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Main text: 

Non-coding elements in our genomes that play critical roles in complex disease are 

frequently marked by highly unstable RNA species1–4. Sequencing nascent RNAs 

attached to an actively transcribing RNA polymerase complex can identify unstable 

RNAs5–10, including those templated from gene-distal enhancers (eRNAs)10–14. However, 

nascent RNA sequencing techniques remain challenging to apply in some cell lines and 

especially to intact tissues, limiting broad applications in fields such as cancer genomics 

and personalized medicine. Here we report the development of chromatin run-on and 

sequencing (ChRO-seq), a novel run-on technology that maps the location of RNA 

polymerase using virtually any frozen tissue sample, including samples with degraded 

RNA that are intractable to conventional RNA-seq. We used ChRO-seq to develop the 

first maps of nascent transcription in 23 human glioblastoma (GBM) brain tumors and 

patient derived xenografts. Remarkably, >90,000 distal enhancers discovered using the 

signature of eRNA biogenesis within primary GBMs closely resemble those found in the 

normal human brain, and diverge substantially from GBM cell models. Despite extensive 

overall similarity, 12% of enhancers in each GBM distinguish normal and malignant brain 

tissue. These enhancers drive regulatory programs similar to the developing nervous 

system and are enriched for transcription factor binding sites that specify a stem-like cell 

fate. These results demonstrate that GBMs largely retain the enhancer landscape 

associated with their tissue of origin, but selectively adopt regulatory programs that are 

responsible for driving stem-like cell properties.  

We developed Chromatin Run-On and sequencing (ChRO-seq), a new method to map 

RNA polymerases in whole cells or tissue samples (Fig. 1a). ChRO-seq avoids the difficulty in 

obtaining nuclei by optimizing a run-on reaction in easily pelleted chromatin fractions that 

contain enzymatically active RNA polymerase (see Methods).  The run-on incorporates a 

biotinylated nucleotide triphosphate (NTP) substrate into the existing nascent RNA that provides 

a high-affinity tag used to enrich nascent transcripts >10,000-fold5.  The biotin group effectively 

prevents the RNA polymerase from elongating after being incorporated into the 3’ end of the 

nascent RNA when performed in the absence of normal NTPs, thus enabling single-nucleotide 

resolution for the polymerase active site when sequenced from the 3’ end of the RNA7.   

We validated our approach by performing matched ChRO-seq and PRO-seq 

experiments in the human Jurkat T-cell leukemia line and observed highly correlated levels of 

RNA polymerase in the bodies of mRNA encoding genes (R= 0.98; Fig. 1b, Supplementary 

Fig. 1) and sites of promoter-proximal paused RNA polymerase II (Pol II) (R= 0.96; Fig. 1c). 

The microRNA MIR181 locus illustrates the advantages of ChRO-seq compared with other 

molecular assays (Fig. 1d).  Notably, both ChRO-seq and PRO-seq discovered the primary 

transcript encoding MIR181 as well as dozens of eRNAs that were not discovered using RNA-

seq (Fig. 1d), providing deep insight into genome regulation that could not be resolved from 

publicly available data even after the integration of three separate molecular assays (RNA-seq, 

DNase-I-seq, and H3K27ac ChIP-seq).  

Because RNA prepared from archival tissues is often highly degraded, such samples are 

poor candidates for genome-wide transcriptome analysis using RNA-seq.  The RNA 

polymerase-DNA complex is more stable than RNA15, suggesting that engaged polymerases 

may provide an avenue for producing new RNAs in archived samples.  We obtained a primary 
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glioblastoma multiforme (GBM) (grade IV, ID# GBM-88-04) that was stored in a tissue bank for 

30 years.  Bioanalyzer analysis confirmed that RNA was highly degraded in this sample, which 

achieved the lowest possible RNA integrity number (RIN = 1.0, Supplementary Fig. 2), thus 

precluding the application of RNA-seq methods optimized for degraded samples (requires RIN 

of 2-4).  To measure gene expression in this sample, we devised length extension ChRO-seq 

(leChRO-seq), a variant of ChRO-seq that uses transcriptionally-engaged RNA polymerases 

and a mix of biotinylated-NTP and normal NTPs to extend degraded nascent RNA transcripts 

(Fig. 1a).  Whereas libraries prepared without an extended run-on had a median insert size of 

20 bp, precisely the length of RNA protected from degradation by the polymerase exit channel16, 

run-on samples achieved a longer RNA length distribution that was better suited for mapping 

unique reads within the human genome (Fig. 1e).  Degrading RNA by pretreatment of chromatin 

with RNases in Jurkat T-cells was used to verify that leChRO-seq produced maps of 

transcription that are highly similar to those obtained using ChRO-seq (Supplementary Fig. 3a-

b).  Thus, leChRO-seq allows the robust interrogation of archival tissue samples which cannot 

be analyzed using standard genomic tools.   

Mapping transcriptional enhancers and their effect on gene expression using ChRO-seq 

has clear implications for understanding the basis of complex diseases.  We therefore set out to 

establish the utility of these tools in directly analyzing clinical isolates.  To complement the 

archival GBM, we collected ChRO-seq data from nonmalignant brain tissue and from 22 

additional GBM isolates: primary glioblastomas from 19 additional patients and passages of 

three patient derived xenografts (PDX) (Supplementary Table 1).  We sequenced each GBM 

to an average depth of 33 million reads per sample that were uniquely mapped to the hg19 

reference genome (10-150M reads/ sample).  leChRO-seq data was highly correlated between 

replicates, comprised of separate biopsies isolated from nearby regions, available for GBM-88-

04 and for the nonmalignant brain (Supplementary Fig. 3c-f).  Histopathology analysis of 

GBM-15-90 revealed hallmarks of a highly aggressive, grade IV malignant astrocytoma 

(Supplementary Fig. 4a-d).   Furthermore, ChRO-seq data revealed 3- to 84-fold changes in 

the transcription of GBM driver genes relative to nonmalignant brain tissue, such as EGFR (Fig. 

2a), which are previously reported inside somatic copy number alterations in GBM17,18.   

To evaluate intra-tumor heterogeneity, we performed intraoperative MRI guided 

neuronavigation techniques to dissect GBM-15-90 tissue from four tumor regions (Fig. 2b) 

corresponding to the inner mass with necrotic center (core), an area deep within the tumor mass 

inferior to the necrotic area (deep), a site proximal to the cortical surface superior to the necrotic 

site (cortex), and an actively infiltrating area at the genu of the posterior corpus callosum 

(corpus). ChRO-seq libraries in the four GBM regions tested were remarkably highly correlated, 

especially when compared to inter-tumor heterogeneity (Fig. 2b).   Transcription in the core was 

most similar to the other three parts of the tumor (Supplementary Fig 5), suggesting that the 

tumor originated within the core and grew outward radially, as expected.   

We focused initial analyses on gene and ncRNA transcription within the primary GBMs.  

Analysis of annotated genes demonstrated that GBMs from our cohort represent each of the 

four molecular subtypes previously reported in GBM19 (Fig. 2b,Supplementary Fig. 6).  Though 

most tumors primarily shared expression patterns with one dominant molecular subtype, several 

tumors in our cohort were similar with multiple subtypes, especially those matching classical 

and mesenchymal signatures, consistent with reports of cellular heterogeneity within the same 
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tumor20.  Globally, differential gene transcription analysis identified 1,343 transcriptional 

changes that distinguish all primary GBMs from multiple replicates of the nonmalignant brain 

sample (p < 0.01, DESeq221). Genes undergoing transcriptional differences in all GBMs were 

enriched in biological processes related to cell cycle (p = 5.20E-05, Bonferroni corrected 

Fisher’s exact test), DNA replication / metabolic processes (p = 3.07E-02 and 7.02E-03, 

Bonferroni corrected Fisher’s exact test), and developmental processes (p = 2.79E-02, 

Bonferroni corrected Fisher’s exact test).  For example, multiple transcription factors with a role 

specifying nervous system development were expressed more highly in nearly all tumors, 

including the HOX gene clusters and engrailed-1 and 2 (EN1 and EN2) (Fig. 2c, 

Supplementary Fig. 7).  We also discovered multiple ncRNAs whose transcription levels were 

changed reproducibly across tumors, including the primary transcription unit encoding MIR29A, 

AC016831.7, and PVT1 (Fig. 2c, blue), which confer growth advantages to U87 glioblastoma 

cells22–25. 

Both active promoters and enhancers, collectively called transcriptional regulatory 

elements (TREs), have a characteristic pattern of divergently-oriented paused RNA polymerase.  

Genome-wide run-on transcription assays are therefore a sensitive way to discover the location 

and activity of TREs, which overlap those defined by acetylation of histone 3 at lysine 27 

(H3K27ac)11–13.  We developed a novel algorithm to identify the precise location of active TREs, 

called dREG-HD, which takes PRO-seq or ChRO-seq data as input to identify TREs.  The 

dREG-HD algorithm improves the resolution of dREG12 by imputing smoothed DNase-I-seq 

signal intensity, and identifies sites initiating transcriptional activity with 80% sensitivity at >90% 

specificity (Supplementary Fig. 8).  dREG-HD recovered the nucleosome depleted region in 

histone modification ChIP-seq and MNase-seq data (Supplementary Fig. 9), demonstrating 

that it has substantially higher resolution compared with our dREG tool alone.    

The vast majority (96%) of TREs identified by dREG-HD in our 20 primary GBM samples 

were DNase-I hypersensitive in at least one of the 216 reference tissues analyzed by ENCODE 

or Epigenome Roadmap26,27 (Fig. 3a-b).  Rare enhancers provide a unique “fingerprint” for 

quantitatively evaluating the similarity between two samples28, and could be used to define the 

relationship between tumors and normal tissue.  We therefore developed a strategy that 

compares active enhancer landscapes obtained using dREG-HD with DHSs in 921 public 

datasets representing 216 reference tissues (see Online Methods).  Our strategy consistently 

discovered the expected cell lines (Supplementary Fig. 10), even identifying the expected 

genotype (GM12878) among all lymphoblastoid cell lines as the most similar to GM12878 PRO-

seq data (Supplementary Fig. 10b).  Remarkably, primary GBM samples have enhancer 

landscapes that are highly similar to normal brain reference samples, especially to samples 

derived from the cerebral cortex, and dissimilar to three different well-established GBM cell 

models (Fig. 3c, Supplementary Fig. 11).  In GBM-15-90, for instance, 86% of TREs were 

shared with primary brain tissue (Supplementary Fig. 12), which was greater similarity than 

observed in either GBM cell lines (62% TRE identity) or in vitro cultured primary brain cells 

(75%). 

 We asked whether contamination of the GBM with normal brain tissue explained the 

extensive similarity with normal brain reference samples.  To rigorously evaluate this hypothesis 

we used leChRO-seq data from three PDXs, in which primary GBMs were grown in a murine 

host.  In PDXs, murine cells replace both normal tissue and stroma29, and can be distinguished 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185991doi: bioRxiv preprint 

https://paperpile.com/c/86AD3M/hDSL
https://paperpile.com/c/86AD3M/VLBPz
https://paperpile.com/c/86AD3M/N8i0+HNHn+LsJ5+7hlR
https://paperpile.com/c/86AD3M/DrwcQ+3aDHP+tQ9zj
https://paperpile.com/c/86AD3M/tQ9zj
https://paperpile.com/c/86AD3M/f2nSI+PMpUX
https://paperpile.com/c/86AD3M/Ojsyr
https://paperpile.com/c/86AD3M/k44Dp
https://doi.org/10.1101/185991
http://creativecommons.org/licenses/by/4.0/


 

from tumor cells based on species-specific differences in DNA sequence.  Mutual information 

ranked all PDX samples as similar to the normal human brain and highly different from glioma 

model cell lines (Fig. 3c).  Consistent with this result, GBM cell lines were recognized correctly 

when a simulated mixture contained as little as 10-20% of any one of the three glioma lines and 

80-90% normal brain tissue (see Online Methods, Supplementary Fig. 13).  Normal brain 

contamination would therefore have to be higher than 80% to explain the observed differences 

between primary tumor and cell culture models, much more than the 15% estimated for a typical 

GBM30.  Thus, our results suggest that transformed GBM cells largely retain the enhancer 

signature associated with their cell of origin.  

Two models might explain differences in enhancer profiles between primary and cultured 

GBM cells. Differences might reflect either evolutionary changes in TREs as cancer cells adapt 

to in vitro tissue culture conditions, or differences in the cellular microenvironment between 

tissue culture and primary tumors.  To distinguish between these two models, we used TREs to 

cluster 20 primary GBMs, 3 PDXs, 8 normal brain tissues, 3 GBM cell lines, and 5 brain-related 

primary cell types which were dissociated from the brain and grown in vitro for a limited number 

of passages. This analysis supported two major clusters, one composed of normal brain and 

tumor tissues grown in vivo and the other of cells grown in vitro (Fig. 3d, Supplementary Fig. 

14).  Notably, PDX samples clustered with the primary brain samples, demonstrating that PDXs 

are a reliable model for many of the transcriptional features associated with primary tumors.  

That primary astrocytes passaged for a limited duration in tissue culture clustered with the GBM 

models strongly implicates the microenvironment in causing differences in the enhancer 

landscape of cells.   

We hypothesized that TREs which were transcribed in tumor tissue, but were not DHSs 

in the normal brain samples, control the malignant phenotype of the tumor.  Such tumor-

associated TREs (taTREs) comprised 12% of TREs in each tumor (range: 2-24%, Fig. 4a, 

Supplementary Table 2).  In contrast to TREs in the normal brain (nbTREs), the majority of 

these taTREs were distal to annotated transcription start sites, even those that were recurrently 

discovered across the majority of clinical samples in our cohort of primary GBMs (Fig. 4A, 

green line), suggesting that those which are functional are most likely distal enhancers.  A 

small number of taTREs were recurrently activated across multiple tumors.  For example, a 

taTRE ~12 kb downstream of the gene encoding the Engrailed 2 homeobox (EN2) was 

recurrently activated  in 13/ 23 tumors, likely reflecting the importance of this TRE in GBM 

biology (Supplementary Fig. 15). 

We developed a statistical test to identify which tissues shared unexpectedly high 

overlap with taTREs identified in each tumor (Supplementary Table 3) (see Online Methods).  

Unbiased hierarchical clustering of the taTREs between significant cell types revealed three 

regulatory programs that were enriched in the primary GBMs; one resembling a stem-like 

regulatory program, one associated with differentiated support cells, and a cluster of immune 

cells (Fig. 4b, Supplementary Fig. 16).  taTREs most strongly overlapped DHSs in fetal tissues 

of the nervous system (2.3-6.6-fold enrichment in 11/ 23 GBMs), especially spinal cord and 

brain, two fetal tissues derived from the neuroectoderm (Fig. 4b, see “Outlier tissues”).  We also 

found evidence for enrichment in additional developmental tissues, for example embryonic stem 

cells and other fetal tissues from a variety of germ layers, and for a number of terminally 

differentiated support cell lineages including astrocytes, endothelial cells, fibroblasts, and 
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osteoblasts (Fig. 4b).  We emphasize that activation of these separate transcriptional regulatory 

programs may reflect gene expression changes in subsets of cells within the tumor.  Whereas 

overlap between taTREs and fetal brain tissue likely reflects the activation of a regulatory 

program that promotes stem-like properties observed in a population of GBM cells31, overlap 

with astrocytes, endothelial cells, fibroblasts, or osteoblasts may capture tumor cells that have 

trans-differentiated into these lineages32,33. 

To identify transcription factors involved in maintaining each regulatory program, we 

classified the taTREs in each tumor sample into regulatory programs based on their cell type 

overlap, and searched for enriched binding motifs34.  We identified POU domain containing and 

SOX family transcription factors enriched in taTREs in the stem-like regulatory program of 57-

78% of tumors (Fig. 4c and Supplementary Fig. 17).  To verify that these enrichments reflect 

bona-fide binding of the predicted transcription factors, we obtained ChIP-seq data from 

cultured glioma neurospheres31.  As predicted, taTREs in the stem-like program were enriched 

in both ChIP-seq reads and peak calls for both POU3F2 and SOX2 (Supplementary Fig. 18 

and 19).  The differentiated support cell program was highly enriched for binding of activating 

protein 1, a heterodimer of the transcription factors FOS and JUN (JUND motif shown), as well 

as a motif strongly resembling heat shock factor 1 (HSF1) (Fig. 4c).  We also discovered 

several transcription factors that were enriched in taTREs in both fetal and differentiated 

regulatory programs, including STAT, SRF, and MEOX2.  Many of these motifs were enriched in 

only a subset of our cohort of tumors, typically 40-60%, suggesting that these transcription 

factors may contribute to inter-tumor heterogeneity in transcriptional regulation.  Taken together, 

we have identified taTREs that correlate with complex behaviors intrinsic to malignant cells, for 

instance the stem-like regulatory program that was shared with neuroectodermal tissue, and 

identified candidate transcription factors that contribute to each behavior. 

Mapping transcriptional enhancers and their effect on gene expression has clear 

implications for understanding the molecular basis of complex disease and designing targeted 

therapies.  The introduction of ChRO-seq extends the analysis of nascent transcription to 

virtually any sample that maintains the integrity of protein-DNA interactions – even those whose 

RNA is degraded.  Surprisingly, ChRO-seq revealed that malignant brain tissue largely retains 

enhancers that were DNase-I hypersensitive in the tissue of origin.  A rare population of ectopic 

enhancers resembled a stem-cell like regulatory program with particularly strong overlap 

compared with fetal tissues isolated from the nervous system, as well as overlap with 

differentiated support cells.  Our observations are the first to identify regulatory enhancers 

involved in the stem-like transformation directly from genomic analysis of primary tumors.  Using 

this information we identified key transcription factors that are likely to play a role in the 

specification of each regulatory program.  Notably, several of our predictions were consistent 

with other lines of experimental evidence, especially for transcription factors involved in 

maintaining stem-like properties of tumor propagating cells31. Our strategy can now be deployed 

to identify transcriptional regulatory programs that contribute to a myriad of solid tumors and 

other tissues which have proven challenging to study using existing epigenomic tools.    
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Online Methods:  
 

Cell culture 

  

Jurkat cells were grown in RPMI-1640 supplemented with 10% fetal bovine serum, 1X 

Penicillin/Streptomycin Antibiotic, 0.125 mg/ml Gentamicin Antibiotic at 37oC, 5% CO2. 1x106 

cells were centrifuged at 700 x g 4oC 5 min.  The media was removed and the cells were rinsed 

with 1X PBS, centrifuged, and PBS was removed.  

  

Tissue collection and preparation  

  

Glioblastoma-derived cells were prepared from freshly biopsied human tumors obtained with 

patient consent and approval by the Institutional Review Board at SUNY Upstate Hospital, 

Syracuse, NY.  To establish patient-derived xenografts, small pieces of freshly resected gliomas 

were implanted subcutaneously in the flank of athymic nude (nu/nu) mice (Harlan Laboratories / 

Envigo, Indianapolis,IN) and serially passaged (mouse-to-mouse) 3 times for PDX-UMU88-02, 7 

times for PDX-UMU89-08, and 57 times for PDX-88-04 p57, as previously described 35,36.  To 

prepare chromatin pellets tissue samples were pulverized in a cell crusher.  The Cellcrusher 

was chilled in liquid nitrogen.  Frozen glioblastoma tissue (~ 100 mg) was placed in the 

Cellcrusher, the pestle is placed into the Cellcrusher, and the pestle was stuck with the mallet 

until the tissue was fractured into a fine powder.  

  

Table of key reagents in chromatin isolation 

Chemicals  SOURCE  IDENTIFIER  

RPMI-1640  Corning  10-040-CV  

Fetal Bovine Serum (FBS) – Premium, Heat-

Inactivated  

Atlanta Biologicals   S11195H  

100X Penicillin/Streptomycin Antibiotic  Corning  30-002-CI  

50 mg/ml Gentamicin Antibiotic  Corning  30-005-CR  

MgAc2      

SUPERase In RNase Inhibitor   Life Technologies  AM2694  

Complete, EDTA-Free Protease Inhibitor 

Cocktail Tablet   

Roche  11 873 580 001  

Equipment  SOURCE  IDENTIFIER  

The Cellcrusher Tissue Pulverizer  Cellcrusher Limited  n/a  

accuSpin Micor 17R Benchtop Centrifuge  Fisher Scientific  13-100-676  

Diagenode Bioruptor  Diagenode   

Experimental Models: Cell Lines  SOURCE  IDNETIFIER  

Jurkat   ATCC   TIB-152  
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Experimental Models: Tissues  SOURCE  IDNETIFIER  

Human Glioblastoma  SUNY Upstate 

Medical Center  

n/a  

  

Chromatin isolation  

  

The chromatin isolation was based on work first described in ref37.  For chromatin (ChRO) 

isolation from cultured cells or tissue we added 1 ml of 1x NUN Buffer (0.3 M NaCl, 1M Urea, 

1% NP-40, 20 mM HEPES, pH 7.5, 7.5 mM MgCl2, 0.2 mM EDTA, 1 mM DTT, 20 units/ml 

RNase Inhibitor (Life Technologies # AM2694), 1X Protease Inhibitor Cocktail (Roche # 11 873 

580 001)).  Samples were vigorously vortexed for one minute.  An additional 500 µl of 

appropriate NUN Buffer was added to each sample and vigorously vortexed for an additional 30 

seconds.  For  length extension chromatin (leChRO) isolation from cultured cells or tissue we 

added 1 ml of 1x NUN Buffer, as described previously, spiked with 50 units/ml RNase Cocktail 

Enzyme Mix (Ambion # 2286) in place of the RNase Inhibitor.  The samples were incubated on 

ice for 30 minutes with a brief vortex every 10 minutes.  Samples were centrifuged at 12,500 x g 

at 4oC for 30 minutes after which the NUN Buffer was removed from the chromatin pellet.  The 

chromatin pellet was washed with 1 ml 50 mM Tris-HCl, pH 7.5 supplemented with 40 units/ml 

RNase Inhibitor (Life Technologies # AM2694), centrifuged at 10,000 x g, 4oC, for 5 minutes, 

and buffer discarded.  The chromatin was washed two additional times.  After washing, 100 µl of 

chromatin storage buffer (50mM Tris-HCl, pH 8.0, 25% Glycerol, 5mM MgAc2 , 0.1mM EDTA, 

5mM DTT, 40 units/ml RNase Inhibitor) was added to each sample.  The samples were loaded 

into the Bioruptor and sonicated using the following conditions: power setting on high, cycle time 

of ten minutes with cycle durations of 30 seconds on and 30 seconds off.  The sonication was 

repeated up to 3 times as needed to get the chromatin pellet into suspension.  Samples were 

stored at -80oC.  

  

Table of Key Reagents in ChRO-seq  

Chemicals  SOURCE  IDENTIFIER  

10 mM Biotin-11-CTP  Perkin Elmer  NEL542001EA  

10 mM Biotin-11-UTP   Perkin Elmer  NEL543001EA  

Ribonucleotide Solution Set  NEB  N0450S   

SUPERase In RNase 

Inhibitor   

Life Technologies  AM2694  

Trizol LS   Life Technologies  10296-010  

Trizol  Life Technologies  15596-026  

Chloroform   Fisher    BP1145 1  

GlycoBlue   Ambion (Thermo 

Fisher)  

AM9515  

T4 RNA Ligase 1 (ssRNA NEB  M0204L  
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Ligase)   

RNA 5' 

Pyrophosphohydrolase 

(RppH)   

NEB   M0356S  

T4 Polynucleotide Kinase 

(PNK)   

NEB   M0201L  

10 mM Adenosine 5'-

Triphosphate (ATP)   

NEB   P0756L  

SuperScript III Reverse 

Transcriptase   

Life Technologies  18080044  

100 mM Deoxynucleotide 

(dNTP) Solution Set   

NEB  N0446S  

Q5 High-Fidelity DNA 

Polymerase   

  

NEB   M0491L  

Adapters & Primers  SOURCE  SEQUENCE  

Reverse 3’ RNA Adaptor   

(Rev 3 – 6N)  

IDT  /5Phos/NNNNNNGAUCGUCGGACUGUAG

AACUCUGAAC  

/3InvdT/ (Note: 6N’s not in the original 

design)  

Reverse 5’ RNA adaptor 

(Rev5)  

IDT  5' CCUUGGCACCCGAGAAUUCCA 3'  

RNA PCR Primer 1 (RP1)   IDT  5' – 

AATGATACGGCGACCACCGAGATCTACA

CGTTCAGA  

GTTCTACAGTCCGA - 3'  

RNA PCR Primer, Index 1 

(RPI1)   

IDT  5' - 

CAAGCAGAAGACGGCATACGAGATCGT

GATGTGACTGGAG  

TTCCTTGGCACCCGAGAATTCCA - 3' 

(Bar Code Index #1 underlined)  

Equipment  SOURCE  IDENTIFIER  

Micro Bio-Spin P-30 Gel 

Columns, Tris Buffer, 

RNase-free   

Bio-Rad  732-6250  

  

Hydrophilic Streptavidin 

Magnetic Beads   

  

NEB  

  

S1421S  
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Mini-Tube Rotator   Fisher Scientific   05-450-127  

MagneSphere Technology 

Magnetic Separation Stand   

Promega   Z5342  

accuSpin Micro 17R 

Benchtop Centrifuge  

Fisher Scientific  13-100-676  

  

 

Chromatin Run-On and sequencing (ChRO-seq) library preparation  

  

After chromatin isolation, the chromatin run-on and sequencing library prep closely followed the 

methods described previously38.  Briefly chromatin from 1x106 Jurkat T-cells or 10-100 mg of 

primary glioblastoma or 100 mg of PDX in 100 µL chromatin storage buffer was mixed with 100 

µL of 2x chromatin run-on buffer (10 mM Tris-HCl pH 8.0, 5 mM MgCl2,1 mM DTT, 300 mM KCl, 

400 μM ATP (NEB # N0450S), 40 μM Biotin-11-CTP (Perkin Elmer # NEL542001EA), 400 μM 

GTP (NEB # N0450S), 40 μM Biotin-11-UTP (Perkin Elmer # NEL543001EA), 0.8 units/μl 

SUPERase In RNase Inhibitor (Life Technologies # AM2694), 1% Sarkosyl (Fisher Scientific # 

AC612075000)).  The run-on reaction was incubated at 37oC for 5 minutes.  The reaction was 

stopped by adding Trizol LS (Life Technologies # 10296-010) and pelleted with GlycoBlue 

(Ambion # AM9515) to visualize the RNA pellet.  The RNA pellet was resuspended in DEPC 

treated water and heat denatured at 65oC for 40 seconds.  In ChRO-seq, we digested RNA by 

base hydrolysis in 0.2N NaOH on ice for 8 minutes, which ideally yields RNA lengths ranging 

from 40 – 100 bases. This step was excluded from leChRO-seq.  Nascent RNA was purified by 

binding streptavidin beads (NEB # S1421S) and washed as described38.  RNA was removed 

from beads by Trizol and followed by the 3’ adapter ligation (NEB #  M0204L).  A second bead 

binding was performed followed by a 5’ de-capping with RppH (NEB #  M0356S). The 5’ end 

was phosphorylated using PNK (NEB # M0201L) followed by a purification with Trizol (Life 

Technologies # 15596-026).  A 5’ adapter was then ligated onto the RNA transcript.  A third 

bead binding was then followed by a reverse transcription reaction to generate cDNA (Life 

Technologies # 18080-044).  cDNA was then amplified (NEB # M0491L) to generate the ChRO-

seq libraries which were prepared based on manufacturer's’ protocol (Illumina) and sequenced 

using Illumina NextSeq500 at the Cornell University Biotechnology Resource Center.  

 

Mapping of ChRO-seq and leChRO-seq sequencing reads 

We used our publicly available pipeline to align ChRO-seq and leChRO-seq data 

(https://github.com/Danko-Lab/utils/tree/master/proseq).  Some libraries were prepared using 

adapters which contained a molecule-specific unique identifier (first 6 bp sequenced; denoted in 

Table 2), and for these we removed PCR duplicates using PRINSEQ lite 39.  Adapters were 

trimmed from the 3’ end of remaining reads using cutadapt with a 10% error rate 40.  Reads 

were mapped with BWA 41 to the human reference genome (hg19) plus a single copy of the Pol 

I ribosomal RNA transcription unit (GenBank ID# U13369.1).  The location of the RNA 

polymerase active site was represented by a single base which denotes the 3’ end (ChRO-seq) 
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or 5’ end (leChRO-seq) of the nascent RNA, which corresponds to the position on the 5’ or 3’ 

end of each sequenced read respectively.  Mapped reads converted to bigWig format using 

BedTools 42 and the bedGraphToBigWig program in the Kent Source software package 43.  

Downstream data analysis was performed using the bigWig software package, available from: 

https://github.com/andrelmartins/bigWig.  All data processing and visualization was done in the 

R statistical environment 44.   

 

Gene transcription activity quantification for ChRO-seq and leChRO-seq  

We quantified transcription activity of ChRO-seq and leChRO-seq data using gene annotations 

(GENCODE v25 lift 37). We counted reads in the interval between 500 bp downstream of the 

annotated transcription start site to the end of the gene for comparisons. This window was 

selected to avoid counting reads in the pause peak near the transcription start site. We limited 

analyses to gene annotations longer than 1,000 bp in length.  

 

Molecular subtype classification 

Transcription activity of characteristic genes for each GBM subtype (n = 23) were quantified by 

the methods described above. Reads count from each sample are normalized by reads per 

million total reads count, followed by log2 transformation of pseudo count (RPM normalized 

reads count+1). The similarity between each sample was measured by Spearman’s rank 

correlation, and clustered using single link clustering. The subtype score was calculated by 

Pearson correlation with the centroid of corresponding subtype reported by (n = 23).  

 

Differential expression analysis (DESeq2) 

Transcription activity of genes in each primary GBM /  non-malignant brain were quantified by 

the methods described above. Patients clustered in each dominant subtype were treated as 

biological replicates (Fig. 2b). Two technical replicates of non-malignant brain were used as 

control. Differential expression analysis was conducted using deSeq2 (Love et al., 2014) and 

differentially expressed genes were defined as those with a false discovery rate (FDR) less than 

0.05.   

 

dREG-HD 

Overview. We trained an epsilon-support vector regression (SVR) model that maps PRO-seq, 

GRO-seq, or ChRO-seq data to smoothed DNase-I-seq intensity values. Because dREG 

reliably identifies the location of transcribed TREs that are enriched for DHSs 12, with its primary 
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limitation being poor resolution, we limited the training and validation set to dREG sites.  The 

SVR was trained to impute DNase-I values of the positions of interest based on its input PRO-

seq data.  The trained SVR can then be used to predict DNase-I-seq signal intensities in any 

cell type for which PRO-seq data is available.  To identify the location of transcribed DNase-I 

hypersensitive sites (DHSs) we developed a heuristic method to identify local maxima in 

imputed DNase I-seq data. A detailed description of these tools is provided in the following 

sections. The source code for the R package of dREG-HD is available from 

https://github.com/Danko-Lab/dREG.HD.git. 

Training the dREG-HD support vector regression model. PRO-seq data was normalized by the 

number of mapped reads and was summarized as a feature vector consisting of  ±1800 bp 

surrounding each site of interest.  In total, 113,568 sites were selected, and were divided into 

80% for training and 20% for validation. Parameters for the feature vector (e.g., window size) 

were selected by maximizing the Pearson correlation coefficients between the imputed and 

experimental DNase-I score over the holdout validation set used during model training 

(Supplementary table 4). We fit an epsilon-support vector regression model using the e1071 R 

package, which is based on the libsvm SVM implementation.  

We optimized several tuning parameters of the model during training.  We tested various 

kernels, including linear, Gaussian, and sigmoidal. Only the Gaussian kernel was able to 

accurately impute the DNase-I profile. Experiments optimizing the window size and number of 

windows revealed that feature vectors with the same total length but different step size result in 

similar performance on the validation set, but certain combinations with fewer windows achieved 

much less run time in practice. The feature vector we selected for dREG-HD used non-

overlapping windows of 60bp in size and 30 windows upstream and downstream of each site, 

and resulted in near-maximal accuracy and short run times on real data.  To make imputation 

less sensitive to outliers, we scaled the normalized PRO-seq feature vector during imputation 

such that its maximum value is within the 90th percentile of the training examples. This 

adjustment makes the imputation less sensitive to outliers and improves the correlation and 

FDR by 4% and 2%, respectively.   

The optimized model achieved a log scale Pearson correlation with experimental DNase-I seq 

data integrated over 80bp non-overlapping windows within dREG regions of 0.66 at sites held 

out from the K562 dataset on which dREG-HD was trained and 0.60 in a GM12878 GRO-seq 

dataset that was completely held out during model training and parameter optimization 

(Supplementary Fig. 8b-c).   

Curve fitting and peak calling. The imputed DNase-I values were subjected to smoothing and 

peak calling within each contiguous dREG region. To avoid effects on the edge of dREG 

regions, we extended dREG sites by ±200bp on each side before peak calling.  We fit the 

imputed DNase-I signal using smoothing cubic spline. We defined a parameter, the knots ratio, 

to control the degree to which curve fitting smoothed the dREG-HD signal.  The degree of 

freedom (λ) of curve fitting for each extended dREG region was controlled by knots ratio using 

the following formula. 
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λ=({number of bp in dREG peak} / {knots ratio}) + 3 

This formulation allowed the equivalent degrees of freedom to increase proportionally to the 

length of the dREG peak size, but kept the value of the knots ratio higher than a cubic 

polynomial.   

Next we identified peaks in the imputed dREG-HD signal, defined as local maxima in the 

smoothed imputed DNase-I-seq profiles.  We identified peaks using a set of heuristics.  First, we 

identify local maxima in the dREG-HD signal by regions with a first order derivative of 0.  The 

peak is defined to span the entire region with a negative second order derivative. Because 

dREG-HD is assumed to fit the shape of a Guassian, this approach constrains peaks to occur in 

the region between ±σ for a Gaussian-shaped imputed DNase-I profile. We optimized curve 

fitting and peak calling over two parameters: 1) knots ratio and 2) threshold on the absolute 

height of a peak. Values of the two parameters were optimized over a grid to achieve a balance 

between sensitivity and false discovery rate (FDR). We chose two separate parameter 

combinations: one ‘relaxed’ set of peaks (knots ratio=397.4, and background threshold=0.02) 

that optimizes for high sensitivity (sensitivity=0.94 @ 0.17 FDR), and one stringent condition 

(knots ratio=1350 and background threshold=0.026) that optimizes for low FDR (sensitivity=0.79 

@ 0.07FDR).  

Validation metric and genome wide performance. We used genomic data in GM12878 and K562 

cell lines to train and evaluate the performance of dREG-HD genome-wide.  Specificity was 

defined as the fraction of dREG-HD peaks calls that intersect with at least one of the following 

sources of genomic data: Duke DNase-I peaks, UW DNase-I peaks, or GRO-cap HMM peaks.  

Sensitivity was defined as the fraction of true positives, or sites supported by all three sources of 

data that also overlapped with dREG. To avoid creating small peaks by an intersection 

operation, all data was merged by first taking a union operation and then by finding sites that 

are covered by all three data sources. All dREG-HD model training was performed on K562 

data. Data from GM12878 was used as a complete holdout dataset that was not used during 

model training or parameter optimization. 

Metaplots for dREG and dREG-HD. Metaplots were generated using the bigWig package for R 

with the default settings. This package used a subsampling approach to find the profile near a 

typical site, similar to ref45.  Our approach samples 10% of the peaks without replacement.  We 

take the center of each dREG-HD site and sum up reads by windows of size 20bp for total of 

2000 bp in each direction. The sampling procedure is repeated 1000 times, and for each 

window the 25% quartile (bottom of gray interval), median (solid line), and 75% quartile (top of 

tray interval) were calculated and displayed on the plot.  Data from all plots were generated by 

the ENCODE project 27. 

 

Data processing for calling DNase-I hypersensitive sites and dREG-HD sites 
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We reprocessed all DNase-I-seq data and identified DNase-I hypersensitive sites (DHSs) using 

a uniform pipeline.  We retrieved mapped reads from either ENCODE or Epigenome roadmap 

projects aligned to hg19.  We called peaks in individual biological replicates, 921 samples in 

total, using MACS2 46 and Hotspot. To group DHSs for each cell and tissue type with high 

confidence, we took the union of peaks (bedtools merge) from biological replicates followed by 

intersecting peaks called by Hotspot and MACS2. Lastly since peaks resulted from intersection 

may be too narrow and hence become missed during downstream intersection operations, we 

expanded all short peaks (<150bp) to 150bp from the peak center.  Analyses involving 

individual replicates, in Supplementary Fig.11 and 15, use only peaks called by MACS2.   

ChRO/leChRO-seq data was mapped to hg19 as described above. dREG score was 

thresholded at 0.7 to generate dREG peak regions for dREG-HD run. All dREG-HD runs were 

done at the stringent condition.  

Mutual information analysis 

We used mutual information to compare the similarity between TREs observed in any pair of 

DHS or dREG-HD datasets. DHSs or dREG-HD peaks of sample involved in the comparison 

were merged in order to construct a sample space in which two or more samples would be 

compared. Each dataset was then summarized as a random variable, represented by a zero-

one vector in which each element represents a TREs in the sample space, and takes a value of 

1 if it intersects with that peak and 0 otherwise. We calculated the mutual information between 

two random variables, X and Y, using the formula below: 

 

 

Comparison between tumor and reference brain tissues and cell lines  

We selected brain-related samples from uniformly processed DHSs and categorized the 

reference dataset by sample origin, namely normal adult brain tissues (globus pallidus, 

midbrain, frontal cortex, middle frontal gyrus, cerebellum and cerebellar cortex), primary brain 

cells (astrocyte of the hippocampus, astrocyte of the cerebellum, and normal human 

astrocytes), and GBM cell lines (A172, H54 and M059J). 

 

Mutual information heatmap and clustering analysis 

To compare the similarity between the dREG-HD sites in each query samples and DHSs in 

each reference samples (Fig. 3c), we computed the pairwise mutual information between each 

pair of dREG-HD and DHSs (as described above) on the sample space defined by merged 

peaks among all samples included in the analysis. We noted a systematic bias in the distribution 
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of mutual information across query samples that appeared to reflect data quality and 

sequencing depth in either ChRO-seq or DNase-I-seq data. To correct this bias, we normalized 

the mutual information of each query sample with respect to the sum of mutual information for 

that query sample.  

Among multiple samples normalizing the mutual information metric is more complicated.  We 

devised an approach that was used in Supplementary Fig. 14.  We consider a square matrix 

with rows and columns representing each sample.  Each element in this matrix represents the 

mutual information between a pair of samples.  Our objective is to center the mutual information 

across each row or column while preserving the rank order and range of mutual information.  

We accomplished this using the following algorithm, which is similar to 47, but guarantees 

symmetry: 

#matrix centering algorithm 

WHILE convergence criterion does not meet 

 FOR i from 1 to number of columns 

  current mean<-mean of ith column 

  ith row <- ith row - current mean 

  ith column <- ith column - current mean 

END FOR 

END WHILE  

The convergence criterion was defined as the maximum of the absolute value of element-wise 

difference between matrix returned from previous two consecutive runs. Although there is no 

mathematical guarantee of convergence, this approach converged typically after four cycles 

with the datasets that we used. After centering the matrix was clustered using the ward.D2 

clustering algorithm implemented in the heatmap function in R. 

 

TRE clustering analysis 

We analyzed the activation pattern across TREs, using the same definition of sample space 

described in the mutual information analysis (above). We assigned two states to each TRE, 

active if intersected dREG-HD/ DHS, and inactive if otherwise. The Jaccard distance was used 

to quantify the similarity between two samples or between two potential TREs. Clustering across 

samples (columns) and across TREs (rows) was done using ward.D2 method. To reduce the 

influence of noise on the clusters, we limited analysis to TREs that were activated in at least two 

query samples but less than 6 brain-related reference samples (16 samples in total). 
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Simulation of normal brain-contaminated sample 

To simulate a DHS dataset that mimics GBM cell lines with contamination from normal brain 

tissues, we created 9 pairs of cell / tissue combinations from 3 GBM cell lines (A172, H54 and 

M059J) and 3 normal brain tissues (globus pallidus, midbrain and frontal cortex). For each 

sample, mapped sequencing reads from either of the available biological replicates were 

pooled, and sampled at the frequency indicated to generate a range of contamination with 

normal brain, as indicated in Supplementary Fig. 15. After the simulated sample had been 

generated, DHSs were called using MACS2, and mutual information was calculated between 

the simulated mixture and all other samples as described above.  

 

 

 

taTRE enrichment test and clustering into regulatory programs 

 

taTREs were defined as TREs from primary GBM / PDX that do not intersect with any dREG-

HD peaks from our nonmalignant brain control nor with DHSs found in normal brain tissues 

(including globus pallidus, midbrain, frontal cortex, middle frontal gyrus, cerebellum and 

cerebellar cortex). These taTREs represent a stringent subset enriched for TREs associated 

with the malignant phenotypes observed in brain tumors.  dREG-HD sites or DHSs that 

overlapped with ENCODE consensus hg19 blacklist regions were excluded from analysis.  

 

The majority of taTREs intersected DHSs in one or more reference ENCODE and Epigenome 

Roadmap samples (Fig.3a). We devised a statistical test to determine whether the observed 

number of intersections with each reference sample is significantly higher than expected by 

chance. We generated a null distribution by sampling DHSs with replacement from all TREs 

found in reference samples, controlling for the distribution of uniqueness (i.e., the number 

reference samples which each taTRE intersects) of taTREs from a particular GBM / PDX.  The 

simulation was run for 105 times for each sample, each simulation drawing the same number of 

taTREs observed in that sample.  We selected tissues with a stringent statistical significance 

cutoff of p(Xnull > xobserved) ≤ 1/104.  Reference samples that showed significant enrichment in at 

least one third of (≥8) GBM or PDX were chosen as taTRE-associated references for 

downstream analysis.  

 

In total 50 significant taTRE-enriched reference samples were clustered by methods described 

in  the TRE clustering analysis section. Fold of enrichment was calculated as the xobserved / 

E[Xnull]. The dendrogram was cut down to three clusters. DHS regions that show up in more 

than half of reference samples in each cluster were picked as representative DHS driving a 

regulatory program that is characteristic for that cluster. taTREs overlapping these 

representative DHSs unique to each cluster were selected for downstream analysis.  

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185991doi: bioRxiv preprint 

https://doi.org/10.1101/185991
http://creativecommons.org/licenses/by/4.0/


 

 

Motif enrichment analysis 

Defining genomic regions for motif enrichment comparison. taTREs from the group indicated in 

the Fig.4a (positive set) were compared against normal brain TRE (background set). Normal 

brain TREs (nbTRE) were constructed from the dREG-HD sites that intersect with active DHSs 

peaks in the adult normal brain. For the positive and background sets we selected the center of 

peaks and then extended by 150bp from the center.  We subsampled background peaks to 

construct >2,500 GC-content matched TREs before scanning for motif enrichment. 

 

Motif enrichment analysis. We used the R package rtfbsdb to search for motifs that show 

enrichment in primary GBM and PDX 34. We focused on 1,964 human transcription factor 

binding motifs from the CisBP database 48 and clustered similar motifs using an affinity 

propagation algorithm into 622 clusters separately for each sample.  For each cluster, we 

selected the transcription factor with the highest expression value (measured from 

ChRO/leChRO-seq) in that sample to represent motifs for each cluster. After selecting motifs in 

each sample, we merged the set of motifs chosen in at least one sample. When scanning 

genomic regions of interest, we used TFBSs having a loge-odds score ≥10 in positive and 

background sets, with scores obtained by comparing each representative motif model to a third-

order Markov background model. Motif enrichment was tested using Fisher’s exact test with a 

Bonferroni correction for multiple hypothesis testing. To account for potential bias resulted from 

difference in GC-content between positive and background sets, we ran statistical test on 100 

independently subsampled GC-matched dREG-HD regions, and summarized the corrected p 

values by false discovery rate (FDR) using the fdrtool package in R 49, and fold of enrichment 

across background sets by the median across samples. Motifs that show enrichment in one of 

the 23 samples (all taTRE against all nbTRE) and were robust to changes in the GC matched 

background set FDR<0.02 were chosen for downstream analysis. 

 

Summarizing motif enrichment statistics across patients. To summarize motif enrichments 

across 23 patients in our cohort for each transcription module, we looked for the direction of 

change (i.e. enriched or depleted), and reported the percentage of patients and mean fold 

change across patients. To define the direction of change, we separately counted the number of 

patients with significantly enriched or depleted (FDR<0.2) change, and let the major trend 

represent the sign of the majority. In Fig.4c, we reported motifs that show a significant change 

in at least 50% of patients in at least one transcriptional regulatory module.  
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Fig. 1. ChRO-seq and leChRO-seq measure primary transcription in isolated chromatin. (a) Isolated
chromatin is incubated with biotinylated rNTPs, purified by streptavidin beads, and sequenced from the 3’ end.
leChRO-seq degrades existing RNA, extends nascent transcripts an average of 100 bp, and sequences RNAs
from the 5’ end. (b and c) Comparison between matched ChRO-seq and PRO-seq in annotated gene bodies
(b) or at the peak of paused Pol II (c). (d) Comparison between ChRO-seq (top three tracks), PRO-seq
(center), and H3K27ac ChIP-seq, DNase-I-seq, and RNA-seq (bottom). dREG-HD shows the raw signal for
dREG (gray) and imputed DNase-I hypersensitivity signal (dark red). (e) The distribution of read lengths from
ChRO-seq (blue) and leChRO-seq (pink) in a 30 year old primary GBM.
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genes.  Red square denotes four regions dissected from GBM-15-90. Sample order is based on 
single-link hierarchical clustering of the lower matrix, shown by the dendrogram. (c) Differential gene 
transcription of primary GBMs in each subtype compared with non-malignant brain. Genes of interest are 
highlighted. lncRNAs are highlighted in blue.
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Fig. 3. Comparison between TREs in primary GBM / PDX and reference DHSs. (a) Histogram 
representing the number of reference samples that have a DHS overlapping each dREG-HD site found 
in any of the 23 primary GBM / PDX samples. (b) Percentage of TREs >1kb from the nearest GEN-
CODE transcription start site.  (c) Mutual information between TREs in the indicated GBM and refer-
ence sample.  (d) Clustering of reference samples with primary GBM / PDX based on the activation of 
TRE. Activate TREs are marked in red; inactive ones are in white.
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Fig. 4. Tumor associated TREs (taTREs) activate three regulatory programs. (a) 2 to 24% of TREs in 
GBM samples are not found in normal adult brain tissues. The histograms show the distribution of the 
number of primary GBM patients (out of 20) in which each taTRE is active. The percentage of TREs >1kb 
from the nearest transcription start site (distal) is shown in green dots. (b) Barplots show the fold enrich-
ment of reference tissues in the corresponding GBM. Reference samples were grouped into three clus-
ters, representing stem-like (blue), immune (green), and differentiated (pink) regulatory programs. Error 
bars represent the standard error. Outliers with 6 times the standard error are highlighted.  (c) Transcrip-
tion factor binding motifs enriched in TREs in the indicated regulatory program compared with normal 
brain. Motifs are divided into four categories on the basis of their enrichment: differentiated program 
motifs, stem program-specific motifs, immune program-specific motifs, and those enriched in both multiple 
regulatory programs. The percentage of patients found significantly enriched/depleted for each regulatory 
program is represented by the radius of the circle and enrichment (red) or depletion (blue) are represented 
by the color.  
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