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Abstract

Collective cell spreading takes place in spatially continuous environments, yet it is often modelled

using discrete lattice-based approaches. Here, we use data from a series of cell proliferation assays,

with a prostate cancer cell line, to calibrate a spatially continuous individual based model (IBM)

of collective cell migration and proliferation. The IBM explicitly accounts for crowding effects by

modifying the rate of movement, direction of movement, and the rate of proliferation by accounting

for pair-wise interactions. Taking a Bayesian approach we estimate the free parameters in the IBM

using rejection sampling on three separate, independent experimental data sets. Since the posterior

parameter estimates from each experiment are similar, we combine the estimates. Performing simu-

lations with parameters sampled from the combined distribution allows us to confirm the predictive

power of the calibrated IBM by accurately forecasting the evolution of a fourth, experimental data

set. Overall, we show how to calibrate a lattice-free IBM to experimental data, and our work high-

lights the importance of interactions between individuals. Despite great care taken to distribute cells

as uniformly as possible experimentally, we find evidence of significant spatial clustering over short

distances, suggesting that standard mean-field models could be inappropriate.
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1. Introduction1

One of the most common in vitro cell biology experiments is called a cell proliferation assay2

(Bosco et al., 2015; Bourseguin et al., 2016; Browning et al., 2017). These assays are conducted by3

placing a monolayer of cells, at low density, on a two-dimensional substrate. Individual cells undergo4

proliferation and movement events, and the assay is monitored over time as the density of cells in5

the monolayer increases (Tremel et al., 2009). One approach to interpret a cell proliferation assay6

is to use a mathematical model. Calibrating the solution of a mathematical model to data from7

a cell proliferation assay can provide quantitative insight into the underlying mechanisms, by, for8

example, estimating the cell proliferation rate (Tremel et al., 2009; Sengers et al., 2007). A standard9

approach to modelling a cell proliferation assay is to use a mean-field model, which is equivalent10

to assuming that individuals within the population interact in proportion to the average popula-11

tion density and that there is no spatial structure, such as clustering, present (Tremel et al., 2009;12

Sengers et al., 2007; Maini et al., 2004b; Sarapata and de Pillis, 2014; Sherratt and Murray, 1990).13

More recently, increased computational power has meant that individual based models (IBMs) have14

been used to directly model the cell-level behaviour (Binny et al., 2016a; Frascoli et al., 2013; John-15

ston et al., 2014). IBMs are attractive for modelling biological phenomena because they can be used to16

represent properties of individual agents, such as cells, in the system of interest (Binny et al., 2016a,b;17

Frascoli et al., 2013; Peirce et al., 2004; Read et al., 2012; Treloar et al., 2013). Typical IBMs use18

a lattice, meaning that both the position of agents, and the direction of movement, are restricted19

(Codling et al., 2008). In contrast, lattice-free IBMs are more realistic because they enable agents to20

move in continuous space, in any direction. However, this extra freedom comes at the cost of higher21

computational requirements (Plank and Simpson, 2012).22

In this work we consider a continuous-space, continuous-time IBM (Binny et al., 2016b). This IBM23

is well-suited to studying experimental data from a cell proliferation assay with PC-3 prostate cancer24

cells (Kaighn et al., 1979), as shown in Figure 1(a)-(d). The key mechanisms in the experiments25

include cell migration and cell proliferation, and we note that there is no cell death in the experiments26

on the time scales that we consider. Therefore, agents in the IBM are allowed to undergo both27

proliferation and movement events. Crowding effects that are often observed in two-dimensional28
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cell biology experiments (Cai et al., 2007) are explicitly incorporated into the IBM as the rates of29

proliferation and movement in the model are inhibited in regions of high agent density. In this study30

we specifically choose to work with the PC-3 cell line because these cells are known to be highly31

migratory, mesenchymal cells (Kaighn et al., 1979). This means that cell-to-cell adhesion is minimal32

for this cell line, and cells tend to migrate as individuals. We prefer to work with a continuous-space,33

lattice-free IBM as this framework gives us the freedom to identically replicate the initial location34

of all cells in the experimental data when we specify the initial condition in the IBM. In addition,35

lattice-free IBMs do not restrict the direction of movement like a lattice-based approach.36

3
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Fig. 1: (a)-(c) Experimental data set 3 at t = 0, 12 and 36 hours. The position of each cell is identified with a
yellow marker. The field of view is a square of length 1440 µm. (d) Population size, N(t) for experimental data set 3.
(e)-(h) One realisation of the IBM with γb = 0 µm, leading to an overly clustered distribution of agents. (i)-(l) One
realisation of the IBM with γb = 4 µm, leading to a distribution of agents with similar clustering to the experimental
data. (m)-(p) One realisation of the IBM with γb = 20 µm, leading to an overly segregated distribution of agents. All
IBM simulations are initiated using the same distribution of agents as in (a), with m = 0.56 /hour, p = 0.041 /hour,
and σ = 24 µm.
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A key contribution of this study is to demonstrate how the IBM can be calibrated to experimental37

data. In particular, we use approximate Bayesian computation (ABC) to infer the parameters in38

the IBM. Four sets of experimental images (Supplementary material 1), each corresponding to an39

identically-prepared proliferation assay, are considered. The experiments were conducted over a40

duration of 48 hours, which is unusual because proliferation assays are typically conducted for no41

more than 24 hours (Browning et al.,2017). Data from the first three sets of experiments (Figure42

2) are used to calibrate the IBM and data from the fourth set of images is used to examine the43

predictive capability of the calibrated IBM. The IBM that we work with was presented very recently44

(Binny et al., 2016b). The description of the IBM by Binny et al. (2016b) involves a discussion of45

the mechanisms in the model and the derivation of a spatial moment continuum description (Binny46

et al.,2016b). IBMs are rarely calibrated to experimental data, and our current work is the first time47

experimental data has been used to provide parameter estimates for the new IBM.48

5
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Fig. 2: Summary statistics for experimental data sets 1, 2 and 3, shown in blue, red and green, respectively. (a)
Population size, N(t). (b) Pair correlation, P(t). Unprocessed experimental data are given in Supplementary material
documents 1 and 2.
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Taking a Bayesian approach, we assume that cell proliferation assays are stochastic processes,49

and model parameters are random variables, allowing us to update information about the model50

parameters using ABC (Collis et al., 2017; Tanaka et al., 2006). For this purpose we perform a large51

number of IBM simulations using parameters sampled from a prior distribution. Previous work,52

based on mean-field models, suggests that the proliferation rate and cell diffusivity for PC-3 cells is53

λ ≈ 0.05 /hour and D ≈ 175 µm2/hour, respectively (Johnston et al., 2015). The prior distribution54

for the IBM parameters are taken to be uniform and to encompass these previous estimates. We55

generate 106 realisations of the IBM using parameters sampled from the prior distribution, and accept56

1% of simulations that provide the best match to the experimental data. Our approach to connect57

the experimental data and the IBM is novel, we are unaware of any previous work that has used58

ABC to parameterise a lattice-free IBM of a cell proliferation assay.59

Applying the ABC algorithm to data from three sets of identically prepared experiments leads to60

three similar posterior distributions. This result provides confidence that the IBM is a realistic rep-61

resentation of the cell proliferation assays and leads us to produce a combined posterior distribution62

from which we use the mode to give point estimates of the model parameters. To provide further63

validation of the IBM, we use the combined posterior distribution and the IBM to make a predic-64

tion of the fourth experimental data set. Simulating the IBM with parameters sampled from the65

combined posterior distribution allows us to predict both the time evolution of the population size,66

N(t), and the pair correlation within a small neighbourhood of radius 50 µm, P(t), which provides a67

measure of spatial structure. These results indicate that the in silico predictions are consistent with68

the experimental observations.69

This manuscript is organised as follows. Sections 2.1-2.2 describe the experiments and the IBM,70

respectively. In Section 2.3 we explain how to apply the ABC algorithm to estimate the IBM pa-71

rameters. In Section 3 we present the marginal posterior distributions of the IBM parameters using72

data from the first three sets of experiments. The predictive power of the calibrated IBM is demon-73

strated by using the combined marginal posterior distributions to predict the fourth experimental74

data set. The predictive power of the calibrated IBM is compared with the standard mean-field lo-75

gistic equation (Murray, 2002). While both models can accurately predict N(t), the logistic equation76
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provides no information about the spatial structure in the experimental data. Finally, in Section 4,77

we conclude and summarise opportunities for further research.78

2. Material and methods79

2.1. Experimental methods80

We perform a series of proliferation assays using the IncuCyte ZOOMTM live cell imaging sys-81

tem (Essen BioScience, MI USA) (Jin et al., 2017). All experiments are performed using the PC-382

prostate cancer cell line (Kaighn et al., 1979). These cells, originally purchased from American Type83

Culture Collection (Manassas, VA, USA), are a gift from Lisa Chopin (April, 2016). The cell line is84

used according to the National Health and Medical Research Council (NHMRC) National statement85

on ethical conduct in human research with ethics approval for the QUT Human Research Ethics86

Committee (QUT HREC 59644, Chopin). Cells are propagated in RPMI 1640 medium (Life Tech-87

nologies, Australia) with 10% foetal calf serum (Sigma-Aldrich, Australia), 100 U/mL penicillin,88

and 100 µg/mL streptomycin (Life Technologies), in plastic tissue culture flasks (Corning Life Sci-89

ences, Asia Pacific). Cells are cultured in 5% CO2 and 95% air in a Panasonic incubator (VWR90

International) at 37 oC. Cells are regularly screened for Mycoplasma.91

Approximately 8,000 cells are distributed in the wells of the tissue culture plate as uniformly92

as possible. After seeding, cells are grown overnight to allow for attachment and some subsequent93

growth. The plate is placed into the IncuCyte ZOOMTM apparatus, and images showing a field of94

view of size 1440 × 1440 µm are recorded every 12 hours for a total duration of 48 hours. An example95

of a set of experimental images is shown in Figure 1(a)-(c), while images from the other three data96

sets are provided in Supplementary material 1.97

Experimental images are recorded at five time points, at intervals of 12 hours, giving t′ =98

0, 12, 24, 36 and 48 hours. Comparing the evolution of N(t′) in Figure 2(a) shows the number of99

cells in some experiments do not increase appreciably during the first 12 hours. This suggests that100

the cells may experience a settling phase, so some time is required for the cells to commence normal101

proliferation (Tremel et al., 2009; Jin et al., 2017). Therefore, we treat the image at t′ = 12 hours102

as the first image after the settling phase, and shift time, t = t′ − 12 hours. Therefore, excluding103
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the first experimental image at t′ = 0 hours, we have images recorded at four time points after the104

settling time, t = 0, 12, 24 and 36 hours.105

2.2. Mathematical model106

2.2.1. Individual based model107

We consider an IBM describing the proliferation and movement of individual cells (Binny et al., 2016a,b).108

Since cell death is not observed in the experiments, the IBM does not include agent death. The IBM109

allows the net proliferation rate and the net movement rate of agents to depend on the spatial110

arrangement of other agents. To be consistent with previous experimental observations, the IBM111

incorporates a biased movement mechanism so that agents tend to move away from nearby crowded112

regions (Cai et al., 2007). We use the IBM to describe the dynamics of a population of agents113

on a square domain of length L = 1440 µm to match the field-of-view of the experimental data114

(Figure 1(a)-(c)). Agents in the model are treated as a series of points which we may interpret115

as a population of uniformly-sized discs with diameter σ = 24 µm (Supplementary material 1).116

Each agent has location xn = (x1, x2), for n = 1, ..., N(t). Since the field-of-view of each image117

is much smaller than the size of the well in the tissue culture plate, we apply periodic boundary118

conditions [16].119

Proliferation and movement events occur according to a Poisson process over time (Binny et al., 2016b).120

The nth agent is associated with neighbourhood-dependent rates, Pn ≥ 0 and Mn ≥ 0, of prolifer-121

ation and movement, respectively. These rates consist of intrinsic components, p > 0 and m > 0,122

respectively. Crowding effects are introduced by reducing the intrinsic rates by a contribution from123

other neighbouring agents. These crowding effects are calculated using a kernel, w(·)(r), that depends124

on the separation distance, r ≥ 0, so that125

Pn = max

0, p−
N(t)∑
i6=n

w(p)(r)

 , (1)

Mn = max

0,m−
N(t)∑
i6=n

w(m)(r)

 . (2)

Following Binny et al.,(2016), we specify the kernels to be Gaussian with width corresponding to the126

9
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cell diameter, σ, giving127

w(p)(r) = γp exp

(
− r2

2σ2

)
, (3)

w(m)(r) = γm exp

(
− r2

2σ2

)
. (4)

Here, γp is the value of w(p)(0) and γm is the value of w(m)(0). These parameters provide a measure128

of the strength of crowding effects on agent proliferation and movement, respectively. The kernels,129

w(p)(r) and w(m)(r), ensure that the interactions between pairs of agents separated by more than130

roughly 2-3 cell diameters lead to a negligible contribution. For computational efficiency, we truncate131

the Gaussian kernels so that w(p)(r) = w(m)(r) = 0, for r ≥ 3σ (Law et al., 2003).132

To reduce the number of unknown parameters in the IBM, we specify γp and γm by invoking an133

assumption about the maximum packing density of the population. Here we suppose that the net134

proliferation and net movement rates reduce to zero when the agents are packed at the maximum135

possible density, which is a hexagonal packing (Figure 3(a)). For interactions felt between the nearest136

neighbours only (Figure 3(b)), we obtain137

γp =
p

6
exp

(
1

2

)
, (5)

γm =
m

6
exp

(
1

2

)
, (6)

which effectively specifies a relationship between γp and p, and between γm and m. Note that this138

assumption does not preclude a formation of agents in which some pairs have a separation of less139

than σ and densities greater than hexagonal packing, which can occur by chance.140
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(a) (b)

Fig. 3: (a) Hexagonal packing of uniformly sized discs. The focal agent (red) is surrounding by six nearest neighbouring
agents (blue), and twelve next nearest neighbouring agents (green). (b) Hexagonal packing around a focal agent (red)
showing the six nearest neighbours only.
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When an agent at xn proliferates, the location of the daughter agent is selected by sampling141

from a bivariate normal distribution with mean xn and variance σ2 (Binny et al., 2016b). Since142

mesenchymal cells in two-dimensional cell culture are known to move with a directional movement143

bias away from regions of high density (Cai et al., 2007), we allow the model to incorporate a bias144

so that the preferred direction of movement is in the direction of decreasing agent density. For145

simplicity, the distance that each agent steps is taken to be a constant, equal to the cell diameter, σ146

(Plank and Simpson, 2012).147

To choose the movement direction, we use a crowding surface, B(x), to measure the local crowd-148

edness at location x, given by149

B(x) =

N(t)∑
i=1

w(b)(‖x− xi‖). (7)

The crowding surface is the sum of contributions from every agent, given by a bias kernel, w(b)(r).150

The contributions depend on the distance between x and the location of the ith agent, xi, given by151

r = ‖x − xi‖. Again, we choose w(b) to be Gaussian, with width equal to the cell diameter, and152

repulsive strength, γb ≥ 0, so that153

w(b)(r) = γb exp

(
− r2

2σ2

)
, (8)

where γb is value of w(b)(0), and has dimensions of length. Note that B(x) is an increasing function154

of local density, and approaches zero as the local density decreases. A typical crowding surface is155

shown in Figure 4(b) for the arrangement of agents in Figure 4(a).156
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Fig. 4: (a) Example distribution of agents on a 1 × 1 periodic domain. (b) Level curves of the corresponding crowding
surface, B(x), for this arrangement of agents. The arrows show the preferred direction of movement, Bn. To illustrate
how the direction of movement is chosen, (c) shows the probability density of the von Mises distribution for the red
and green agents highlighted in (a) and (b). The preferred direction, arg(Bn), is shown as dotted vertical lines for
both agents. The red agent is in a crowded region so ‖Bn‖ is large, meaning that the agent is likely to move in the
preferred direction arg(Bn). The green agent is in a low density region and ‖Bn‖ is small, meaning that the bias
is very weak and the agent’s direction of movement is almost uniformly distributed. To illustrate the effects of the
crowding surface as clearly as possible, we set γb = 1, σ = 0.1, L = 1 in this schematic figure to draw attention to the
gradient of the crowding surface.
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To determine the direction of movement we use the shape of B(x) to specify the bias, or preferred157

direction, of agent n, Bn, given by158

Bn = −∇B(xn), (9)

which gives the magnitude and direction of steepest descent. Results in Figure 4(b) show Bn for159

the arrangement of agents in Figure 4(a). To determine the direction of movement, we consider160

the magnitude and direction of Bn, and sample the actual movement direction from a von Mises161

distribution, von Mises(arg(Bn), ‖Bn‖) (Binny et al., 2016b; Forbes et al., 2011). Therefore, agents162

are always most likely to move in the direction of Bn, however as ‖Bn‖ → 0, the preferred direction163

becomes uniformly distributed.164

To illustrate how the direction of movement is chosen, we show, in Figure 4(b), the bias vector165

for each agent, Bn. Note that Bn does not specify the movement step length, and the direction of Bn166

does not necessarily specify the actual direction. Rather, arg(Bn) specifies the preferred direction.167

To illustrate this property, we highlight two agents in Figure 4(a). The red agent is located on a168

relatively steep part of the crowding surface, so ‖Bn‖ is large. The green agent is located on a169

relatively flat part of the crowding surface, so ‖Bn‖ is close to zero. Figure 4(c) shows the von Mises170

distributions for the red and green agent. Comparing these movement distributions confirms that171

the crowded red agent is more likely to move in the direction of Bn. The bias is weak for the green172

agent, so the direction of movement is almost uniformly distributed since ‖Bn‖ is smaller.173

IBM simulations are performed using the Gillespie algorithm (Gillespie, 1977). To initialise each174

simulation we specify the initial number and initial location of agents to match to the experimental175

images at t = 0 hours (Supplementary material 1) for experimental data sets 1, 2, 3 and 4. In all176

simulations we set σ = 24 µm and L = 1440 µm. The remaining three parameters, m, p and γb, are177

varied with the aim of producing posterior distributions using a Bayesian framework.178

If γm = γb = 0, and the variance of the dispersal distribution is large, the IBM corresponds179

to logistic growth (Binny et al.,2016b, Browning at al. 2017). Under these simplified conditions, a180

uniformly distributed initial population of agents will grow, at rate p, to eventually reach a uniformly181

distributed maximum average density of p/(2πγpσ
2
p). We do not consider this case here as our initial182

distribution of cells in the experiments is clustered, and so the logistic growth model is, strictly183

14
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speaking, not valid (Binny et al.,2016b).184

2.2.2. Summary statistics185

To match the IBM simulations with the experimental data we use properties that are related186

to the first two spatial moments (Law et al., 2003). The first spatial moment, the average density,187

is characterised by the number of agents in the population, N(t). The second spatial moment188

characterises how agents are spatially distributed, and is often reported in terms of a pair correlation189

function (Binny et al., 2016a,b; Law et al., 2003). In this work we consider the pair correlation within190

a distance of δr, given by191

P(t) =

L2
N(t)∑
i=1

N(t)∑
j=1
j 6=i

I‖xi−xj‖≤δr

N(t)2πδr2
, (10)

where I is an indicator function so that the double sum in Equation (10) gives twice the number of192

distinct pairs within a distance δr, which we set to be 50 µm. Therefore, P(t) is the ratio of the193

number of pairs of agents, separated by a distance of less than 50 µm, to the expected number of194

pairs of agents separated by a distance of less than 50 µm, if the agents were randomly distributed.195

This means that, P(t) = 1 corresponds to randomly placed agents; P(t) > 1 corresponds to a locally196

clustered distribution; and, P(t) < 1 corresponds to a locally segregated distribution.197

2.3. Approximate Bayesian computation198

We consider m, p and γb as random variables, and the uncertainty in these parameters is updated199

using observed data (Collis et al., 2017; Tanaka et al., 2006). To keep the description of the inference200

algorithm succinct, we refer to the unknown parameters as Θ = 〈m, p, γb〉.201

In the absence of any experimental observations, information about Θ is characterised by specified202

prior distributions. The prior distributions are chosen to be uniform on an interval that is wide enough203

to encompass previous estimates of m and p (Johnston et al., 2015). To characterise the prior for204

γb, we note that this parameter is related to a length scale over which bias interactions are felt.205

Preliminary results (not shown) use a prior in the interval 0 ≤ γb ≤ 20 µm and suggest that a narrow206

prior in the interval 0 ≤ γb ≤ 10 µm is appropriate. In summary, our prior distributions are uniform207
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and independent, given by208

π(m) = U(0, 10) /hour, (11)

π(p) = U(0, 0.1) /hour, (12)

π(γb) = U(0, 10) µm. (13)

We always summarise data, X, with a lower-dimensional summary statistic, S. Data and summary209

statistics from the experimental images are denoted Xobs and Sobs, respectively. Similarly, data210

and summary statistics from IBM simulations are denoted Xsim and Ssim, respectively. Information211

from the prior is updated by the likelihood of the observations, π(Sobs|Θ), to produce posterior212

distributions, π(Θ|Sobs). We employ the most fundamental ABC algorithm, known as ABC rejection213

(Liepe et al., 2014; Tanaka et al., 2006), to sample from the approximate posterior distribution. The214

approximate posterior distributions are denoted πu(Θ|Sobs).215

In this work we use a summary statistic that is a combination of N(t) and P(t) at equally spaced216

intervals of duration 12 hours. A discrepancy measure, ρ(Sobs, Ssim), is used to assess the closeness217

of Sobs and Ssim,218

ρ(Sobs, Ssim) =
3∑
j=1

(
[Nsim(12j)−Nobs(12j)]2

Nobs(12j)2
+

[Psim(12j)− Pobs(12j)]2

Pobs(12j)2

)
. (14)

Algorithm 1 is used to obtain 106u samples, {Θi}10
6u

i=1 , from the approximate joint posterior219

distribution, πu(Θ|Sobs), for each data set. Here, u� 1 is the accepted proportion of samples.220

Algorithm 1 ABC rejection sampling algorithm to obtain 106u samples from the approximate
posterior distribution, πu(Θ|Sobs).

1: Set σ = 24 µm, L = 1440 µm, and set xn to match experimental data Xobs at t = 0.
2: Draw parameter samples from the prior Θi ∼ π(Θ).
3: Simulate cell proliferation assay with Θi and t ≤ 36 hours.
4: Record summary statistic Ssimi

= {Nsim(12j),P(12j)}3j=1, where j is an index that denotes the
three observation time points, t = 12, 24 and 36 hours.

5: Compute the discrepancy measure εi = ρ(Sobs, Ssimi
), given in Equation 14.

6: Repeat steps 2-5 until 106 samples {Θi, εi}10
6

i=1 are simulated.
7: Order {Θi, εi}10

6

i=1 by εi such that ε1 < ε2 < ....
8: Retain the first 1% (u = 0.01) of prior samples Θi, as posterior samples, {Θi}10

6u
i=1 .
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To present and perform calculations with posterior samples, we use a kernel density estimate to221

form approximate marginal posterior distributions, for each parameter, and each data set using the222

ksdensity function in MATLAB (Math- works, 2017). This is done by treating the components223

of the joint posterior samples as samples from each marginal distribution. The ksdensity function224

gives a discrete distribution for each marginal posterior, with grid spacing ∆m = 0.01, ∆p = 0.0001225

and ∆γb = 0.01, for m, p and γb, respectively. This discretisation ensures that the marginal posterior226

densities are approximated using 1000 equally spaced values across the prior support.227

2.3.1. Generating and sampling from the combined posterior distribution228

The marginal posterior distributions for each parameter are similar for each independent exper-229

imental data set. Therefore, we combine the marginal posterior distributions for each independent230

experimental data set to obtain a combined posterior distribution. If the approximate marginal pos-231

terior distribution for m is πu(m|S(k)
obs), where S

(k)
obs is the summary statistic from the kth experimental232

data set, then the combined marginal posterior distribution for m is233

πu(m|{S(k)
obs}

3
k=1) ∝

3∏
k=1

πu(m|S(k)
obs). (15)

Combined marginal posterior distributions for p and γb are calculated similarly.234

To test the predictive power of the calibrated IBM, we sample parameters from the combined235

joint posterior distribution by sampling each parameter separately from the corresponding combined236

marginal posterior distributions. This approach amounts to assuming that m, p and γb are inde-237

pendent random variables, and we will make a comment on the validity of this assumption later.238

For m, we generate a discrete combined posterior distribution, πu(m|{S(k)
obs}3k=1), using the kernel-239

density estimate for each data set and Equation (15). This gives a discrete distribution with bin240

width ∆m = 0.01, where each bin is denoted by an index, l = 0, 1, ..., and has probability density241

πu(l∆m|{S(k)
obs}3k=1). If m is uniformly distributed within each bin, we apply Algorithm 2 to obtain242

104 samples. Repeating this process in a similar way to gives 104 samples for both p and γb.243
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Algorithm 2 Rejection sampling algorithm for sampling from the combined approximate posterior
distribution, πu(m|{S(k)

obs}3k=1).

1: Set ∆m = 0.01, mmax = 10, which is the upper limit of the prior support.
2: Set maximum density ν = maxπu(m|{S(k)

obs}3k=1).
3: Sample proposal bin index l∗ from {0, ...,mmax/∆m− 1}.
4: Sample r1 ∼ U(0, ν).

5: If r1 < πu(l∗∆m; {S(k)
obs}3k=1), accept l∗, else repeat steps 3-5.

6: Sample the location within the chosen bin, mi ∼ U(l∗∆m, (l∗ + 1)∆m).
7: Repeat steps 3-6 until 104 samples, {mi}10

4

i=1, are obtained.

2.3.2. Predicting experimental data set 4 using the combined posterior distribution244

We sample 104 parameter sets, {Θi}10
4

i=1, from the combined posterior distribution,245

πu(Θ|{S(k)
obs}3k=1). Using these samples, we simulate the IBM initialised with the actual initial ar-246

rangement of cells in data set 4 at t = 0. For each parameter combination Ssim is recorded at 12 hour247

intervals, and used to construct distributions of N(t) and P(t). These distributions are represented248

as box plots and compared with summary statistics from experimental data set 4.249

3. Results and discussion250

To qualitatively illustrate the importance of spatial structure we show, in rows 2-4 of Figure 1,251

snapshots from the IBM with different choices of parameters. In each case the IBM simulations252

evolve from the initial condition specified in Figure 1(a). Results in the right-most column of Figure253

1 compare the evolution of N(t) and we see that the parameter combination in the second row254

underestimates N(t), the parameter combination in the fourth row overestimates N(t), and the255

parameter combination in the third row produces a reasonable match to the experimental data. A256

visual comparison of the spatial arrangement of agents in rows 2-4 of Figure 1 suggests that these257

different parameter combinations may lead to different spatial structures. This illustration of how258

the IBM results vary with the choice of parameters motivates us to use ABC rejection to estimate the259

joint distribution of the parameters. To do this we will use summary statistics from three identically260

prepared, independent sets of experiments. The summary statistics for these experiments, N(t) and261

P(t), are summarised in Figure 2, and tabulated in Supplementary material 1.262

The approximate marginal posterior distributions for m, p and γb are shown in Figure 5(a)-(c),263

respectively, for experimental data sets 1, 2 and 3. There are several points of interest to note. In264
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each case, the posterior support is well within the interior of the prior support, suggesting that our265

choice of priors is appropriate. An interesting feature of the marginal posterior distributions for all266

parameters is that there is significant overlap for each independent experimental data set. There is267

some variation in the mode between experimental data sets, for each parameter, which is expected268

under the assumption that cell proliferation assays are stochastic processes.269
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Fig. 5: (a)-(c) Kernel-density estimates of the approximate marginal posterior distributions for each data set, for pa-
rameters m, p and γb, respectively, with u = 0.01. The combined posterior distribution (black), given by Equation (15),
is superimposed. The modes of the combined marginal posterior distributions are m = 0.56 /hour, p = 0.041 /hour
and γb = 4.0 µm. All distributions are scaled so that the area under the curve is unity.
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Since the marginal posterior distributions for each experimental data set overlap, we produce a270

combined marginal posterior distribution for each parameter using Equation (15). The combined271

marginal posterior distributions are superimposed, and the mode is given by 0.56 /hour, 0.041 /hour272

and 4.0 µm for m, p and γb, respectively. These estimates of p and m give a cell doubling time of273

ln(2)/p ≈ 17 hours, and a cell diffusivity of approximately 320 µm2/hour, which are typical values274

for PC-3 cells at low density [18, 15]. All results in the main document correspond to retaining the275

top 1% of samples (u = 0.01) and additional results (Supplementary material 1) confirm that the276

results are relatively insensitive to this choice.277

To assess the predictive power of the calibrated IBM, we attempt to predict the time evolution278

of a separate, independently collected data set, experimental data set 4, as shown in Figure 6(a)-(d).279

We use the mode of the combined posterior distribution and the initial arrangement of agents in280

experimental data set 4 to produce a typical prediction in Figure 6(e)-(h). Visual comparison of281

the experimental data and the IBM prediction suggests that the IBM predicts a similar number of282

agents, and a similar spatial structure, with some clustering present. To quantify our results, we283

compare the evolution of N(t) in Figure 6(i) which reveals an excellent match. Furthermore, we284

predict the evolution of P(t) in Figure 6(j) confirming similar trends. The quality of match between285

the predicted distribution of N(t) and P(t) supports our assumption that m, p and γb can be treated286

as independent random variables as posited in Section 2.3. Although the predicted decay in P(t) is287

not as rapid as in the experimental data. There are many potential explanations for this, including288

the choice of summary statistics, and assumption relating p and γp, and m and γm.289

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/186197doi: bioRxiv preprint 

https://doi.org/10.1101/186197


(a) t = 0 hours t = 12 hours(b) t = 24 hours(c) t = 36 hours(d)

(e) t = 0 hours (f) t = 12 hours (g) t = 24 hours (h) t = 36 hours

(j)

P
(t

)

0

3

0 12 24 36

Time (hours)

Data set 4
Model prediction

(i)

N
(t

)

0

1500

0 12 24 36

Time (hours)

D
a

ta
 s

e
t 
4

Fig. 6: (a)-(d) Experimental images for data set 4. The position of each cell is identified with a yellow marker. The
field of view is a square of length 1440 µm. (e)-(h) One realisation of the IBM with parameters corresponding to the
posterior mode: m = 0.56 /hour, p = 0.041 /hour and γb = 4.0 µm, with the same initial arrangement of agents as in
(a). (i) N(t) for the experimental data (purple) and the IBM prediction (dashed black). (j) P(t) for the experimental
data (purple) and the IBM prediction (dashed black).
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In addition to examining a single, typical realisation of the calibrated model, we now examine a290

suite of realisations of the calibrated IBM, and compare results with experimental data set 4. The291

suite of IBM realisations is obtained by sampling from the joint posterior distribution. Results in292

Figure 7(a) compare N(t) from experimental data set 4 with distributions of N(t) from the suite of293

IBM simulations, showing an excellent match. The spread of the distributions of N(t) increases with294

time, which is expected. Results in Figure 7(b) compare the evolution of P(t) from experimental295

data set 4 with distributions of P(t) from the suite of IBM simulations, showing the predicted296

distributions of P(t) overlap with the experimental data. Overall, the quality of the match between297

the prediction and the experimental data is high, as the prediction captures both qualitative and298

quantitative features of the data.299
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Fig. 7: (a)-(b) Predictive distributions for N(t) and P(t), respectively, generated using the IBM. 104 parameter
samples were taken from the combined posterior distribution, and a model realisation produced for each sample,
initiated as in Figure 6(a). Box plots show the distribution of N(t) and P(t) across these realisations in (a) and
(b), respectively. (c)-(d) Show the equivalent predictive distributions as box plots, using the same procedure for the
mean-field logistic growth model. The procedure and kernel-density estimates of the marginal distributions for the
mean-field logistic model are outlined in Supplementary material 1.
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To illustrate the importance of considering spatial structure in the IBM, we also calibrate the300

solution of the classical mean-field logistic equation (Murray, 2002) to experimental data sets 1, 2301

and 3. The logistic equation is given by302

dN(t)

dt
= λN(t)

(
1− N(t)

Nmax

)
, (16)

where λ is the cell proliferation rate and Nmax is the maximum number of agents (Murray, 2002;303

Jin et al., 2017). Following a similar procedure (Supplementary material 1), we use ABC rejection304

to form combined posterior distributions of λ and Nmax. The modes of the combined posterior305

distributions are λ = 0.036 /hour and Nmax = 4017. This estimate leads to a doubling time of306

approximately 19 hours, which is slightly longer than the doubling time predicted using the calibrated307

IBM. We then examine a suite of solutions to Equation (16), where we sample from the joint posterior308

distribution for λ and Nmax. The predicted distribution of N(t) is compared with experimental data309

set 4 in Figure 7(c), revealing an excellent match. However, implicit in the logistic equation is the310

mean-field assumption, which amounts to ignoring spatial structure. Therefore, the logistic equation311

effectively predicts P(t) = 1 for all t > 0, which clearly is unable to match the spatial structure312

inherent in the experiments, as demonstrated in Figure 7(d). Overall, both calibrated models are313

able to predict the evolution of N(t) over 36 hours. However, the logistic model is unable to describe,314

or predict, any information relating to spatial structure in the arrangement of cells. The differences315

in the way that the logistic model and the IBM treat interactions between individuals could explain316

why the calibration process leads to different estimates of the low density cell proliferation rates, λ317

and p. These differences affirm that the interactions between individuals at different spatial scales318

appear to be important for our experimental data.319

4. Conclusions320

In this work we explore how to connect a spatially continuous IBM of cell migration and cell prolif-321

eration to novel data from a cell proliferation assay. Previous work parameterising IBM models of cell322

migration and cell proliferation to experimental data using ABC have been restricted to lattice-based323

IBMs (Johnston et al., 2014). This is partly because ABC methods require large numbers of IBM324
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simulations, and lattice-based IBMs are far less computationally expensive than lattice-free IBMs325

(Plank and Simpson, 2012). We find it is preferable to work with a lattice-free IBM when dealing326

with experimental data as a lattice-based IBM requires approximations when mapping the distribu-327

tion of cells from experimental images to a lattice (Johnston et al., 2014; Johnston et al., 2016). This328

mapping can be problematic. For example, if multiple cells in an experimental image are equally329

close to one lattice site, ad hoc assumptions have to be introduced about how to arrange those cells330

on the lattice without any overlap. These issues are circumvented using a lattice-free method.331

To help overcome the computational cost of using ABC with a lattice-free IBM, we introduce332

several realistic, simplifying assumptions. The IBM originally presented by Binny et al. (2016b)333

involves 12 free parameters, which is a relatively large number for standard inference techniques.334

The model is simplified by noting that our experiments do not involve cell death, and specifying the335

width of the interaction kernels to be constant, given by the cell diameter. Another simplification is336

given by assuming that crowding effects reduce the proliferation and movement rates to zero when337

the agents are packed at the maximum hexagonal packing density. This leads to a simplified model338

with three free parameters: m, p and γb. Using ABC rejection, we arrive at posterior distributions for339

these parameters for three independent experimental data sets. The marginal posterior distributions340

for the three parameters are similar, leading us to combine the marginal posterior distributions. The341

mode of the combined posterior distributions for m and p are consistent with previous parameter342

estimates (Johnston et al., 2015) and the mode for γb is consistent with previous observations that343

mesenchymal cells in this kind of two-dimensional experiment tend to move away from regions of344

high cell density (Cai et al., 2007).345

In the field of mathematical biology, questions about how much detail to include in a mathe-346

matical model, and what kind of mathematical model is preferable for understanding a particular347

biological process are often settled in an ad hoc manner, as discussed by Maclaren et al. (2015). Our348

approach in this work is to use a mathematical model that incorporates just the key mechanisms,349

with an appropriate number of unknown parameters. Other approaches are possible, such as using350

much more complicated mathematical models that describe additional mechanisms such as: (i) de-351

tailed information about the cell cycle in individual cells (Fletcher et al., 2012); (ii) concepts of leader352
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and follower cells (Kabla, 2012); (iii) explicitly coupling cell migration and cell proliferation to the353

availability of nutrients and growth factors (Tang at al., 2014); or (iv) including mechanical forces354

between cells (Stichel at al., 2017). However, we do not include these kinds of detailed mechanisms355

because our experimental data does not suggest that these mechanisms are relevant to our situa-356

tion. Furthermore, it is not always clear that using a more complicated mathematical model, with357

additional mechanisms and additional unknown parameters, necessarily leads to improved biological358

insight. In fact, simply incorporating additional mechanisms and parameters into the mathematical359

model often leads to a situation where multiple parameter combinations lead to equivalent predic-360

tions which limits the usefulness of the mathematical model (Simpson et al., 2006). In this study,361

our approach is to be guided by experimental data and our ability to infer the parameters in a math-362

ematical model based on realistic amounts of experimental data (Maclaren et al. 2015). In particular363

we use three experimental data sets to calibrate the IBM, and an additional data set to separately364

examine the predictive capability of the calibrated IBM. We find that the process of calibrating the365

IBM leads to well defined posterior distributions of the model parameters, and that the calibrated366

IBM produces a reasonable match to the experimental data. The process of calibrating the IBM,367

and then separately testing the predictive capability of the calibrated IBM, provides some confidence368

that the level of model complexity is appropriate for our purposes.369

An interesting feature of our approach is that the ABC marginal posterior distributions for each370

parameter overlap for each independent experimental data set. This is reassuring as it suggests371

that the same IBM mechanism matches the three independent experimental data sets using similar372

parameters. Another approach would be to use ABC to parameterise the IBM by matching all373

the experimental data sets simultaneously. Although this alternative approach is valid, it does not374

allow us to examine whether the parameter estimates are consistent across the three independent375

experiments. Additional confidence in the calibrated IBM is provided by predicting the evolution of376

a fourth independent experimental data set by performing IBM simulations with parameters sampled377

from the combined marginal posterior distributions.378

An interesting feature of all experimental data at early time, when the cell density is relatively379

low, is that the pair correlation measure suggests that the cells are clustered at short intervals, and380
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that this clustering becomes less pronounced with time. This observation is very different to the way381

that previous theoretical studies have viewed the role of spatial structure. For example, previous382

simulation-based studies assume that some initial random spatial arrangement of cells can lead to383

clustering at later times (Baker and Simpson, 2010). In contrast, our experimental data suggests it384

could be more realistic to consider that the spatial structure is imposed by the initial arrangement385

of cells. Moreover, since all of our experimental data involves some degree of spatial clustering,386

our work highlights the importance of using appropriate models to provide a realistic representation387

of key phenomena. Almost all continuum models of collective behaviour in cell populations take388

the form of ordinary differential equations and partial differential equations that implicitly invoke a389

mean-field assumption (Tremel et al., 2009; Sengers et al., 2007; Maini et al., 2004b; Sarapata and390

de Pillis, 2014; Sherratt and Murray, 1990). Such assumptions ignore the role of spatial structure.391

While pair-wise models that avoid mean-field assumptions are routine in some fields, such as disease392

spreading (Sharkey et al., 2006; Sharkey, 2008) and ecology (Law et al., 2003), models that explicitly393

account for spatial structure are far less common for collective cell behaviour.394

Using our parameter estimates, the continuum spatial moment description could be used to inter-395

pret experimental data sets with larger numbers of cells (Binny et al., 2016b), such as experimental396

images showing a wider field-of-view, or experiments initiated with a higher density of cells. Our397

approach to estimate the parameters in the model is to work with the IBM since this allows us more398

flexibility in connecting with the experimental data, such as choosing the initial locations of the399

agents in the IBM to precisely match the initial locations of cells in the experimental images.400

There are many ways that our study could be extended. For example, here we choose a sum-401

mary statistic encoding information about the first two spatial moments. However, other summary402

statistics may provide different insight, and it could be of interest to explore the effect of this choice.403

For example, here we describe the spatial structure over a relatively short spatial interval, approxi-404

mately 2σ. It could be of interest to repeat our analysis with a wider interval, however this would405

incur additional computational costs. Another approach to extend our work would be to repeat the406

inference procedure without making any assumptions relating p and γp, and m and γm. Such an407

approach would be more computationally expensive and probably require additional experimental408
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data. Therefore, we leave these topics for future consideration.409
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