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Antibiotic resistance represents a growing health crisis that necessitates the im-
mediate discovery of novel treatment strategies. One such strategy is the identifica-
tion of sequences of drugs exhibiting collateral sensitivity, wherein the evolution of
resistance to a first drug renders a population more susceptible to a second. Here,
we demonstrate that sequential multi—drug therapies derived from in vitro evolution
experiments can, in some cases, have overstated therapeutic benefit — potentially
suggesting a collaterally sensitive response where cross resistance ultimately occurs.
The evolution of drug resistance need not be genetically or phenotypically conver-
gent, and where resistance arises through divergent mechanisms, the efficacy of a
second drug can vary substantially. We first quantify the likelihood of this occur-
ring by use of a mathematical model parametrised by a set of small combinatorially
complete fitness landscapes for Escherichia coli. We then verify, through in vitro
experimental evolution, that a second—line drug can indeed stochastically exhibit ei-
ther increased susceptibility or increased resistance when following a first. Genetic
divergence is confirmed as the driver of this differential response through targeted
sequencing. These results indicate that the present methodology of designing drug
regimens through experimental collateral sensitivity analysis may be flawed under
certain ecological conditions. Further, these results suggest the need for a more
rigorous probabilistic understanding of the contingencies that can arise during the
evolution of drug resistance.

The emergence of drug resistance is governed by Darwinian dynamics, wherein resistant
mutants arise stochastically in a population and expand under the selective pressure of therapy [22].
These evolutionary principles underpin resistance to the presently most effective therapies for
bacterial infections [4], cancers [§], viral infections [2] and disparate problems such as the
management of invasive species and agricultural pests [I4]. Biological mechanisms of drug
resistance often carry a fitness cost in the absence of the drug and further, different resistance
mechanisms can interact with one another to produce non—additive fitness effects, a phenomenon
known as epistasis [19]. These trade-offs can induce rugged fitness landscapes, potentially
restricting the number of accessible evolutionary trajectories to high fitness [20, 24] or rendering
evolution irreversible [23].

Identifying evolutionary trade-offs forms the basis of an emerging strategy for combating drug
resistance; prescribing sequences of drugs wherein the evolution of resistance to the first induces
susceptibility to the next [10, 12, [I7]. Where this occurs, the first drug is said to induce collateral
sensitivity in the second. Conversely, where the first drug induces increased resistance in the
second, collateral (or cross) resistance has occurred. Recently, in vitro evolution experiments

have been performed, in both bacteria [5, 10}, [16] and cancers [7, 28], to identify drug pairs or
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sequences exhibiting collateral sensitivity. These experiments proceed by culturing a population
in increasing concentrations of a drug to induce resistance and then assaying the susceptibility of
the resultant population to a panel of potential second-line therapies. From these experiments,
sequences or cycles of drugs in which each induces collateral sensitivity in the next have been
suggested as potential therapeutic strategies to extend the therapeutic efficacy of a limited pool
of drugs [7, [10]. For some cancer therapies, which often have severe side—effects and high toxicity,
such sequential therapies may be the only way combine the use of multiple drugs.

We argue that collaterally sensitive drug pairs identified from a small number of in vitro
evolutionary replicates likely do not always induce collateral sensitivity. This hypothesis arises
from the observation that evolution is not necessarily repeatable; resistance to a drug can arise
through multiple different mechanisms, as has been observed in cancers [27] and bacteria [1I]. An
a priori reason to assume that these different mechanisms will have correlated fitness effects
under a second drug is not evident — just like the grade school lesson of convergent evolution:
bats and birds can both fly, but their predators often differ. Indeed, one mutation may confer
resistance to a second drug, whilst another may induce increased susceptibility (in comparison
to the susceptibility of the wild-type), as was recently demonstrated in a drug screen of over
3000 strains of Staphylococcus aureus [11]. The potential impact of such divergent evolution
can be conceptualised in the classical fitness landscape model of Wright [25], wherein genotypes
are projected onto the two dimensional x — y plane and fitness represented as the height above
this plane. Evolution can be viewed as a stochastic ‘up—hill’ walk in this landscape wherein
divergence can occur at a saddle. Figure [1| shows such a schematic fitness landscape annotated to
demonstrate the capacity for divergent evolution and the potential effects on collateral sensitivity.

Previous studies have attempted to empirically determine the structure of the fitness landscape
for a number of organisms and under different drugs [6]. In these studies, a small number of
mutations associated with resistance are first identified. Strains are engineered corresponding
to all possible combinations of presence and absence of these mutations and the fitness of each
strain is measured by a proxy value, for example minimum inhibitory concentration (MIC) of a
drug or average growth rate under a specific dose. These measurements are combined with the
known genotypes to form a fitness landscape. However, to derive fitness landscapes through this
method, the number of strains that must be engineered grows exponentially with the number of
mutations of interest. Thus only small, combinatorially complete, portions of the true fitness
landscape can be measured, for example consisting of 2-5 alleles [6], [18| 24]. Nevertheless, these
restricted fitness landscapes can provide valuable insight into the evolution of drug resistance.

Mira et al. [I5] derived fitness landscapes for E. coli with all combinations of four fitness
conferring mutations (M69L, E104K, G238S and N276D) in the TEM gene and measured fitness
under 15 different S-lactam antibiotics (See Supplementary Table 1), using the average growth
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Figure 1. Evolutionary saddle points can drive divergent collateral response. A) A
schematic fitness landscape model in which divergent evolution can occur. Following Wright [25],
the x — y plane represents the genotypes and the height of the landscape above this plane
represents fitness. Two evolutionary trajectories, both starting from a wild-type genotype (yellow
circle), are shown. These trajectories diverge at an evolutionary saddle point (blue triangle) and
terminate at distinct local optima of fitness (purple pentagon, green star). As the saddle point
exists, evolutionary trajectories need not be repeatable. B) Schematic landscapes for a potential
follow—up drug are shown, the collateral response can be (i) always cross-resistant, (ii) always
collaterally sensitive or (iii) dependent on the evolutionary trajectory that occurs stochastically
under the first drug. C) A potential evolutionary branching point in the TEM gene of E. coli
identified in the fitness landscape for cefotaxime derived by Mira et al. [15].

rate (over 12 replicates) as a proxy of fitness. Of these 15 landscapes, 14 were identified as
having multiple local optima of fitness, indicating the potential for the divergence of evolutionary
trajectories. We utilised these landscapes, coupled with a previously published mathematical
model [17] (see Methods), to estimate the likelihood of the different evolutionary trajectories
from a wild—type genotype (denoted 0000) to each of the fitness optima. Using this model,
we performed in silico assays for collateral sensitivity, mirroring the approach taken Imamovic
and Sommer [I0] (Figure . For each drug, we first stochastically simulated an evolutionary
trajectory from the wild—type genotype to a local fitness optimum genotype and then, for all
other landscapes, compared the fitness of this local optimum genotype to that of the wild—type.
A schematic of this simulation is shown in Figure [2(A). Figure [2(B) shows an example of two
evolutionary trajectories, which are modelled as sequences of randomly arising fitness conferring

substitutions achieving fixation, that can arise stochastically in the fitness landscape for ampicillin,
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as derived by Mira et al. [15].

We exhaustively enumerated all tables of collateral response that can arise under this model
(See Supplementary Figures 1-9 for further details). Figure [2{C) shows the best case (most
susceptible following evolution), worst case (highest resistance following evolution) and mostly
likely collateral response tables that arose in this analysis, along with the mean collateral response
table (expectation of collateral response for each pair). In these tables, columns indicate the the
drug landscape under which the evolutionary simulation was performed and rows indicate the
follow-up drug for which fold-change from wild-type susceptibility was measured. This analysis
shows the remarkable variation in collateral response that can arise from divergent evolution
under a first drug. Indeed, we find a total of 82,944 unique tables can arise, of which the most
likely occurs with probability 0.0023. Amongst the 225 ordered drug pairs, only 28 show a
guaranteed pattern of collateral sensitivity, whilst a further 94 show a pattern of guaranteed cross
resistance. For 88 pairs, the first drug can induce either collateral sensitivity or cross resistance
in the second as a result of divergent evolution under the first drug. Critically, if a collateral
response table is generated by stochastic in silico simulation of the methodology of Imamovic
and Sommer [I0], and a collaterally sensitive drug pair chosen at random from this table, then
the expected probability that first of these two drugs will induce cross resistance in the second is
0.513 (determined from 10° simulations of this process).

The mathematical model used to derive these results represents a simplification of biological
reality, owing to the assumptions of a monomorphic population and a parametrisation using only
small fitness landscapes. To experimentally validate our predictions, we verified the existence of
divergent collateral response through experimental evolution. Mirroring previous experimental
approaches [5], [7, 10, 16, 28], we performed in vitro evolution of E. coli in the presence of the
[—lactam antibiotic cefotaxime. The bacterial populations were grown using the gradient plate
method with concentrations of cefotaxime varying between 0.06ug/ml and 256g/m over a course
of 10 passages lasting 24 hours (See Figure B[ A) and Methods for details). For each replicate, and
after every second passage, aliquots were taken such that the minimum inhibitory concentration
(MIC) for a panel of second line drugs could be determined. A time-series for the MIC of the
12 replicates under cefotaxime is shown over the 10 passages in Figure (B) indicating that
each replicate exhibited increased drug resistance after the 10th passage, although with varying
magnitude and trajectory.

For each of a panel of 40 second—line antibiotics, the MIC for the strains X1-X4 was determined
following passage 10, in addition to the MIC for the wild—type strain (Supplementary Table
2). From these MIC values, a smaller panel of second-line antibiotics appearing to exhibit
divergent collateral response was identified and the MIC of these drugs derived for each of the

12 evolutionary replicates. Figure C) shows the table of collateral response for this restricted
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Figure 2. Mathematical modeling predicts highly variable collateral response. A)
A schematic of the model used to derive collateral response. Sequential mutations are simulated
to fix in the population until a local optimum genotype arises. The fitness of this resultant
genotype is compared to the fitness of the wild—type genotype for each of the panel of antibiotics.
B) The landscape for ampicillin derived by Mira et al. [I5] represented as a graph of genotypes.
Arrows indicate fitness conferring mutations between genotypes represented as nodes. Cyan
nodes indicate genotypes from which evolution can stochastically diverge, grey nodes indicate
genotypes from which there is only a single fitness conferring mutation. Squares indicate local
optima of fitness with colour indicating the ordering of fitness amongst these optima (darker
red indicates higher fitness). Two divergent evolutionary trajectories, in the sense of the model
shown schemaically in A, are highlighted by coloured arrows. C) The best, worst, most likely
and mean tables of collateral response derived through stochastic simulation of the experimental
protocol. Columns indicate the drug landscape under which the simulation was performed and
rows indicate the follow-up drug under which the fold-change from wild-type susceptibility is
calculated. Bar charts indicate, for each labelled first drug, the number of follow-up drugs
exhibiting collateral sensitivity (blue) or cross resistance (red) in each case.
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panel following the final passage in the experiment. As predicted, we identify divergent collateral
response for the commonly prescribed antibiotics piperacillin (PIP), ticarcillin/clavulanate (TCC)
and ampicillin/sulbactam (AMS). The patterns of collateral response exhibited between these
drugs are not identical, for example, replicate X1 exhibits increased resistance to all three drugs,
the replicate X2 exhibits increased susceptibility to all three drugs and the replicate X12 exhibits
increased susceptibility to PIP and AMS but increased resistance to TCC.

Differential patterns of drug resistance could be driven by the different strains having
experienced different numbers of sequential mutations along a single trajectory wherein each
induces a shift in response (temporal collateral sensitivity [28]), by evolutionary divergence at
a branching point in the landscape or by non—genetic mechanisms of resistance. To elucidate
underlying mechanisms, we performed targeted sequencing of the SHV gene for each of the 10
passage time points and the 12 evolutionary replicates (Figure B)) We identified five variants
of SHV-1 amongst the 12 replicates. X1, X5, X7-X9 and X11 all possess wild—type SHV-1, X2
possesses the substitution G242S, X3 possesses G238C, X4 and X6 both possess G238A, and
X10 and X12 both possess (G238S. Our analysis revealed no evidence of double substitutions in
SHV, although mutations to genes other than SHV could not excluded. Such a mutation might
explain the different susceptibility of replicates X10 and X12 (both of which harbour G238S) to
PIP and AMS. This analysis identifies a minimum of four fitness conferring substitutions that
can occur in SHV during exposure to cefotaxime, indicating the existence of a multi-dimensional
evolutionary branching point in the fitness landscape. Further, the sensitivity of the population
to a second drug is dependent on which of these substitutions occurs (Figure [3[(C)). For example,
G238C (replicate X3) induces increased susceptibility to TCC whilst G238A (replicates X4 and
X6) induces a slight increase in resistance.

To conclude, we have shown the existence of an evolutionary branching point in the fitness
landscape of cefotaxime that can induce divergent evolution and differential collateral response to
second—line antibiotics. Furthermore, through a mathematical model of evolution parametrised by
small, combinatorially complete fitness landscapes, we have highlighted the extent and importance
of this phenomenon of evolutionary divergence. Specifically, modelling highlights that divergent
collateral response is likely common (occurring in 14/15 drugs for which empirical landscapes
were derived) and further, that even where collateral sensitivity is reported from a small number
of evolutionary replicates, cross—resistance can still occur with high likelihood.

Taken together, our results highlight the potential advantage of reporting tables of collateral
response derived from evolutionary experiments with many replicates. In the worst case scenario,
where too few replicates of evolutionary replicates are performed, the reported tables of collateral
response may indicate an effective, collaterally sensitive, drug pair where the first can induce

substantial cross—resistance to the second. Rather than give up entirely on the concept of
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Figure 3. Experimental evolution reveals divergent collateral response. A) A

schematic of the evolutionary experiment. E. coli were grown using the gradient plate method
and passaged every 24 hours for a total of 10 passages. Twelve replicates of experimental
evolution were performed. B) The MIC of each strain (X1-X12) under cefotaxime exposure
was measured following passages 0, 2, 4, 6, 8 and 10, these values are plotted. The SHV gene
was sequenced following each passage. Geometric shapes indicate distinct mutations at the
earliest time point they were detected. C) A partial collateral response matrix showing the
fold—change in susceptibility for the twelve replicates at passage 10 under exposure to four
antibiotics: piperacillin (PIP), ticarcillin/clavulanate (TCC) and ampicillin/sulbactam (AMS)
and ceftolozane/tazobactam (CFL). Differential collateral response is observed for PIP, TCC
and AMS. Inset stars indicate value is a lower bound for fold-increase in resistance.
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Figure 4. Collateral sensitivity likelihood. (Left) The table of collateral sensitivity

likelihoods (CSLs) derived from the mathematical model. Each entry indicates the likelihood

that the first drug (rows) induces increased sensitivity in the second (columns). (Right) The CSL

table thresholded for drugs with p = 1.0 (top) and p > 0.75 (bottom) probability of inducing
collateral sensitivity.

collateral sensitivity between drugs, we propose that collateral sensitivity likelihoods (CSLs) are
instead reported. For example, Figure[d]shows an example table of collateral sensitivity likelihoods
derived from the in silico evolution model. By looking for drug pairs with a high likelihood
(p > 0.75) of collateral sensitivity (instead of guaranteed p = 1.0) we see that the number
of potentially effective drug pairs is increased and further, the inherent risk associated with
each pair is explicitly stated. To empirically derive CSLs will likely require novel experimental
approaches. We propose two here: firstly, high throughput in vitro evolution experiments, likely
facilitated by automation of the experimental process [26]. Secondly, as drug sequences are
frequently prescribed in the clinic, we propose the distributed collection of matched pre— and
post—therapy drug sensitivity assays, possibly coupled with genomic sequencing, to permit the
derivation of CSLs. A similar approach is already employed in the treatment of HIV to monitor
the evolution of drug resistance [9, [13]. Regardless of the approach taken to derive CSLs, what is
clear is that we must move beyond the present methodology of designing drug sequences through
low—replicate—number experimental evolution, and towards an evolutionarily informed strategy

that explicitly accounts for the inherent stochasticity of evolution.
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Methods

Mathematical Modelling of Evolution

The probability for evolutionary trajectories through the empirically derived fitness landscapes
were calculated from a previously described mathematical model [17]. Briefly, the population is
assumed to be isogenic and subject to Strong Selection Weak Mutation (SSWM) evolutionary
dynamics. Thus, the population genotype (taken from domain {0, 1}*) is modelled as periodically
replaced by a fitter (as determined by the landscape) neighbouring genotype (defined as any
genotype whose Hamming distance from the population genotype is equal to one). This process

is stochastic and the likelihood of a genotype, j, replacing the present population genotype, ¢, is

given by
Lo-10) - i f(j) > £(6) and Ham(i, ) = 1
> (F9)-1())
P(i — j) = 9€{0,1}Y, Ham(i,g)=1 . (1)
f(g)—f(i)>0
0 otherwise

Where no such fitter neighbour exists, the process is terminated. The value of r determines the
extent to which the fitness benefit of a mutation biases the likelihood that it becomes the next
population genotype. We take r = 0, corresponding to fixation of the first arising resistance
conferring mutation, but our results are robust to changes in r (See Supplementary Note for
details).

For the simulations of in wvitro evolutionary experiments, we assume an initial genotype
of go = 0000 and determine the final population genotype by sampling from the model until
termination at a local optimum of fitness, say ¢*. Simulated collateral response was calculated
as the fold difference between gg and ¢* in a second fitness landscape.

The code used to implement the model, produce the figures and analyse the experimental

data is available upon request and will be made publicly available upon publication.

Experimental Adaptation to Cefotaxime

All 12 evolutionary replicates were derived from E. coli DH10B carrying phagemid pBC SK(-)
expressing the §-lactamase gene SHV-1 [2I]. All evolutionary experiments were performed using
Mueller-Hinton agar.

Using a spiral plater, cefotaxime solution was applied to Mueller Hinton (MH) agar plates in a
continuously decreasing volume equivalent to a thousand-fold dilution. E. coli DH10B pBCSK(-)
blagpy-1 colonies were suspended to a concentration of 7logl0 CFU/ml in MH broth. Antibiotic
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plates were then swabbed along the antibiotic gradient with the bacterial suspension. Plates
were incubated overnight at 37°C. The most resistant colonies, as measured by the distance of
growth along the gradient, were resuspended and used to swab a freshly prepared antibiotic
plate. The process was repeated for a total of 10 passages. The entire experiment was completed

12 times using the same parental strain to generate the cefotaxime resistance strains X1-X12.

Determination of Minimum Inhibitory Concentration

The minimum inhibitory concentration of each of the antibiotics in Figure [3| was determined for
both the parent strain and the 12 cefotaxime resistant strains X1-X12 according to guidelines
outlined by the Clinical and Laboratory Standards Institute [3]. MICs were determined in
triplicate and the mean value used in for analysis. The maximum concentration considered was
4096 pug/ml, where the MIC exceeded this concentration the precise value was not determined and
a MIC of >8192ug/ml was used in the analysis. In this case the associated collateral response
value is delineated to indicate that it is a lower bound. For X1-X4 the MICs were determined for

an extended panel of antibiotics (Supplementary Table 2).

Collateral Sensitivity Analysis

Collateral sensitivity (or resistance), as depicted in Figure , was determined from the mean
MIC values for the parent and passage 10 adapted strains (X1 - X12). For strains x = 1...12

the collateral response to an antibiotic, d, is calculated as

B MICy(X,)
CR = log, (MIC’d(parental)> @)

Sequencing and Analysis

Plasmid DNA was isolated using the Wizard Plus Minipreps DNA purification systems (Promega).
Sequencing of the SHV gene was performed using M13 primers (MCLab, Harbor Way, CA).
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