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Summary 

Though the added value of proteomic measurements to gene expression profiling has been 

demonstrated, profiling of gene expression on its own remains the dominant means of understanding cellular 

responses to perturbation.  Direct protein measurements are typically limited due to issues of cost and scale; 

however, the recent development of high-throughput, targeted sentinel mass spectrometry assays provides an 

opportunity for proteomics to contribute at a meaningful scale in high-value areas for drug development.  To 

demonstrate the feasibility of a systematic and comprehensive library of perturbational proteomic signatures, 

we profiled 90 drugs (in triplicate) in six cell lines using two different proteomic assays — one measuring global 

changes of epigenetic marks on histone proteins and another measuring a set of peptides reporting on the 

phosphoproteome — for a total of more than 3,400 samples.  This effort represents a first-of-its-kind resource 

for proteomics.  The majority of tested drugs generated reproducible responses in both phosphosignaling and 

chromatin states, but we observed differences in the responses that were cell line- and assay-specific.  We 

formalized the process of comparing response signatures within the data using a concept called connectivity, 

which enabled us to integrate data across cell types and assays. Furthermore, it facilitated incorporation of 

transcriptional signatures.  Consistent connectivity among cell types revealed cellular responses that 

transcended cell-specific effects, while consistent connectivity among assays revealed unexpected 

associations between drugs that were confirmed by experimental follow-up.  We further demonstrated how the 

resource could be leveraged against public domain external datasets to recognize therapeutic hypotheses that 

are consistent with ongoing clinical trials for the treatment of multiple myeloma and acute lymphocytic leukemia 

(ALL).  These data are available for download via the Gene Expression Omnibus (accession GSE101406), and 

web apps for interacting with this resource are available at https://clue.io/proteomics. 
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Highlights 

● First-of-its-kind public resource of proteomic responses to systematically administered perturbagens 
● Direct proteomic profiling of phosphosignaling and chromatin states in cells for 90 drugs in six different 

cell lines 
● Extends Connectivity Map concept to proteomic data for integration with transcriptional data 
● Enables recognition of unexpected, cell type-specific activities and potential translational therapeutic 

opportunities  
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Introduction 

Molecular profiling technologies have enabled tremendous advances in biomedicine ranging from basic 

mechanistic insights to active guidance of therapeutic choices in precision medicine.  For example, a gene 

expression signature (PAM50) now constitutes one of the major diagnostic classifiers for breast cancer (Parker 

et al., 2009).  Gene expression profiling has long held sway as the technology of choice for generating 

systematic, comprehensive data sets of sufficient size to power statistical analyses.  Early landmark studies 

(Alizadeh et al., 2000; Bittner et al., 2000; Clark et al., 2000; Golub et al., 1999; Perou et al., 2000) 

demonstrated the power of molecular profiling, paved the way for its acceptance into the mainstream, and 

ultimately drove costs down and technology forward.  It has even been proposed that gene expression profiling 

could serve as the “‘universal language’ with which to describe cellular responses,” from which the concept of 

the Connectivity Map — linking drugs, genes, and phenotypes through expression profiles — has emerged 

(Lamb et al., 2006; Subramanian et al., 2017). 

 

Yet it is known that mRNA levels alone do not fully capture cell state, and the vocabulary of this 

universal language may need to be extended to describe some of the critical functions of cellular responses.  

Early studies recognized apparent discordance between mRNA and protein levels on a large scale 

(Greenbaum et al., 2003), and current studies suggest there is correlation coefficient of about ~0.5 between 

mRNA and protein levels (Mertins et al., 2016).  More recently, Li and colleagues have shown that 

phosphorylation events show low correlation with mRNA levels from their corresponding genes (Li et al., 2017), 

and therefore phosphoproteomic data are likely to add value to gene expression measurements.  These 

observations underscore the importance of exploring complementary readouts to gene expression profiling. 

 

Alternative profiling methodologies could potentially fill the gaps in gene expression profiling by 

measuring analytes that cannot be detected via nucleic acid, reporting on biological processes with time-scales 

distinct from changes in gene expression, being scalable to prosecute systematic studies of sufficient size to 

power discovery, and yet remaining cost-effective enough to deploy on a routine basis.  Further, it would be 

highly desirable for molecular profiling assays to directly report on cellular processes affected by novel drug 
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candidates’ primary modes of action, which usually involve inhibition of protein activity rather than the 

achievement of a particular transcriptional state.  Two emerging classes might particularly benefit from such 

directed assays: 1) targeted kinase inhibitors, a class of drugs that is rapidly expanding (Wu et al., 2015), and 

2) inhibitors of chromatin-modifying enzymes and sensors of chromatin state, which have emerged as exciting 

new therapeutic modalities (Dawson et al., 2012; Kelly et al., 2010).  While these new therapies are extremely 

promising, deeper insight is required to fully understand their cellular effects in their intended biological 

contexts, as well as their possible off-target effects in a system-wide manner.  At the same time, many 

established protein-targeting drugs lack clear mechanistic insight and may harbor unexpected 

phosphosignaling and epigenetic activities that would be useful in repurposing efforts (Gupta et al., 2013; 

Singhal et al., 1999). 

 

To fill these needs, we set out to develop a reference resource of proteomic signatures elicited in 

response to drugs, specifically monitoring phosphosignaling and chromatin state, two key areas for therapeutic 

development.  Unlike recent proteomic resources characterizing the proteomic states associated with genetic 

variation in tumors and cell lines (Li et al., 2017; Mertins et al., 2016), this resource characterizes the proteomic 

responses to systematic application of drug perturbagens.  Here, we describe the creation and validation of a 

pilot library containing signatures from our reduced-representation phosphoproteomic assay (Abelin et al., 

2016) and our global chromatin profiling assay (Creech et al., 2015).  These proteomic assays are highly 

standardized and rigorously quantitative, yet automated and compact enough to achieve a relatively high 

throughput and reasonable scale.  We have systematically profiled a wide variety of approved drugs and tool 

compounds across a range of biological models, including cancer and neurodevelopment.  We show that 

proteomic profiling yields reproducible signatures that enable recognition of mechanisms of action and cell 

type-specific effects.  The relatively large scale of the data (compared to other proteomic perturbation studies) 

allows for a principled query of proteomic signatures that, for the first time, allow us to extend the Connectivity 

Map concept (Lamb et al., 2006; Subramanian et al., 2017) to proteomics data and easily integrate proteomic 

with transcriptomic data.  We show that the resource itself contains a wealth of information about drug activity 

in cells, and also that the resource can be leveraged for analysis of external data to recognize potential 

therapeutic opportunities.  This data resource contributes to the NIH Library of Integrated Network-based 
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Cellular Signatures (LINCS) program, and represents a first-in-class queryable proteomics resource of over 

3,400 profiles.  Importantly, the resource continues to grow beyond its current size with longitudinal support 

from LINCS and opens the door to both utilization by and contributions from the community at large. 

Results 

Structure and scope of the proteomic signature resource 

We created a library of proteomic perturbational signatures containing more than 3,400 samples 

(Figure 1A).  In this initial dataset, we profiled 90 small molecules spanning a variety of mechanisms of action 

(MoAs) with focused subsets of kinase inhibitors and epigenetically active compounds (Table S1).  We utilized 

five widely studied cancer cell models (representing breast, lung, pancreatic, prostate, and skin lineages) and 

one neurodevelopmental cell model — neural progenitor cells (NPCs) — in order to test non-cancer models.  

Samples were profiled with a reduced-representation phosphoproteomic assay (P100) and a global chromatin 

profiling (GCP) assay, both of which are liquid chromatography-mass spectrometry (LC-MS)-based and 

previously described (Abelin et al., 2016; Creech et al., 2015).  The analytes measured by P100 are ~100 

phosphorylated peptides from cellular proteins, and the analytes measured by GCP are ~60 post-

translationally modified peptides from histones (e.g. methylated, acetylated, and combinations thereof).  The 

analytes measured by P100 serve as a reduced representation of the phosphoproteome and act as early 

sentinels of bioactivity of a diverse set of signaling pathways and drug mechanisms.  The analytes measured 

by GCP include nearly every well-studied post-translational modification on the core nucleosomal histone 

proteins.  These modifications convey epigenetic information in cells and their dysregulation is associated with 

a wide range of diseases (Araf et al., 2016; Aumann and Abdel-Wahab, 2014; Gräff and Mansuy, 2009; Jaffe 

et al., 2013; Ntziachristos et al., 2016; Peña et al., 2014). 

 

 We adopted guiding principles governing the generation of the resource (Supplemental Note 1).  First, 

we chose time scales that were relevant for the biological processes covered by the assays: 3 hours after drug 

treatment for phosphoproteomic profiling and 24 hours for chromatin profiling.  Second, we chose treatment 
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concentrations consistent with known bioavailability levels in humans where possible.  Sample preparation for 

each assay was highly automated, which allowed for preparation and analysis of 96 samples per batch.  The 

final output of profiling was matrix data — analytes in the rows and samples in the columns (Figure 1A, far 

right) — that can be readily analyzed by modern computational techniques.  All of our data are publically 

available (Table 1).  Extensive metadata concerning the treatment parameters and analyte identities were also 

embedded in the matrices, according to the standards set forth by the Library of Integrated Network-based 

Cellular Signatures (LINCS) consortium (http://www.lincsproject.org).  Beyond the analysis presented here, we 

are committed to expansion of the resource and have already released primary signature data for genetic 

knockdowns by CRISPR, time course of drug response in MCF10A cells, and drug responses in 

cardiovascular cell models via our Panorama repository. 

Universal connectivity framework for data processing and integration 

Mass spectrometry data are summarized by Skyline software  (MacLean et al., 2010) to yield a 

quantification for each analyte of the amount of peptide that was detected relative to a spiked-in synthetic 

control.  Further data processing is performed by the Proteomics Signature Pipeline 

(https://github.com/cmap/psp).  Briefly, the data are log2-transformed, analytes and samples with an excess of 

missing data are filtered out, a constant offset is applied to each sample to bring its range of values to the 

same scale as the other samples on a plate, and analytes are median normalized (see STAR Methods for a 

detailed description of the processing pipeline).  All data presented in this study, at multiple levels of 

processing (Figure S1A), have been consolidated under a stable Gene Expression Omnibus record (GEO, 

accession GSE101406). 

 

We adopted the concept of connectivity as a consistent, assay-independent means of identifying two or 

more drugs that elicit similar responses in cells (Lamb et al., 2006).  It enables us to ask the question “which 

compounds look alike in our dataset?” without focusing on the biological meanings of the individual analytes 

measured.  For example, by recognizing a connection between a drug of known mechanism and one of 

unknown mechanism, we can formulate a hypothesis about the unknown drug. 
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An important consequence of connectivity is the ability to integrate data across assays.  Because our 

assays measure different analytes, we are unable to directly compare perturbations’ signatures.  Instead, we 

compare their connectivities.  In other words, we ask "does drug X have the same connections to other drugs 

in GCP as it does in P100?"  This framework of connectivity allows us to quantitatively compare perturbations 

both within an assay and across assays, and connectivity scores have the same range regardless of assay.  

By taking a perturbation-centric approach rather than an analyte- or gene-centric approach, we can easily 

combine data from different assays using simple matrix operations (see results pertaining to assay comparison 

and data integration, below). 

 

We compute connectivity in two steps (Figure 1B, see STAR Methods for a detailed description).  First, 

we compare samples to each other using Spearman correlation, which considers entire signatures as the basis 

for comparison, rather than focusing on a limited number of up- or down-regulated analytes.  Because 

correlation is sensitive to the number of analytes in a signature and our assays measure different numbers of 

analytes, we cannot directly compare correlations.  Therefore, we convert correlations to connectivity scores by 

comparing observed correlations to a background distribution of correlations.  In the process, we collapse 

replicates corresponding to the same perturbation.  A connectivity score of 1 indicates that two perturbations 

are more similar to each other than all other pairs of perturbations, 0 indicates that their similarity is 

unexceptional, and -1 indicates that they are less similar to each other than all other pairs of perturbations 

(Figure S1B-D).  Drugs with positive connectivity are highly likely to elicit the same underlying cellular state as 

reported by the original assay, with phosphopeptides as a proxy for signaling state in P100 and chromatin 

modifications as a proxy for epigenetic state in GCP).  Drugs with negative connectivity likely elicit very 

different states with anti-correlated profiles. 

 

Connectivity scores can be visualized using heatmaps or network views (Figure 1B, far right), and 

subjected to further quantitative summarization.  Heatmaps can be manipulated as any other form of matrix 

data.  For example, one can visualize the strongest connections to an individual compound by sorting a single 

column. One can visualize the strongest connections to a set of compounds (e.g. drugs corresponding to the 

same MoA) by summarizing their individual connectivities (e.g. by median) and sorting by this summary value.  
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Complete matrices of proteomic connectivity data can be browsed and interactively manipulated at 

https://clue.io/proteomics.  Network views are directed or undirected graphs representing perturbations as 

nodes and connectivity scores above a user-defined threshold as edges.  Unlike heatmaps, network views 

make it easy to see different modules of biology at a glance.  Automated methods for generating network views 

and input files suitable for Cytoscape visualization are provided as part of the Proteomics Signature Pipeline 

(see STAR methods) (Shannon et al., 2003). 

 

Proteomic assays produce reproducible signatures that capture diverse cellular 

responses 

As a requisite first step, we assessed the technical quality of our datasets by quantifying replicate 

reproducibility.  We compared the global distributions of replicate correlations to non-replicate (Spearman) 

correlations (Figure 2A).  The distributions were significantly different according to a two-sample KS test (GCP: 

𝐷 = 0.63, 𝑝 <  10!!"; P100: 𝐷 = 0.68, 𝑝 <  10!!"), indicating good separation of replicate correlations from non-

replicate correlations.  Compounds that lack bioactivity in a given system would not be expected to have high 

replicate reproducibility, and thus we expect some perturbations to behave poorly by this metric a priori. 

 

Next, we asked how many individual perturbagens were reproducible in each cell line.  A perturbagen 

was considered reproducible if the median of pairwise correlations between its replicates was significantly 

higher than the median of pairwise correlations between randomly chosen samples (see STAR Methods for a 

detailed description of the algorithm).  At a p-value threshold of 0.05, we found that in each cell line in both 

assays, at least 64 out of the 90 compounds profiled (average = 71.2 compounds, or 79.1%) were reproducible 

(Figure 2B).  Furthermore, in each cell line, at least 54 compounds (60%) were reproducible in both assays 

(shaded portion), indicating that a compound was likely to be reproducible in both assays if it was reproducible 

in one.  These results are in line with the fraction of small-molecules determined to be bioactive using other 

profiling modalities: 68.3% for Cell Painting morphological profiling (Wawer et al., 2014) and 38% for L1000 

gene expression profiling (Subramanian et al., 2017). 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185918doi: bioRxiv preprint 

https://doi.org/10.1101/185918
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

In each cell line, more compounds were reproducible in P100 than in GCP (mean difference = 11.6 

compounds).  Part, but not all, of this observation is explained by the larger feature space of P100 

(Supplemental Note 2, Figure S2).  In addition, compounds that were reproducible in P100 but not GCP in at 

least four cell lines (gossypetin, rolipram, olaparib, TBB, tacrolimus, and everolimus) tended to be annotated 

with kinase-directed activities, perhaps explaining the remainder of compounds that were only reproducible in 

the phosphoproteomic assay. Finally, we note that replicate reproducibility was similar between NPCs and the 

cancer cell models.  This observation emphasizes that both assays work as well in unusual cellular contexts, 

such as a neurodevelopmental cell line, as in the more typical cancer cell models. 

  

Using proteomic connectivities to detect and refine mechanisms of action 

Having validated the technical quality of our datasets, we sought to investigate how well various 

annotated MoAs were detected by each assay.  For this analysis, we define intra-class connectivity as the 

median connectivity score among compounds belonging to the same MoA (Figure 2C; see Table S1 for 

compound annotations).  In both assays, the majority of MoA classes had positive intra-class connectivities.  

Several MoA classes, such as bromodomain (BRD) inhibitors and MEK inhibitors, had high connectivity in both 

assays (Figure 2D, left). 

 

Other MoA classes, such as JNK inhibitors, had low — in fact, negative — intra-class connectivity in 

both assays (Figure 2D, right).  In the case of the two JNK inhibitors that we profiled, both compounds had 

strong self-connectivity (indicating high replicate reproducibility and therefore a definitive signal of each in both 

assays) but failed to connect to each other.  We posit that this lack of connectivity reflects either mis-annotation 

of the compounds in literature, or, more likely, significant but distinct off-target effects in one or both at the 

doses tested.  Indeed, a screen of 20 kinase inhibitors highlighted one of our two JNK inhibitors — SP600125 

— as having very poor separation between its affinity for intended targets and off-targets, indicating that this 

drug has substantial off-target effects (Fabian et al., 2005).  Our data show that the next-best connected 

compound in our dataset to SP600125 in P100 is the JAK2 inhibitor TG101348.  This example illustrates the 
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power of using unbiased assays and our connectivity framework to recognize annotation ambiguities and 

suggest alternative hypotheses about MoA.  

 

Connectivity analysis can provide refinement to ambiguous MoA classes in an assay-specific manner.  

We included three compounds thought to modulate the activity of the sirtuin class of histone deacetylases: 

resveratrol, EX527, and salermide.  Resveratrol is typically annotated in literature as a sirtuin activator 

(Wendling et al., 2013), but it has also been argued that resveratrol does not directly act on sirtuins at all 

(Beher et al., 2009; Pacholec et al., 2010).  Because of this ambiguity, we grouped resveratrol and the two 

known sirtuin inhibitors into a single MoA class.  In our analysis, this class had positive connectivity in P100 

(0.49) but negative connectivity in GCP (-0.47).  Upon investigation, we discovered that the negative 

connectivity in GCP is explained by resveratrol having strong negative connections to the other two 

compounds in the class, EX527 and salermide (Figure 2D, middle).   The negative connectivity in GCP 

between resveratrol and the sirtuin inhibitors indicates that these compounds have very different effects on 

chromatin, while the positive connectivity in P100 among all three compounds suggests that there are common 

signaling pathways that are activated regardless of whether sirtuins are activated or inhibited.  Looking at GCP 

profiles, it was evident that resveratrol induced opposite effects from the other two compounds.  Taken 

together, P100 data recognized that there was a common thread among the compounds while GCP data 

provided the finer details about their opposing mechanisms. 

 

This first large-scale study of systematic perturbations with these proteomic readouts has clearly 

demonstrated the ability of the assays to capture cellular responses to a diverse set of therapeutic and 

investigational drugs.  The proteomic assays perform on-par or better than other omics readouts where similar 

studies have been performed in terms of replicate reproducibility and MoA class detection.  Subtle distinctions 

in MoA can be revealed through the sensitive nature of the assays to dynamic biochemical processes that may 

be independent of transcriptional programs.  The high initial quality of the data in the resource suggests that 

proteomic assays are powerful tools to aid in drug characterization and are competitive with complementary 

technologies. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185918doi: bioRxiv preprint 

https://doi.org/10.1101/185918
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

Global analysis of connectivity profiles suggests that diverse signaling states 

converge to a restricted set of chromatin states 

 Our resource contains over 580,000 potential pairwise connections among 540 distinct drug-cell 

combinations.  Connectivity analysis provides an objective measure of associations among perturbations in 

cells.  We can define a connectivity profile for each perturbation: simply a vector of connectivity scores to all 

other compounds (including itself).  Because they are quantitative, connectivity profiles can be analyzed in the 

same manner as raw assay profiles with techniques like clustering and principal component analysis.  

However, they have the advantage of reducing assay-specific considerations and provide a framework for 

comparing and integrating data across multiple assay types (see below). 

  

We first sought to understand the structure of the connectivities as a whole.  As a first step, we 

projected all within-cell connectivity profiles (allowing drug-drug connections only within a single cell type) 

using t-stochastic neighbor embedding (t-SNE; Figure 3A, Supplemental Data) (Maaten and Hinton, 2008).  

We noticed that both P100 and GCP connectivity profiles organized into spatial clusters based on cell type.  

This was not true when P100 or GCP raw profiles were projected in the same manner.  There was far less 

structure in the projections, and what structure could be found correlated more with drug mechanism (Figure 

S3).  This spatial clustering of connectivity by cell type supports the notion that individual cell types are “wired” 

differently.  Drugs that connect in one cell type may not connect in another, and likewise for entire groups of 

drugs. 

 

We further noticed that the projection of GCP connectivity seemed more highly structured than that of 

P100 (Figure 3A, compare right vs. left), with fewer and tighter spatial clusters, each encompassing more data 

points.  This difference in the number of connectivity profile clusters led us to wonder whether there were more 

phosphosignaling states than chromatin states that could be adopted by individual cell types in general.  In 

order to address this question, we hierarchically clustered drugs (1 - Pearson correlation) by their connectivity 

profiles in each cell type and cut the resulting dendrograms at fixed percentages of their height (depicted 

schematically in Figure 3B, results Figure 3C).  This analysis demonstrated that the number of clusters grows 
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more quickly for P100 connectivity profiles than GCP connectivity profiles as the cut percentage decreases.  

This alternative means of analysis provides further support that there are more phosphosignaling states 

available to cells than chromatin states. 

 

 To examine the cell type-specific properties of connectivity profile clusters, we mapped drugs from 

phosphosignaling connectivity clusters to chromatin connectivity clusters (analysis was limited to “reproducible” 

compounds in both assays in each cell type as identified in Figure 2, and dendrograms were cut at 60% of their 

height; single member clusters were eliminated).  We counted the number of times a drug from a 

phosphosignaling cluster was present in a chromatin cluster, and generated connectivity “flow” diagrams that 

represent this mapping (Figure 3D).  Phosphosignaling clusters were annotated by the major signaling-active 

drug mechanisms in the data set, and chromatin clusters by the major epigenetically-active drug mechanisms 

analogously.  These flow diagrams showed diverse phosphosignaling states channeling into a smaller number 

of chromatin states in a cell type-specific manner.  MCF7 and YAPC cell lines appeared to have the most 

complicated flow structure, while PC3 and NPC cells were the most simplistic.  Frequently, signaling clusters 

containing cell cycle inhibitors mapped to chromatin clusters containing EZH2 inhibitors.  Interestingly, NPC 

cells did not develop distinct chromatin connectivity clusters for EZH2 and HDAC inhibitors, although these 

classes may separate at a deeper dendrogram cut.  BRD inhibitor-containing clusters also demonstrated 

unusual behavior, sometimes associating with HDAC inhibitors, other times associating with EZH2 inhibitors, 

and occasionally forming their own clusters.  When we attempted to create an aggregated connectivity flow 

diagram across all cell types using the same methods, a very high number of connectivity clusters were formed 

(data not shown).  We suspect that this is due to the intrinsic differences in the range of phosphosignaling and 

epigenetic states available to each cell type.  Indeed, the connectivity flows visualized in Figure 3D paint a 

complex regulatory picture where drug perturbations have cell-type specific effects that are potentiated by 

available responses.  The one unifying theme among all connectivity flows was that a variety of different 

signaling states can be induced in each cell type, and these coalesce to a relatively smaller number of 

chromatin states. 
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Comparison of proteomic and transcriptomic connectivities demonstrates the 

strengths of assays measuring different biological dimensions 

We envision that one major use of this resource will be to add value to, rather than replace, larger scale 

profiling efforts using other readouts.  To illustrate how transcriptional and proteomic profiling can be utilized in 

tandem, we produced data for our entire set of perturbagens using the L1000 transcriptional profiling assay 

(Subramanian et al., 2017).  L1000 raw data were processed using the standard L1000 computational pipeline.  

Next, similarities and connectivities among perturbations in L1000 were computed exactly the same way as for 

proteomic data using our universal connectivity framework (Figure 4A).  In this way, we were able to directly 

compare connectivity results from proteomics (GCP and P100) to those from transcriptomics (L1000).  

Replicate reproducibility and connectivity within MoA classes in L1000 were similar to results observed for the 

proteomic assays (Figure S2). 

 

Our comparison of the three assays began with the following question: "How many of the strongest 

connections in one assay are also strong connections in another assay?"  We defined a strong connection to 

be within the top 5% of connections for an individual cell line in each assay.  We computed the percent overlap 

of the strongest connections (that is, the number of common connections divided by the number of considered 

connections) for each pair of assays either in each cell line individually or by aggregating all connectivities 

across cell lines using median (Figure 4B).  We found that the top 5% of connections had an average of 16.8% 

overlap for cell-specific results and an average of 31.7% overlap for aggregated results. Therefore, 

aggregating connectivity scores nearly doubled percent overlap.  This finding suggests that averaging over cell 

line-specific effects helps to improve agreement among the three methods of profiling.  Both of these results 

are higher than the overlap expected by chance alone (5%; see Supplemental Note 3).  Still, it is clear that 

different assays are most sensitive to different cellular responses, given that their strongest connections have 

little agreement, especially for cell-specific results.  We repeated this analysis using 1% and 10% cutoffs with 

similar results (Figure S4A-B). 
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We also computed the percent overlap among all three assays concurrently.  At the 5% cutoff, there 

was 6.0% overlap for cell-specific connectivities and 16.0% overlap for aggregated connectivities (Figure S4C).  

This percent overlap was lower than for pairwise comparisons (because it is harder for a strong connection to 

show up in all three assays compared to just two of them), but again, we observed that aggregation across cell 

lines improved overlap. 

 

As an alternative method of comparing assays, we looked at whether individual drugs had similar 

patterns of connectivity across assays.  In contrast to the previous analysis in which we considered the top 

connections in each cell line, this analysis treated drugs separately.  For each drug, we compared its 

connectivity profile (see above) across assays (Figure 4C).  We utilized an enrichment metric to compare 

connectivity profiles, but other similarity metrics, such as Spearman correlation, yielded similar results (Figure 

S4D).  We found that an average of 14.8% of drugs had connectivity profiles that were highly similar across 

assays (recall > 0.95; see STAR Methods for a detailed description of the algorithm used).  Briefly, recall of 

0.95 indicates that a drug's connectivity profile in one assay is more similar to its own connectivity profile in 

another assay than it is to 95% of the non-self connectivity profiles (Figure S4E).  The percent of drugs with 

highly similar connectivity profiles more than doubled (33.7%) when connectivity scores were aggregated 

across cell lines.  These quantifications of assay agreement were comparable to those reported by the overlap 

analysis (16.8% overlap without aggregation, 31.7% overlap with aggregation), indicating coherence between 

these two distinct analyses. 

 

Both analyses highlighted NPCs as having especially low agreement across assays (red points in 

Figure 4B-C), yet replicate reproducibility was not appreciably lower in NPCs compared to the cancer cell 

models (Figure 2B).  Our interpretation of these two findings taken together is that drugs treated in NPCs 

produced robust signatures, but many of these signatures were not distinct enough in the neural progenitor 

context to produce connectivity profiles that could be easily distinguished from the background.  Figure 3D 

highlighted that NPCs have one of the least complex connectivity flows in the data set, and the restricted 

availability of signaling and chromatin states in NPCs is consistent with the integrative analysis here. 
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One novel observation revealed by the second analysis was that P100 and L1000 had considerably 

greater agreement with each other than with GCP.  Considering aggregated connectivity scores, we observed 

that 53.3% of drugs had highly similar connectivity profiles (recall > 0.95) when comparing P100 to L1000, 

while that number dropped to 26.7% and 21.1% for comparisons to GCP.  Considering that P100 measures 

the reduced phosphoproteome while L1000 measures the reduced transcriptome, it is not surprising that these 

two assays are more similar to each other than they are to GCP, which measures the more narrow readout of 

chromatin changes.  The fact that this trend was not observed in the overlap analysis indicates that all three 

assays are capable of reporting on the strongest biological relationships, but there are individual compounds 

whose activity is not well captured through chromatin changes. 

 

We sought to understand why there was little agreement among the strongest connections in each 

assay type.  To investigate, we produced network views of the top connectivity scores for each assay 

aggregated (by median) across cell lines (Figure 4D), choosing only the top 0.5% of connections for visual 

clarity.  These top 0.5% in each assay show examples of strong connectivity among compounds with 

mechanistic biases particularly likely to produce responses for the specific assay type.  For instance, the GCP 

network shows five of the six HDAC inhibitors connecting strongly to each other, and all three EZH2 inhibitors 

connecting strongly to each other.  We expected HDAC and EZH2 inhibitors to have strong signals in GCP 

because they are strong chromatin modifiers, and indeed we see connections between members of these 

classes in GCP, but not in the other 2 assays (at this stringent threshold). 

 

A response to modulation of the cell cycle was captured by all three assays in slightly different ways.  

All three assays reported the connection of dinaciclib to flavopiridol, which are both cyclin-dependent kinase 

(CDK) inhibitors, but these compounds connected to a variety of other compounds in each assay.  Our 

interpretation of these results is that different assays detect different components of cell cycle perturbation.  It 

should also be noted that samples were collected at different time points post-treatment, possibly 

demonstrating a time-dependent evolution in response.  This diversity of readouts could be beneficial for 

researchers interested in one particular type of cellular response; for example, a researcher seeking to 
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discriminate subtle differences among a group of kinase inhibitors would likely be most interested in 

connectivity results reported by P100. 

 

Integration of proteomic and transcriptomic connectivities reveals cell line-

selective vulnerabilities 

In addition to serving as a complementary hypothesis generation tool, proteomic profiling will add value 

to transcriptomic profiling (and other profiling technologies) by providing reinforcing data.  Especially for 

unexpected connections, we hypothesized that support from more than one assay would greatly increase a 

researcher's confidence in the biological significance of a connection between two compounds.  Therefore, we 

looked for examples of connections common to the three connectivity datasets. 

 

To facilitate finding common connections, we computed the average connectivity score from the three 

assays; we refer to these data as AVG (Figure 5A).  We visualized the strongest AVG connections aggregated 

across cell lines (again, by computing the median of six cell-specific connectivity scores) with a network view 

(Figure 5B).  In contrast to the networks in Figure 4D, this network shows only connections with support from 

all three assays. 

 

Apart from the large cluster containing two cell cycle inhibitors and a variety of other MoAs, all other 

clusters except one contained compounds with the same annotated MoA.  The sole exception was the cluster 

containing TG101348 (circled) and the three BRD inhibitors.  TG101348 is commonly annotated as a JAK2 

inhibitor (Wernig et al., 2008), which makes its connection to BRD inhibitors perplexing.  However, it was 

recently demonstrated through a BRD binding assay that TG101348 indeed has BRD inhibitor activity (Ciceri et 

al., 2014). This independent experiment strengthened our hypothesis that an unexpected connection seen by 

all three profiling assays would be likely to withstand experimental validation. 

 

AVG data also reported compelling cell-specific connections.  We immediately saw that vemurafenib (a 

BRAF inhibitor) was connected to the two MEK inhibitors only in A375 cells, an expected result.  A375 cells are 
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highly sensitive to both BRAF and MEK inhibition because they harbor the BRAFV600E mutation that makes 

them dependent on RAF-MEK-ERK signaling (Wagle et al., 2011).  Looking at cell-specific connections in AVG 

data, we confirmed that there was strong connectivity (0.91 and 0.93) between vemurafenib and the two MEK 

inhibitors in A375 cells and weak connectivity in all of the other cell lines (Figure 5C).  The presence of these 

expected connections in all three assays indicates that inhibition of BRAF and inhibition of MEK appear similar 

to each other in all profiling modalities: chromatin, phosphoproteomic, and mRNA changes. 

 

A cell-specific connection even more striking in its specificity than the previous example was that of 

SCH 900776 (SCH) to SP600125 (SP) in MCF7 (Figure 5D).  SCH is a cell cycle inhibitor that targets CHEK1 

(Bridges et al., 2016), while SP is a JNK inhibitor (discussed above).  These compounds have different MoAs 

so it was unclear why they should connect, and it was especially unclear why they should connect in only one 

cell line.  Noting the similarity of this connection to that of vemurafenib and MEK inhibitors in A375, which 

connect to each other in A375 because of differential cytotoxicity in A375 cells, we hypothesized that SCH 

connected to SP in MCF7 because these compounds were differentially cytotoxic in MCF7 cells. 

 

We investigated our hypothesis with a follow-up viability experiment (Figure 5E).  In order to account for 

variable cell growth rates, we quantified drug cytotoxicity using GR50 rather than IC50  (Hafner et al., 2016).  

The GR value represents cell count relative to DMSO control, adjusted for the cell line's growth rate.  We found 

that SCH was 13.8 times more cytotoxic in MCF7 (GR50: 1.03 �M) than in A375 (14.2 �M), and SP was 1.7 

times more cytotoxic in MCF7 (GR50: 14.7 �M) than in A375 (GR50: 24.9 �M).  For comparison, the GR50s 

of vemurafenib and selumetinib in A375 were 0.58 �M and 0.31 �M, which are comparable to the GR50 of 

SCH in MCF7 (1.03 �M).  GR50s were not calculated for vemurafenib and selumetinib in MCF7 because 10 

�M was insufficient to decrease the GR value below 0.5.  These results confirmed our hypothesis that MCF7 

was differentially sensitive to SCH and, to a lesser extent, SP.  Furthermore, they suggest that these inhibitors 

might be candidate therapeutics for cancers similar to MCF7 in lineage (i.e. breast) or genetic features (e.g. 

estrogen receptor positive).  Indeed, CHEK1 inhibition is a promising therapeutic direction in the treatment of 

breast and ovarian cancers (Bryant et al., 2014), and JNK signaling has an important, but poorly understood, 

role in breast cancer (Ashenden et al., 2017). 
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One modification to our original hypothesis is that CC-401, like SP, turned out to be more cytotoxic in 

MCF7 than in A375 cells.  CC-401 was 2.1 times more cytotoxic in MCF7 (GR50: 16.1 �M) than in A375 

(GR50: 34.4 �M).  By our connectivity results alone, we might have predicted that only SP, and not CC-401, 

would be differentially sensitive in MCF7. One explanation for this discrepancy is that the dose of CC-401 (5 

�M) was insufficient for perturbing cells in the manner that caused SP (25 �M) to connect to SCH.  By 

including CC-401 in our follow-up experiment, we provided evidence that JNK inhibitors in general, rather than 

SP in particular, might be effective therapeutics for MCF7-like cancers.  This anecdote highlights the caveat of 

any high-throughput hypothesis generation resource: while attempts are made to optimize as many 

experimental parameters as possible, follow-up experiments are indispensable for refining and validating 

therapeutic hypotheses. 

 

Proteomic connectivity links genetics to function and identifies potential 
therapeutic avenues 
 

One powerful application of a library resource of systematic perturbation signatures is the ability to 

query existing, new, or even computationally derived phosphoproteomic or chromatin profiling data.  To 

illustrate this application, we revisited data from a previously published chromatin profiling study that 

demonstrated how cancer-associated genetic alterations resulted in unique chromatin signatures (Jaffe et al., 

2013).  The Cancer Cell Line Encyclopedia is a collection of more than 900 diverse cancer lines representing 

different tissues and sites of origin and encompasses a wide variety of cancer driver mutations and 

downstream genetic dependencies (Barretina et al., 2012).  In our previous work, we identified clusters of 

chromatin signatures related to gain- and loss-of-function of histone lysine methyltransferases.  We set out to 

query these signatures against our library of systematic drug perturbations to correlate genetic features with 

drug activities. 

 

To test this strategy, we first queried the chromatin profiles of cell lines belonging to a cluster identified 

as bearing EZH2 loss-of-function mutations in (Jaffe et al., 2013) (Figure 6A).  EZH2 is a histone H3 lysine 27 

(H3K27) methyltransferase capable of catalyzing the addition of methyl groups up to the fully saturated 
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trimethyl state (Cao et al., 2002).  Additionally, it is the core catalytic member of the Polycomb Repressive 

Complex 2 (PRC2), whose activity has been associated with repression of genes and marking of inactive 

chromatin (Kuzmichev et al., 2002).  The signatures of the five cell lines in Figure 6A are characterized by the 

loss of H3K27me1, me2, and me3, with a concomitant increase in H3K27me0 and ac1.  When these 

signatures are queried against our library of drug perturbations and ranked by their median connectivity scores, 

the top 18 positive connections are against EZH2 inhibitor compounds in the six distinct cell backgrounds 

present.  This is, remarkably, the complete set of EZH2 inhibitor signatures present in the library.  

 

We adapted the technique of single sample gene set enrichment analysis (ssGSEA, or GSEA-

preranked) to look for enrichment of MoAs in the query results (Barbie et al., 2009; Subramanian et al., 2005).  

Using our previously assigned MoA annotations, we tested for enrichment of each MoA in the rank-ordered 

connectivity query results.  As a proof of concept, the most highly enriched MoA class for connections to EZH2 

loss-of-function mutant lines was the EZH2 inhibitor class (Fig 6B, FDR=0.0).  

 

Another key finding in (Jaffe et al., 2013) was the recognition that two classes of genetic events — 

t4;14 translocation and NSD2E1099K mutation — led to strikingly similar chromatin phenotypes based on the 

increase in H3K36 methylation levels (e.g. profiles from each class of genetic event did not resolve into distinct 

clusters but did segregate from other cell lines lacking these events).  This observation led to the assignment 

of NSD2E1099K as a gain-of-function mutation and a dependency in acute lymphoblastic leukemia (ALL) lines 

that harbored it.  Building upon that previous work, we queried the chromatin signatures (obtained from a 

predecessor of the GCP assay) of t4;14 and NSD2E1099K cell lines from (Jaffe et al., 2013) against our resource 

of drug perturbation-induced chromatin signatures.  Surprisingly, the connectivity profiles were able to perfectly 

segregate the t4;14 and NSD2E1099K classes of cell lines into different clusters (Figure 6C) despite the apparent 

similarity of the chromatin signatures that had been previously observed.  This example illustrates that subtle 

differences in underlying signatures can drive vastly different connectivities and also demonstrates that using 

the entire profile for comparative analyses can provide more discriminatory power than simply analyzing 

differentially expressed analytes or typical clustering methods on raw profiles. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185918doi: bioRxiv preprint 

https://doi.org/10.1101/185918
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 

To further understand the basis for stratification, we again tested for enrichment of MoA classes in the 

connectivity query results.  This time, we focused on the perturbations that were the most negatively connected 

to the signatures of the CCLE lines under the rationale that finding MoAs able to effectively reverse the 

chromatin signature induced by a genetic dependency might be a good means of selectively killing or 

sensitizing the cells (Figure 6D).  Our enrichment analysis indicated that the signatures of the t4;14 

translocated lines were highly anti-connected to the HDAC inhibitor class of perturbations while the NSD2E1099K 

lines were anti-connected to BRD inhibitors, CDK inhibitors, and mammalian target of rapamycin (mTOR) 

inhibitors in our data set (all at FDR < 0.05).  These functional enrichments are highly consistent with 

investigational therapies for the specific cancer subtypes that typically harbor these mutation classes (see 

below). 

 

The first class of genetic event, t4;14 translocation, was composed entirely of multiple myeloma cell 

lines.  The initial publication describing the CCLE (Barretina et al., 2012) included drug sensitivity for five of the 

six t4;14 lines described here (KMS-28BM was not profiled) along with ~50% of all cell lines in the collection.  

One of the drugs tested in that study was panobinostat, a potent HDAC inhibitor.  The panobinostat EC50 was 

in the 12th percentile or better for all of the t4;14 multiple myeloma lines tested, and notably the EC50 of 

panobinostat against KMS26 was less than the first percentile at 3.7 nM.  The insight provided by the negative 

connection of these lines to HDAC inhibitors is further supported by the fact that HDAC inhibitors have proven 

to be potent elements in the treatment of multiple myeloma, especially in combination with other agents 

(Laubach et al., 2017; Steiner and Manasanch, 2017). 

 

The second class, NSD2E1099K, was composed of mostly acute lymphoblastic leukemia cell lines (a 

mixture of B-ALL and T-ALL, with the exceptions of SW579, a thyroid cancer line, and RL, a lymphoma line).  

Unfortunately, most of these lines were not profiled for drug sensitivity in the original CCLE study.  However, 

several studies have recently emerged demonstrating the potential of mTOR inhibitors as therapeutics for ALL, 

especially in synergy with other agents (Iacovelli et al., 2015; Shi et al., 2016; Tasian et al., 2017; Witzig et al., 

2015).  One recent study details the synergy between an mTOR inhibitor and a CDK4/6 inhibitor in T-ALL, 

hitting two of the three classes of compounds that are anti-connected to the NSD2E1099K set of lines.  BRD 
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inhibitors have also demonstrated therapeutic potential in B-ALL (Ott et al., 2012).  The overlap among the 

mechanisms nominated by the proteomic connectivity analysis and these ongoing clinical studies is 

encouraging for the prospect of translational use of the proteomic resource. 

 

Taken together, this evidence suggests that connectivity analysis might be helpful in suggesting 

potential therapeutic strategies based on anti-connections between genetic alterations and classes of drugs.  It 

is not implausible that, if a disease induces a certain molecular state in a cell, then a compound that drives the 

cell towards an opposite state might help contribute to a resolution of the disease state.  Our literature analysis 

suggests that this “driving” might be most helpful as a potentiator of other therapeutics or a means of 

overcoming resistance.  
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Discussion 

 Increasingly, the improvement of profiling technologies coupled with high-throughput techniques has 

allowed for construction of systematic resources characterizing  cellular responses to drug perturbation (Iorio et 

al., 2016; Rohban et al., 2017; Subramanian et al., 2017).  Historically, proteomic techniques have been 

difficult to apply in the generation of such resources due to the heterogeneous sampling nature of mass 

spectrometry-based techniques as well as the cost and time required to generate the data.  Yet proteins and 

dynamic changes thereto are important effectors in cells and are frequently the actual targets of drug 

therapies.  Thus, it is valuable to create systematic resources with molecular readouts in the proteomic space 

to complement other techniques. 

  

Here, we demonstrated the feasibility and value of creating a resource of drug perturbation proteomic 

signatures for signaling and epigenetics, two mechanistic classes being extensively explored for therapeutic 

development.  Many landmark proteomic studies focus on the depth of coverage achieved at the expense of 

the number of samples profiled.  Instead, we chose to focus on breadth rather than depth to generate the basis 

for an expandable resource.  We created thousands of individual profiles of 90 different drugs in six different 

biological model systems.  To overcome the time, costs, and stochasticity normally associated with deep 

discovery proteomics, we employed only compact, targeted assays that characterize high value analytes.  We 

demonstrated that signatures from these assays are reproducible and that drugs in general are apt to produce 

strong signals in these molecular spaces (signaling and epigenetics) regardless of known or assumed 

mechanism of action.  Because these assays have been reduced to practice, automated, and standardized, we 

can continue to build this resource over time and ensure that new data are easily comparable to those already 

collected. 

 

 There are other valuable precedents in proteomics of generating systematic resources.  Li and 

colleagues have profiled more than 650 cell lines using reverse-phase protein arrays (Li et al., 2017), while 

Mertins and colleagues have performed deep proteomic characterization of over 100 breast cancer tumors 

(Mertins et al., 2016).  Both of these efforts have focused on experiments of nature (genetic variation) rather 
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than purposefully administered exogenous drug treatment.  However, both studies demonstrated the value of a 

proteomic dimension in molecular profiling and concluded that it delivers complementary information to gene 

expression profiling.  Here, we sought to extend the promise of the proteomic dimension in a direction that is 

suited to understanding drug mechanisms in cells, optimization of therapeutics under development, and 

nomination of therapeutic indications based on the induction of desirable proteomic signatures in cells (e.g. 

Figure 6). 

 

One of our key motivations was to use assays that directly report on cellular biochemical processes 

likely to be directly affected by drug perturbation.  To that end, we developed assays of phosphosignaling and 

chromatin biochemistry that directly observe the relevant molecules without need for antibodies.  This allowed 

us to tailor the biochemical preparation and sample generation specifically for the desired analytes.  One could 

fairly argue that space of the P100 phosphosignaling assay is relatively small compared to the number of 

known phosphosites in existence, and that not much is known about the biological function of specific analytes 

monitored in the assay.  This makes it somewhat difficult to draw simple biological conclusions from the 

primary observations of changes in specific phosphopeptides (i.e. we don’t know much about the implications 

of the regulation of AHNAK phospho-S3426), as opposed to the GCP assay where there is general knowledge 

about repressive or activating tendencies of certain chromatin marks.  However, the data-driven approach with 

which the analytes were selected has demonstrated strong reporting activity on a wide variety of drug 

perturbations.  By intentionally neither selecting nor excluding sentinel markers from known pathways, we 

sought to avoid a bias towards reporting only on “known” activities.  We also note that, while drugs and drug 

MoAs have strong replicate reproducibility in P100, changes in most individual sites themselves are relatively 

subtle, rarely exceeding two to three fold from median levels.  Therefore, we believe that the relevant unit of 

comparison is the entire profile of a drug perturbation to that of other perturbations, rather than looking at the 

activity of specific markers within that profile. 

 

Creating functional readouts in multiple biological activity spaces is a core goal of the LINCS program 

(http://lincsproject.org), under which this resource was developed.  However, having distinct assays created a 

challenge of data integration.  To address this challenge, we took a cue from earlier efforts (Lamb et al., 2006) 
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and generalized the concept of connectivity —  principled comparison of whole molecular profiles in large data 

sets with the goal of recognizing different biological conditions that induce related biochemical states in cells —  

to our proteomic data.  Connectivity allows us to have a uniform way of asking the questions, "given molecular 

profile data induced by a drug treatment, what else does this look like?  Have we seen something like this 

before?” 

   

Importantly, our adaptation of connectivity is independent of assay type, which allows for facile 

integration of data from our discrete assays by asking whether the same connections are found in each (e.g. 

does the query of flavopiridol return the same connections in both P100 and GCP?).  In this study, we used the 

exact same framework to further integrate transcriptional profiling data obtained for the same experimental 

conditions.  We found it somewhat surprising that only a relatively small number of connections consistently 

rise to the top in all three activities assayed here (Figure 4).  This finding supports the notion that there is no 

“one size fits all” approach to characterizing cellular responses (i.e. by only measuring transcriptional profiles), 

and that different assays provide unique windows into the responses to different classes of perturbagens.  For 

example, our chromatin assay seems particularly well-suited to characterizing responses to compounds with 

epigenetic targets, while the signaling assay may be blind to effects of these drugs in some cases.  Yet we do 

not discount the complementary information offered by assays that can perhaps unexpectedly provide strong 

evidence of connectivity despite not directly assaying a drug’s annotated mechanism of action (e.g. BRD 

inhibitors have stronger intra-class connectivity in the signaling space than they do in the epigenetic space, 

Figure 2).  These observations underscore the need for multiple readout activities to be considered for truly 

understanding biological systems and their responses to new milieux. 

 

At the same time, the repeated observation of the same connection(s) among all three assay types 

discussed here seems to attach a special importance to the result.  There is a strong tendency in biological 

research to attempt to generalize results over all of biology, yet at the same time to seek model-specific 

methods of manipulating systems (e.g. labeling a drug as a JAK2 inhibitor, yet searching for indications where 

a JAK2 inhibitor will selectively kill cancer cells driven by aberrant activity in JAK2 signaling).  The framework 

of connectivity can help to distinguish the cases of true universality of response (i.e. Figure 5B, where 
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connections are aggregated across assays and cell types) compared to cell type-specific responses (Figure 

5C-D).  The cell type-specific agreement of connections over three assays re-discovers the mechanism of one 

of the great recent advances in targeted cancer therapeutics: that a BRAFV600E mutation (present in A375) 

confers sensitivity to the drug vemurafenib by acting in a manner similar to disrupting MEK activity.  The 

connection of this selective BRAF inhibitor to the MEK inhibitors was only observed in A375 (Figure 5C) 

despite the universality of the MEK inhibition response itself (Figure 5B).  We hope that many more such 

examples can be discovered as we continue to expand our data set and further analyze the one we have at 

present. 

 

We emphasize that this resource is the foundation for establishing a systematic repository of proteomic 

signatures that will be useful for drug characterization and more.  Through LINCS, we are programmatically 

and institutionally committed to its maintenance and expansion.  The resource is expandable in any number of 

dimensions; for example, by generating profiles for more drugs, including genetic perturbations and other 

stimuli, and profiling more cell types or models of biology (including tissue samples or patient-derived iPS 

models).  All of these activities are already underway in our LINCS Proteomic Characterization Center for 

Signaling and Epigenetics. 

 

We can also imagine other creative ways to increase the impact of the resource.  Future developments 

in the assay technologies might allow for greater sample multiplexing, thus raising the rate of resource 

expansion.  More comprehensive mass spectrometry technologies (such as DIA/SWATH) might readily expand 

the number of analytes covered in targeted proteomics assays, helping to answer questions about biological 

pathway modulation directly from primary data.  And we could also envision harvesting data from other public 

studies that are likely to contain quantitative information on analytes covered by our assays (for example, 

(Bhanu et al., 2016; Kulej et al., 2015; Luense et al., 2016; Sidoli et al., 2015)) for direct comparison to and 

integration with our data.  All analytes in our assays were selected, in part, for their relatively universal 

observability, making data harvesting a realistic possibility.  One could also envision expanding the resource in 

the direction of new fit-for-purpose assay panels with complementary readouts that might be of high value for 
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understanding the protein dynamics of disease including ubiquitination, arginine methylation and non-histone 

acetylation or methylation. 

 

The data from this study are available in a variety of forms (Table 1).  For mass spectrometrists, raw 

traces are available at Panorama Web (https://panoramaweb.org/labkey/LINCS.url).  For the computationally-

savvy user, all proteomic signatures at multiple levels of processing are available for download and 

computational manipulation via GEO (accession GSE101406).  For all users, we have developed web apps 

that enable quick access to connectivity data (https://clue.io/proteomics) and developed tutorials to illustrate 

common use cases for interacting with the resource. 

 

Finally, we envision collaborative interactions with users of this community resource — especially those 

interested in the characterization and development of therapeutics — influencing its future directions.  We hope 

to have demonstrated the value of adding systematic proteomic studies to drug characterization and 

development efforts, and that the use of connectivity is a powerful abstraction that enables integration across 

data types.  Ultimately, the value of this resource can only be validated by the discoveries and insights that it 

enables in the future, but we are enthusiastic about the potential applications of this resource at present. 
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Tables 

Type of data Location URL 
Extracted ion 
chromatogram MS data Panorama Web https://panoramaweb.org/labkey/LINCS.url 

Signatures 
Gene Expression Omnibus 
(GEO), accession GSE101406 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE101406 

Connectivities CLUE web apps https://clue.io/proteomics 
 
Table 1. Web-accessible persistent data locations.  
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Supplemental Notes 

Supplemental Note 1: The choice of 3 hours for the P100 assay and 24 hours for the GCP assay is justified 

by biological considerations.  Phosphosignaling ("signaling") cascades can occur extremely quickly (e.g., initial 

EGF-induced signaling peaks just minutes after stimulation (Olsen et al., 2006)), while modifications to millions 

of histone molecules required to produce a detectable change in bulk chromatin states may require longer time 

spans and genome replication.  We acknowledge that there is no perfect time for collection of all samples, and 

more focused studies can be executed on alternative time scales.  These times were chosen to achieve the 

broadest utility for our initial resource.  Second, our algorithm for choosing treatment concentrations was to 

utilize public drug metabolism and pharmacokinetics (DMPK) and absorption, distribution, metabolism, and 

excretion (ADME) data to select the reported bioavailable concentrations of the drugs in serum.  In the 

absence of such data, we consulted literature for EC50/IC50 values or effective concentrations used in cellular 

studies.  In the absence of prior knowledge or given conflicting evidence, we generally chose 1 �M as a 

default concentration (Table S1). 

 

Supplemental Note 2: We suspected that part of the reason that compounds were more reproducible in P100 

was that P100 has more features (96 analytes) than GCP (59 analytes after processing), so it is better able to 

resolve subtle differences in cell state.  To investigate how much the larger feature space of P100 contributed 

to compound reproducibility, we randomly downsampled the P100 feature space to match that of GCP (i.e. 59 

analytes) and reevaluted replicate reproducibility (Figure S2).  We found that the mean difference between 

P100 and GCP reproducibility decreased from 11.6 to 4.0 compounds.  Therefore, we conclude that the 

increased feature space of P100 explains much of the difference in reproducibility, and that these extra 

features encode information with discriminatory power. 

 

Supplemental Note 3: By chance alone, we expect 5% overlap: a random 5% of connections from one assay 

compared to a random 5% of connections from another assay would be expected to have an overlap of 0.25% 

(of all connections), which, when normalized to the portion of connections considered, is 0.25% / 5% = 0.05 or 

5%. 
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Figure Legends 

Figure 1. Overview of experiment and computational framework. (A) Experimental design. Cells were 
treated with one of 90 small-molecule perturbagens with a minimum of three biological replicates. After 3 
(P100) or 24 (GCP) hours of exposure to treatment, cells were lysed and profiled in each of the two assays. 
After quality control filtering, over 3,400 individual profiles comprised the resource. (B) Computational 
framework. Each sample is represented as a profile of analyte measurements. Spearman correlations are 
computed between all profiles within a cell line. Finally, we compute connectivity scores by comparing the 
observed correlations to a background of correlations. Computing connectivity collapses replicates. 
Connectivity maps may be represented as matrices or networks.  See also Figure S1. 
 
Figure 2. Majority of compounds are reproducible in both assays, but assays show different 
sensitivities to MoA classes. (A) Distributions of all Spearman correlations among replicates (green) and 
among non-replicates (blue). (B) Bar chart showing the number of compounds considered reproducible in each 
cell line-assay combination. A compound was considered reproducible if the correlations among its replicates 
were significantly higher (p-value < 0.05) than the correlations among randomly chosen samples. The shaded 
component indicates the overlap of reproducible compounds between GCP and P100. (C) Bar charts showing 
the median connectivity of compounds annotated with the same mechanism of action (MoA). The extent of 
each bar is the median of six cell-specific median connectivities; error bars represent the 25th and 75th 
percentiles. (D) Heatmaps of the connectivity among compounds belonging to the BRD inhibitor, sirtuin 
modulator, and JNK inhibitor MoA classes.  The BRD inhibitor class shows high connectivity in both P100 and 
GCP; the sirtuin modulator class shows high connectivity in P100 but low connectivity in GCP; and the JNK 
inhibitor class shows low connectivity in both P100 and GCP. Each square is the median of six cell-specific 
connectivity scores. The labels of the matrices are symmetric; that is, the columns (left to right) have the same 
annotations as the rows (top to bottom). Color scale applies to both panels C and D.  See also Figure S2. 
 
Figure 3. Global connectivity profile analysis. (A) t-SNE projection of P100 and GCP connectivity profiles for 
connections within each cell type (distance metric = Pearson correlation, perplexity = 60, learning rate = 10). 
(B) Schematic representation of cutting a dendrogram at fixed percentage of its height and counting resulting 
clusters, for illustration only.  (C) Number of connectivity clusters formed as a result of cutting dendrograms as 
depicted in (B).  Individual data points (six per assay) are overlaid on the boxplots and jittered on the y-axis for 
clarity.  Error bars represent the 25th and 75th percentile limits.  (D) Connectivity flows from P100 connectivity 
clusters to GCP connectivity clusters. For each cell line, only compounds reproducible in both assays are 
included.  Each cluster is annotated by the major pertinent mechanistic classes for each assay, with the 
number of drugs in each class shown in parentheses.  Colors are arbitrary.  Because the analysis was 
restricted to the reproducible compounds in each cell type and single member clusters were eliminated, the 
number of clusters at the 60% cut for P100 and GCP may differ slightly from panel (C).  See also Figure S3. 
 
Figure 4. Comparison with transcriptomic data demonstrates assay-specific sensitivities. (A) Schematic 
of the comparison of connectivity matrices in three assays, including L1000 transcriptomic data. (B) Percent 
overlap of the top 5% of connections in the P100, GCP, and L1000 assays.  The light gray bars shows percent 
overlap for cell-specific connectivities, and the dark gray bars show percent overlap for aggregated 
connectivities (median of six connectivity scores).  The dashed line indicates the percent overlap expected by 
chance.  (C) Recall of connectivity profiles across assays.  The y-axis indicates the percent of compounds 
(n=90) that have recall greater than 0.95 for a pairwise comparison.  Recall of 0.95 means that the connectivity 
profile for a particular compound in one assay had higher similarity to its corresponding connectivity profile in 
another assay than to 95% of other connectivity profiles (see Figure S4E for a schematic of this algorithm).  
Shading as in (B).  (D) Network views of the top 0.5% of connections in each assay.  All connectivity scores 
are positive.  Compounds are represented by nodes, and MoA is encoded by the color of the node.  See also 
Figure S4. 
 
Figure 5. Multiassay data integration reveals cell-specific vulnerabilities.  (A) Schematic of the integration 
of connectivity matrices in three assays to create AVG data. (B) Network view of the top 0.5% of connections 
for AVG data, which is an average of the connectivity scores in GCP, P100, and L1000. All connectivity scores 
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are positive. Compounds are represented by nodes, and MoA is encoded by the color of the node. TG101348 
(circled) has unexpected connectivity to the BRD inhibitors. (C) Heatmap view of the connectivity scores 
between vemurafenib and the two MEK inhibitors. The connectivity scores in A375 (0.91 and 0.93) are 
considerably higher than connectivity scores in any other cell line. (D) Heatmap view of the connectivity scores 
between SCH 900776 and the two JNK inhibitors. The connectivity score between SCH 900776 and 
SP600125 in MCF7 (0.88) is an unexpected cell-specific connection. (E) Results of a five-day follow-up viability 
experiment. The y-axis shows GR values in MCF7 (left) and A375 (right). GR values quantify drug cytotoxicity 
and are insensitive to different cell growth rates. The x-axis shows drug concentration on a log10 scale. 
 
Figure 6. Connectivity query and perturbation set analysis of a diverse set of cancer lineages validates 
genetics and identifies potential therapeutic avenues. (A) Connectivity query of chromatin signatures from 
EZH2 loss-of-function cell lines from the CCLE.  Results are sorted by the median connectivity to the 
perturbation across the five EZH2 loss-of-function cell lines.  (B) Adaptation of the GSEA algorithm to test for 
enrichment of MoA classes in connectivity results.  The top ranked set is EZH2 inhibitors with all hits to this set 
clustered at the top of the list sorted by average connectivity.  (C) Stratification of two sets of NSD2 gain-of-
function classes via hierarchical clustering of connectivity query results.  (D) The most highly anti-connected 
perturbations to the t4;14 and NSD2E1099K gain-of-function classes of cell lines, when ranked by connectivity for 
each class.  Enriched perturbation sets with FDR < 0.05 are shown for each class.  The HDAC inhibitors are 
the most anti-connected perturbations to the t4;14 subtype while BRD, CDK, and mTOR inhibitors are all anti-
connected to the NSD2E1099K subtype. 
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Supplemental Figure Legends 

Figure S1. Data levels and examples of how connectivity is calculated.  Related to Figure 1. (A) 
Schematic of the various data levels that are available. Data are processed in batches of 96-well plates.  Level 
0 is raw mass spectrometry (MS) scans. Level 1 is MS data that have been summarized by Skyline software to 
produce .sky files. Level 2 is log2 ratios of endogenous to internal standard peptides assembled into a GCT 
file. Level 3 has undergone quality-control and normalization. Level 4 is differential; that is, the signature for 
each sample is made relative to a control. The control can be either negative control wells, such as DMSO, on 
the same plate or all other samples on a plate. (B) Vorinostat v. EX527: example of a negative connectivity 
score close to -1. The background distribution (blue) consists of the correlations between the replicates of 
EX527 and all other samples. The test distribution (green) consists of the correlations between the replicates of 
EX527 and the replicates of vorinostat. (C) Vorinostat v. DMSO: example of a connectivity score close to 0. 
The background distribution (blue) consists of the correlations between the replicates of DMSO and all other 
samples. The test distribution (green) consists of the correlations between the replicates of DMSO and the 
replicates of vorinostat. (D) Vorinostat v. belinostat: example of a positive connectivity score close to 1. The 
background distribution (blue) consists of the correlations between the replicates of belinostat and all other 
samples. The test distribution (green) consists of the correlations between the replicates of belinostat and the 
replicates of vorinostat. Panels B-D show data for the GCP assay in A375 cells. 
 
Figure S2. Replicate reproducibility for P100 downsampled and L1000, and MOA analysis for L1000.  
Related to Figure 2. (A) Bar chart showing the number of compounds considered reproducible in P100, P100 
downsampled to have the same number of analytes as GCP (n=59), L1000, and GCP for each cell line. A 
compound was considered reproducible if the correlations among its replicates were significantly higher (p-
value < 0.05) than the correlations among randomly chosen samples. Results for GCP and P100 have already 
been presented in Figure 2B and are shown here only for comparison. (B) Median connectivity of MoA classes 
in L1000. The extent of each bar is the median of six cell-specific median connectivities; error bars represent 
the 25th and 75th percentiles. 
 
Figure S3. t-SNE of P100 and GCP signatures.  Related to Figure 3. (A) t-SNE projection of P100 and GCP 
raw signatures (perplexity = 60, learning rate = 10), colored by cell type.  The circled region in the upper right 
of the P100 plot corresponds to a cluster of staurosporine signatures. (B) Same t-SNE projection as in (A), 
except now colored by mechanism of action. 
 
Figure S4. Alternative analyses comparing assays.  Related to Figure 4. (A) Percent overlap of the top 1% 
of strongest connections (n=80) in the GCP, P100, and L1000 assays.  The light gray bars shows percent 
overlap for cell-specific connectivities, and the dark gray bars show percent overlap for aggregated 
connectivities (median of six connectivity scores).  The dashed line indicates the percent overlap expected by 
chance.  (B) Percent overlap of the top 10% of strongest connections (n=801). (C) Percent overlap of three 
assays concurrently at 1%, 5%, and 10% thresholds. The percent overlap expected by chance depends on the 
percent of top connections considered; for the top 1%, 5%, and 10% of connections, the percent overlap 
expected by chance alone is, respectively, 0.01%, 0.25%, and 1%. (D) Recall analysis using Spearman 
correlation, rather than an enrichment metric. (E) Schematic illustrating how recall is computed. See STAR 
methods for a detailed description of this algorithm. Briefly; for a pairwise comparison of assays, recall for drug 
X measures how well that drug's connectivity profile in one assay finds its matching connectivity profile in the 
second assay. 
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Figure 3. Connectivity profile analysis.
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Figure 5. Multiassay data integration reveals cell-specific vulnerabilities.
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cancer lineages validates genetics and identifies potential therapeutic avenues.
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STAR METHODS 
 
CONTACT FOR  REAGENT AND  RESOURCE SHARING 
 
Further information  and  requests for resources and  reagents should  be  directed  to  and  will  be  fulfilled  by 
the  Lead  Contact, Jacob  D. Jaffe  (jjaffe@broadinstitute.org). 
 
EXPERIMENTAL  MODEL  AND  SUBJECT DETAILS 
 
Cancer  cell  lines 
After thawing  from -80°C storage, cancer cell  lines were  recovered  in  standard  tissue  culture-treated  dishes. 
Cells were  allowed  to  propagate  at 37°C and  5% CO2 for at least three  doublings or until  we  had  approximately 
0.5  million  cells per well  of a  six-well  dish.  A375  (female), A549  (male), and  YAPC (male) cells were  cultured 
in  RPMI 1640  medium (Thermo  Fisher).  MCF7  cells (female) were  cultured  in  DMEM (Thermo  Fisher).  PC3 
cells (male) were  cultured  in  RPMI 1640  medium containing  1  mM sodium pyruvate  and  10  mM HEPES 
(Thermo  Fisher). 
 
DNA fingerprinting  was used  to  authenticate  the  identity of cancer cell  lines.  Fingerprinting  was performed  at 
the  Genomics Platform of the  Broad  Institute  of MIT and  Harvard  (Cambridge, MA) using  Fluidigm technology. 
The  Fluidigm fingerprint panel  includes a  total  of 96  SNPs, including  9  SNPs that overlap  with  the  Affy 6.0 
array and  have  multiple  proxy SNPs each, 66  SNPs that overlap  with  Illumina 's 1m and  2.5m arrays and  have 
multiple  proxy SNPs each, 32  SNPs in  transcribed  regions of housekeeping  genes that are  expressed  in  most 
cell  types, and  1  gender determining  SNP. 
 
Neural  progenitor  cells  (NPCs) 
Individual  colonies of H9  human  embryonic stem cells (ESCs) were  cultured  with  mTeSR1  media  (StemCell 
Technology) in  matrigel  (BD Biosciences)-coated  plates.  For NPC induction, ESC cell  colonies of 60–80% 
confluence  were  incubated  in  a  1:1  mixture  of N-2  and  B-27-containing  media  (see  below) supplemented  with 
1  μm dorsomorphin  (Tocris Bioscience) and  10  μm SB 431542  (Tocris Bioscience).  ESCs differentiated  to 
NPCs in  a  single  passage, and  NPCs were  cultured  for nine  passages. 
 
N-2  medium consisted  of DMEM/F-12  GlutaMAX (Thermo  Fisher), 1x N-2 supplement (Thermo  Fisher), 5 
μg/ml  insulin  (Sigma), 1  mM L-Glutamine  (Thermo  Fisher), 100  μm MEM nonessential  amino  acids solution 
(Thermo  Fisher), 100  μM 2-Mercaptoethanol  (Sigma), 50  U/ml  penicillin  and  50  mg/ml  streptomycin  (Thermo 
Fisher). 
 
B-27  medium consisted  of neurobasal  medium (Thermo  Fisher), 1x B-27  supplement (Thermo  Fisher), 200 
mM L-Glutamine  (Thermo  Fisher), 50  U/ml  penicillin  and  50  mg/ml  streptomycin  (Thermo  Fisher). 
 
METHOD  DETAILS 
 
Drug  treatment 
Cells were  plated  into  six-well  dishes 24  hours before  treatment with  one  of 90  drugs from Table  S1.  Media 
was changed  the  morning  of treatment.  Cells were  treated  for either 3  (P100), 6  (L1000), or 24  (GCP) hours at 
37°C before  undergoing  one  of the  following  assay protocols.  For each  drug, at least three  biological 
replicates were  performed. 
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P100  assay 
Please  see  Abelin  et al. for a  detailed  description  of the  P100  assay (Abelin  et al., 2016).  Briefly; drug-treated 
cells were  washed  with  cold  PBS, lysed  in-plate  with  urea  buffer, and  harvested  by scraping.  Cell  lysates were 
transferred  to  a  96-well  plate, flash-frozen  using  liquid  nitrogen, and  stored  at -80°C until  further processing. 
Upon  thawing, samples (500  µg) were  reduced, alkylated, and  digested  overnight with  trypsin  using  the 
BRAVO Automated  Liquid  Handling  Platform (Agilent).  Peptides were  desalted  using  a  C18  Sep-Pak 
Cartridge  (Waters) prior to  immobilized  metal  affinity chromatography phosphopeptide  enrichment. 
Phosphopeptides were  enriched  using  commercially available  Fe-NTA AssayMAP cartridges (Agilent).  Salts 
were  removed  in  a  final  desalting  step  using  RPS cartridges (Agilent).  A mix of isotopically labeled  synthetic 
peptides was added  to  each  sample  prior to  MS analysis. Peptides were  separated  on  a  C18  column 
(EASY-nLC 1000, Thermo  Scientific) and  subsequently analyzed  by mass spectrometry (MS) as described  in 
Abelin  et al, or in  DIA mode  (Q Exactive TM-HF Orbitrap TM, Thermo  Scientific).  In  DIA, full  scans were  acquired 
in  the  300-1200  m/z range  at 60,000  FWHM resolving  power followed  by DIA scans spanning  m/z 400-1000  at 
30,000  FWHM resolving  power, using  a  22  m/z isolation  window and  a  NCE of 27.  Alternating  traversals of the 
DIA m/z  range  had  their center isolation  m/zs offset by 50%.  Overlapping  DIA scans were  deconvolved  with 
Skyline  (MacLean  et al., 2010) and  analyzed  exactly as in  Abelin  et al. 
 
GCP assay 
Please  see  Creech  et al. for a  detailed  description  of the  GCP assay (Creech  et al., 2015).  Briefly; 
drug-treated  cells were  collected  upon  centrifugation. Upon  lysis of the  cells, histones were  extracted  using 
sulfuric acid  and  were  precipitated  using  trichloroacetic acid.  Samples (10  ug) were  propionylated, desalted, 
and  digested  overnight with  trypsin.  A second  round  of propionylation  was employed  and  samples were 
subsequently desalted  using  C18  Sep-Pak Cartridge  (Waters).  A mix of isotopically labeled  synthetic peptides 
was added  to  each  sample  prior to  MS analysis.  Peptides were  separated  on  a  C18  column  (EASY-nLC 1000, 
Thermo  Scientific) and  analyzed  by MS in  a  PRM mode  (Q Exactive TM-plus, Thermo  Scientific) as described  in 
Creech  et al. 
 
L1000  assay 
Please  see  Subramanian  et al. for a  detailed  description  of the  L1000  assay (Peck et al., 2006).  Briefly; 
drug-treated  cells were  lysed  using  TCL  Buffer (Qiagen), and  mRNA transcripts were  captured  on 
oligo-dT-coated  plates.  Transcripts underwent ligation-mediated  amplification  (LMA); that is, mRNA was 
reverse  transcribed  to  cDNA, gene  and  bead-specific probes were  annealed  to  the  cDNA, and  probes were 
ligated  and  amplified  via  PCR using  biotinylated  universal  primers.  The  PCR amplicon  was then  hybridized  to 
beads with  complementary oligonucleotide  barcodes.  After hybridization, the  biotinylated  amplicon  was 
stained  with  streptavidin-phycoerythrin  and  detected  using  a  Luminex FlexMap  3D system.  The  intensity of 
bead  fluorescence  corresponds to  mRNA transcript abundance.  Data  were  computationally processed  using 
the  standard  Connectivity Map  pipeline  (Subramanian  et al., 2017). 
 
Data  processing for  GCP and  P100 
Mass spectrometry data  files were  imported  into  Skyline  software  (MacLean  et al., 2010) in  order to  extract and 
integrate  MS2  signals for endogenous (light) and  synthetic internal  standard  (heavy) peptides.  After manual 
quality assurance, Skyline  files (.sky) were  uploaded  to  a  Panorama  server (Sharma  et al., 2014), where  raw 
quantitative  data  were  automatically assembled  into  Gene  Cluster Text (GCT) files.  The  GCT format enables 
storing  metadata  and  data  in  the  same  file.  For each  analyte  (P100:  , GCP:  ), the  log 2 ratio  of the6n = 9 1n = 6  
intensity of the  endogenous peptide  to  the  intensity of the  internal  standard  peptide  is reported.  Samples are 
processed  in  batches of 96-well  plates. 
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These  data  needed  to  be  further normalized  to  enable  comparison  of samples within  and  across plates.  The 
computational  pipeline  that performed  these  data  processing  steps is known  as the  Proteomics Signature 
Pipeline  (PSP), and  it is available  online  at https://github.com/cmap/psp .  Importantly, the  pipeline  is 
automatically executed  by the  Panorama  server on  uploaded  Skyline  documents so  all  data  processing 
operations occur independently of human  intervention, yielding  a  reproducible  research  pipeline.  The  pipeline 
is self-documenting  by appending  a  record  of processing  operations as metadata  to  each  sample. 
First, any analytes or samples with  an  excess of missing  data  (thresholds are  included  in  the  provenance  code 
for each  plate  and  consistent within  an  assay) were  filtered  out.  Next, a  constant offset was applied  to  each 
sample  in  order to  bring  all  samples to  the  same  range.  For GCP, we  measure an  analyte  that is known  to  be 
invariant (histone  H3, positions 41-49), so  we  subtracted  this measurement from each  sample.  For P100, we 
do  not have  an  invariant analyte, so  we  computed  an  analytical  offset for each  sample  that minimized  the 
distance  between  sample  medians on  a  single  plate.  Finally, we  made  our signatures differential  by 
subtracting  from each  analyte  its median  across a  plate.  Therefore, each  final  value  is the  log2  ratio  of 
endogenous to  internal  standard  peptide, relative  to  the  median  analyte  measurement across all  samples on  a 
96-well  plate. 
 
We  make  our data  publicly available  at multiple  levels of processing  (Supplementary Figure  S1A).  Skyline  files 
(Level  1) and  unprocessed  GCTs (Level  2) for each  96-well  plate  are  available  on  Panorama  Web 
(https://panoramaweb.org/labkey/LINCS.url ).  Aggregated  Level  2, Level  3  (quality-controlled  and  normalized) 
and  Level  4  (differential) data  are  available  via  the  Gene  Expression  Omnibus (accession  GSE101406). 
 
Viability  follow-up experiment,  related  to  Figure 5 
A375  and  MCF7  cells were  thawed  from -80°C storage, recovered  in  standard  tissue  culture-treated  dishes, 
and  allowed  to  propagated  for at least three  doublings at 37°C and  5% CO2.  Cells were  then  plated  into 
384-well  dishes and, twenty four hours later, treated  with  DMSO or one  of the  following  drugs: vemurafenib, 
selumetinib, SCH 900776, SP600125, or CC-401.  We  performed  an  eight-point dose  series in  duplicate, 
where  the  maximum dose  was 10  μm for vemurafenib  and  selumetinib  and  100  μm for the  other three  drugs. 
Cells were  treated  for five  days at 37°C. 
 
We  quantified  cell  viability by imaging  for total  cell  counts.  Images of cells were  acquired  using  an  Opera 
Phenix High-Content Screening  Instrument (PerkinElmer) at 10x magnification  in  confocal  mode, using 
brightfield  and  digital-phase  contrast channels.  Harmony software  (PerkinElmer) was used  to  identify cells 
based  on  digital-phase  contrast images and  to  count total  cell  numbers within  four fields of view.  Growth  Rate 
(GR) values were  computed, and  sigmoid  curves were  fit using  the  online  GR calculator (Hafner et al., 2016). 
The  GR value  represents cell  count relative  to  DMSO control, adjusted  for the  cell  line's growth  rate.  Curves 
that did  not reach  a  GR value  of 0.5  were  excluded. 
 
QUANTIFICATION  AND  STATISTICAL  ANALYSIS 
 
Computing  similarities  and  connectivities 
We  utilize  the  framework of connectivity in  order to  compare  perturbations across different profiling  assays. 
We  compute  connectivity in  two  steps, and  we  do  this separately for each  cell  line  in  each  assay.  First, we 
compute  similarities among  all  profiles.  We  chose  to  use  Spearman  correlation, but other similarity metrics 
(e.g. Pearson  correlation  or Euclidean  distance) could  be  substituted.  Another similarity metric that we  could 
have  utilized  is gene  set enrichment analysis (GSEA), where  one  signature  is compared  to  others by reducing 
it to  up  and  down  gene  sets and  asking  for the  enrichment of these  gene  sets in  the  other signatures.  We 
chose  to  use  correlation  because  we  wanted  to  utilize  all of our analytes. GSEA heavily weights the  extreme 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185918doi: bioRxiv preprint 

https://doi.org/10.1101/185918
http://creativecommons.org/licenses/by-nc-nd/4.0/


tails of a  signature, while  Spearman  correlation  does not.  Since  correlation  is sensitive  to  the  length  of vectors 
being  correlated  and  our assays produce  vectors (i.e. signatures) with  different lengths, we  cannot directly 
compare  correlations across assays.  For example, the  correlations between  L1000  signatures, whose  lengths 
are  978, are  drastically smaller than  the  correlations between  GCP signatures, whose  lengths are  61. 
 
Therefore, we  next convert correlations to  connectivity scores by comparing  observed  correlations to  a 
background  distribution  of correlations. The  background  distribution  consists of all  correlations between  one  of 
two  drugs being  compared  and  all  other drugs profiled.  Let us consider an  example. 
 
To  compute  the  connectivity between  two  compounds A and  B with  three  replicates each, we  compare  the 
correlations between  the  replicates of A and  the  replicates of B (test distribution;  ) to  the  correlations ofn = 9  
the  replicates of B with  all  other samples (background  distribution;  ).  We  use  the  two-sample70n ≈ 2  
Kolmogorov-Smirnov (KS) test to  compare  our two  distributions.  We  opted  for the  non-parametric KS test 
because  the  assumptions of most parametric tests (e.g. normality of test distributions) are  typically not satisfied 
by our distributions of correlation  coefficients.  The  test statistic D of the  KS test is what we  call  the  connectivity 
score, except that we  artificially add  a  sign  to  D in  the  following  way: if the  median  of the  test distribution  is less 
than  the  median  of the  background  distribution, the  connectivity score  becomes negative.  Therefore, the  range 
of connectivity scores is -1  (strong  negative  connection) to  1  (strong  positive  connection).  When  the  test 
distribution  consists of only one  number (e.g. if we  are  comparing  two  drugs with  only one  replicate  each), then 
the  test statistic D simply becomes the  fraction  rank of a  single  correlation  against the  background  distribution. 
 
Global  replicate  v. non-replicate correlations,  related  to  Figure  2A 
We  extracted  all  correlations among  replicates, excluding  the  correlation  between  a  sample  and  itself (because 
this value  is always 1), and  among  non-replicates.  We  used  kernel  density estimation  (KDE) to  smooth  these 
distributions. 
 
Replicate  reproducibility,  related  to  Figure 2B 
We  sought to  quantify whether the  replicates of a  drug  were  reproducible  in  order to  determine  whether that 
drug  had  a  meaningful  signal  in  a  particular assay or cell  line.  For a  given  drug  X with  k replicates, we 
extracted  the  pairwise  Spearman  correlations ( ) among  its replicates and  aggregated  these  valuesn = 2

k (k−1)*  
using  median.  Next, we  created  a  randomly sampled  null  by picking  k profiles at random from the   70≈ 2  
profiles in  a  given  cell  line-assay condition  and  computed  the  median  of their Spearman  correlations.  We 
randomly sampled  1,000  times in  order to  create  1,000  medians in  the  null  distribution.  Each  drug  was 
assigned  a  p-value, which  was defined  as the  fraction  of values in  the  null  distribution  that were  greater than 
the  observed  median  correlation  among  replicates.  For example, a  p-value  of 0.01  for a  particular drug  means 
that the  replicates of that drug  had  a  higher median  correlation  to  each  other than  99% of randomly selected, 
size-matched  sets of samples from the  same  assay and  cell  line.  In  Figure  2B and  Figure  S2A, we  considered 
drugs with  p-values less than  0.05  to  be  reproducible. 
 
MoA  connectivity,  related to Figure  2C 
In  each  cell  line, we  computed  the  median  of connectivities among  compounds belonging  to  the  same 
mechanism of action  (MoA). Singleton  MoAs were  discarded. Each  bar shows the  six median  connectivities 
(one  for each  cell  line) for a  particular MoA.  The  height of each  bar is the  median  of these  six values, and  error 
bars represent the  25th  and  75th  percentiles of these  six values. 
 
Examples  of  MoA  connectivity,  related  to  Figure  2D 
Each  value  in  these  matrices is a  median  of the  six connectivity scores corresponding  to  the  six cell  lines. 
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t-SNE  analysis,  related  to  Figure  3A  and  Figure  S3 
Aggregated  connectivity profiles (Supplemental  Data,   per assay) were  used  to  perform t-SNE analysis40n = 5  
(Maaten  and  Hinton, 2008) in  Morpheus (see  below) using  perplexity = 60  and  learning  rate  = 10. Projections 
were  rendered  in  R using  ggplot2. 
 
Clustering  and  dendrogram  cutting,  related  to  Figure  3C-D 
A distance  matrix was computed  using  the  “correlation” metric of the  Dist function  in  the  R package  “amap” for 
the  connectivity profiles for each  cell  line  (Supplemental  Data,   per assay per cell  type).  This matrix was0n = 9  
used  to  create  dendrograms using  the  hclust function  with  “average” linkage.  The  function  cutree  was used  to 
identify connectivity clusters at fixed  percentages of the  maximal  heights of the  resulting  dendrogram.  For 
Figure  3D, connectivity profiles were  limited  to  the  set of reproducible  drugs (see  "Replicate  reproducibility" 
above) in  each  cell  line, dendrograms were  cut at 60% of their maximal  height, and  clusters with  single 
members were  eliminated.  A network graph  was constructed  where  nodes were  considered  individual 
connectivity clusters in  P100  or GCP data, and  edges were  drawn  between  them with  weight equal  to  the 
number of drugs shared  between  clusters.  Network graphs were  rendered  using  the  “sankey” package  of 
Google  visualizations. 
 
Percent  overlap  algorithm, related  to  Figure  4B 
For each  connectivity matrix, the  top  5% of connections were  extracted, except for self-connections. 
Self-connections were  excluded  since  they are  another way of quantifying  replicate  reproducibility, which  was 
already addressed  by previous analyses.  Next, the  percent overlap  of these  lists of connections were 
computed.  For example, if the  top  5% of connections in  assay A, cell  line  C ( ) had  12  connections in00n = 1  
common  with  the  top  5% of connections in  assay B, cell  line  C ( ), then  the  percent overlap  was 12%.00n = 1  
This computation  was performed  for each  cell  line  separately as well  as for a  matrix in  which  cell  lines were 
aggregated  by computing  the  median  of six cell-specific connectivity scores.  For the  cell-specific results, the 
height of the  bar represents the  mean, and  the  error bars show the  95% confidence  intervals.  This algorithm 
was repeated  using  1% and  10% cutoffs for Figures S4A and  S4B. 
 
The  null  percent overlap  corresponds to  picking  the  top  P% connections at random. For example, if  , aP = 5  
random 5% of connections from one  assay compared  to  a  random 5% of connections from another assay 
would  be  expected  to  have  an  overlap  of 0.25% (of all  connections), which, when  normalized  to  the  portion  of 
connections considered, is 0.25% / 5% = 0.05  or 5%.  This estimate  was computationally confirmed  by 
repeating  the  random sampling  many times in  all  cell  lines. 
 
Recall  of  connectivity  profiles,  related  to  Figure  4C 
In  order to  assess whether a  drug  had  the  same  pattern  of connectivity in  different assays, we  compared 
connectivity profiles across assays.  The  connectivity profile  for a  given  drug  X is the  vector of connectivity 
scores between  drug  X and  all  other drugs in  a  particular assay and  cell  line.  We  compared  the  connectivity 
profiles for the  same  drug  in  two  different assays using  Spearman  correlation  originally, but we  found  that 
considering  only the  tails of the  connectivity profiles improved  the  similarity between  connectivity profiles 
(Figure  S4D).  In  order to  look only at the  tails of the  connectivity profiles, we  used  a  weighted  enrichment 
score  (Subramanian  et al., 2005) instead  of Spearman  correlation.  Finally, we  asked  whether the  connectivity 
profile  for drug  X in  assay A could  recall  its matching  connectivity profile  in  assay B by computing  a  metric 
called  recall (see  Figure  S4E).  We  defined  the  recall  for a  given  drug  X as the  fraction  rank of the  similarity 
between  matching  connectivity profiles against similarities to  all  other connectivity profiles.  For example, recall 
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of 0.95  for drug  X means that its connectivity profile  in  assay A, cell  line  C was more  similar to  its matching 
connectivity profile  in  assay B, cell  line  C than  it was to  95% of all  other connectivity profiles.  A technical  note 
is that the  rank differs depending  on  which  assay is considered  first, so  the  recall  for a  particular drug  is the 
mean  of two  ranks. 
 
This computation  was performed  for each  cell  line  separately as well  as for a  matrix in  which  cell  lines were 
aggregated  by computing  the  median  of six cell-specific connectivity scores.  For the  cell-specific results, the 
height of the  bar represents the  mean, and  the  error bars show the  95% confidence  intervals. 
 
Querying  external  data against  our  resource, related  to  Figure  6 
Using  our framework of connectivity and  the  Proteomics Signature  Pipeline  (https://github.com/cmap/psp ), we 
computed  connectivity scores between  all  samples in  our resource  and  the  GCP profiles of 115  untreated 
cancer cell  lines from the  Cancer Cell  Line  Encyclopedia  (CCLE) (Jaffe  et al., 2013).  This produced  a  matrix 
with  539  rows, representing  90  drugs in  six cell  lines (one  drug  had  been  excluded  because  of low technical 
quality), and  115  columns representing  115  cell  lines from CCLE. For panel  A, we  extracted  CCLE cell  lines 
with  EZH2 mutations ( ) and  sorted  by the  median  connectivity score  to  these  five  cell  lines.  For panels Bn = 5  
and  D, we  assessed  enrichment of MoA classes in  the  539  rows of drugs using  GSEA (preranked  by median 
connectivity across all  sampled  belonging  to  the  genetic class:   for EZH2,   for t4;14 ,   forn = 5 n = 6 n = 9  
NSD2E1099K), but querying  against compound  sets rather than  gene  sets.  Enrichment was assessed  using  the 
False  Discovery Rate  (FDR). 
 
For panel  C, we  subsetted  the  connectivity matrix to  cell  lines with  gain-of-function  NSD2 mutations ( ),5n = 1  
either through  t4;14 translocation  or the  NSD2E1099K point mutation.  We  clustered  the  columns of this subsetted 
matrix using  Spearman  correlation  and  the  average  linkage  method.  The  two  types of NSD2 mutations 
segregated  perfectly. 
 
DATA AND  SOFTWARE AVAILABILITY 
 
Code  for  manipulating a  GCT  file 
Software  for manipulating  a  GCT file, which  is the  standard  file  format for the  data  discussed  in  this 
manuscript, is available  in  a  variety of programming  languages (i.e. Python, R, and  Matlab). These  repositories 
(cmapPy, cmapR, cmapM) can  be  found  under the  Connectivity Map  team page  on  Github: 
https://github.com/cmap . 
 
Proteomics  Signature  Pipeline 
The software that processes proteomic data from Level  2  to  Level  4, computes similarities and connectivities, 
and produces network visualizations of connectivity matrices is called the Proteomics Signature Pipeline 
(PSP).  It is available at https://github.com/cmap/psp. 
 
Proteomic  Apps 
In  order to  interact with  the proteomic data discussed in  this manuscript and additional  data that will  be 
released in  the future, we have developed web applications for querying  your own  data against our resource 
and for exploring  connections within  our resource.  The landing  page for both  of these apps is 
https://clue.io/proteomics. 
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Morpheus 
Heatmaps were  produced  using  a  browser app  called  Morpheus (https://clue.io/morpheus). 
Cytoscape 
Networks were  produced  using  Cytoscape  software  (http://cytoscape.org ) (Shannon  et al., 2003). 
 
Data 
All  Level  2  through  Level  4  data  (for GCP, P100, and  L1000) are  available  via  the  Gene  Expression  Omnibus 
(accession  GSE101406).  Level  1  data  (Skyline  files) and  Level  2  data  for individual  96-well  plates are 
available  on  Panorama  Web  (https://panoramaweb.org/labkey/LINCS.url ). 
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