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1

Abstract2

Antibiotic resistance represents a growing health crisis that necessitates the immediate discovery3

of novel treatment strategies. One such strategy is the identification of collateral sensitivities,4

wherein evolution under a first drug induces susceptibility to a second. Here, we report that5

sequential drug regimens derived from in vitro evolution experiments may have overstated thera-6

peutic benefit, predicting a collaterally sensitive response where cross resistance ultimately occurs.7

We quantify the likelihood of this phenomenon by use of a mathematical model parametrised8

with combinatorially complete fitness landscapes for Escherichia coli. Through experimental9

evolution we then verify that a second drug can indeed stochastically exhibit either increased10

susceptibility or increased resistance when following a first. Genetic divergence is confirmed as11

the driver of this differential response through targeted and whole genome sequencing. Taken12

together, these results highlight that the success of evolutionarily-informed therapies is predicated13

on a rigorous probabilistic understanding of the contingencies that arise during the evolution of14

drug resistance.15
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16

Introduction17

The emergence of drug resistance is governed by Darwinian dynamics, wherein resistant18

mutants arise stochastically in a population and expand under the selective pressure of therapy [1].19

These evolutionary principles underpin resistance to the presently most effective therapies for20

bacterial infections [2], cancers [3], viral infections [4] and disparate problems such as the21

management of invasive species and agricultural pests [5]. Biological mechanisms of drug22

resistance often carry a fitness cost in the absence of the drug and further, different resistance23

mechanisms can interact with one another to produce non–additive fitness effects, a phenomenon24

known as epistasis [6]. These trade–offs can induce rugged fitness landscapes, potentially25

restricting the number of accessible evolutionary trajectories to high fitness [7, 8] or rendering26

evolution irreversible [9].27

Identifying evolutionary trade-offs forms the basis of an emerging strategy for combating28

drug resistance; prescribing sequences of drugs wherein the evolution of resistance to the first29

induces susceptibility to the next [10, 11, 12, 13]. Where this occurs, the first drug is said to30

induce collateral sensitivity in the second. Conversely, where the first drug induces increased31

resistance in the second, collateral (or cross) resistance has occurred. Recently, in vitro evolution32

experiments have been performed, in both bacteria [10, 14, 15, 16, 17, 18] and cancers [19, 20],33

to identify drug pairs or sequences exhibiting collateral sensitivity. One common protocol for34

these experiments proceeds by culturing a population in increasing concentrations of a drug to35

induce resistance, and then assaying the susceptibility of the resultant population to a panel36

of potential second–line therapies. From these experiments, sequences or cycles of drugs in37

which each induces collateral sensitivity in the next have been suggested as potential therapeutic38

strategies to extend the therapeutic efficacy of a limited pool of drugs [10, 20]. For some cancer39

therapies, which often have severe side–effects and high toxicity, such sequential therapies may40

be the only way to combine the use of multiple drugs.41

Drug pairs that are identified as collaterally sensitive in a small number of in vitro evolutionary42

replicates may not in fact induce collateral sensitivity each time they are applied. This hypothesis43

arises from the observation that evolution is not necessarily repeatable; resistance to a drug can44

arise through multiple different mechanisms, as has been observed in cancers [21] and bacteria [22].45

Further, one mechanism may confer resistance to a second drug, whilst another may induce46

increased susceptibility, as was recently demonstrated in a drug screen of over 3000 strains of47

Staphylococcus aureus [23]. In previous experimental evolution studies to identify collateral48

sensitivity this phenomenon has been directly observed. For example, Barbosa et al. [24] observed49

3

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2019. ; https://doi.org/10.1101/185892doi: bioRxiv preprint 

https://doi.org/10.1101/185892
http://creativecommons.org/licenses/by-nc/4.0/


contrasting collateral response in evolutionary replicates of Pseudomonas aeruginosa. Oz et50

al. [25] observed the same phenomenon in E. coli wherein a pair of evolutionary replicates51

was performed under exposure to the ribosomal (30S) inhibitor tobramycin, resulting in one52

exhibiting increased sensitivity to chloramphenicol and one exhibiting increased resistance.53

Similar effects are evident in cancer studies. Zhao et al. [19] observed that the sensitivity of a54

BCR-ABL leukaemia cell line to cabozantinib can both increase and decrease following exposure55

to bosutinib, and identified a single nucleotide variation responsible for this differential collateral56

response.57

The extent of the impact of differential collateral response on the design of sequential drug58

therapies is not yet fully understood. Here, we provide a clear evolutionary explanation for59

differential patterns of collateral repsonse through a combination of mathematical modelling60

and experimental evolution. Through mathematical modelling we demonstrate the extent to61

which the existence of multiple evolutionary trajectories to drug resistance can render collateral62

sensitivities stochastic, and discuss the implications for in vitro experimental evolution. We63

next empirically demonstrate the existence of multiple trajectories in the evolution of E. coli64

through in vitro experimental evolution. Previous studies have explored the collateral repsonse65

by considering all pairs from a pool of antibiotics, each with a small number of evolutionary66

replicates [10, 14, 15, 17]. We instead perform 60 parallel evolutionary replicates of E. coli67

under cefotaxime to demonstrate the extent of heterogeneity in second line drug sensitivity.68

Through genomic sequencing we confirm that different mutations (i.e. different evolutionary69

trajectories) are responsible for this heterogeneity. Critically, we find that collateral sensitivity is70

never universal, and is in fact rare. Finally, we derive collateral sensitivity likelihoods which we71

argue are critical statistical benchmarks for the clinical translation of sequential drug therapies.72

73

Results74

75

Mathematical Modelling of Evolution76

The potential impact of divergent evolution can be conceptualised in the classical fitness77

landscape model of Wright [26], wherein genotypes are projected onto the two dimensional x− y78

plane and fitness represented as the height above this plane. Evolution can be viewed as a79

stochastic ‘up–hill’ walk in this landscape wherein divergence can occur at a saddle. Figure 180

shows such a schematic fitness landscape annotated to demonstrate the capacity for divergent81

evolution and the potential effects on collateral sensitivity.82

Previous studies have attempted to empirically determine the structure of the fitness landscape83

for a number of organisms and under different drugs [27]. In these studies, a small number of84
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mutations associated with resistance are first identified. Strains are engineered corresponding85

to all possible combinations of presence and absence of these mutations and the fitness of each86

strain is measured by a proxy value, for example minimum inhibitory concentration (MIC) of a87

drug or average growth rate under a specific dose. These measurements are combined with the88

known genotypes to form a fitness landscape. However, to derive fitness landscapes through this89

method, the number of strains that must be engineered grows exponentially with the number of90

mutations of interest. Thus only small, combinatorially complete, portions of the true fitness91

landscape can be measured, for example consisting of 2-5 alleles [7, 27, 28]. Nevertheless, these92

restricted fitness landscapes can provide valuable insight into the evolution of drug resistance.93

Mira et al. [29] derived fitness landscapes for E. coli with all combinations of four fitness94

conferring mutations (M69L, E104K, G238S and N276D) in the TEM gene and measured fitness95

under 15 different β-lactam antibiotics (See Supplementary Figure 1, Supplementary Table 1),96

using the average growth rate (over 12 replicates) as a proxy of fitness. Of these 15 landscapes,97

14 were identified as having multiple local optima of fitness, indicating the potential for the98

divergence of evolutionary trajectories. We utilised these landscapes, coupled with mathematical99

modelling [12] (see Methods), to estimate the likelihood of the different evolutionary trajectories100

from a wild–type genotype (denoted 0000) to each of the fitness optima. Using this model, we101

performed in silico assays for collateral sensitivity, mirroring the approach taken by Imamovic102

and Sommer [10] (Figure 2). For each drug, we first stochastically simulated an evolutionary103

trajectory from the wild–type genotype to a local fitness optimum genotype and then, for all104

other landscapes, compared the fitness of this local optimum genotype to that of the wild–type.105

A schematic of this simulation is shown in Figure 2(A). Figure 2(B) shows an example of two106

evolutionary trajectories that can arise stochastically in this model under the fitness landscape107

for ampicillin.108

We exhaustively enumerated all tables of collateral response that can arise under this model109

(See Supplementary Figures 2-10 for further details). Figure 2(C) shows the best case (most110

susceptible following evolution), worst case (highest resistance following evolution) and mostly111

likely collateral response tables that arose in this analysis, along with the mean collateral response112

table (expectation of collateral response for each pair). This analysis suggests that there is113

remarkable variation in collateral response arising solely from the stochastic nature of mutation114

that ultimately drives evolution under a first drug. Indeed, we find a total of 82,944 unique tables115

can arise, of which the most likely occurs with probability 0.0023. Amongst the 225 ordered116

drug pairs, only 28 show a guaranteed pattern of collateral sensitivity, whilst a further 94 show a117

pattern of guaranteed cross resistance. For 88 pairs, the first drug can induce either collateral118

sensitivity or cross resistance in the second as a result of divergent evolution under the first drug.119

Critically, if a collateral response table is generated by stochastic in silico simulation, and a120
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collaterally sensitive drug pair chosen at random from this table, then the expected probability121

that first of these two drugs will induce cross resistance in the second is 0.513 (determined from122

106 simulations of this process).123

124

Experimental Evolution Induces Heterogeneous Collateral Response125

The mathematical model used above represents a simplification of biological reality as the126

assumption of a monomorphic population need not hold and the parametrisation is made using127

incomplete fitness landscapes. To experimentally validate our predictions, we verified the existence128

of divergent collateral response through experimental evolution. Mirroring previous experimental129

approaches [10, 16, 18, 19, 20], we performed in vitro evolution of E. coli (strain DH10B carrying130

phagemid pBC SK(-) 198, expressing the beta-lactamase gene SHV-1) in the presence of the131

β−lactam antibiotic cefotaxime. Bacterial populations were grown using the gradient plate132

method with concentrations of cefotaxime varying between 0.01 µg ml−1 and 1000 µg ml−1 over133

a course of 10 passages lasting 24 hours (See Figure 3(A) and Methods for details). In total,134

60 replicates of experimental evolution were performed. We denote the resulting populations135

by X1-X60. For replicates X1-X12, aliquots were taken following each second passage and the136

minimum inhibitory concentration (MIC) to a panel of second line drugs assayed. A time–series137

for the MIC of X1-X12 replicates under cefotaxime is shown in Figure 3(B). As expected, the138

replicates exhibit increased resistance to cefotaxime over the 10 passages, although with varying139

magnitude and different trajectories.140

For each of a panel of 8 second–line antibiotics (Table 1), the MIC for the replicates X1-X60 was141

determined following passage 10, in addition to the MIC for the parental strain (Supplementary142

Dataset 1, Methods). Figure 4 shows how the MICs of X1-X60 differ from the parental line. As143

predicted, we find that the collateral change in sensitivity is highly heterogeneous, and show144

that both collateral sensitivity and cross resistance can arise to the antibiotics piperacillin (PIP),145

ticarcillin/clavulanate (TIC) and ampicillin/sulbactam (SAM).146

147

Genomic Profiling Reveals Divergent Evolution148

Differential patterns of drug resistance could be driven by the different replicates having149

experienced different numbers of sequential mutations along a single trajectory wherein each150

induces a shift in response (temporal collateral sensitivity [19]), by evolutionary divergence at a151

branching point in the landscape or by non–genetic mechanisms of resistance. To elucidate the152

underlying mechanisms, we first performed targeted sequencing of the SHV gene for each of the 10153

passage time points for 12 evolutionary replicates (X1-X12) (Figure 3(B)). Through this analysis154

we identified five variants of SHV-1 amongst the 12 replicates. X1, X5, X7-X9 and X11 all155
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possess wild–type SHV-1, X2 possesses the substitution G242S, X3 possesses G238C, X4 and X6156

both possess G238A, and X10 and X12 both possess G238S. This analysis revealed no evidence157

of double substitutions in SHV, indicating a minimum of four fitness conferring substitutions158

that can occur in SHV-1 during exposure to cefotaxime, and confirming the existence of a159

multi–dimensional evolutionary branching point in the fitness landscape. Further, the sensitivity160

of the population to a second drug appears to be (at least partially) dependent on which of these161

substitutions occurs (Figures 3 and 4). For example, replicate X3 (harbouring G238C) exhibits162

a significant increase in susceptibility to TIC, PIP and SAM, whilst those replicates found to163

harbour wild-type SHV-1, or the other SNVs, exhibit either cross-resistance or no significant164

change in susceptibility to these drugs.165

Through targeted sequencing of SHV alone we cannot not exclude the possibility that166

mutations in other genes, or large scale genomic alterations such as insertions or deletions, drive167

further divergence in collateral response. To explore whether additional background mutations168

arose during selection, we produced draft genome sequences for the replicates X1-X12 after169

passage 10 and looked for evidence of additional mutations. This genomic data confirmed the170

SHV-1 mutations found by sequencing of PCR products as described above. Nine of the twelve171

replicates contained additional mutations that include single-nucleotide variants (SNVs), large172

(>5kb) deletions, and replicate-specific sites for insertion of IS1D (Table 2). OmpC encodes173

a membrane surface protein and envZ is responsible for osmoregulation by regulation of the174

expression of OmpC and other membrane proteins [30]. This suggests that drug resistance in X8,175

X9, X10 and X11 may be driven by mutations that result in restricted drug uptake at the cell176

membrane. Indeed, mutations in envZ and cell surface proteins have been previously implicated177

as drivers of antibiotic resistance [31, 32, 33]. Stress-regulation through osmoregulation has178

been previously identified as inducing a trade-off with nutritional competence [34], suggesting179

that although these replicates do not exhibit collateral sensitivity, the resistant cells could face180

a fitness cost in the absence of drug. Similar patterns of fitness trade-off have been exploited181

in cancer treatments by using dose-modulation (adaptive) therapies that extend survival by182

inducing competition between sensitive and resistance cells [35, 36].183

We conclude that mutations in SHV-1 are the primary drivers of cefotaxime resistance as184

they are associated with the most substantial increases in MIC. For example, for replicate X12,185

which exhibits the highest endpoint MIC, no additional mutations were detected. In contrast,186

X1, X5, X8, X9, and X11 all had genomic mutations, lacked SHV-1 variants, and had the lowest187

final cefotaxime MIC. We excluded the possibility of amplifications of SHV-1 by consideration188

of read depth ratios. The ratio of reads mapped to the gene and reads mapped to the plasmid189

backbone was very similar across all samples. The ratio of plasmid reads to chromosomal reads190

did differ across samples, but the fraction of plasmid-derived reads did not correlate with the191
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MIC for cefotaxime (Supplementary Dataset 2) and is more likely due to variation in extraction192

efficiency for chromosomal versus plasmid DNA. We excluded the possibility of amplifications or193

deletions in chromosomal genes by consideration of read depth ratios (Supplementary Figure 11).194

We note that X7 exhibits an increase in resistance to cefotaxime without any associated195

genomic alterations. Similarly X1, X5, X9 and X12 exhibit mutations, but none that are known196

to be associated with antibiotic resistance. Thus, we can infer that physiological adaptation or197

epigenetic adaptation may also be driving resistance to cefotaxime.198

199

Collateral Sensitivity Likelihoods200

Our experimental results demonstrate that the evolution of antibiotic resistance is non-201

repeatable, and that the efficacy of a second-line drug can depend on the specific evolutionary202

trajectory that occurs under a first. As such, where a pair of drugs exhibit collateral sensitivity in203

a small number of experimental replicates, it need not be the case that collateral sensitivity always204

occurs. Rather than give up entirely on the concept of collateral sensitivity between drugs, we205

propose that collateral sensitivity likelihoods (CSLs) should be derived. By deriving the likelihood206

of collateral sensitivity between drugs, we can quantify the risk associated with different drug207

sequences. Figure 5(A) shows an example table of collateral sensitivity likelihoods derived from208

the in silico evolution model. We note that whilst there exist 28 drug pairs exhibiting guaranteed209

collateral sensitivity (P = 1.0, right), there also 16 others with likelihood 1.0 > P > 0.75 of210

collateral sensitivity. Where collateral sensitivity is assayed from a small number of experimental211

evolution replicates, these drug pairs may appear to exhibit universal collateral sensitivity and212

could thus unexpectedly fail stochastically. Conversely, if no universally collaterally sensitive213

drugs were known, drug pairs exhibiting a high likelihood of collateral sensitivity might represent214

the best option available.215

Figure 5(B) shows the experimentally derived CSLs for antibiotics administered following216

cefotaxime. We find that collateral sensitivity is rare, with P = 1
30 for ticarcillin/clavulanate217

(TIC) being the most likely. If we also consider the likelihood that sensitivity of the second-line218

drug is unchanged, then it is clear that piperacillin (PIP) or gentamicin (GNT) are the best219

second-line drugs following cefotaxime (amongst those we have assayed). Conversely, cross220

resistance is near universal in cefazolin (CFZ) and ceftolozane/tazobactam (CFT). For puromycin221

(PMC) and ampicllin/sulbactam (SAM), we estimate that cross resistance occurs with probability222

P > 0.5, but that the probability of no-change or collateral sensitivity is still high (P > 0.3223

in both cases). Drugs such as these highlight the importance of deriving collateral sensitivity224

likelihoods by means of multiple evolutionary replicates, as a single evolutionary replicate may225

identify unchanged sensitivity where cross resistance is likely.226

227
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Discussion228

We have demonstrated the existence of an evolutionary branching point in the fitness landscape229

of E. coli under cefotaxime that can induce divergent evolution and differential collateral response230

to second–line antibiotics. By means of 60 replicates of experimental evolution, we have estimated231

the likelihood of collateral sensitivity in each of 8 second-line therapies. Critically, we find that232

collateral sensitivity is never universal, and is in fact rare. Furthermore, by consideration of233

a mathematical model of evolution parametrised by small, combinatorially complete fitness234

landscapes, we have highlighted the extent and importance of evolutionary divergence. This235

modelling highlights that divergent collateral response is likely common (occurring in 14/15 drugs236

for which empirical landscapes were derived) and further, that even where collateral sensitivity237

is reported from a small number of evolutionary replicates, cross–resistance can still occur with238

high likelihood.239

Taken together, our results indicate that we must take care when interpreting collateral240

sensitivity arising in low-throughput evolution experiments. To this end, we propose that collateral241

sensitivity likelihoods should be evaluated by use of multiple parallel evolutionary replicates242

to better capture the inherent stochasticity of evolution. The high-throughput experimental243

evolution necessary to accurately evaluate CSLs between many drug pairs could be facilitated by244

automated cell culture systems, such as the morbidostat developed by Toprak et al. [37] which245

incorporates automated optical density measurements and drug delivery to track and manipulate246

evolution.247

It should be noted that although the evolution of pathological bacteria within the clinic is most248

likely stochastic, it is unclear whether the gradient plate system model used in the present study,249

and others [10], correctly captures this stochasticity. The gradient plate method proceeds by250

serial replating of bacterial populations that induces population bottlenecks and strong selection.251

This mode of population dynamics clearly differs from that which E. coli experience naturally.252

We note that our experimental results are derived only for the gradient plate method and that253

other protocols without serial passaging have also been explored [13]. Such experimental designs254

may exhibit less stochastic dynamics and thus permit the derivation of collateral sensitivity255

likelihoods with fewer replicates. Alternatively, it may be the case that additional stochasticity256

is introduced as evolutionary phenomena such as clonal interference, wherein multiple fitter257

clones compete, do not occur. To empirically determine collateral sensitivity likelihoods it may258

be the case that we must employ novel in vitro experimental techniques to more closely match259

in vivo dynamics. Here too, automated culture systems such as the morbidostat could help, as260

automated changes to the drug concentration can prevent the bacterial population expanding261

too rapidly, mitigating the need for serial replating and permitting high throughput experiments.262
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The mathematical model we have presented does not capture the full complexity of evolu-263

tion. For example, we do not account for deletions, insertions or duplications of genes such264

as SHV. Nevertheless, this model still proves useful in providing intuition about the extent to265

which stochasticity can drive differential collateral response. We can expect the introduction266

of additional mutational complexity to introduce further stochasticity. An immediate improve-267

ment to our modelling would be to extend the model to account for alternative population268

dynamics; for example, permitting heterogeneous populations, variable population sizes or drug269

pharmacodynamics. A further complication is that drug resistance can arise by physiological270

adaptions in addition to genetic mutation, which our mathematical modelling does not take into271

account. We see evidence for physiological adaption in the evolution of the replicate X7 which272

exhibits increased resistance to cefotaxime without associated mutations. Further, changes in273

sensitivity arising from such phenotypic plasticity may be reversible over short time scales [20].274

Ultimately, by the use of extended mathematical models we may be able to better simulate275

in vitro experiments in order to understand how generalisable they are to in situ evolutionary276

dynamics [38].277

As an alternative to high throughput evolutionary experiments, we note that drug sequences278

are frequently prescribed in the clinic. Thus, the distributed collection of matched pre– and279

post–therapy drug sensitivity assays, potentially coupled with genomic sequencing where this is280

feasible, could provide sufficient data to determine CSLs. This approach is particularly appealing281

as the CSLs derived would not be subject to the caveats regarding experimentally derived282

measures of collateral sensitivities outlined above. Further, clinically derived CSLs would readily283

account for non-genetic adaptations and inter-patient variabilities in physiology that may impact284

drug sensitivities. A similar approach has already been employed in the treatment of HIV to285

monitor the evolution of drug resistance [39, 40].286

Regardless of the approach taken to derive CSLs, what is clear is that we must move beyond287

the present methodology of designing drug sequences through low–replicate–number experimental288

evolution, and towards an evolutionarily informed strategy that explicitly accounts for the289

inherent stochasticity of evolution.290
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Methods291

Mathematical Modelling of Evolution292

The probabilities for evolutionary trajectories through the empirically derived fitness landscapes293

were calculated from a previously published mathematical model [12]. Briefly, the population is294

assumed to be isogenic and subject to Strong Selection Weak Mutation (SSWM) evolutionary295

dynamics. Thus, the population genotype (taken from domain {0, 1}4) is modelled as periodically296

replaced by a fitter (as determined by the landscape) neighbouring genotype (defined as any297

genotype whose Hamming distance from the population genotype is equal to one). This process298

is stochastic and the likelihood of a genotype, j, replacing the present population genotype, i, is299

given by300

P(i→ j) =



(
f(j)−f(i)

)r∑
g∈{0,1}N , Ham(i,g)=1

f(g)−f(i)>0

(
f(g)−f(i)

)r if f(j) > f(i) and Ham(i, j) = 1

0 otherwise.

(1)

Where no such fitter neighbour exists, the process is terminated. The value of r determines the301

extent to which the fitness benefit of a mutation biases the likelihood that it becomes the next302

population genotype. We take r = 0, corresponding to fixation of the first arising resistance303

conferring mutation, but our results are robust to changes in r (See Supplementary Note 1 for304

details).305

For the simulations of in vitro evolutionary experiments, we assume an initial genotype306

of g0 = 0000 and determine the final population genotype by sampling from the model until307

termination at a local optimum of fitness, say g∗. Simulated collateral response was calculated as308

the fold difference between g0 and g∗ in a second fitness landscape. Collateral response outcomes309

for all drug pairs are shown in Supplementary Figures 2-10.310

Experimental Adaptation to Cefotaxime311

All 60 evolutionary replicates were derived from E. coli DH10B carrying phagemid pBC SK(-)312

expressing the β-lactamase gene SHV-1 [41]. The SHV-1 β-lactamase gene was subcloned into313

pBC SK(-) (Stratagene) from a clinical strain of K. pneumoniae 15571. In brief, a 1384 bp314

ScaI-ClaI DNA fragment containing the upstream flanking sequence, promoter, ribosomal binding315

site and intact open reading frame was cloned into pBC SK(-) at the EcoRV-ClaI sites. This316

clone was transformed into E. coli DH10B (ElectroMAX, Invitrogen).317

Using a spiral plater, cefotaxime solutions were applied to Mueller Hinton (MH) agar plates318
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in a continuous, logarithmic dilution to achieve a radial concentration gradient of antibiotic from319

approximately 0.1-1000 µg ml−1. E. coli DH10B pBCSK(-) blaSHV-1 colonies were suspended to320

a concentration of 7log10 CFU ml−1 in MH broth. Antibiotic plates were then swabbed along321

the antibiotic gradient with the bacterial suspension. Plates were incubated overnight at 37°C.322

The most resistant colonies, as measured by the distance of growth along the gradient, were323

resuspended and used to swab a freshly prepared gradient plate. The process was repeated for a324

total of 10 passages. The entire experiment was completed 60 times using the same parental325

strain to generate the cefotaxime resistance replicates X1–X60.326

Determination of Minimum Inhibitory Concentration327

The minimum inhibitory concentration of each antibiotic was determined for both the parent328

strain and the cefotaxime resistant replicates according to guidelines outlined by the Clinical329

and 314 Laboratory Standards Institute [42]. Briefly, bacterial strains were grown 18-20 hours330

in MH broth in a shaking incubator at 37°C. Cultures were diluted and an inoculum replicator331

used was to deliver 104 CFU to the surface of MH agar plates containing antibiotic. Plates were332

incubated at 37°C for 16-20 hours. The MIC was taken as the lowest concentration of antibiotic333

that completely inhibited growth. MICs were assayed in triplicate as series of 2-fold dilutions.334

Where the MIC exceeded the maximum concentration considered, 4096 µg ml−1, the precise335

value was not determined and a lower bound MIC of ≥8192 µg ml−1 was taken.336

The MIC was determined from the replicates by maximum likelihood estimation using a337

statistical model outlined by Weinreich et al. [7]. Briefly, we assume that the jth log2 transformed338

MIC measurement for the ith evolutionary replicate, under the drug d, denoted xdi,j , is determined339

as340

xdi,j = md
i + εi,j,d (2)

where εi,j,d = +1, 0,−1 with probability e/2, 1− e, e/2 respectively. Here, each md
i denotes the341

true MIC for the ith replicate (with i = 0 denoting the parental line) and e denotes the likelihood342

of measurement error. We assume e is fixed across technical replicates, evolutionary replicates343

and drugs. Note the assumption that we never erroneously take a measurement that differs from344

the true MIC by greater than a factor of two. This is justified by noting that in no instance345

do the maximum and minimum MICs measured in our analysis differ by greater than 4× (See346

Supplementary Dataset 1).347

Maximum likelihood estimates (mle) for md
i are used as the MICs in our analysis. The348
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likelihood function is given by349

L
(
x10,1 . . . x

9
60,3|m1

1 . . .m
9
60, e

)
=

9∏
d=1

60∏
i=0

3∏
j=1

(
(1− e)δxd

i,j ,m
d
i

+
e

2
δxd

i,j ,m
d
i+1 +

e

2
δxd

i,j ,m
d
i−1

)
(3)

where δ denotes the Kronecker delta function. By observation, the mle for each md
i is given by350

the median of xdi,1, x
d
i,2 and xdi,3, except in the case that two of these values are precisely 4×351

or 1
4× the other, in which case the mle is the mid-point between the maximum and minimum.352

Letting r denote the number of replicate/drug combinations in which all three measurements353

equal the mle, s denote the number in which 2/3 measurements equal the mle, t the number in354

which 1/3 equal the mle and u the number in which 0/3 equal the mle. Then the mle for e is355

given by356

e =
s+ 2t+ 3u

3(r + s+ t+ u)
. (4)

This identity can be verified by first principles (by taking the derivative of the likelihood function)357

but is also quite intuitive - it is simply the proportion of measurements that differ from the358

inferred mle for the MIC. In our experiment, r = 338, s = 196, t = 11 and u = 4, which yields an359

mle for the measurement error rate of e = 0.14.360

Collateral Sensitivity Analysis and Significance Testing361

To determine collateral sensitivity (or cross resistance) we determined which evolutionary repli-362

cates exhibited a significantly different MIC from the parental line via a likelihood ratio test. In363

total, 60 comparisons were performed for each of the 9 drugs, yielding a total of 540 comparisons.364

A Bonferroni correction was used to account for multiple hypothesis testing. For those replicates365

exhibiting a significant (p < 0.05/540) change in MIC, the collateral response was determined as366

CR = md
i −md

0. (5)

Otherwise, we set CR = 0.367

Targeted Sequencing of SHV368

Plasmid DNA was isolated using the Wizard Plus Minipreps DNA purification systems (Promega).369

Sequencing of the SHV gene was performed using M13 primers (MCLab, Harbor Way, CA).370

371

Whole Genome Sequencing372
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For genome sequencing, total DNA was prepared using MasterPure Complete DNA Purifica-373

tion Kit (Epicentre; Madison, Wisconsin). NexteraXT libraries were prepared and sequenced374

on an Illumina NextSeq 500 at the Genomics Core at Case Western Reserve University. Paired375

sequence reads were mapped using bwa-mem to the DH10B genome (accession CP000948.1),376

the pBC SK(-) plasmid (https://www.novoprolabs.com/vector/V12548), and the SHV-1 gene377

(accession JX268740.1). Reads were also assembled into contigs using velvet [43]. Three ap-378

proaches were used to identify de novo mutations. First, single-nucleotide variants (SNVs) were379

called using the mapped reads using the Genome Analysis Toolkit (GATK) [44]. Second, large380

deletions were identified using a combination of detection of low-coverage regions of the reference381

based on read mapping results and BLAST searches between the DH10B reference sequence382

and the contigs. Insertion sequence (IS) elements present in the DH10B genome were identi-383

fied using ISfinder [45] and locations for IS elements were mapped in the contigs using ISseeker [46].384

385

Data Availability386

All MIC measurements are available in Supplementary Dataset 1. All sequencing data are de-387

posited to the NCBI sequence read archive under accession code SUB4495092. The Python code388

used in the mathematical modelling and statistical analyses are available at: https://github.com/Daniel-389

Nichol/CollateralSensitivityRepeatability.390
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Figure 1. Evolutionary saddle points can drive divergent collateral response. a A
schematic fitness landscape model in which divergent evolution can occur. Following Wright [26],
the x − y plane represents the genotypes and the height of the landscape above this plane
represents fitness. Two evolutionary trajectories, both starting from a wild–type genotype (yellow
circle), are shown. These trajectories diverge at an evolutionary saddle point (blue triangle)
and terminate at distinct local optima of fitness (purple pentagon, green star). As the saddle
point exists, evolutionary trajectories need not be repeatable. b Schematic landscapes for a
potential follow–up drug are shown, the collateral response can be (from left to right): always
cross-resistant, always collaterally sensitive, or dependent on the evolutionary trajectory that
occurs stochastically under the first drug. c A potential evolutionary branching point in the
TEM gene of E. coli identified in the fitness landscape for cefotaxime derived by Mira et al. [29].
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Figure 2. Mathematical modeling predicts highly variable collateral response. a A
schematic of the model used to derive collateral response. Sequential mutations are simulated
to fix in the population until a local optimum genotype arises. The fitness of this resultant
genotype is compared to the fitness of the wild–type genotype for each of the panel of antibiotics.
b The landscape for ampicillin derived by Mira et al. [29] represented as a graph of genotypes.
Arrows indicate fitness conferring mutations between genotypes represented as nodes. Blue
nodes indicate genotypes from which evolution can stochastically diverge, grey nodes indicate
genotypes from which there is only a single fitness conferring mutation. Squares indicate local
optima of fitness with colour indicating the ordering of fitness amongst these optima (darker red
indicates higher fitness). Two divergent evolutionary trajectories, in the sense of the model shown
schematically in a, are highlighted by coloured arrows. c, d, e, f The average, most likely, best
case, and worst case tables of collateral response derived through stochastic simulation. Columns
indicate the drug landscape under which the simulation was performed and rows indicate the
follow-up drug under which the fold-change from wild-type susceptibility is calculated. Bar
charts indicate, for each labelled first drug, the number of follow-up drugs exhibiting collateral
sensitivity (blue) or cross resistance (red) in each case. CS - Collaterally sensitive, CR - Cross
resistance.
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Figure 3. Experimental evolution reveals divergent collateral response. a A schematic
of the evolutionary experiment. E. coli were grown using the gradient plate method and passaged
every 24 hours for a total of 10 passages. Sixty replicates of experimental evolution were
performed. b The MIC for 12 replicates (X1-X12) under cefotaxime exposure was measured
following passages 0, 2, 4, 6, 8 and 10. These values are plotted, revealing heterogeneity in the
degree of resistance evolved to cefotaxime. Targeted sequencing of the SHV gene was performed
following each passage revealing four different SNVs between the replicates marked by geometric
shapes (triangle - G242S, hexagon - G238C, square - G238A, pentagon - G238S). Mutations are
marked at the earliest time point they were detected in each replicate.
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Figure 4. Collateral response following evolution under cefotaxime. The maximum
likelihood estimates for the MICs of replicates X1-X60 under cefotaxime and eight other antibiotics.
Small markers indicate individual measurements (taken in triplicate). Marker colour indicates
fold change from wild-type sensitivity (increased sensitivity - blues, increased resistance - reds).
Significance is determined via a likelihood ratio test (See Methods) and Bonferroni (BF) corrected.
Precise p-values are reported in Supplementary Dataset 1.
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Figure 5. Collateral sensitivity likelihoods. a (Left) The table of collateral sensitivity
likelihoods (CSLs) derived from the mathematical model. Each entry indicates the likelihood
that the first drug (columns) induces increased sensitivity in the second (rows). (Right) The CSL
table thresholded for drugs with P = 1.0 (top) and P > 0.75 (bottom) probability of inducing
collateral sensitivity. b The estimated likelihoods for collateral sensitivity, cross resistance or no
change in sensitivity derived from the sixty replicates of experimental evolution.
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Antibiotic Abbreviation Antibiotic Group Notes

Cefotaxime CTX Cephalosporin

Ciprofloxacin CIP Fluoroquinolone

Ampicillin/sulbactam SAM β-lactam combination 2:1 ratio of ampicillin to sulbactam

Gentamicin GNT Aminoglycoside

Ticarcillin/clavulanate TIC β-lactam combination 2 µg ml−1 clavulanate

Phosphomycin PMC Phosphomycin

Ceftolozane/tazobactam CFT β-lactam combination 2:1 ratio of ceftolozane to tazobactam

Piperacillin PIP Penicillin

Cefazolin CFZ Cephalosporin

Table 1. Antibiotic drugs used in this study.

Replicate SHV-1 SNVs Chromosomal SNVs Deletions (ranges) IS1D Insertions

Parental
2099555 T>C

(intergenic yedK/yedL)

X1p10 4166399-4177327

X2p10 G242S

X3p10 G238C 3079240-3088253
IS1D at 2849873 interrupts CP4-57

prophage predicted protein;
580 bp deletion adjacent

X4p10 G238A
3892703-3903946
2896300-2906979

X5p10 IS1D at 3506340 interrupts dusB

X6p10 G238A

X7p10

X8p10
2401329 T>A

(ompC Q144V)

X9p10
IS1D at 2401801

(upstream of ompC)

X10p10 G238S

3630620 C>A
(envZ R339L);
771931 C>T
(speF L115L)

4387943-4410705
IS1D at 4410705 interrupts rpiB;

14kb deletion adjacent

X11p10
3630620 C>A
(envZ R339L)

2896300-2906979
IS1D at 2906979 interrupts gshA;

12kb deletion adjacent

X12p10 G238S

Table 2. Mutations identified through whole genome sequencing. The single nucleotide
variants (SNVs), insertions and deletions identified through whole genome sequencing of the
replicates X1-X12 following passage 10 are listed.
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