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Abstract 

The spatial organization of chromosomes in the nuclear space is an extensively studied 
field that relies on measurements of structural features and 3D positions of chromo-
somes with high precision and robustness. However, no tools are currently available to 
image and analyze chromosome territories in a high-throughput format. Here, we have 
developed High-throughput Chromosome Territory Mapping (HiCTMap), a method for 
the robust and rapid analysis of 2D and 3D chromosome territory positioning in mam-
malian cells. HiCTMap is a high-throughput imaging-based chromosome detection 
method which enables routine analysis of chromosome structure and nuclear position. 
Using an optimized FISH staining protocol in a 384-well plate format in conjunction with 
a bespoke automated image analysis workflow, HiCTMap faithfully detects chromosome 
territories and their position in 2D and 3D in a large population of cells per experimental 
condition. We apply this novel technique to visualize chromosomes 18, X, and Y in male 
and female primary human skin fibroblasts, and show accurate detection of the correct 
number of chromosomes in the respective genotypes. Given the ability to visualize and 
quantitatively analyze large numbers of nuclei, we use HiCTMap to measure chromo-
some territory area and volume with high precision and determine the radial position of 
chromosome territories using either centroid or equidistant-shell analysis. The HiCTMap 
protocol is also compatible with RNA FISH as demonstrated by simultaneous labeling of 
X chromosomes and Xist RNA in female cells. We suggest HiCTMap will be a useful 
tool for routine precision mapping of chromosome territories in a wide range of cell 
types and tissues.  
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1. Introduction 

The organization of the eukaryotic genome extends from DNA that is coiled 
around histone octamers to form nucleosomes, which are further folded into a chromatin 
fiber, to ultimately form chromosomes [1-3]. Chromosomes are the largest unit of ge-
nome organization and are confined to distinct regions within the nucleus known as 
chromosome territories (CTs) [4]. The spatial organization of CTs is non-random, and 
CTs occupy preferred nuclear positions [5]. Changes in genome spatial organization are 
observed during stages of differentiation, transcription, and diseases [6-9]. Furthermore, 
chromosome position is cell type- and tissue-specific [10-13].  

Fluorescence in situ hybridization (FISH) of entire chromosomes using specific 
DNA probes, also known as chromosome paints, provides vital insight into defining 
chromosome architecture and position within the 3D space of the nucleus [14]. By 
measuring the radial position of a chromosome relative to the center of the nucleus, or 
their relative position to each other, it has been recognized that CTs are non-randomly 
organized in the 3D space of the nucleus [15]. These experiments show that chromo-
somes have a characteristic distribution of positioning within the cell nucleus, however, 
the preferential positioning of chromosomes is not absolute and varies probabilistically 
between individual cells in a population [2, 5]. 

Because of the stochastic distribution of each chromosome in the cell population, 
accurate mapping of chromosome positions requires analysis of a relatively large num-
ber of cells. Due to limitations in imaging throughput of conventional microscopy meth-
ods, the number of cells commonly analyzed for chromosome paint experiments are of-
ten limited, typically on the order of a hundred cells or less.  

We have developed HiCTMap, an unbiased and systematic method for the quan-
titative detection of CTs using high-throughput imaging that enables routine analysis of 
hundreds of nuclei and CTs per sample in an experiment. The HiCTMap protocol con-
sists of fixation of interphase cells in 384-well plates, followed by DNA FISH staining us-
ing chromosome paint probes. Large image data sets are acquired using automated 3D 
confocal high-throughput microscopy and analyzed with a custom high-content image 
analysis workflow to determine the spatial positioning and features of chromosomes in 
multiple imaging channels. As proof-of-principle, we applied HiCTMap to measure the 
size and positioning of chromosomes 18, X, and Y in normal male and female human 
primary skin fibroblasts. We demonstrate that chromosome X has a more peripheral po-
sition than chromosomes 18 and Y, as previously shown by others [16-19]. Moreover, 
we combined RNA FISH and chromosome paint in a high throughput format to differen-
tiate active and inactive X chromosomes and demonstrate accurate detection of the re-
duced size and a slightly more peripheral positioning of the inactive X chromosome. 
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2. Materials and Methods  
 

2.1. Cell culture 

Female (XX) and male (XY) primary human skin fibroblast were grown in DMEM 
media (ThermoFisher Scientific, Cat # 10566-016) supplemented with 20% FBS 
(ThermoFisher Scientific, Cat # 10082147), 2 mM GlutaMAX™, and 1% penicil-
lin/streptomycin (ThermoFisher Scientific, Cat # 15140122) at 37 °C and 5% CO2. Cells 
were split 1:2 every 3-4 days and kept at a low passage (P3-5). Cells were plated in 
PerkinElmer Cell Carrier Ultra 384-well plates (PerkinElmer, Cat # 6057300) at a densi-
ty of 4,000 cells/well and grown overnight, then fixed for 10 min in 4% PFA (Electron 
Microscopy Sciences, Cat # 15710), washed, and stored in DPBS (Lonza, Cat # 17-
512F) at 4 ˚C. 

2.2. Chromosome Paint FISH in 384-well plates 

Whole chromosome paint probes were generated in house to human chromo-
somes 18 (HSA18), X (HSA-X), and Y (HSA-Y) using Spectrum Orange (Abbott Mo-
lecular, Abbot Park, IL, USA, Cat # 02N33-050), Dy505 (Dyomics, Jena, Germany, Cat 
# Dy505-dUTP), and Dy651 (Dyomics, Jena, Germany, Cat # Dy651-dUTP), for labeling 
of HSA18, HSA-X, HSA-Y, respectively. Detailed protocols are available online at 
(https://ccr.cancer.gov/Genetics-Branch/thomas-ried, Resources). Probe mix for chro-
mosome paint probes consisting each of 200 ng - 1 µg DNA, 30 µg salmon sperm DNA 
(Ambion, Cat # AM9680), and 1 µg human COT1 Human DNA (Sigma-Aldrich Roche, 
Cat # 11581074001) per well was ethanol precipitated at -80 °C for 25 minutes and re-
suspended in 12 µL of hybridization buffer per well (50% dionized formamide, pH7 
(Ambion, Cat # AM9342), 20% dextran sulfate (Milipore, Cat # S4030), and 2X SSC 
(KSD Scientific, Cat # B3821-1000).  

Fixed cells were permeabilized for 20 min in 0.5% Triton X-100 (Sigma-Aldrich, 
Cat # T9234-500ML) in DPBS, washed in 0.05% Triton X-100 in DPBS, incubated for 
10 min in 0.1 N HCl, neutralized for 5 min in 2X SSC, and equilibrated for at least 30 
min in 50% formamide in 2X SSC prior to probe addition. Probes and nuclear DNA were 
denatured at 85 °C for 7 min and plates were immediately moved to a 37 °C humidified 
chamber for overnight hybridization. The next day, plates were washed 3 times for 5 
min each in 50% formamide (Sigma-Aldrich, Cat # 47670-1L-F) in 2X SSC at 42 °C, 1X 
SSC at 60 °C, and 0.1X SSC at 60 °C. 

A DesignReady Xist RNA probe designed by Stellaris (25µM concentration; 
LGC Biosearch Technologies, Petaluma, CA, Cat # VSMF-2431-5) was diluted 1:10 in 
TE buffer, pH 8 and diluted again 1:3 in 12 µL of RNA hybridization buffer (10% 
formamide, 10% dextran sulfate in 2XSSC). Plates were hybridized at 37 °C in a hu-
midified chamber for at least 4 hours up to overnight. Plates were then washed 3 times 
for 5 min with 2X SSC at 37 °C, nuclear DNA was stained with 1.25µg DAPI per well for 
1 min in DPBS, and imaged. For combined DNA-RNA FISH, DNA FISH was completed 
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as described above at 37 °C overnight with corresponding DNA FISH washes, immedi-
ately followed by RNA FISH as described above for 4 hours at 37 °C with corresponding 
RNA FISH washes.  

2.3. High-throughput imaging 

Imaging was performed using a 40X (0.95 NA) air objective lens on a high-
throughput spinning disk confocal microscope (Yokogawa CV7000). For excitation, four 
lasers lines (405, 488, 561, 640 nm) were used, in conjunction with a quad-band excita-
tion dichroic mirror (405/488/561/640 nm), a fixed short pass emission dichroic mirror 
(568 nm), and emission band-pass filters (filters (DAPI: BP445/45, Green: BP525/50, 
Red: BP600/37, and FarRed: BP676/29) in an automated and sequential mode. Image 
acquisition was configured to capture three-dimensional Z-stacks for each channel with 
8-9 Z-sections at 0.5 µm intervals without pixel binning. The X-Y pixel size was 162.5 
nm and the size of each field of view was 416 x 351 µm (2560 x 2160 pixels).12-13 
fields of view were imaged per well in 15 wells per karyotype, producing approximately 
15,000 16-bit images in approximately 1 hour. 

2.4.1. Image analysis tools 

The image processing steps described in the subsequent section(s) were imple-
mented into four (4) bespoke image analysis workflows in the Konstanz Information 
Miner (KNIME) [20] Analytics Platform (Version 3.2.1, 64-bit) using compatible KNIME 
Image Processing Nodes (KNIP). We chose KNIME Analytics Platform primarily be-
cause it is open-source and readily supports development of reproducible workflows by 
capturing data flow. In addition, KNIME-based workflows are operating system agnostic 
and can scale extremely well from desktops to high-performance batch clusters. 

The primary workflow configures and executes the image preprocessing and nu-
clear segmentation components. The primary workflow provides annotation of seg-
mented objects (nuclei) into good and bad classes, morphological feature values, and 
filter training of the random forest (RF) classifier. The secondary workflow implements 
the training from the primary workflow for segmentation and filtration of nuclei in 2D and 
3D for the plate and crops CT images from corresponding channels using the binary 
nucleus mask. The tertiary workflow is responsible for CT detection training. This work-
flow provides annotation of segmented CT objects into good and bad classes, CT inten-
sity and morphological values, as well as training of each CT channel’s RF classifier. 
The quaternary workflow implements training from the tertiary workflow to segment and 
filter CTs (Xist) from multiple spectral channels in 2D and 3D while extracting parame-
ters required for studying spatial organization and architectural features of CTs (i.e. ra-
dial positioning, area, and volume).  

All KNIME workflows were either executed on a workstation running Microsoft 
Windows 2012 Server R2 (64-bit) with 16-cores of AMD Opteron 6212 processor (2.7 
GHz) and 256GB RAM or on a dedicated high-performance batch cluster compute node 
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running RedHat Enterprise Linux 6.9 (Santiago) with 28-cores (56-processors) of Intel 
X2680, 196 RAM and 300 GB of Solid State Storage. 

2.4.2. 2D Nucleus Segmentation 

The nuclei from the maximum intensity projected DAPI channel were segmented 
using a seeded watershed algorithm [21]. The preliminary segmentation boundaries 
from the seeded watershed are further refined using ultrametric contour maps (UCMs) 
to minimize over-segmentation [22]. Briefly, UCMs achieve this by combining several 
types of low-level image information (e.g., gradients and intensity) to construct hierar-
chical representation of the image boundaries. Under this representation boundary pix-
els along the nucleus periphery, typically, receive higher score than other pixels associ-
ated with internal structures of the nucleus. Applying global thresholding (e.g., Otsu 
[23]) on UCMs should eliminate weaker (internal) boundaries, thus, minimizing over-
segmentation. 

2.4.3. Random Forest for Filtering Overlapping Nuclei 

We used a binary (two classes: good and bad) supervised classification algo-
rithm based on RF [24, 25] to filter out under/over segmented nuclei from subsequent 
analysis. A 14-dimensional numeric vector describing the morphology of segmented ob-
jects (e.g., circularity, solidity, area, perimeter, and major elongation) was used for dis-
criminating good and bad segmented objects. The first interactive KNIME workflow was 
used to manually annotate 100 (good-65; bad-35) segmented objects drawn randomly 
from images from different wells of a plate that was imaged during the plate optimization 
process. Subsequent nodes in the KNIME workflow then autonomously train a RF clas-
sifier on this annotated data. We used a RF classifier with 1000 decision trees, where 
the nodes in each decision tree were split based on the information gain ratio. This re-
sulted in a RF classifier with out-of-bag accuracy of ~92%. The trained RF classifier was 
subsequently used for filtering out bad-class of segmented objects for all other plates 
referenced in this work without further (re)training.  

2.4.4. 3D Nucleus Segmentation  

For segmentation of nuclei in 3D, i.e., along the Z-stack of the DAPI channel, we 
first extended the 2D binary mask of nuclei along the Z-direction. This extended 3D bi-
nary mask was applied to the Z-stack of DAPI channel for extracting 3D voxels of the 
nucleus. The intensity voxels were then thresholded using Otsu [23] followed my mor-
phological operations to generate the 3D binary segmentation mask of the nucleus. 

2.4.5. 2D CT Segmentation  

Prior to segmenting CTs, pixel intensity values of CT channel(s) corresponding to 
the 2D nucleus segmentation mask were normalized to range from 0 to 1. The normali-
zation step was added to minimize the influence of intensity fluctuations in the CT chan-
nels between wells within a plate and across plates. Post intensity normalization, CTs in 
each spectral channel were segmented using the undecimated wavelet-based spot de-
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tection technique [26]. We used up to four (4) wavelet scales for segmenting CTs. The 
per-scale threshold factors for the algorithm were manually fixed so that CTs in all three 
channels (18, X, and Y/Xist) were reliably detected with the same set of values. These 
per-scale threshold factors were intentionally set low to enable detection of all CTs. 
Such low values, as expected, resulted in segmenting background (non-CT) regions. 

2.4.6. Random Forest for Filtering CTs  

To filter out background regions segmented by the undecimated wavelet-based 
spot detection technique, we again used a binary, supervised RF classifier similar to the 
one described earlier for filtering over/under segmented nuclei. We used an appropriate 
interactive KNIME workflow to randomly sample 2%-4% of the detected nuclei for each 
karyotype in the plate. CTs in each spectral channel were detected as described above. 
Our rational was to determine if the RF classifier, trained on annotated data from just 
one replicate, can robustly filter segmented CT objects from two biological replicates in 
the sample plate. If a plate contained wells with replicates, we ensured that stratified 
random sampling of nuclei was restricted to just one replicate. A user manually annotat-
ed correctly (class-good CT) and incorrectly (class-bad CT) segmented CT regions via 
the interactive nodes in this workflow – approximately 100 objects per class for each 
spectral channel (green, red and far-red). Next, we extracted morphometric and (nor-
malized) intensity-based features for the objects and trained a RF classifier with 1000 
decision trees and node splitting governed by information gain ratio. The out-of-bag ac-
curacy of the RF classifiers were approximately 95.6%, 99.1% and 95.4% for CT in 
green, red and far-red channels, respectively. Various efforts (e.g., standardization and 
normalization of features) to combine three separate RF classifiers into one, generally, 
resulted in lower out-of-bag accuracy (data not shown). Similarly, classifier(s) trained on 
one plate, typically, resulted in poor filtering of incorrectly segmented (class-bad CT) CT 
regions when applied to plates with different karyotype(s). Hence, we decided to gener-
ate a separate classifier for each channel for each plate. 

2.4.7. 3D CT Segmentation 

The CTs were segmented in 3D using the following approach. First, we propa-
gate the 2D binary mask of the CT along the Z-direction. This extended 3D mask is 
used to extract the 3D intensity voxels of the CT from the Z-stack images using a simple 
image masking operation. Next, Otsu thresholding was applied to the extracted 3D 
voxels followed by a morphological closing operation, to clean-up isolated voxels, for 
generating the 3D binary masks for CTs. 

2.5. Statistical Analysis  

All statistical measurements and graphics was generated using R version 3.3.2, 
64-bit with ggplot2 graphics package (version 2.2.1, [27]). P-values were calculated us-
ing either the Wilcoxon-Mann-Whitney test [28] or the two sample Kolmogorov-Smirnov 
(KS) test [29, 30]. 
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The number of CTs detected was calculated on a per chromosome basis in two 
biological replicates containing 3 technical replicate wells using R and plotted using Mi-
crosoft Excel. For nuclear volume and area as well as CT area and volume box plots, 
CT size were graphed on a per CT per karyotype basis in technical triplicates. For Xist 
pixel box plot, Xist was measured on a per X CT basis in triplicates. For centroid nor-
malized radial positioning, distance from the border and nuclear spatial positioning were 
calculated using KNIME. Statistical analysis of Xist staining was done in technical tripli-
cates. 

2.6. Data and Software Availability  

KNIME analysis workflows and R scripts are available on Github 
(https://github.com/CBIIT/Misteli-Lab-CCR-NCI)   
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3.  Results 

3.1. High-throughput Detection of CTs  

We sought to develop an assay for the rapid, robust, and accurate identification 
of CTs at high-throughput to overcome the significant labor required for the acquisition, 
detection, and analysis of sufficiently large numbers of CTs for statistical analysis of 
their organization and localization (Fig. 1A, B). Our experimental pipeline includes stain-
ing of CTs in a 384-well plate format using chromosome paint FISH probes that were 
generated as previously described (see Materials and Methods). To adapt the standard 
CT FISH protocol incubation volumes, incubation times and washing steps were empiri-
cally optimized (see Materials and Methods). We applied this assay to the detection of 
human chromosomes 18 (HSA-18), X (HSA-X), and Y (HSA-Y) in normal human prima-
ry skin fibroblasts from female (XX) and male (XY) individuals (Fig. 1B). Typically, 12-13 
fields per well were imaged per karyotype acquiring ~4000/cells per well using a high-
throughput spinning disk confocal microscope. For image analysis, we used a custom 
image analysis workflow based on the software KNIME (see Materials and Methods) to 
identify nuclei with high precision using a seed watershed, ultrameric contour map for 
nucleus segmentation, followed by a random forest (RF) classifier for filtering out over-
lapping and mis-segmented nuclei. We typically analyzed a minimum of 1600 cells in 
two biological replicates containing 3 technical replicate wells per karyotype (Sup Fig. 
1). A separate customized KNIME workflow was used to first detect CTs within the 
segmented nuclei using an undecimated wavelet-based spot/vesicle detection ap-
proach, and to then filter out background (non-CT) regions using a separate RF classifi-
er. In addition, this workflow calculates various geometric and intensity-related features 
of the segmented CTs, including chromosome area and volume, as well as their posi-
tion (only for 2D analysis) with respect to the nucleus, expressed either as a normalized 
Euclidean distance transform (nEDT) of the CT’s centroid or as the percent of the seg-
mented CT region in each of five equidistant shells (Fig.1C). 

Using this assay, we measured the expected number of HSA-X in a majority of 
cells from XY (90 +/- 6.0% SD) and XX (77 +/- 1.7% SD) cells in 2D (Fig. 1D). Similarly, 
HSA-Y was correctly detected in 88 +/-  2% SD of XY fibroblasts (Fig. 1D). Two copies 
of HSA-18 were detected in 70 +/- 1.7% SD of the cells in XY cells and 68 +/- 2% SD in 
XX cells. In many cases where the number of CTs detected was less than the expected 
(under-detection of CTs), it was not due to limitations in the segmentation algorithm 
since fewer copies of the corresponding chromosomes were also detected by visual in-
spection in those nuclei. In some cases, under-detection was due to clustering of the 
two homologue chromosomes and in others due to incomplete FISH hybridization (Sup 
Fig. 2). Less commonly, we observed that the number of CTs detected was greater than 
expected (over-detection of CTs), which was in part due to a combination of complex 
CT structure, the wrapping of CTs around nuclear structures (i.e. nucleoli), or the sub-
optimal binding of chromosome paint probes to CTs, resulting in apparent fragmentation 
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of the signals. For all further analysis, nuclei that contained an incorrect number of de-
tected CTs for each channel were excluded from data analysis.  

3.2. 2D vs 3D analysis of CT features 

To determine how similar the detection of CTs in 2D compared to 3D, we sys-
tematically compared the percent of correctly segmented CTs using either 2D or 3D im-
age analysis (Fig. 2A). For 2D analysis, 9-10 Z-planes were imaged, maximally project-
ed in 2D and used to segment CTs using the undecimated wavelet-based spot detec-
tion method (see Materials and Methods). For 3D segmentation of CTs, we propagated 
the 2D binary mask along the Z-direction to extract 3D intensity voxels of the CT and 
then applied Otsu thresholding on these voxels to generate the 3D binary masks for the 
CTs (see Materials and Methods). We found remarkable correspondence in the number 
of detected CTs for HSA-18, X, and -Y using either 2D or 3D analysis (Fig. 2A). We 
used 2D and 3D analysis, respectively, to calculate nucleus area and volume of XX and 
XY cells (Fig. 2B). The 2D nucleus area of XY cells was slightly larger than that of XX 
cells (7107 vs 7369 average pixels per nucleus, 3.7% difference, Wilcoxon test p-
value=3.5e-21) (Fig. 2B, top left), and similarly we detect a 3.7% increase in nuclear 
volume of XX nuclei compared to XY nuclei when analyzed in 3D (Wilcoxon test p-value 
=1.4e-11) (Fig. 2B, top right) in roughly 5,000 nuclei. With regards to CT features in 
male skin fibroblasts, as expected, the CT area and volume of HSA-X was the largest 
(2D: 225 +/- 23 pixels SD, 3D: 1982 +/- 183 pixels SD), HSA-Y the smallest (2D: 160 +/- 
3 pixels SD, 3D: 1380 +/- 51 pixels SD) and HSA-18 intermediate (2D: 199 +/- 9 pixels 
SD, 3D: 1660 +/- 64 pixels SD). The overall trends in our 2D measurements were repli-
cated in our measurements in 3D of nuclear size and CT size (Fig. 2B and 2C), and 
show agreement between 2D and 3D analysis as shown previously [31]. Given the re-
duced computing time in 2D when compared to the similar analysis task in 3D, all sub-
sequent image analysis of nuclei and CTs were done using 2D analysis.  

3.3. Measurement of Xa and Xi chromosome size  

We then used HiCTMap to probe the size variations of the HSA-X in populations 
of XY and XX fibroblasts. We observed that the HSA-X area in XY fibroblasts is signifi-
cantly larger (median = 254 +/- 23 pixels) compared to XX fibroblasts (median = 212 +/- 
1 pixels SD) (Wilcoxon test p-value: 1.74e -11) as expected, due to inactivation and 
compaction of one of the X chromosomes in female cells (Fig. 3A) [32-35]. To distin-
guish between the two HSA-X in female cells, we ranked the CTs by size on a per nu-
cleus basis (Fig.3B). The area of the larger X CT in XX fibroblasts was comparable to 
the single X CT in XY cells (256 +/- 23 SD vs. 254 +/- 3 pixels SD) (Wilcoxon test p-
value > 0.05), whereas the smaller X CT which in most cases corresponds to the inac-
tive X (see below), showed a 31% decrease in area compared to the larger X (176 +/- 2 
pixels SD) (Wilcoxon test p-value: 2e-89) (Fig. 3B).  

The well characterized mechanism of X chromosome inactivation (XCI) is initiat-
ed and maintained by the Xist lncRNA [36, 37]. Xist coats the inactive X chromosome 
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(Xi) in cis and recruits repressive epigenetic markers, while the active X chromosome 
(Xa) is primarily used as the transcribed chromosome [38, 39]. To visualize and unam-
biguously identify the inactive X chromosome, XX cells were processed for sequential 
DNA/RNA FISH using chromosome-paint probes to label the X CT and fluorescently la-
beled oligonucleotides to target Xist RNA (see Methods). This approach enables high-
throughput visualization of simultaneously labelled X chromosomes and Xist RNA in the 
same nucleus (Fig. 3C). Any nucleus containing more than one Xist focus was excluded 
from further analysis.  Figure 3D shows that the Xa contains no Xist staining compared 
to the Xi chromosome, and the Xi is typically smaller compared to Xa (Fig. 3D, E). As 
expected, while we find a robust single Xist RNA signal in nuclei from XX cells, no Xist 
RNA signals are detected in XY cells (data not shown). In line with our size analysis, we 
find that CTs that lack Xist label are typically larger (225 pixels +/- 11 SD) compared to 
Xist containing CTs (164 +/- 14 pixels SD) (Wilcoxon test p-value: 8.23e-121, Fig. 3E). 
These observations demonstrate accurate detection and the ability to distinguish Xi and 
Xa based on size and Xist staining and they establish the feasibility of using HiCTMap 
to combine DNA and RNA FISH in high-throughput imaging approaches. 

3.4. Chromosome Positioning Analysis 

We finally applied HiCTMap to determine the nuclear positioning of HSA-18, -X, 
and -Y in XY fibroblasts. We used two approaches to determine chromosome position-
ing. First, we determined the centroid of the segmented CT defined as the geometric 
center of the segmented CT and measured its normalized radial distance from the nu-
cleus border using Euclidean distance transformation as previously described [40]. The 
distribution of the centroid radial distance for each chromosome was distinct (Fig. 4A). 
HSA-X showed a strong preferential distribution to the periphery of the nucleus in XY 
cells (median normalized radial distance = 0.34), whereas HSA-Y exhibited a slight 
preference for positioning to the center of the nucleus (median normalized radial dis-
tance = 0.58) and HSA-18 showed an even distribution of positions (0.48) (Fig.4A). 
Comparison of the radial positioning of the centroid of Xa and Xi in XX fibroblasts, 
showed a small, but significant, more peripheral position of the Xist-marked Xi centroid 
(median normalized radial distance = 0.25) compared to the Xa (median normalized ra-
dial distance = 0.29) (KS test p-value: 2.24e-07) (Fig.4B). Measurements of center of 
gravity, which accounts for intensity values in the CT, gave similar results (data not 
shown).  

Since using centroids as a proxy for the spatial localization of an entire CT could 
potentially generate misleading results, given the irregular and diffuse structure of 
chromosome territories, we also used an alternative method to more faithfully determine 
chromosome location. In this approach, each nucleus is divided into five equidistant 
shells, and the percentage of the CT falling in each of the equidistant shells is measured 
[32, 41]. When chromosome positioning was measured using equidistant shells, we ob-
served similar results to the centroid analysis: a strong preferential positioning of the 
HSA-X to the periphery of the nucleus with the highest average percent in shells 1 and 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185942doi: bioRxiv preprint 

https://doi.org/10.1101/185942


2 (30% and 32%, respectively), a slight preference for positioning of HSA-Y to the cen-
ter of the nucleus with the highest average percent in shells 3 and 4 (24% and 27%, re-
spectively) and even positioning of HSA-18 with the highest average percent in shells 2 
and 3 (24% and 25%, respectively)  (Fig.4C). Similar to the results obtained with cen-
troids, in XX fibroblasts, both Xa and Xi were peripherally positioned, and Xa was slight-
ly more internal (38% in shell 5) compared to Xi (42% in shell 5) (Fig.4D).  

Taken together, these results establish a high-throughput imaging pipeline for the 
detection of CTs and the determination of structural features of chromosomes including 
area, size and radial position. In addition, we show that chromosome painting in a high 
throughput format can be used to detect multiple chromosome combinations in the 
same experiment and can be combined with RNA FISH. We suggest that HiCTMap is a 
versatile tool for the study of chromosomes at a high-throughput scale. 
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4. Discussion 

Here, we describe a systematic and quantitative method for the detection of mul-
tiple chromosome territories using high-throughput imaging. Our approach, referred to 
as HiCTMap, enables collection of imaging data on large numbers of cells and quantita-
tive measurements of chromosome features including size and positioning using auto-
mated image analysis tools. HiCTMap overcomes the constraints of standard CT analy-
sis, particularly the reliance on relatively small numbers of cells due to technical limita-
tions in sample preparation and extensive imaging time using conventional microscopy 
approaches. 

Due to its high-throughput nature, HiCTMap is well suited to acquire images for 
several thousands of cells per experimental condition in a short time, typically about 
seven minutes per well. In contrast to most FISH approaches that rely on visual inspec-
tion of relatively small sample numbers and require significant user input, automated 
imaging of thousands of cells per sample generates a more faithful representation of the 
frequency of chromosomal architecture and positioning in the population and eliminates 
user biases in selection of nuclei for quantitative analysis. We demonstrate that chro-
mosome painting in high-throughput can robustly detect the expected number of CTs 
simultaneously in three channels. We also establish the accuracy of HiCTMap in meas-
uring the position of chromosomes using two methods of radial distance measurements, 
equidistant shells and centroid and we show its compatibility with RNA FISH. 

As previously reported [31] for traditional imaging methods, we find little differ-
ences when analyzing CTs in 2D or 3D. The number of chromosomes detected in male 
(XY) and female (XX) cell populations was similar in 2D and 3D analysis as was nuclear 
size and chromosome size. The relatively large size of chromosomes in nuclear space 
provides a lower threshold for accurate detection, segmentation, and analysis than for 
the precise and meticulous accuracy of single gene FISH in 2D versus 3D [31]. It is 
worth noting that use of higher-magnification imaging provides better resolution of 
chromosome architecture, however, 60X image acquisition yielded similar results to our 
standard 40X magnification used and provided no further benefits to measurements in 
2D or 3D (data not shown).  

HiCTMap is sufficiently sensitive to detect expected differences in X chromo-
some size in XY and XX cells, due to the presence of a mixed population of smaller Xi 
and larger Xa chromosomes. While the population of X chromosomes in XY cells is 
relatively homogeneous, a more heterogeneous distribution of X chromosome size was 
found in XX cells, consistent with the well-established smaller size of the inactive X 
chromosome [32]. The identity of the consistently smaller X chromosome as the Xi was 
confirmed by sequential Xist RNA FISH and chromosome painting. Chromosome paint-
ing in high-throughput in combination with Xist RNA FISH offers advantages over con-
ventional RNA FISH followed by imaging and subsequent DNA FISH, since it allows for 
immediate acquisition of both RNA and DNA FISH in one imaging step, eliminating the 
possibility of misaligning or incorrectly identifying nuclei when plates or cover slips are 
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removed for DNA FISH and re-imaged. In addition, in HiCTMap, multiple chromosomes 
can be observed in combination with the Xist RNA probe, thus making the method suit-
able for use in basic research applications to probe aneuploidies of the genome. 

Furthermore, we show robust detection by HiCTMap of chromosome positioning 
using both centroid and equidistant shell radial positioning approaches. We also detect-
ed differences in nuclear positioning of Xi and Xa using combined Xist RNA and CT 
FISH. Similar trends were observed by measuring the centroid location or equidistant 
shell radial positioning. Our findings are in line with the reported observation of a more 
peripherally positioned Xi and its proposed anchored to the nuclear lamina [42]. Unlike 
previous observations where a much greater difference in positioning is observed be-
tween the two X chromosomes [17, 19], our results may be different due to a different 
cell line used or the large number of nuclei measured that represents the population 
more faithfully. 

The limitations of HiCTMap are relatively minor. First, CT segmentation requires 
user input to determine the ground truth necessary to implement the random forest fil-
tration. This step typically requires 30 minutes of training and harbors the possibility of 
biases, which, however, can be eliminated by careful supervision of the user and de-
termination of the ground truth by multiple users. Second, our imaging conditions were 
not optimized for maximal resolution in 3D. However, this seems unlikely as we observe 
similar segmentations results for all measured chromosomes after increasing the mag-
nification from 40X to 60X as previously stated (data not shown). 

Taken together, we describe here HiCTMap, a method for chromosome painting 
in high-throughput. Given its versatility and its compatibility with RNA FISH, we antici-
pate that HiCTMap will be of considerable use in future analysis of chromosome organi-
zation and function.   
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FIGURE LEGENDS 

Figure 1. HiCTMap Imaging, Analysis, and Measurement. 

 A) HiCTMap pipeline. Cells are cultured in 384-well imaging plates and DNA FISH is 
carried out using chromosome paints, followed by automated image acquisition using 
high-throughput microscopy. Image analysis by KNIME segments the nuclei and detects 
CTs in three channels. CT features are measured and plotted using the R software. B) 
CT signal detection. Representative maximal projections of images acquired in three 
channels. Maximal projections of 40X confocal images z-stacks in 4 channels of XX and 
XY skin fibroblast stained with DAPI (Blue- 408) and chromosome paint probes (X- 
Green (Alexa488), 18- Red (Dy505), and Y- FarRed (Dy651)). Scale bar: 20 μm. C) 
KNIME automated image segmentation pipeline. Nuclei are segmented using the DAPI 
(4’,6-diamidino-2-phenylindole) channel, thus generates a segmentation mask. The fluo-
rescent channel of each chromosome paint probe is then used to segment CTs of HSA-
18, -X, and -Y. Positioning of segmented chromosomes using normalized distance 
transformation and equidistant shells is calculated using the KNIME image analysis 
pipeline (see Materials and Methods for details). D) Histogram showing the number of 
CTs detected in XX and XY nuclei using 2D segmentation. Values represent averages 
from two biological replicates containing 3 technical replicates ± SD. 

Figure 2. 2D vs. 3D image analysis of segmented CTs and nuclear size 

A) Histograms showing the number of chromosomes 18, X, and Y per cell in XY nuclei 
using 2D or 3D analysis. Values represent averages from three experiments ± SD. B) 
Top left: Box plots of measured nuclear area of XX and XY cells using 2D nuclear seg-
mentation. Top right: Box plots of measured nuclear volume of XX and XY cells using 
3D nuclear segmentation. C) Bottom left: Box plots of measured CT area of chromo-
somes 18, X, and Y in XY cells using 2D CT segmentation. Bottom right: Box plot of 
measured CT volume of chromosomes 18, X, and Y in XY cells using 3D CT segmenta-
tion method. Boxes show the 25th, 50th (median) and 75th percentile of the distributions 
and whiskers extend to 1.5 x inter-quantile range (IQR), outliers are represented as 
dots. Notches indicate the estimated 95% confidence interval of the median (CI). Distri-
butions represent data from approximately 5,000 nuclei. 

Figure 3. Detection and measurement of Xa and Xi 

 A) Box plots of X CT area per nucleus in XX and XY cells. B) Box plots of X CT area of 
the largest (1) and second (2) largest ranked X CT per nucleus in XX and XY cells. C) 
Representative images of combined DNA-RNA FISH (Scale bar: 20 μm). D) Scatter plot 
of X CT area in pixels vs. the segmented Xist signals normalized to nuclear size in XX 
cells (Xa= active X chromosome, Xi= inactive X chromosome). E) Box plots of CT area  
in Xi vs. Xa per nucleus in XX cells on a per CT basis. Boxes show the 25th, 50th (me-
dian) and 75th percentile of the distributions and whiskers extend up to 1.5* inter-
quantile range, outliers are shown as dots. Notches indicate the estimated 95% confi-
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dence interval of the median (CI). Distributions represent data from approximately  
2,500 nuclei. 

Figure 4. Radial positioning of CTs  

A) Density curves for normalized radial distance distributions for the indicated chromo-
somes. B) Density curves for normalized radial distance distributions of Xa and Xi. C) 
The radial 2D distribution of HSA-18, -X, and -Y coverage in 5 concentric equidistant 
nuclear shells. D) The radial distribution of Xi and Xa coverage in 5 concentric equidis-
tant nuclear shells. Values represent averages from three technical replicates ± SD. 
Distributions represent data from at least 2,500 CTs. 

Supplementary Figure 1. 

Histogram of the number of detected nuclei per well in XX and XY fibroblast using 
HiCTMap. Values represent averages from 3 technical replicates ± SD. 

Supplementary Figure 2.  

Representative DAPI, Red fluorescent channel (Excitation: 561 nm) of chromosome 
paint probe, and merge images of two HSA-18 chromosomes co-localizing. 
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