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Abstract1

Some phylogenetic datasets omit data matrix positions at which all taxa share the same state.2

For sequence data this may be because of a focus on single nucleotide polymorphisms (SNPs)3

or the use of a technique such as restriction site-associated DNA sequencing (RADseq) that4

concentrates attention onto regions of differences. With morphological data, it is common to5

omit states that show no variation across the data studied. It is already known that failing to6

correct for the ascertainment bias of omitting constant positions can lead to overestimates of7

evolutionary divergence, as the lack of constant sites is explained as high divergence rather8

than as a deliberate data selection technique. Previous approaches to using corrections to the9

likelihood function in order to avoid ascertainment bias have either required knowledge of10

the omitted positions, or have modified the likelihood function to reflect the omitted data. In11

this paper we indicate that the technique used to date for this latter approach is a conditional12

maximum likelihood (CML) method. An alternative approach — unconditional maximum13

likelihood (UML) — is also possible. We investigate the performance of CML and UML14

and find them to have almost identical performance in the phylogenetic SNP dataset context.15

We also make some observations about the nucleotide frequencies observed in SNP datasets,16

indicating that these can differ systematically from the overall equilibrium base frequencies of17

the substitution process. This suggests that model parameters representing base frequencies18

should be estimated by maximum likelihood, and not by empirical (counting) methods.19

Introduction20

Leaché et al. (2015) considered likelihood methods that are available for the phylogenetic21

analysis of single nucleotide polymorphism (SNP) data sets, i.e. nucleotide (nt) sequence22

alignments in which any constant sites have been omitted. (Note that the term ‘constant site’23

is used to mean one in which no differences are apparent amongst the sequences collected, and24

not to suggest that substitution cannot ever occur there.) Starting with an equivalent situation25

in the analysis of restriction sites (Felsenstein, 1992), then with SNP data (Kuhner et al.,26
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2000), morphological data (Lewis, 2001) and most recently with restriction site-associated1

DNA sequencing (RADseq; Baird et al., 2008; Seeb et al., 2011; Peterson et al., 2012), it2

has been clear that omitting such sites is a form of ascertainment bias. Analyzing only variable3

sites, without correction, can lead to overestimation of branch lengths and biases in phylogeny4

inference (Lewis, 2001; Leaché et al., 2015).5

Leaché et al. (2015) investigated three likelihood methods for correcting for the omission of6

constant sites. The first, developed by Felsenstein (1992) and Lewis (2001) and denoted lewis7

by Leaché et al. (2015), uses a conditional likelihood and does not explicitly consider the8

number of constant sites missing from the data set. The second, described by Kuhner et al.9

(2000) and denoted felsenstein by Leaché et al. (2015), uses a ‘reconstituted likelihood’10

requiring the total number of constant sites to be known, but does not consider their partitioning11

into constant-A, -C, -G or -T sites. The third method (stamatakis: Leaché et al., 2015)12

again uses reconstituted likelihood, now requiring knowledge of the exact numbers of each of13

the four different constant site patterns. The result of this approach is necessarily exactly the14

same as analyzing the original data set, with no sites omitted.15

The felsenstein and stamatakis methods can be used in cases where data (constant16

sites) are omitted but the numbers of such sites are known — situations that are unlikely to17

arise with modern data recording techniques. Situations with unknown amounts of omitted18

data are more frequent, and warrant further attention. In this paper we place the lewismethod19

into a more-general likelihood inferential framework and derive a new method for estimating20

parameters (e.g. tree topologies, branch lengths and substitution model parameters), as well as21

the number of omitted sites in the case that this is not known. The new method performs almost22

identically to the lewis method, and we explore the reasons for this. Lastly, we make some23

observations about the effect that SNP data (i.e. missing observations of constant sites) have on24

observed base frequencies.25
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Methods1

Using a slightly different notation from Leaché et al. (2015) to describe the inference problem,2

we assume a total of n observations (SNP or non-constant sites), of which ni correspond to3

pattern (possible alignment column) i; if we observe l different patterns, then n =
∑l

i=1 ni.4

(Sums and products are generally over i = 1, . . . , l throughout this paper; for simplicity we5

omit these limits when there is no ambiguity.) For a SNP data set, we do not observe the6

constant-A, -C, -G or -T patterns; we write the unobserved number of these as m, and the total7

number of sites (observed and unobserved) as n + m = N . Such data sets are described as8

truncated (Blumenthal, 1981).9

To complete the description, we need a model describing the probabilities of occurrence of10

both the observed and unobserved patterns. As usual in likelihood-based phylogenetics, we11

will assume that an underlying tree structure with branch lengths is to be estimated, along with12

any free parameters of a substitution model such as JC69 (Jukes and Cantor, 1969), HKY8513

(Hasegawa et al., 1985) etc. Representing all the unknowns as the multidimensional parameter14

θ, this model defines probabilities pj = pj(θ) for every possible pattern j; it is these pj that15

are usually calculated using Felsenstein’s pruning algorithm (Felsenstein, 1973, 1981). Note in16

particular that pj is defined for all possible j, including the unobserved constant patterns and17

any patterns that happen not to have occurred in a given data set. It is useful to write c = c(θ)18

for the total probability of occurrence of a constant site, i.e. c =
∑

j∈C pj , where C is the set19

containing the four constant patterns constant-A, -C, -G and -T.20

The truncated data likelihood function LT (θ) is21

LT (θ) =
∏
i

pni
i (1)22

Maximizing LT (θ) over the model parameters θ gives their maximum likelihood (ML)23

estimates, θ̂T , based on the truncated data. However, as shown by Lewis (2001) and Leaché24

et al. (2015), for SNP data sets the omission of the constant characters can cause serious25

estimation biases.26

4
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The problem of estimating θ (and N ) in these circumstances was described by Sanathanan1

(1972). Following that paper, we consider the complete likelihood including the contribution2

of the m omitted constant sites:3

L(N, θ) =
N !

(N − n)!
∏

i ni!
cN−n

(∏
i

pni
i

)
(2)4

or, equivalently,5

L(m, θ) =
(n+m)!

m!
∏

i ni!
cmLT (θ) (3)6

Note that this retains the combinatorial component (n + m)!/m!
∏

i ni!. In typical ML7

problems, where all the data are observed, the corresponding term can be omitted as it is a8

constant and plays no part in the maximization over θ (Edwards, 1972) — hence its omission9

from eqn. 1. However, in the truncated data case this is not true: different (inferred) values ofm10

will cause the term to vary and its contribution to the likelihood cannot be ignored. Although11

it is unusual to infer the amount of (unobserved) data using ML, there is no reason why we12

should not be able to do so.13

Notice that the likelihood can also be written as L(m, θ) = L1(m, θ)L2(θ) where14

L1(m, θ) =
(n+m)!

n!m!
(1− c)ncm (4)15

and16

L2(θ) =
n!∏
i ni!

∏
i

(
pi

1− c

)ni

=
n!

(1− c)n
∏

i ni!
LT (θ) (5)17

L1 is the likelihood based on the probability of n, and L2 is the likelihood based on the18

conditional probability of the ni given n (Sanathanan, 1972).19

Conditional ML: Sanathanan (1972) describes two approaches to estimatingm and θ (see also20

Blumenthal, 1981). The first is the method of conditional ML (CML), in which the conditional21

likelihood L2(θ) (eqn. 5) is maximized over θ to find ML model parameter estimates θ̂C . (Note22

that the combinatorial term n!/
∏

i ni! is constant and does not affect the inference.) This23

corresponds to precisely the method of Felsenstein (1992) and Lewis (2001), and is equivalent24

5
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to maximizing logLC(θ) over θ, where1

logLC(θ) = logLT (θ) + δC(θ) (6)2

and δC(θ) = −n log(1−c(θ)) is the log-likelihood ‘correction’ term that changes the truncated3

data set problem into the CML problem.4

In the phylogenetics context we may only be interested in the inferred tree and associated5

parameters θ̂C . If required, however, an estimate of the number of unobserved constant6

sites comes from maximizing L1(m, θ̂C) over m to find m̂C . Sanathanan (1972) shows that7

m̂C = bnĉC/(1− ĉC)c where ĉC = c(θ̂C) is the CML estimator of c and b.c indicates the floor8

function (i.e. bxc is the greatest integer ≤ x).9

The CML version of the SNP data set phylogeny problem is implemented in RAxML v.810

(Stamatakis, 2014), invoked using the --asc-corr=lewis option (Leaché et al., 2015).11

Unconditional ML: The second approach described by Sanathanan (1972) is uncondi-12

tional ML (UML), in which the full likelihood L(m, θ) (eqn. 3) is maximized simultaneously13

over both m and θ. We denote the corresponding inferred values by m̂U and θ̂U .14

For any fixed value θ∗, optimization of L(m, θ∗) over m (eqn. 3) is analogous to optimizing15

L1(m, θ
∗) over m (eqn. 4) and is achieved when m̂∗ = bnc∗/(1 − c∗)c (Sanathanan, 1972).16

Substituting m∗(θ) = bnc(θ)/(1 − c(θ))c into eqn. 3 and recalling that the ni are constant17

means the UML problem becomes one of maximizing logLU(θ) over θ, where18

logLU(θ) = logLT (θ) + δU(θ) (7)19

and δU(θ) = log(n+m∗(θ))!− logm∗(θ)!+m∗(θ) log c(θ) is the correction term that changes20

the truncated problem into the UML problem.21

Sanathanan (1972, 1977) proves that m̂U < m̂C and ĉU < ĉC , and that the asymptotic22

distributions of (m̂C , θ̂C) and (m̂U , θ̂U) are the same. In other words, as the amount of data23

collected increases, the CML and UML estimators will give arbitrarily close estimates of the24

6
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numbers of unobserved constant sites and model parameters. However, the approaches do not1

necessarily lead to equally good estimates given finite amounts of data.2

Results and Discussion3

CML and UML both perform well: We implemented the CML and UML methods for the4

SNP data set phylogeny problem in order to compare their performance. We modified the5

baseml software (Yang, 2007) so that for each candidate value of θ we first compute c(θ)6

and m∗(θ) and then use these with the truncated log-likelihood function logLT (θ) to compute7

logLC(θ) and logLU(θ) as in eqns. 6 and 7.8

We simulated sequence data on the 10-taxon topology studied by Leaché et al. (2015). To create9

a range of realistic simulation scenarios, we scaled the tree to various lengths (scaling factors10

of 0.25, 0.5, 1, 2 and 4, giving tree lengths of 0.08, 0.16, 0.31, 0.62 and 1.24, respectively) and11

used a variety of alignment sizes (N = 500, 1000, 2500, 5000) under the JC69 model. After12

simulation, all constant site patterns were discarded. The probability of occurrence of constant13

sites ranged from 93% to 30% (c = 0.93, 0.86, 0.74, 0.54, 0.30 for scaling factors 0.25, 0.5, 1,14

2, 4, respectively). For more extreme cases, inspired by population resequencing studies, we15

also considered scaling factors 0.03–0.21, giving rise to tree lengths 0.009–0.065 and c from16

0.99–0.94, with N = 100000.17

Lower scale factors lead to smaller trees and thus result in fewer variable (SNP) sites on18

which to base inference. Our simulations cover a range, from unobserved constant sites being19

rare (e.g. distantly related species, or sequencing strategies such as RADseq giving strong20

enrichment for variable sites) to common (e.g. closely related organisms). Our most extreme21

scenario (c = 0.99) resembles what might be observed with SNP data sets from population22

sequencing studies.23

We used the CML and UML correction methods to re-estimate model parameters using only24

the variable sites from the simulated datasets, assuming knowledge of the true topology. We25

repeated this procedure with data simulated under the HKY85 model with moderate transition/26

7

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 9, 2017. ; https://doi.org/10.1101/186478doi: bioRxiv preprint 

https://doi.org/10.1101/186478


transversion rate and nucleotide bias (κ = 2, πT = 0.1, πC = 0.2, πA = 0.3, πG = 0.4). In1

all cases, we found that estimates of branch lengths, tree length and other model parameters2

were almost identical with CML and UML. Figs. 1 and 2 illustrate this with a variety of results3

summarized from 100 simulations in each scenario; other results (not shown) all confirm these4

findings.5

Why are CML and UML almost the same? Clearly, this is because in every case studied,6

the maximal values of logLC(θ) and logLU(θ) are attained at very similar values of θ. As7

these likelihoods differ only in the terms δC(θ) and δU(θ), we would like to study how these8

vary with θ. However, as this represents a complex multidimensional parameter (Yang et al.,9

1995), it is difficult to visualize likelihoods as θ varies over candidate solutions. To simplify10

our investigation, we give an illustration using a single JC69 simulation with the 10-taxon tree11

of Leaché et al. (2015) with scaling factor 1 and N = 1000 alignment sites simulated before12

removal of constant patterns. For these data, we found the truncated likelihood-optimal branch13

lengths θ̂T and the CML-optimal branch lengths θ̂C , and focus attention on values of θ formed14

by interpolating between θ̂T and θ̂C and extrapolating this range beyond θ̂T and θ̂C . This gives15

a one-dimensional subspace which includes both θ̂T and θ̂C . Fig. 3 shows values of logLT (θ)16

(eqn. 1), logLC(θ), δC(θ) (eqn. 6), logLU(θ) and δU(θ) (eqn. 7) for these values of θ, with the17

x-axis simultaneously labelled by the corresponding values of c(θ) and m∗(θ) .18

Firstly, note the truncated likelihood (indicated by the solid black line) is maximized at a value19

of θ suggesting far too few omitted constant sites (c(θ̂T ) = 0.3 and m∗(θ̂T ) = 100, whereas the20

true values of c andm∗ for this simulation are 0.743 and 743, respectively). This corresponds to21

a tree that is too divergent. The correction terms δC(θ) and δU(θ) (dashed blue and orange lines,22

respectively), while very different in absolute value, have very similar gradients. Consequently,23

when they are added to logLT (θ) to form logLC(θ) and logLU(θ) (solid blue and orange lines,24

respectively), these likelihoods have maxima at very similar values of θ (with c(θ̂C) and c(θ̂U)25

equal to 0.69, and m(θ̂C) and m(θ̂U) ≈ 570). In brief, the effects of the corrections δC(θ) and26

δU(θ) in the optimization of logLC(θ) and logLU(θ) are indeed very similar.27

It is not the absolute values of δC and δU that are critical to the difference between θ̂C and28

8
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θ̂U , but how they vary in the regions of the CML and UML optima. Further analysis might1

consider the derivatives of δC and δU with respect to θ, but in the SNP phylogeny question this2

is complicated by the non-standard form of the topology parameter θ (Yang et al., 1995) and3

by the factorial and floor functions in δU . However, δC and δU only depend on θ through the4

probability of constant patterns c(θ) and so an alternative approach is to consider the relative5

variation of δC and δU as c varies. In particular, if δC(c1)− δC(c0) and δU(c1)− δU(c0) are very6

similar for any c0 ≈ c1 (and in particular near to c(θ̂C) and c(θ̂U)), then the CML and UML7

correction terms will have similar effects on the optimizations of logLC and logLU , leading to8

similar CML and UML estimates.9

Indeed, it can be shown (omitted for brevity) that if c0 and c1 are chosen to be similar, such that10

the corresponding values m∗0 and m∗1 satisfy m∗1 = m∗0 + 1, then11

[δC(c1)− δC(c0)]− [δU(c1)− δU(c0)] ≈
(1− c0)2

2nc0
(8)12

This represents a measure of the difference between the gradients dδC/dm and dδU/dm13

(Fig. 3); since it scales as 1/n, δC(θ) and δU(θ) will be expected to have very similar effects14

for reasonably large values of n, which will be the case for most phylogenetic problems.15

Base frequencies can behave unexpectedly in SNP datasets: While analyzing simulated16

datasets as described above, we noticed the observed frequencies of nucleotides A, C, G and T17

in the HKY simulations did not always match the corresponding model parameters. We realized18

this is because in those models where different nucleotides have different substitution rates,19

the constant-A, -C, -G and -T site patterns have different probabilities of occurrence. As a20

consequence, the observed frequencies of A, C, G and T amongst the constant site patterns21

omitted from SNP datasets, and amongst the SNP patterns retained for analysis, will differ from22

the model parameter values. This is illustrated in Fig. 4, using the HKY simulation scenario23

described above.24

As a consequence, it may be advisable to estimate base frequencies using ML rather than the25

simple counting (empirical) method when working with SNP data (Goldman, 1993). We have26

9
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used this approach throughout this paper.1

Conclusions2

In all of our analyses of simulated data using the CML and UML approaches for removing3

ascertainment bias from SNP datasets, we have found virtually no difference in the results4

obtained. We explain this by observing that the different approaches’ respective correction5

terms δC and δU behave very similarly in their effects (Fig. 3). This has further been supported6

by our analysis of the gradients of δC and δU , which confirms their similarity for plausible7

phylogenetic scenarios and data quantities. Although we have not investigated tree topology8

estimation, the near-identical results of CML and UML for estimation of other parameters,9

including branch lengths, lead us to think it very unlikely that they could behave differently10

for topology estimation. We therefore conclude that it is of little importance which of these11

methods is used in practice in phylogenetic studies. The CML method is widely available via12

the --asc-corr=lewis option of RAxML (Stamatakis, 2014; Leaché et al., 2015).13

We note in passing that the observed base frequencies in SNP datasets can differ systematically14

from the corresponding substitution model parameters, due to bias in the frequency with which15

constant-nucleotide site patterns arise and are thus omitted. A simple solution to this should be16

to use ML to estimate these parameters (Goldman, 1993).17
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Figure 1: Branch length estimates under various JC69 simulation scenarios. Within each row,
scenarios have the same number of sites simulated (N , i.e. before constant sites were removed);
within columns, the same tree length scaling factor. Graphs show the mean and 5–95%-ile
range for each of the 17 branch length estimates plotted against the true value, derived from
100 simulations. CML results are shown in blue; UML in orange. The two methods’ results
are essentially indistinguishable.
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Figure 2: Parameter estimates (means and 5–95%-ile ranges from 100 simulations in each case)
under various simulation scenarios. A: Branch length estimates from JC69 simulations with
scaling factor 0.03 (tree length 0.09; c = 0.99) and N = 100000. B: Parameter estimates from
HKY85 simulations. Left column: N = 100000, c from 0.99–0.94; right column: N = 1000, c
from 0.93–0.30. Graphs show estimates of overall tree length (top), κ (middle) and nucleotide
frequencies (bottom) for various tree length scaling scenarios. Colours etc. as for Fig. 1. Again,
CML and UML give essentially the same results.
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Figure 3: Likelihoods and correction terms in a single simulation case. From bottom to top,
plots show LT (θ) (solid black line), LC(θ) (solid blue), LU(θ) (solid orange), δC(θ) (dashed
blue) and δU(θ) (dashed orange). The x-axis is labelled with the values of c(θ) and m∗(θ)
corresponding to the range of branch length parameters θ described in the text. Locations of
θ̂T , θ̂C and θ̂U are indicated by vertical dotted lines.
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Figure 4: Base frequencies observed with SNP datasets. A: As the 10-taxon tree used
throughout this study is scaled from a length of 0 to increasingly large branch lengths, the
proportion of constant sites (top, black) falls to 0; the component proportions of constant-A,
-C, -G and -T patterns falls from their equilibrium values to 0. B: Conditional on observing a
constant pattern, the proportions of nucleotides A, C, G and T vary as the tree size increases.
(Note that these proportions need not vary monotonically, as observed for the constant-C
patterns in this example.) C: Conditional on observing a non-constant (SNP) pattern, the
observed base frequencies also differ from the model parameters for shorter tree lengths.
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