SHV, although mutations to genes other than

SHV could not excluded. Such a mutation might explain the different drug sensitivity of the

replicates X10 and X12 (both of which harbour G238S) to PIP and AMS. This analysis identifies

a minimum of four fitness conferring substitutions that can occur in SHV during exposure to

cefotaxime, indicating the existence of a multi–dimensional evolutionary saddle point in the

fitness landscape. Further, the sensitivity of the population to a second drug is dependent on

which of these substitutions occurs (Figure 3(C)). For example, G238C (replicate X3) induces

increased susceptibility to TIC whilst G238A (replicates X4 and X6) induces a slight increase in

resistance.

To conclude, we have shown the existence of an evolutionary saddle point in the fitness

landscape of cefotaxime that can induce divergent evolution and differential collateral response

in second–line antibiotics. Further, through a mathematical model of evolution parametrised by

small, combinatorially complete fitness landscapes, we have highlighted the extent and importance

of this phenomenon of evolutionary divergence. Specifically, modelling highlights that divergent

collateral response is likely common (occurring in 14/15 drugs for which empirical landscapes

were derived) and further, that even where collateral sensitivity is reported from small number

of evolutionary replicates, cross–resistance can still occur with high likelihood.

Taken together, our results highlight the potential advantage of reporting tables of collateral

response derived from evolutionary experiments with many replicates. In the worst case, where

too few replicates of evolutionary replicates are performed, the reported tables of collateral

response may indicate an effective, collaterally sensitive, drug pair where in fact the first can

induce substantial cross–resistance in the second. Rather than give up entirely on the concept of

collateral sensitivity between drugs, we propose that collateral sensitivity likelihoods (CSLs) are
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1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense — assigning to66

each genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate67

u and population size M of a population satisfy Mu log M << 1, and if we assume that each68

mutation is either beneficial or deleterious, then each beneficial mutation in the population will69

either reach fixation or become extinct before a new mutation occurs. Further, selection will be70

su�ciently strong that any deleterious mutation will become extinct with high probability and hence71

we may assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Iwasa72

et al., 2004] through double mutations can occur and we cannot ignore deleterious mutations.73

Assuming Mu log M << 1, then after each mutation the population will stabilize to consist entirely74

of individuals with the same genotype and this genotype will be eventually replaced by a fitter75

neighboring genotype whenever one exists. This observation gives rise to the Strong Selection Weak76

Mutation (SSWM) model, which models a population as occupying a single vertex on a directed77

graph on the set of 2N possible genotypes, {0, 1}N , in which there exists an edge from vertex a78

to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure 1(b) and 1(c)). This population79

undergoes a stochastic walk in which the population moves to an adjacent fitter genotype with80

some probability. In fact, this model still holds in the case that Mu >> 1 >> Mu2 [de Visser and81

Krug, 2014]. Several ‘move rules’ have been proposed which can be used to select an adjacent fitter82

neighbor during this stochastic walk [Orr, 2005] and which of these move rules is most accurate83

depends on the population size [de Visser and Krug, 2014]. Common move rules include selecting84

the fittest neighbor [Kau↵man and Levin, 1987, Fontana et al., 1993], selecting amongst fitter85

neighbors at random [Macken and Perelson, 1989, Macken et al., 1991, Flyvbjerg and Lautrup, 1992]86

or selecting fitter neighbors with probability proportional to the fitness increase conferred [Gillespie,87

1983, 1984, 1991]. We encapsulate each of these variants of the SSWM model within our model.88

A Markov Model of Evolution89

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed90

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness91

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a92

time–homogeneous absorbing Markov Chain by setting, for i 6= j,93

5

equation 3 to ensure our model is a Markov Chain. In this case the step t to t + 1 can
be chosen to take some fixed arbitrary time.

The distribution of a population at time t is related to its initial distribution, µ(0), by

µ(t) = µ(0)P t. (5)

Since the Markov chain is absorbing we know that there exists some k such that
P kP = P k [73]. Consequently, we know that the matrix

P ⇤ = lim
t!1

P t (6)

exists and in fact this limit is reached after only finitely many matrix multiplications.
To intuitively see that this limit is reached in finitely many steps note that all paths
through the Markov chain are strictly increasing in fitness and there are only finitely
many states (corresponding to the genotypes). Thus a given initial population
distribution µ(0) will converge to a stationary distribution µ⇤ after a finite number of
steps in our model. Furthermore, if P ⇤ is known then we compute the stationary
distribution µ⇤ as

µ⇤ = µ(0)P ⇤. (7)

In particular, provided a drug is applied for sufficiently long to ensure that the disease
population reaches evolutionary equilibrium, we can explore the effects of applying
multiple drugs sequentially by considering the matrices P ⇤ for the associated fitness
landscapes. By encoding the evolutionary dynamics in a Markov chain we can
investigate the evolutionary process from an algebraic perspective. In particular, as the
transition matrix P encodes all of the evolutionary dynamics of the associated fitness
landscape f , we can explore global properties of f by considering the algebraic
properties of P .
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Predicting Evolution with a Substitution Model

Evolution is Not Repeatable - in vitro Validation

Background: Lung cancer is the leading cause of cancer death in America with an estimated 158,000 deaths 
in 2015. The direct cause of these deaths is the evolution of resistance to our presently most effective 
therapies. While the underlying Darwinian dynamics of cancer evolution are now accepted, this evolutionary 
process is rarely considered in the development of treatment strategies. We propose to extend evolutionary 
mathematical and experimental techniques we have used previously to study the emergence of antibiotic 
resistance with the aim to make similar gains in lung cancer. While our approach is applicable to any cancer 
which is sensitive to targeted therapy, we will focus on a recently identified subgroup of non-small cell lung 
cancers (NSCLC) driven by an oncogenic fusion involving the anaplastic lymphoma kinase (ALK) gene. These 
tumors in particular have been found to be exquisitely sensitive to a family of protein tyrosine kinase inhibitors 
(TKIs)1,2. The first of these TKIs, crizotinib, showed promising results in clinical trials, more than doubling 
progression free survival3. Unfortunately, the effects are rarely durable4 and are soon abrogated by the rapid 
evolution of resistance through a diverse number of molecular escape mechanisms (a pattern conserved 
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search through genotype space, with 
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us to predict how different sequences of 
drugs affect the evolutionary trajectory of 
the population - the order in which a 
population accrues mutations14. Using a 
mathematical model, we were able to 
determine optimal sequencing of 
antibiotics to minimize the probability of 

environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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and97

P(i ! i) =
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1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81
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proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90
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graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96

5

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

0000

1000 0100 0010 0001

1110 1101 1011 0111

1010 1001 01011100 0011

1111

0110

Am
p

Sam

Probability of population genotype

0 1

Cpr

Am
p

Am
p

1111

0110

0011

Peaks of the AMP landscape
Middle fitness peak (avg. growth rate: 2.434 * 10-3) 

Low fitness peak (avg. growth rate: 2.033 * 10-3) 

High fitness peak (avg. growth rate: 2.821 * 10-3)

Strong selection 
weak mutation

P(i ! j) =

8
>>>>><
>>>>>:

�
f(j)�f(i)

�r

X

g2{0,1}N , Ham(i,g)=1
f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

, (2)

and97

P(i ! i) =

8
<
:

1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)
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increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98
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from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104
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rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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0 otherwise
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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P(i ! j) =

8
>>>>><
>>>>>:

�
f(j)�f(i)

�r

X

g2{0,1}N , Ham(i,g)=1
f(g)�f(i)>0

�
f(g)�f(i)

�r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

, (2)

and97

P(i ! i) =

8
<
:

1 if i has no fitter one-step mutational neighbors

0 otherwise
, (3)

for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68
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has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102
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binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111
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could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115
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there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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0 otherwise
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121

The distribution of a population at time t is related to its initial distribution, µ(0), by122
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103
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we do not allow deleterious mutations to fix in the population.105
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could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118
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environmental change or drug application, as a fitness function67

f : {0, 1}N ! R�0. (1)

This fitness function represents a genotype-phenotype map in the simplest sense – assigning to each68

genotype a single real-valued fitness. Gillespie [1983, 1984] showed that if the mutation rate u and69

population size M of a population satisfy Mu log M << 1, and if we assume that each mutation70

is either beneficial or deleterious, then each beneficial mutation in the population will either reach71

fixation or become extinct before a new mutation occurs. Further, selection will be su�ciently72

strong that any deleterious mutation will become extinct with high probability and hence we may73

assume that this always occurs. In the case that Mu2 ⇡ 1 stochastic tunneling [Nowak et al.,74

2002, Komarova et al., 2003, Iwasa et al., 2004] through double mutations can occur and we cannot75

ignore deleterious mutations. Assuming Mu log M << 1, then after each mutation the population76

will stabilize to consist entirely of individuals with the same genotype and this genotype will be77

eventually replaced by a fitter neighboring genotype whenever one exists. This observation gives rise78

to the Strong Selection Weak Mutation (SSWM) model, which models a population as isogenic and79

occupying a single vertex on a directed graph on the set of 2N possible genotypes, {0, 1}N , in which80

there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b) > f(a) (see Figure81

1(b) and 1(c)). This population undergoes a stochastic walk on the graph in which the population82

genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still83

holds in the case that Mu >> 1 >> Mu2 [de Visser and Krug, 2014]. Several ‘move rules’ have been84

proposed which can be used to select an adjacent fitter neighbor during this stochastic walk [Orr,85

2005] and which of these move rules is most accurate depends on the population size [de Visser and86

Krug, 2014]. Common move rules include selecting the fittest neighbor [Kau↵man and Levin, 1987,87

Fontana et al., 1993], selecting amongst fitter neighbors at random [Macken and Perelson, 1989,88

Macken et al., 1991, Flyvbjerg and Lautrup, 1992] or selecting fitter neighbors with probability89

proportional to the fitness increase conferred [Gillespie, 1983, 1984, 1991]. We encapsulate each of90

these variants of the SSWM model within our model.91

A Markov Model of Evolution92

The SSWM model of evolution reduces the evolutionary process to a random walk on a directed93

graph and hence can be modeled by a Markov Chain [Grinstead and Snell, 1998]. For a fitness94

function f : {0, 1}N ! R�0 we can define a transition matrix P = [P(i ! j)]i,j2{0,1}N for a95

time–homogeneous absorbing Markov Chain by setting, for i 6= j,96
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for each i (see Figure 1(d)). Here the parameter r � 0 determines the extent to which the fitness98

increase of a mutation a↵ects its likelihood of determining the next population genotype. In the case99

r = 0, we have the random move SSWM model (as in Macken and Perelson [1989], Macken et al.100

[1991], Flyvbjerg and Lautrup [1992]), in the limit r ! 1 we have the steepest gradient ascent101

SSWM model (as in Kau↵man and Levin [1987], Fontana et al. [1993]), and for r = 1 we have102

probability proportional to fitness increase (as in Gillespie [1983, 1984, 1991]). This model di↵ers103

from the Markov model used by Sella and Hirsh [2005] to study the neutral theory of evolution as104

we do not allow deleterious mutations to fix in the population.105

Using this Markov Chain we can explore the possible evolutionary trajectories of a population106

on a given fitness landscape f . We next define a collection of population row vectors µ(t) for each107

t 2 N, where µ(t) has length 2N and kth component which gives the probability that the population108

has the kth genotype at time t (where the genotypes are ordered numerically according to their109

binary value). These time steps t are an abstraction which discretely measure events of beneficial110

mutations occurring and fixing in the population. As such, the actual time between steps t and t+1111

is not constant but may be considered drawn from a distribution parameterized by the mutation112

rate, reproductive rate and the number of beneficial mutations that can occur. This distribution113

could, for example, be determined by a Moran [Moran et al., 1962] or Wright–Fisher [Wright, 1932,114

Fisher, 1958] process depending on how we choose to interpret the fitness values given by f . If the115

population has a genotype corresponding to a local optimum of the fitness landscape at time t then116

there are no beneficial mutations that can occur and this definition of a time step is not well defined.117

In this case there can be no more changes to the population under the SSWM assumptions and118

for mathematical convenience we define the probability of a local optimum population genotype119

remaining unchanged as one in equation 3 to ensure our model is a Markov Chain. In this case the120

step t to t + 1 can be chosen to take some fixed arbitrary time.121
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Fig 2. Steering evolution in E. coli. We constructed a mathematical model using an 
empirically measured G-P map to optimize antibiotic therapy. Here given Amp alone 
or Sam➣Amp allows for the most resistant phenotype, but Sam➣Cpr➣Amp 
prevents it3.

Predicting Effective Drug Sequences Through in vitro 
Experiments

Evolutionary Steering can Guarantee Collateral 
Sensitivity  

than 100mg/ml. Adaptation to doxycycline and ampicillin
was much slower, with populations tolerating less than
3mg/ml after five exposures. Adaptation by four of the five
combination-evolved populations (ciprofloxacin–ampicillin,
fusidic acid–amikacin, doxycycline–erythromycin, and doxy-
cycline–ciprofloxacin) was similar to their slowest evolving
single drug counterparts, whereas lineages evolved to the
fusidic acid–erythromycin combination were approximately
10! less than their slowest evolving single drug counterpart
(fig. 2 and supplementary data S1, Supplementary Material
online).

Resistance Profiles of Adapted Lineages
Following resistance adaptation, four isolates from each of the
adapted populations were profiled for their individual resis-
tances. Results show that all isolates exhibited a substantial
increase in resistance following five exposures (fig. 3 and sup-
plementary data S1, Supplementary Material online). In many
cases, the IC90 values of the isolates were 100! greater than

the WT value and in the case of the fusidic acid isolates more
than a 1,000! larger. Exceptions to this trend were observed
in the ampicillin, ciprofloxacin–ampicillin, and fusidic
acid–erythromycin isolates where IC90 values were only
10–30! the WT value. Increased resistance differed among
isolates evolved to the same drug(s) and in some cases this
difference was considerable (fig. 3). We attributed the differ-
ences observed within a given drug(s) group to be the result
of genotypic changes acquired by the isolates through
adaption.

The fusidic acid–amikacin isolates (antagonistic interac-
tion, supplementary data S1, Supplementary Material online)
had the greatest increase in resistance improvement followed
closely by isolates adapted to doxycycline–ciprofloxacin (syn-
ergistic interaction, supplementary data S1, Supplementary
Material online). Isolates evolved to ciprofloxacin–ampicillin
(additive interaction, supplementary data S1, Supplementary
Material online) had the least resistance improvement, an
average of 11! the WT MIC value. These results contrast
with previous reports based on sub-MIC adaptations, which

X

Exposure 1 Exposure 2 Exposure 3

Wild Type
S. aureus
Newman

Concentra!on

Y

X+Y

FIG. 1. Adaptation of Staphylococcus aureus to individual drugs and drug pairs. An overnight culture of WT S. aureus was used to inoculate microtiter
plates containing different drugs or combinations with increasing concentrations or media only. Three replicate populations were recreated for each
condition. The highest concentration where growth was present was recultured in fresh media and then used to inoculate the next concentration
challenge, referred here to as exposure. A total of five exposures were performed for each condition.

Table 1. Antibiotics Used and Their Modes of Action.

Antibiotic Name Abbreviation Class Target

Amikacin AMI Aminoglycoside 30S ribosome

Ampicillin AMP Beta lactam Cell wall

Ciprofloxacin CPR Quinolone DNA synthesis

Erythromycin ERY Macrolide 50S ribosome

Doxycycline DOX Tetracycline 30S ribosome

Fusidic acid FUS Other Protein synthesis

Combination Abbreviation Interaction

Amikacin and fusidic acid FUS-AMI Antagonistic

Ampicillin and ciprofloxacin CPR-AMP Additive

Ciprofloxacin and doxycycline DOX-CPR Synergistic

Erythromycin and doxycycline DOX-ERY Synergistic

Erythromycin and fusidic acid FUS-ERY Synergistic
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Wild-type

Drug: 
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3.3 Implications for Collateral Sensitivity Analysis 59

AMP AM CEC CTX ZOX CXM CRO AMC CAZ CTT SAM CPR CPD TZP FEP
AMP 1.00 0.24 -0.01 0.01 0.22 -0.02 0.09 0.46 0.50 -0.36 0.31 0.31 0.05 0.26 0.49
AM 0.24 1.00 -0.33 -0.21 -0.31 -0.38 0.09 0.39 -0.07 -0.33 0.63 -0.35 -0.16 -0.18 0.35
CEC -0.01 -0.33 1.00 0.24 0.18 0.03 0.59 -0.17 0.45 -0.11 -0.48 0.54 0.18 0.01 0.16
CTX 0.01 -0.21 0.24 1.00 0.78 0.64 0.64 -0.20 -0.14 -0.09 -0.45 -0.08 0.84 -0.59 0.11
ZOX 0.22 -0.31 0.18 0.78 1.00 0.55 0.33 -0.25 0.04 0.19 -0.51 0.13 0.82 -0.28 0.08
CXM -0.02 -0.38 0.03 0.64 0.55 1.00 0.27 0.04 -0.03 0.03 -0.22 0.07 0.75 -0.24 -0.03
CRO 0.09 0.09 0.59 0.64 0.33 0.27 1.00 0.15 0.22 -0.16 -0.07 0.15 0.57 -0.40 0.52
AMC 0.46 0.39 -0.17 -0.20 -0.25 0.04 0.15 1.00 0.07 -0.19 0.63 -0.02 -0.01 0.29 0.52
CAZ 0.50 -0.07 0.45 -0.14 0.04 -0.03 0.22 0.07 1.00 -0.21 -0.06 0.65 0.09 0.23 0.53
CTT -0.36 -0.33 -0.11 -0.09 0.19 0.03 -0.16 -0.19 -0.21 1.00 -0.15 0.14 0.09 0.30 -0.38
SAM 0.31 0.63 -0.48 -0.45 0.51 -0.22 -0.07 0.63 -0.06 -0.15 1.00 -0.31 -0.34 0.07 0.35
CPR 0.31 -0.35 0.54 -0.08 0.13 0.07 0.15 -0.02 0.65 0.14 -0.31 1.00 0.02 0.48 -0.02
CPD 0.05 -0.16 0.18 0.84 0.82 0.75 0.57 -0.01 0.09 0.09 -0.34 0.02 1.00 -0.50 0.30
TZP 0.26 -0.18 0.01 -0.59 -0.28 -0.24 -0.40 0.29 0.23 0.30 0.07 0.48 -0.50 1.00 -0.17
FEP 0.49 0.35 0.16 0.11 0.08 -0.03 0.52 0.52 0.53 -0.38 0.35 -0.02 0.30 -0.17 1.00

Table 3.2 Spearman Correlation of Fitness Values Between Landscapes. The scatter plots
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not well founded although drugs within a class, for example the cephalosporins, show more
correlation that those between groups. An ideal pair of drugs for use in an alternating fashion
would have a high negative correlation such that the evolution of resistance under one drug
would induce sensitivity to a second. Unfortunately, no such drug pair exists and we must
employ more sophisticated methods to identify viable sequential drug strategies.

We next performed an in silico derivation of tables of collateral response, or collateral
sensitivity matrices (CSMs), by simulation of evolution with the model described by Equa-
tion 3.4. These simulations mirror the experimental techniques used to derive empirical
collateral response, for example those used by Imammovic and Sommer [131] to determine
drug cycling protocols. Evolutionary trajectories in each drug fitness landscape, fx, were
stochastically simulated from the wild–type starting genotype (g0 = 0000) by sampling the
associated Markov chain defined by Px (Equation 3.4). The simulation was terminated when
the evolutionary trajectory encountered a local optimum genotype, g⇤x . The fitness of this final
genotype in the second drug landscape, fy, was then recorded and collateral response was
calculated as

Collateral response of Y to X = log2

 
fy(g⇤x)
fy(g0)

!

These collateral response measures we collated to form a table.
We can count the total number of CSMs that can be generated through this simulation.

There exist 3 landscapes with only one peak accessible from the genotype g0 = 0000, 6 in
which two peaks are accessible, 4 in which three peaks are accessible and 2 in which four
peaks are accessible. Assuming that for each landscape, fx, evolution is simulated from g0

a single time to determine g⇤x and then the collateral sensitivity of g⇤x in each of the other
landscapes, fy is recorded. Then there exist
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Figure 1: Left: Collateral sensitivity matrix of fold change of EC50 for resistant cell lines
(columns) as treated by the panel of ALK-TKIs (rows). All sequences of therapy resulted in
cross-resistance except Alectinib followed by Lorlatinib, which was neutral. Right: Pop-out
figure shows example of EC50 comparison in case of collateral resistance of Lorlatinib resis-
tant cells treated with Ceritinib, as compared to wild type (WT). Experimental data (markers)
and model fit (solid lines) are shown.

2.2 Drug holidays stochastically induce collateral sensitivity between ALK TKIs

with few conserved motifs

In the clinical setting, drug holidays have been suggested as a strategy to overcome therapeutic

resistance, as resistance may not be preserved throughout time. Furthermore, there is often a

substantial time period in which no drug is given, after the administration of the first drug, and

prior to the administration of the next. This drug holiday may affect the efficacy of the drug

sequencing protocol, but is often neglected in experimental and theoretical studies of resistance

alike. It is therefore of critical importance to assay the stability of possible sequencing regimens

not only among cell lines in which resistance has been derived, but also in which drugs have

been stopped for a period of time, to simulate clinically-relevant situations. To address this,

we assayed the four resistant cell lines for five drug holiday periods: 1 day, 3 days, 7 days, 14

days, and 21 days.

After assaying each of the cell lines for drug response, we construct the temporal collateral

sensitivity matrices (Figures 2A - E, left) and derive the resultant sensitivity networks in Fig-

ures 2A - E, right. For details on graph construction and associated code, see Methods. We

find that there are patterns that change particularly quickly, such as the collateral sensitivity to

Lorlatinib in Ceritinib resitant cells, appearing on the first day of holiday, then disappearing on
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AMP AM CEC CTX ZOX CXM CRO AMC CAZ CTT SAM CPR CPD TZP FEP
AMP 1.00 0.24 -0.01 0.01 0.22 -0.02 0.09 0.46 0.50 -0.36 0.31 0.31 0.05 0.26 0.49
AM 0.24 1.00 -0.33 -0.21 -0.31 -0.38 0.09 0.39 -0.07 -0.33 0.63 -0.35 -0.16 -0.18 0.35
CEC -0.01 -0.33 1.00 0.24 0.18 0.03 0.59 -0.17 0.45 -0.11 -0.48 0.54 0.18 0.01 0.16
CTX 0.01 -0.21 0.24 1.00 0.78 0.64 0.64 -0.20 -0.14 -0.09 -0.45 -0.08 0.84 -0.59 0.11
ZOX 0.22 -0.31 0.18 0.78 1.00 0.55 0.33 -0.25 0.04 0.19 -0.51 0.13 0.82 -0.28 0.08
CXM -0.02 -0.38 0.03 0.64 0.55 1.00 0.27 0.04 -0.03 0.03 -0.22 0.07 0.75 -0.24 -0.03
CRO 0.09 0.09 0.59 0.64 0.33 0.27 1.00 0.15 0.22 -0.16 -0.07 0.15 0.57 -0.40 0.52
AMC 0.46 0.39 -0.17 -0.20 -0.25 0.04 0.15 1.00 0.07 -0.19 0.63 -0.02 -0.01 0.29 0.52
CAZ 0.50 -0.07 0.45 -0.14 0.04 -0.03 0.22 0.07 1.00 -0.21 -0.06 0.65 0.09 0.23 0.53
CTT -0.36 -0.33 -0.11 -0.09 0.19 0.03 -0.16 -0.19 -0.21 1.00 -0.15 0.14 0.09 0.30 -0.38
SAM 0.31 0.63 -0.48 -0.45 0.51 -0.22 -0.07 0.63 -0.06 -0.15 1.00 -0.31 -0.34 0.07 0.35
CPR 0.31 -0.35 0.54 -0.08 0.13 0.07 0.15 -0.02 0.65 0.14 -0.31 1.00 0.02 0.48 -0.02
CPD 0.05 -0.16 0.18 0.84 0.82 0.75 0.57 -0.01 0.09 0.09 -0.34 0.02 1.00 -0.50 0.30
TZP 0.26 -0.18 0.01 -0.59 -0.28 -0.24 -0.40 0.29 0.23 0.30 0.07 0.48 -0.50 1.00 -0.17
FEP 0.49 0.35 0.16 0.11 0.08 -0.03 0.52 0.52 0.53 -0.38 0.35 -0.02 0.30 -0.17 1.00

Table 3.2 Spearman Correlation of Fitness Values Between Landscapes. The scatter plots
for the shaded region are shown in Figure 3.4. The remainder of the scatter plots are presented
in Appendix 1.

not well founded although drugs within a class, for example the cephalosporins, show more
correlation that those between groups. An ideal pair of drugs for use in an alternating fashion
would have a high negative correlation such that the evolution of resistance under one drug
would induce sensitivity to a second. Unfortunately, no such drug pair exists and we must
employ more sophisticated methods to identify viable sequential drug strategies.

We next performed an in silico derivation of tables of collateral response, or collateral
sensitivity matrices (CSMs), by simulation of evolution with the model described by Equa-
tion 3.4. These simulations mirror the experimental techniques used to derive empirical
collateral response, for example those used by Imammovic and Sommer [131] to determine
drug cycling protocols. Evolutionary trajectories in each drug fitness landscape, fx, were
stochastically simulated from the wild–type starting genotype (g0 = 0000) by sampling the
associated Markov chain defined by Px (Equation 3.4). The simulation was terminated when
the evolutionary trajectory encountered a local optimum genotype, g⇤x . The fitness of this final
genotype in the second drug landscape, fy, was then recorded and collateral response was
calculated as

Collateral response of Y to X = log2

 
fy(g⇤x)
fy(g0)

!

These collateral response measures we collated to form a table.
We can count the total number of CSMs that can be generated through this simulation.

There exist 3 landscapes with only one peak accessible from the genotype g0 = 0000, 6 in
which two peaks are accessible, 4 in which three peaks are accessible and 2 in which four
peaks are accessible. Assuming that for each landscape, fx, evolution is simulated from g0

a single time to determine g⇤x and then the collateral sensitivity of g⇤x in each of the other
landscapes, fy is recorded. Then there exist

13⇥26⇥34⇥42 = 82944
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CPD 0.05 -0.16 0.18 0.84 0.82 0.75 0.57 -0.01 0.09 0.09 -0.34 0.02 1.00 -0.50 0.30
TZP 0.26 -0.18 0.01 -0.59 -0.28 -0.24 -0.40 0.29 0.23 0.30 0.07 0.48 -0.50 1.00 -0.17
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Table 3.2 Spearman Correlation of Fitness Values Between Landscapes. The scatter plots
for the shaded region are shown in Figure 3.4. The remainder of the scatter plots are presented
in Appendix 1.

not well founded although drugs within a class, for example the cephalosporins, show more
correlation that those between groups. An ideal pair of drugs for use in an alternating fashion
would have a high negative correlation such that the evolution of resistance under one drug
would induce sensitivity to a second. Unfortunately, no such drug pair exists and we must
employ more sophisticated methods to identify viable sequential drug strategies.

We next performed an in silico derivation of tables of collateral response, or collateral
sensitivity matrices (CSMs), by simulation of evolution with the model described by Equa-
tion 3.4. These simulations mirror the experimental techniques used to derive empirical
collateral response, for example those used by Imammovic and Sommer [131] to determine
drug cycling protocols. Evolutionary trajectories in each drug fitness landscape, fx, were
stochastically simulated from the wild–type starting genotype (g0 = 0000) by sampling the
associated Markov chain defined by Px (Equation 3.4). The simulation was terminated when
the evolutionary trajectory encountered a local optimum genotype, g⇤x . The fitness of this final
genotype in the second drug landscape, fy, was then recorded and collateral response was
calculated as

Collateral response of Y to X = log2

 
fy(g⇤x)
fy(g0)

!

These collateral response measures we collated to form a table.
We can count the total number of CSMs that can be generated through this simulation.

There exist 3 landscapes with only one peak accessible from the genotype g0 = 0000, 6 in
which two peaks are accessible, 4 in which three peaks are accessible and 2 in which four
peaks are accessible. Assuming that for each landscape, fx, evolution is simulated from g0

a single time to determine g⇤x and then the collateral sensitivity of g⇤x in each of the other
landscapes, fy is recorded. Then there exist

13⇥26⇥34⇥42 = 82944
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in Appendix 1.

not well founded although drugs within a class, for example the cephalosporins, show more
correlation that those between groups. An ideal pair of drugs for use in an alternating fashion
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sensitivity matrices (CSMs), by simulation of evolution with the model described by Equa-
tion 3.4. These simulations mirror the experimental techniques used to derive empirical
collateral response, for example those used by Imammovic and Sommer [131] to determine
drug cycling protocols. Evolutionary trajectories in each drug fitness landscape, fx, were
stochastically simulated from the wild–type starting genotype (g0 = 0000) by sampling the
associated Markov chain defined by Px (Equation 3.4). The simulation was terminated when
the evolutionary trajectory encountered a local optimum genotype, g⇤x . The fitness of this final
genotype in the second drug landscape, fy, was then recorded and collateral response was
calculated as

Collateral response of Y to X = log2

 
fy(g⇤x)
fy(g0)
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These collateral response measures we collated to form a table.
We can count the total number of CSMs that can be generated through this simulation.

There exist 3 landscapes with only one peak accessible from the genotype g0 = 0000, 6 in
which two peaks are accessible, 4 in which three peaks are accessible and 2 in which four
peaks are accessible. Assuming that for each landscape, fx, evolution is simulated from g0

a single time to determine g⇤x and then the collateral sensitivity of g⇤x in each of the other
landscapes, fy is recorded. Then there exist
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2.2MathematicalModelsofEvolutionandtheGP–Map11

2.2.2FitnessLandscapes

Thefitness(oradaptive)landscapemetaphorwasfirstintroducedinthe1930sbyWright
[59,60]asamodeltoaccountforepistasic.Epistasisreferstoanygeneticinteractionin
whichthephenotypic(orfitness)impactofamutationataspecficlociismodulatedbythe
geneticbackgroundonwhichisoccurs.Wrightwasparticularlyinterestedinthepossibility
that,owingtoepistasis,genotypesmayexistinwhichallsinglemutationsaredeleterious
butforwhichafittergenotypeexists.Itispreciselythisphenomenon,theexistanceof
multipeakedlandscapes,thatwewillexploittodesignoptimalsequentialdrugtherapies
(Chapter4).

Forastaticenvironment,allGP-mappingsinduceafitnesslandscapeaccordingto
Equation2.2,however,wecanconsiderthefitnesslandscapeastheGP–mapitselfby
equatingthegenotypespaceG(oftentakenas{0,1}NforsomeN2N)withthephenotype
spacePandtakingRGPastheidentity.Underthisconstructionepistaticinteractionsare
mathematicallyquantifiableandtheireffectsonlandscapetopographycanbemeasured.
Coupledwithempiricallyderivedlandscapes,thismathematicalformulationprovidesinsight
intothestructureoftheGP–map.

Thelandscapemodelisparticularlyusefulinstudyingtheaccessibility,repeatability
andpredictabilityofevolution.Smith[45]introducedtheconceptofadaptivetrajectories
indiscretesequencespaces,notingthatpointmutationsaresufficientlyrarethatwemay
assumenotwooccursimoultaneously.Thus,evolutionarytrajectoriescanbeencodedasa
sequenceofpointsubsitutionsthatincreasefitnesswhichMaynardSmithlikenedtoa“word
ladder"whereinonewordmustbetransformedtoanotherbysubstitutingonecharacterat
atime:"COLD!CORD!CARD!WARD!WARM".Eachintermediatestringof
charactersmustalsoformavalidword.Thisruleistheanalogofafitnessrequirementin
evoltuion;onlyvalidwordsareviable.

Acommonvisualisationofafitnesslandscapeistoviewthex�yplaneasagenotype
spaceGwithasurfaceabovethatindicatesfitnessonthezaxis(Figure??).Evolutionary
trajectoriesarethenviewedas“uphill"walksonthisthissurface.Thismetaphorhas
receivedsomecriticism[17]asinrealitythegenotypespaceisextremelyhighlydimensional,
apropertynotedbyWrighthimself[59].

TheoreticalStudiesofFitnessLandscapes

Epistatisishasasignficantimpactonhowadaptationtoanewenvironmentproceeds.Fit-
nesslandscapes,byassociatingasimplephenotypemeasure(fitness)witheachgenotype,
offeranaturalmodelinwhichtostudytheeffectsofepistasicinteractionsonlandscape

We parameterised our model with 15 landscapes of E. coli under beta-
lactam antibiotics (derived by Mira et. al). 14/15 of these landscapes are 
multi-peaked, allowing for divergence evolution of drug resistance.

Previous studies identify effective drug sequences through in vitro evolution 
experiments with small numbers of replicates. This experimental 
methodology can miss rare evolutionary trajectories.

We exhaustively explored all evolutionary trajectories in the 15 small 
antibiotic landscapes to identify potentially divergent collateral response. We 
found a total of 82944 unique CSMs. The most common CSM occurs with 
probability 0.0023.

Careful drug selection of drug sequences can steer evolution to prevent 
genetic divergence and guarantee collateral sensitivity. Drug 
landscapes must be known to predict sequences in this way.

To verify divergent evolution can result in differential collateral response 
we performed 12 replicates of experimental evolution under 
Cefotaxime. We found 3/4 second line antibiotics exhibited both 
increased or decreased sensitivity in dependent on the  replicate.

Towards a Clinically Viable Metric for Drug 
Sequences - Collateral Sensitivity Likelihood

AM
P

AM CE
C

CT
X

ZO
X

CX
M

CR
O

AM
C

CA
Z

CT
T

SA
M

CP
R

CP
D

TZ
P

FE
P

First Drug Applied

AMP

AM

CEC

CTX

ZOX

CXM

CRO

AMC

CAZ

CTT

SAM

CPR

CPD

TZP

FEP

Se
co

nd
 D

ru
g 

(T
o 

B
e 

A
pp

lie
d)

AM
P

AM CE
C

CT
X

ZO
X

CX
M

CR
O

AM
C

CA
Z

CT
T

SA
M

CP
R

CP
D

TZ
P

FE
P

First Drug Applied

AMP

AM

CEC

CTX

ZOX

CXM

CRO

AMC

CAZ

CTT

SAM

CPR

CPD

TZP

FEP

Se
co

nd
 D

ru
g 

(T
o 

B
e 

A
pp

lie
d)

AM
P

AM CE
C

CT
X

ZO
X

CX
M

CR
O

AM
C

CA
Z

CT
T

SA
M

CP
R

CP
D

TZ
P

FE
P

First Drug Applied

AMP

AM

CEC

CTX

ZOX

CXM

CRO

AMC

CAZ

CTT

SAM

CPR

CPD

TZP

FEP

Se
co

nd
 D

ru
g 

(T
o 

B
e 

A
pp

lie
d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty
 o

f 
C
ol

la
te

ra
l S

en
si

ti
vi

ty

CSL p = 1.0 p > 0.75 p > 0.5

AM
P

AM CE
C

CT
X

ZO
X

CX
M

CR
O

AM
C

CA
Z

CT
T

SA
M

CP
R

CP
D

TZ
P

FE
P

First Drug Applied

AMP

AM

CEC

CTX

ZOX

CXM

CRO

AMC

CAZ

CTT

SAM

CPR

CPD

TZP

FEP

Se
co

nd
 D

ru
g 

(T
o 

B
e 

A
pp

lie
d)

AM
P

AM CE
C

CT
X

ZO
X

CX
M

CR
O

AM
C

CA
Z

CT
T

SA
M

CP
R

CP
D

TZ
P

FE
P

First Drug Applied

AMP

AM

CEC

CTX

ZOX

CXM

CRO

AMC

CAZ

CTT

SAM

CPR

CPD

TZP

FEP

Se
co

nd
 D

ru
g 

(T
o 

B
e 

A
pp

lie
d)

AM
P

AM CE
C

CT
X

ZO
X

CX
M

CR
O

AM
C

CA
Z

CT
T

SA
M

CP
R

CP
D

TZ
P

FE
P

First Drug Applied

AMP

AM

CEC

CTX

ZOX

CXM

CRO

AMC

CAZ

CTT

SAM

CPR

CPD

TZP

FEP

Se
co

nd
 D

ru
g 

(T
o 

B
e 

A
pp

lie
d)

AM
P

AM CE
C

CT
X

ZO
X

CX
M

CR
O

AM
C

CA
Z

CT
T

SA
M

CP
R

CP
D

TZ
P

FE
P

First Drug Applied

AMP

AM

CEC

CTX

ZOX

CXM

CRO

AMC

CAZ

CTT

SAM

CPR

CPD

TZP

FEP

Se
co

nd
 D

ru
g 

(T
o 

B
e 

A
pp

lie
d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty
 o

f 
C
ol

la
te

ra
l S

en
si

ti
vi

ty

CSL p = 1.0 p > 0.75 p > 0.5

AM
P

AM CE
C

CT
X

ZO
X

CX
M

CR
O

AM
C

CA
Z

CT
T

SA
M

CP
R

CP
D

TZ
P

FE
P

First Drug Applied

AMP

AM

CEC

CTX

ZOX

CXM

CRO

AMC

CAZ

CTT

SAM

CPR

CPD

TZP

FEP

Se
co

nd
 D

ru
g 

(T
o 

B
e 

A
pp

lie
d)

In silico Modelling Reveals Divergent Collateral Response

Measuring Empirical Fitness Landscapes

second line drugs

• Experimentally derived collateral sensitivity measures are not 
repeatable and may suggest sensitivity where resistance occurs.  

• In silico modelling reveals the extent of the non-repeatability 
of evolution. 

• In vitro experiments confirm the non-repeatability of evolution. 

• More effective multi-drug therapies can be predicted from 
mathematical modelling or consideration of collateral sensitivity 
likelihoods.    

• These evolutionary principles are equally applicable to cancer.

Distributed data collection allows prediction of effective sequences.

Predicting Collateral Sensitivity 
Through Experimental Evolution
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Hypothesis: Can the evolution of resistance to one drug 
induce sensitivity in a second?
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Figure 3. Experimental evolution reveals divergent collateral response. A) A
schematic of the evolutionary experiment. E. coli were grown using the gradient plate method and
passaged every 24 hours for a total of 10 passages. Twelve replicates of experimental evolution
were performed. B) The MIC of each strain (X1-X12) under cefotaxime was measured following
passages 0,2,4,6,8 and 10, these values are plotted. The gene SHV was sequenced following
each passage. Geometric shapes indicate distinct mutations at the earliest time point they were
detected. C) A partial collateral response matrix showing the fold–change in susceptibility
for the twelve replicates at passage 10 under exposure to four antibiotics: piperacillin (PIP),
ticarcillin/clavulanic acid (TIC) and ampicillin/sulbactam (AMS) and ceftolozane/tazobactam
(CFL). Differential collateral response is observed for PIP, TIC and AMS. Inset stars indicate
value is a lower bound for fold-increase in resistance.
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>0.75

Best
sensitive resistant sensitive resistantWorst
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A
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Likelihood 

Figure 4. Collateral sensitivity likelihood. (Left) The table of collateral sensitivity
likelihoods (CSLs) derived from the mathematical model. Each entry indicates the likelihood
that the first drug (rows) induces increased sensitivity in the second (columns). (Right) The CSL
table thresholded for drugs with p = 1.0 (top) and p ≥ 0.75 probability of inducing collateral
sensitivity.

instead reported. For example, Figure 4 shows an example table of collateral sensitivity likelihoods

derived from the in silico evolution model. By looking for drug pairs with a high likelihood

(p > 0.75) of collateral sensitivity (instead of guaranteed p = 1.0) we see that the number

of potentially effective drug pairs is increased and further, the inherent risk associated with

each pair is explicitly stated. To empirically derive CSLs will likely require novel experimental

approaches. We propose two here: firstly, high throughput in vitro evolution experiments, likely

facilitated by automation of the experimental process [27]. Secondly, as drug sequences are

frequently prescribed in the clinic, we propose the distributed collection of matched pre– and

post–therapy drug sensitivity assays, possibly coupled with genomic sequencing, to permit the

derivation of CSLs. A similar approach is already employed in the treatment of HIV to monitor

the evolution of drug resistance [9, 13]. Regardless of the approach taken to derive CSLs, what is

clear is that we must move beyond the present methodology of designing drug sequences though

low–replicate–number experimental evolution, and towards an evolutionarily informed strategy

that explicitly accounts for the inherent stochasticity of evolution.
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Methods

Mathematical Modelling of Evolution

The probability for evolutionary trajectories through the empirically derived fitness landscapes

were calculated from a previously described mathematical model [17]. Briefly, the population is

assumed to be isogenic and subject to Strong Selection Weak Mutation (SSWM) evolutionary

dynamics. Thus, the population genotype (taken from domain {0, 1}4) is modelled as periodically

replaced by a fitter (as determined by the landscape) neighbouring genotype (defined as any

genotype whose Hamming distance from the population genotype is equal to one). This process

is stochastic and the likelihood of a genotype, j, replacing the present population genotype, i, is

given by

P(i→ j) =





(
f(j)−f(i)

)r
∑

g∈{0,1}N , Ham(i,g)=1
f(g)−f(i)>0

(
f(g)−f(i)

)r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise

. (1)

Where no such fitter neighbour exists, the process is terminated. The value of r determines the

extent to which the fitness benefit of a mutation biases the likelihood that it becomes the next

population genotype. We take r = 0, corresponding to fixation of the first arising resistance

conferring mutation, but our results are robust to changes in r.

For the simulations of in vitro evolutionary experiments, we assume an initial genotype

of g0 = 0000 and determine the final population genotype by sampling from the model until

termination at a local optimum of fitness, say g∗. Simulated collateral response was calculated

as the fold difference between g0 and g∗ in a second fitness landscape.

Experimental Adaptation to Cefotaxime

All 12 evolutionary replicates were derived from with E. coli DH10B carrying phagemid pBC

SK(-) expressing the β-lactamase gene SHV-1 [22]. All evolutionary experiments were performed

in Mueller-Hinton agar.

Using a spiral plater, cefotaxime solution was applied to Mueller Hinton (MH) agar plates in a

continuously decreasing volume equivalent to a thousand-fold dilution. E. coli DH10B pBCSK(-)

blaSHV-1 colonies were suspended to a concentration of 7log10 CFU/ml in MH broth. Antibiotic

plates were then swabbed along the antibiotic gradient with the bacterial suspension. Plates

were incubated overnight at 37°C. The most resistant colonies, as measured by the distance of

growth along the gradient, were resuspended and used to swab a freshly prepared antibiotic
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plate. The process was repeated for a total of 10 passages. The entire experiment was completed

12 times using the same parent strain to generate the cefotaxime resistance strains X1–X12.

Determination of Minimum Inhibitory Concentration

The minimum inhibitory concentration of each of the antibiotics in Figure 3 was determined for

both the parent strain and the 12 cefotaxime resistant strains X1-X12 according to guidelines

outlined by the Clinical and Laboratory Standards Institute [3]. MICs were calculated in triplicate

and the mean value used in for analysis. The maximum concentration considered was, 4096µg/ml,

where the MIC exceeded this concentration the precise value was not calculated and a MIC

of 8192µg/ml was used in the analysis. In this case the associated collateral response value is

delineated to indicate that it is a lower bound. For X1-X4 the MICs were calculated for an

extended panel of antibiotics (Supplementary Table 2).

Collateral Sensitivity Analysis

Collateral sensitivity (or resistance), as depicted in Figure 3, was determined from the mean

MIC values for the parent and passage 10 adapted strains (X1 - X12). For strains x = 1 . . . 12

the collateral response to an antibiotic, d, is calculated as

CR = log2

(
MICd(Xx)

MICd(parental)

)
(2)

Sequencing and Analysis

Plasmid DNA was isolated using the Wizard Plus Minipreps DNA purification systems (Promega).

Sequencing of the SHV gene was performed using M13 primers (MCLab, Harbor Way, CA).
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