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Since chronological age is not a complete and accurate indicator of organism aging, the concept
of biological age has emerged as a well-accepted way to quantify the aging process in humans
and laboratory animals. In this study, we performed a systematic statistical evaluation of the
relationships between locomotor activity and biological age, mortality risk, and frailty using human
physical activity records from the 2003-2006 National Health and Nutrition Examination Survey
(NHANES) and UK BioBank (UKBB) databases. These records are from subjects ranging from 5
to 85 years old and include 7-day long continuous tracks of activity provided by wearable monitors as
well as data for a comprehensive set of clinical parameters, lifestyle information and death records,
thus enabling quantitative assessment of frailty and mortality. We proposed a statistical description
of the locomotor activity tracks and transformed the provided time series into vectors representing
individual physiological states for each participant. Using this data, we performed an unsupervised
multivariate analysis and observed development and aging as a continuous trajectory consisting of
distinct phases, each corresponding to subsequent human life stages. Therefore, we suggest the
distance measured along this trajectory as a definition of the biological age. Consistent with the
Gompertz law, mortality, estimated with the help of a proportional hazard model, was found to be an
exponential function of biological age as quantified herein. However, we observed that the significant
contribution of clinical frailty to mortality risk can be independent of biological age. We used the
biological age and mortality models to show that some lifestyle variables, such as smoking, produce
a reversible increase in all-cause mortality without a significant effect on biological age. In contrast,
medical conditions, such as type 2 diabetes mellitus (T2DM) or hypertension, are associated with
significant aging acceleration and a corresponding increase in mortality as well. The results of
this work demonstrate that significant information relevant to aging can be extracted from human
locomotor activity data and highlight the opportunity provided by explosive deployment of wearable
sensors to use such information to encourage lifestyle modifications and clinical development of
therapeutic interventions against the aging process.

I. INTRODUCTION

Accurate and non-invasive quantification of the ag-
ing process is essential for successful translation of basic
research in the field of aging into possible future clini-
cal practice. Most studies of aging in model organisms,
such as C. elegans, S. cerevisiae, and D. melanogaster,
involve direct measurements of lifespan to characterize
pro- or anti-aging effects of gene variants, nutrition con-
ditions or experimental therapies. In longer-lived ani-
mals, such as mammals, and especially in humans, anal-
ysis of longevity itself is generally not practical since it
would require long and exceptionally well-controlled ex-
periments. Many age-related physiological changes are
similar in mice and humans and hence can be described
by a universal frailty index, which was recently proposed
as a promising pre-clinical indicator to quantify aging
[I]. Other useful metrics of aging include health span,
maximum lifespan, and biological age [2], along with less
commonly employed properties, rooted in aging theory
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phenomenology, such as Strehler and Mildvans concept
of vitality [3]. It remains to be seen, however, if and how
any of these measures of aging are related to each other in
human populations and whether the same relations hold
and hence can be reliably examined in animal models.

Aging is a continuous phenotypic change. Therefore, to
answer questions regarding the age-dependencies of phys-
iological variables, it is appropriate to apply the language
and tools of dynamical systems theory to relate changes
in physiological parameters to organism-level properties,
such as mortality and lifespan. However, investigations
of this kind are complicated by the high intrinsic dimen-
sionality of high-throughput biological data, overlaid by
batch effects and prohibitive costs of large-scale human
studies. This situation is improving due to the recent
explosive deployment of web-connected wearable devices
that provide personal digitized health records, including
measurements of locomotion, heart rate, skin tempera-
ture, etc. It is projected that 400M such devices will be
in use worldwide by 2020 [4]. This provides an unprece-
dented opportunity to monitor physiological changes in
large human populations [5] and improve our understand-
ing of how such changes are related to health and lifespan
[6] and hence present a rich and yet an untapped source
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of large scale human data for aging research.

In this study, we performed a systematic statistical
evaluation of the relationships between locomotor ac-
tivity and biological age, mortality risk, and frailty us-
ing human physical activity records from the 2003 —
2006 National Health and Nutrition Examination Sur-
vey (NHANES) and UK Bio Bank (UKBB) databases.
These large databases contain data for 7-day long con-
tinuous tracks of activity provided by wearable monitors
as well as health and lifestyle information, death records,
and data for a comprehensive set of clinical parameters
sufficient to compute a frailty index for every partici-
pant. We proposed a statistical description of 7-day long
locomotor activity tracks and performed an unsupervised
principal components analysis of the study participants
physical activity representations. This revealed human
development as a continuous process following a trajec-
tory in the physical activity parameters space. Accord-
ing to the Gompertz law [7], the mortality rate in hu-
man populations increases exponentially starting at age
40. The dynamics of the physiological variables along
the corresponding trajectory segment is approximately a
linear function of age. Therefore, we proposed the dis-
tance measured along the path as the natural definition
of biological age or bioage.

Although bioage was found to account for most of the
variation in mortality observed in our study, there was a
notable contribution to mortality that was independent
of biological age and associated with a high frailty index
score. Statistically, we observed an increasing fraction of
such participants starting from approximately the age of
the middle-age to old-age transition point on the aging
trajectory. We used models of biological age and mortal-
ity to show that some lifestyle choices, such as smoking,
produce a reversible increase in all-causes mortality with-
out an appreciable effect on biological age. On the other
hand, some medical conditions, such as type 2 diabetes
mellitus (T2DM) and hypertension, were associated with
significant aging acceleration (elevated biological age in
the chronological age-matched cohorts).

Overall, the results of this work provide an indication
of the power of the vast amounts of activity-related and
physiological data that can be easily obtained via sim-
ple wearable monitoring devices. In particular, with re-
spect to aging, our statistical analysis of locomotor ac-
tivity data from such devices has revealed a new physical
activity-based descriptor of biological age (bioage) and
suggests that mortality risk is determined by both bioage-
related and bioage-independent components, which may
be differentially amenable to modification by lifestyle
changes or therapeutics.

II. RESULTS
A. Quantification of Human Locomotor Activity

For this study, we used two large-scale repositories of
wearable accelerometer track records made available by
the 2003 — 2006 National Health and Nutrition Examina-
tion Survey (NHANES, 12053 subjects, age range 5 — 85
years old) and UK Biobank (UKBB, 95609 subjects, age
range 45 — 75 years old). For both NHANES and UKBB,
a 7-day long continuous activity track was collected for
each subject, as well as data for a comprehensive set of
clinical variables, and a record of death within up to ten
years following activity monitoring. Human physical ac-
tivity is usually collected in the form of time series of
direct sensor readouts, such a 3D accelerations, sampled
at a specified frequency. Instead, NHANES provides se-
quences of transformed quantities such as the number of
steps or activity counts per minute. Figure shows
plots of two representative 2-day long activity count
tracks from a younger (age 43) individual and an older
(age 65) individual, which we selected by the same level
of total activity. Nevertheless, their patterns of activ-
ity were qualitatively different. Transitions between the
states corresponding to different levels of physical activ-
ity appeared to be random. Therefore, instead of trying
to approximate the precise shape of the activity time se-
ries, we chose to apply a probabilistic model, specifically
Markov chain approximation, a simple yet powerful tool
from stochastic processes theory apparatus (see [§] for a
review of applications, including stochastic modelling of
biological systems).

Statistical description of the participants’ activity was
based on the concept that any future state of a Markov
chain is completely determined by its current state and
the probabilities of transitions between different states.
Therefore, we divided physical activity measurements
ranges into eight discrete bins representing activity states
(numbered from 1 to 8 and corresponding to increasing
activity levels, see histograms to the left of the activity
tracks in Figure and counted the transitions between
every consecutive pair of states along the track. The
number of transitions from state j to i was then normal-
ized to the number of times that state j was encountered
along the activity record. This yielded the kinetic transi-
tion rate, i.e. the probability of a stochastic “jump” from
state j to state ¢ per unit time. We then combined these
transition rates into the transition matrix (TM) elements
(shown as bins in heatmaps to the right of the activity
tracks in Figure , which is thus a complete descrip-
tion of the underlying Markov chain model (see Materials
and Methods and Figure additional details).

On a more technical level, the TM element values can
be related to the organism’s responses to external pertur-
bations on physiological time scales. To make this con-
nection, we checked explicitly that the TM elements sat-
isfied a detailed balance condition [9] and hence the TM
eigenvalues represent inverse equilibration times. Using
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FIG. 1: Quantitative Description of Human Locomotor Activity Tracks

Representative 2-day long locomotor activity tracks from a younger individual (age 43) and an older (age 65)
individual in the NHANES 2003 — 2006 cohort. The sampling rate was 1 min~'. Activity levels were divided into
8 bins as indicated in the histograms to the left of the tracks. Both individuals demonstrated approximately the
same levels of average physical activity. To the right of each activity track is the corresponding matrix of transition
rates, each element W;; describing the probabilities of random jumps from each discrete activity state j to every other
possible state i per unit time. The kinetic rates are presented in the form of the transition matrices (TM), the color
scale represents the differences relative to the population mean values, element-wise in logarithmic scale.

Power Spectral Densities (PSD) of simulated physical activity tracks computed for the same participants as in
Figure (age 43 subject, teal; age 65 subject, blue). PSDs were reconstructed using the corresponding TM elements
as the Markov chain kinetic coefficients (see Appendix@ for details on calculations). The color-coded ticks along the
horizontal axis represent the positions of the TM eigenfrequencies. For comparison, histograms in the background
of the graph show distributions of TM eigenfrequencies (the density of states) computed for two cohorts of study

participants of age ranges 35 — 45 (light green) and 65 — 75 (light blue) years old.

the relation between the autocorrelation function of the
time series and the Markov chain TM from Appendix [A]
we reconstructed a Power Spectrum Density (PSD) dis-
play (Figure of the physical activity signals for the
same two study participants shown in Figure Fig-
ure also shows the discrete sets of TM eigenvalues
(the TM spectra) for the same individuals. The cross-
over frequency on the PSD plots coincides with the low-
est TM eigenvalue, corresponding to a time scale in the
range of tens of minutes. The time scale corresponding
to the eigenvalue is considerably longer than any period
associated with body motion and, therefore, should re-
flect the organism’s physiological state. The observed
decrease of the limiting time scale signifies a reduction of
temporal correlations of physical activity, commonly ob-
served in human [10] and animal [T1] studies of aging and
age-associated neurological and mental disorders, includ-
ing Alzheimer’s disease [12], depression [I3], and bipolar
disorder [14].

A transition matrix is a conceptually simple and phys-
ically intuitive way to illustrate the aggregate character-
istics of physical activity-time series. TM elements are
kinetic transition rates and the spectral properties of TM
are directly related to the organism’s responses at physi-
ological time scales. Therefore, TM are useful descriptors
containing information for a set of parameters represent-
ing human physiological state vectors in a form that can
be used alone (as in this study) or along with other phys-

iological metrics in human health-related applications.

B. Manifestations of aging in Locomotor Activity

According to our assumptions described above, TM
provide an aggregate representation of each study par-
ticipant’s activity state during the time of monitoring.
To reveal the intrinsic structure of the physical activ-
ity data for the entire NHANES study population, we
used Principal Components Analysis (PCA, [I5]). The
results of this analysis are shown in Figure with the
position of each point defined by the average PC score
for a cohort of age-matched men or women separated by
one year of age. The plot of PCy vs. PCs vs. PCjy
in Figure clearly shows that the activity state vec-
tor evolves over the course of human lifespan. The aging
trajectory is continuous and yet is visually broken into
distinct phases that are easily recognizable as life stages
(chronological age ranges). Following a previously estab-
lished age classification [16], we divided the trajectory
into four segments covering childhood and adolescence
(younger than 16 years old), followed by early adulthood
(16 — 35 y.o.), middle (35 —65 y.0.) and older ages (older
than 65 y.0.). Each life stage has a characteristic range
of average PC values that is essentially the same for men
and women. These results suggest a universal character
of changes associated with each period in development
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FIG. 2: Principle Component Analysis of Physical Activity Descriptors

Principal Component Analysis (PCA) of the descriptors representing one-week long physical activity tracks of
NHANES participants (top left). The projections PCs vs. PCy (top right), PC3 vs. PCy (bottom right) and PCj
vs. PCy (bottom left) are also shown. To simplify the presentation, we averaged the PC scores in cohorts separated
by one year of age (color scale ranging from yellow (< 10 y.o.) to purple (> 80 y.o.) for men (diamonds) and women
(circles) separately. The Roman numerals I-IV and corresponding colored arrows illustrate the dynamics of PC scores
over subsequent stages of human development: I) age < 16; IT) age 16 — 35; III) age 35 — 65; IV) age > 65.
Relationship between PCA values and chronological age. PCy, PCs, and PC3 values obtained for NHANES
2003 — 2006 40+ cohort reveals the evolution along the direction of the largest variance in data and significantly
associated with age, named PC; (Pearson’s coefficient of correlation with age r = 0.64). None of the other PCs show
correlations greater than r ~ 0.2. PC; data is shown separately for healthy subjects and type 2 diabetes mellitus
(T2DM) patients. The width of the PCy distribution in both healthy and T2DM populations is illustrated by shading
(blue and purple, respectively) corresponding to a range of one standard deviation in each age cohort. The inset panel
shows the variance in biological age (PC1) in the age- and sex-matched cohorts as a function of chronological age.

and aging.

According to the Gompertz law, mortality risk in
human populations increases exponentially in mid-life,
starting from the age of about 40 [7, I7]. The corre-
sponding age range boundary between the development
trajectory fragments IT and III is visible in Figure 2A]and
can be identified with the early-adulthood to middle-age
transition. The subsequent cross-over between middle-
age and older-age occurs in the vicinity of the average
human lifespan. To better focus our study on aging, we
limited all further analysis to participants older than 40
years old. In this restricted dataset, aging was observed
to manifest itself as the evolution of the participants’
physiological state along the PC direction, which by def-
inition is the direction of the most variance in the data.
PC scores in this group of participants were strongly
associated with chronological age (Pearson’s correlation
coefficient r = 0.64, see Figure . PCA is an unsuper-
vised learning technique and, therefore, can be used to in-
fer functional dependence of physiological state variables
on age without a prior hypothesis. Therefore, we propose
the first PC score, PC1, as a natural definition of biolog-
ical age, or bioage, a quantitative measure of the aging

process in the most relevant age range. This argument
is supported by our observation that no other PCs show
any significant association with age (Figure . A more
careful examination of Figure reveals that variation
of PCy and PC3 scores is associated with the transition
between early adulthood and middle age stages.

Biological age defined as PCy was found to increase ap-
proximately linearly with chronological age for NHANES
participants over 40 years old (Figure . The variance
in biological age (PCy distribution width squared in age-
and sex-matched cohorts) in this population increased
linearly with age (inset in Figure 2B]). The latter result
is a hallmark of diffusion, suggesting that biological age
not only drifts in time but also undergoes a random walk
under the influence of stochastic forces (see Discussion
for more details).

Any appreciable difference in the rate (change in bio-
logical age per unit of time) or direction of aging among
study participants would lead to faster growth of the
bioage distribution width as a function of chronological
age and, therefore, cannot be supported by the data. To
highlight the apparent stability of the aging trajectory,
we assessed the effect of a common age-related disease,
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type 2 diabetes mellitus (T2DM), on biological age as
defined by PC;. The average and range (standard devi-
ation) of biological age in age-matched cohorts of healthy
subjects and T2DM patients are compared in Figure
Generally, the T2DM patients appeared to be older, bi-
ological age-wise, than their chronological age-matched
peers. The difference between the healthy and T2DM
groups did not significantly change with age, which sug-
gests that the disease does not modify the rate of aging.

C. Biological Age and the Gompertz law of
Mortality

To examine how biological age (again, defined as PC
from the analysis of locomotor activity data described
above) relates to lifespan and mortality, we first con-
firmed that the mortality rate indicated by the NHANES
death register is an exponential function of chronological
age as predicted by the Gompertz law. Next, since the
state vector dynamics in the physical activity parame-
ters space was approximately linear with age, we were
able to naturally model the exponentially increasing in-
dividual risks of death by using a log-linear model, such
as a variant of the Cox proportional hazards model [19].
We used the parametric Cox-Gompertz proportional haz-
ard model in the form of maximal likelihood minimiza-
tion adapted from [20], since this model allowed us to
obtain explicit mortality predictions rather than implicit
proportional hazards values, which are uncertain up to
an unknown baseline hazard function. To produce a ro-
bust model, we used a batch mode stochastic gradient
descent with cross-validation (see Materials and Meth-
ods section for details). The final model yielded the
Gompertz exponent I' ~ 0.08 £ 0.01 y~!, which is very
close to the commonly accepted value I' 2~ 0.085y~! cor-
responding to the mortality rate doubling time of 8 years
[21]. Mortality risk was determined in this way for ev-
ery NHANES study participant and found to increase
exponentially as a function of biological age (Figure
determination coefficient of the corresponding log-linear
model R? = 0.81). This further supports our identifica-
tion of the PC score as a quantitative measure of aging.

Variation in biological age explains most of the varia-
tion in mortality observed in the NHANES study (Fig-
ure . However, there was also a significant spread
in the predicted log-mortality values in biological age-
matched cohorts, amounting to as much as 25% of the
total difference in the population. Given the value of
the Gompertz exponent of the mortality model, the ob-
served differences correspond to up to = 10 years of re-
maining lifespan. To understand the nature of the unex-
plained difference in mortality, we hypothesized that the
log-mortality predictions into a sum of two parts, one of
which is associated with (proportional to) biological age
and one of which is statistically independent of biological
age.

Next, we investigated the relation between biological
age, the risk of death, and another commonly employed
descriptor of aging: a clinical Frailty Index (FI). FI is a
composite measure of the health of an individual calcu-
lated as the proportion of health deficits present in an
individual out of the total number of age-related health
variables considered [22]. Using a FI variant adapted
for use with the NHANES meta-data from [18], we com-
puted FI values for every study participant and catego-
rized them into one of the three FI ranges: "non-frail”,
”vulnerable”, and ”frail/most frail”, as defined in the
same source. Figure [3B| shows boxplots of the sex- and
the chronological age-adjusted bioage distributions in co-
horts of NHANES participants, split according to their FI
category. These data revealed a statistically significant
correspondence between aging acceleration, i.e. higher
values for biological age after adjustment for sex and
chronological age, and FI. The increases in aging accel-
eration between the non-frail and vulnerable groups and
between the vulnerable and frail/most frail groups were
both significant.

For comparison, in Figure we provide box-plots of
the sex-adjusted distributions of the log-mortality com-
ponent that is biological age-independent for the same
three cohorts of NHANES participants. This shows that
bioage-independent mortality is similar between the non-
frail and vulnerable groups, see Figure [3C] At the same
time, the bioage-independent component is much signif-
icantly higher in the highest FI range (frail/most frail).
Therefore, except in cases with high clinical FI values,
biological age serves as an indicator of frailty as well as
mortality (see above). In this study FI increases gradu-
ally first and then reaches its maximum value, at approx-
imately the age corresponding to the transition between
middle- and old- age (development stages III and IV in
Figure, marking the end of health span (we will focus
on this in Discussion). These observations suggest that
the bioage-independent contribution to mortality can be
attributed to most frail phenotype.

D. Association of unhealthy lifestyles and medical
conditions with increased locomotor activity-based
biological age and mortality risk

In the next stage of our study, we evaluated how bio-
logical age and mortality (biological age-dependent and
-independent components) are influenced by known haz-
ardous behaviours/lifestyle choices or medical conditions.
As shown in Figures [fA] and [4B] we constructed volcano
plots to illustrate statistical associations between the pre-
dicted log-mortality components for NHANES partici-
pants and the NHANES 2003-2006 Questionnaire, De-
mographics and Examination lifestyles and medical con-
ditions labels.

Figure [4A] and its legend lists the lifestyles and med-
ical conditions that showed statistically significant asso-
ciations with biological aging acceleration, defined as the
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FIG. 3: Relationships Between Biological Age, Mortality and Frailty
The logarithm of mortality (log-mortality) predicted for NHANES participants increases linearly as a function of
biological age (PC1). Biological age explains most, but not all, of the observed variance in mortality (coefficient of

determination, R? = 0.81);

Box-plots of biological age distributions calculated for sex- and age-matched cohorts of NHANES participants
representing frailty index categories from [I8]. The horizontal line within each box indicates the mean value and the
shaded box indicates variance (one standard deviation). P-values for pairwise comparisons between FI categories by

KS-test are shown above each graph;

Box-plots (as in [BJ) of the predicted biological age-independent log-mortality component for age and sex-matched
cohorts of NHANES participants representing frailty index categories from [18].

elevated bioage in a group after adjustment for sex and
chronological age (see e.g. [23]). The identified asso-
ciations included high blood pressure (A1), C-reactive
protein level (B1), clinical parameters associated with
diabetes [the diagnosis itself (E1), taking insulin (E2),
elevated levels of glycated haemoglobin (G1) and blood
serum glucose (J2, J5)], along with self-reported weight
(K1-K3) and nutrition status information (F1-F2). The
association of clinical parameters related to diabetes with
aging acceleration is consistent with the generally higher
locomotor activity-based biological age (PCp value) of
NHANES participants diagnosed with T2DM compared
to healthy controls across age cohorts (Figure.

In a similar manner, the volcano plot shown in Fig-
ure [AB] shows lifestyles and medical conditions that
demonstrated statistically significant associations with
the bioage-independent log-mortality component. The
most striking association here was with parameters re-
lated to smoking (F1-F3), including elevated blood lev-
els of cotinine (B1), the predominant metabolite of nico-
tine, which is used as a biomarker for exposure to to-
bacco smoke. Associations with general (C'1) and phys-
ical health (C2) conditions, along with mental health-

related parameters (C3, D1) are in agreement with our
association of bioage-independent hazard with frailty (see
above).

Comparison of the predicted log-mortality component
distributions between smokers and non-smokers, after ad-
justment for age and sex, showed little effect on biological
age (i.e., no strong evidence of aging acceleration asso-
ciated with smoking, see Figure . In contrast, the
difference in the bioage-independent component of log-
mortality between smokers and non-smokers was highly
significant (Figure @I) In contrast, the difference in the
bioage-independent component of log-mortality between
smokers and non-smokers was highly significant (Fig-
ure @I} Study participants who smoked in the past but
quit smoking, demonstrate an significant improvement
in the bioage-independent component of log-mortality
compared to current smokers (Figure although there
was no difference in bioage between the groups after ad-
justment for sex and age (Figure . From a dynamic
point of few, this is not very surprising, since the bioage-
independent mortality component originates from devi-
ations of the physiological state from the development
trajectory due to lifestyle choices and diseases and, if
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FIG. 4: Association of lifestyle variables and health conditions with biological age-related and indepen-
dent components of mortality

[A] [B] Lifestyle variables and health conditions are ranked in volcano plots according to the differences in log-mortality
(horizontal axis) between groups of NHANES 2003-2006 study participants and the statistical significance (p-value,
vertical axis) for bioage and bioage-independent mortality component . The circle sizes represent the relative
number of participants in the compared groups. Participants were divided into groups based on lifestyle habits (e.g.,
smoking, sleep quality, diet) or health conditions (e.g., blood pressure, general health status, diabetes, respiratory
health, mental health, etc.). Lifestyle and health conditions are color-coded according to categories of NHANES 2003-
2006 Laboratory and Questionnaire Data above the significance level 0.001 after the Bonferroni correction n = 10*
(total number of considered metadata fields rounded up to power of 10).

D] Boxplots show the distributions of bioge and bioage-independent mortality component (DJ) calculated using
locomotor activity data from the NHANES 2003-2006 study for current smokers, previous smokers and the rest of
the population ("non-smokers”). Only subject in the age range 40-70 y.o. were included in the analysis. P-values for
pairwise comparisons between FI categories by KS-test are shown above each graph.
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small, should be reversible. This finding is also in qual-
itative agreement with an estimated longevity dividend
of as much as 5 years upon quitting smoking [24].

The impacts of smoking on biological age and mortality
were verified using an independent dataset of locomotor
activity records from UK Biobank (UKBB, 95,605 loco-
motor activity samples after exclusion of poor quality
records). We computed TM descriptors using time se-
ries of activity counts per minute for UKBB participants
and applied the mortality model without any additional
pre-training. As seen for the NHANES study, there was
no significant difference in biological age means or dis-
tributions after correcting for sex and age (i.e., no aging
acceleration) between current smokers, previous smokers
and non-smokers, compare the UKBB and the NHANES
analysis results in Figures [6A] and Also similar to
the NHANES findings, there was a statistically signif-
icant difference in the biological age-independent com-
ponent of mortality between current smokers and either
of the other two groups (participants with no smoking
history and those who quit smoking in the past). The
log-mortality ratio between previous smokers and cur-
rent smokers was very similar to that observed for the
NHANES, see Figure [6B]

III. DISCUSSION

We performed a systematic identification of biomark-
ers of age and frailty using an extensive human physical
activity records collection. The phenotypic changes as-
sociated with the development and aging have different
dynamics depending on the life stage. We identify the age
range 40+ as the most relevant to the studies of aging in
humans in relation to the Gompertz mortality law.

Biological age is a phenomenological organism-level
property that is linearly associated with age and serves
as a key indicator of aging and all-cause mortality. The
linear association of any physiologically relevant variables
with age is a hallmark of aging studies in human subjects
and, therefore, can be used to construct useful “biologi-
cal clocks”. Examples of this include DNA methylation
[25, 26], IgG glycosylation [27], blood biochemical pa-
rameters [28], gut microbiota composition [29], and cere-
brospinal fluid proteome [30]. To date, the “epigenetic
clock” based on DNA methylation (DNAm) levels [25] 26]
appears to be the most accurate measure of aging, show-
ing remarkably high correlation with chronological age.
The DNAm clock predicts all-cause mortality in later life
better than chronological age [31], is elevated in groups
of individuals with HIV, Down syndrome [32] [33], obesity
[34], but is not correlated with smoking status [35].

We find that the biological age signature computed
from locomotor activity was found to be elevated in co-
horts of NHANES participants diagnosed with T2DM
or those characterized by hypertension, increased levels
of C-reactive protein, excess weight, or elevated frailty
index. An earlier analysis of aging acceleration using

FIG. 5: Graphic Explanation of Aging Dynamics
and Mortality Model

The trajectory of aging is shown superimposed on the
potential energy landscape (vertical axis), which pro-
vides a schematic visualization of the constraints pro-
vided by the underlying regulatory network. Each dot
represents the physical activity state vectors of an age-
and sex-matched cohort of NHANES participants (men,
diamonds; women, circles). Cohorts were separated by
one year of age. The axes in the horizontal plane are (i)
biological age, and (ii) biological age-independent mortal-
ity. The stability basin A is separated from the unstable
region C by the potential energy barrier B. Linear cou-
pling between the modes leads to a decrease in barrier
height and thus to an exponential increase in the prob-
ability of crossing the barrier and subsequent organism
death (see trajectory examples 1 and 2) as a function of
biological age (see explanations in the Discussion).

the epigenetic clock with data from the Woman’s Health
Initiative study did not identify significant associations
with these indications [23]. We were able to obtain the
same results with the help of the same approach in a
similar sized age- and gender- matched subpopulation
of NHANES participants. A more careful examination,
however, reveals that the multivariate test from [23] was
underpowered due to intrinsic correlations between the
participants characteristics. We observed that, e.g., re-
moval of the diabetes-associated features such as blood
glucose and insulin levels from the model leads to a dra-
matic increase of the significance of the association be-
tween the disease and aging acceleration.

The tightly coordinated change of the physiological
variables with age is a direct consequence of intrinsic low-
dimensionality of the organism state dynamics, a hall-
mark feature of criticality. This observation should not
be surprising since slow evolution of physiological vari-
ables associated with major “biological programs”, such
as morphogenesis [36] and aging [37], exhibit character-
istic properties of critical dynamics, such as critical slow-
ing down, rising variance, strong correlations between
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key variables, and non-Gaussianity in the distribution
of fluctuations [38]. We find that in humans between
approximately age 40 and the average lifespan, the evo-
lution of physiological parameters with age is dominated
by the dynamics of a single mode. In [37] we suggested
that the stochastic drift of the collective variable associ-
ated with the critical mode is the driving force behind
the characteristic increase in mortality with age. We
observed that the corresponding mode vector coincides
with the singular eigenvector of the data covariance ma-
trix and can, therefore, be reliably identified with the
help of PCA in an unsupervised way (i.e., without prior
assumptions regarding the functional dependence of the
biologically-relevant variables on age). Since the first PC
score (PC1) grows approximately linearly with age, the
stochastic broadening of the PC} variation is small, and
the PC scores with lesser variance (PCy, PC3) are prac-
tically independent of age, we propose PC; as a natural
measure of biological age (Figure . The association
between the aging mode variable and biological age was
confirmed the finding that most of the mortality varia-
tion in our study can be explained by biological age alone
(Figure [3A)).

Biological age thus emerges as an organism-level prop-
erty associated with the dynamical properties of the un-
derlying regulatory network. Therefore, we expect multi-
ple phenotypic changes associated with biological age on
various levels of an organisms organization to occur in a
coordinated fashion. This suggests that different biolog-
ical clocks based on any convenient phenotypic feature,
even features as different as DNA methylation and loco-
motor activity, should yield very similar biological age
predictions for the same subject.

In our study, we observed that variance of biological
age in sex- and age-matched cohorts increases linearly
with age. This is a signature of a random walk, suggest-
ing that the biological age, as an organism-level property,
does not only increase as a function of age, but also un-
dergoes Brownian motion under the influence of stochas-
tic forces. Therefore, we suggest that popular regression
models of biological age can be further refined by explic-
itly including the effects of stochastic broadening.

The exponential form of mortality as a function of bi-
ological age shown in Figure [3A]is typical for situations
where the lifespan of a system is limited by the decay of
a metastable state (see, e.g., [39]). This is schematically
illustrated in Figure [5] where the small fluctuations of
the physiological state variables that are independent of
biological age are reversible, which means that the mode
variables describing the state vector deviations from the
aging trajectory are dynamically stable. In contrast, the
large amplitude fluctuations are most certainly not re-
versible and manifest themselves as diseases. The dots
in Figure p|represent the data for NHANES participants,
averaged over the sex- and age-matched cohorts and pro-
jected onto a subspace spanned by the direction associ-
ated with biological age and bioage-independent mortal-
ity (axes in the horizontal plane).

We superimposed the experimental points on a
schematic representation of the effective potential energy
surface (the vertical axis) set by the underlying regula-
tory network constraints. Around the early adulthood
to mid-life transition, the organism state vector starts in
a potential energy basin A separated from the dynam-
ically unstable regions C' by sufficiently high potential
energy barriers B. The dynamics of the state variables
are critical, which means that there is no or almost no
curvature in the potential energy in the direction associ-
ated with biological age. With the natural assumption
that the mode coupling is weak, the barrier heights de-
pend on biological age linearly, and hence the probability
of barrier crossing increases exponentially with biologi-
cal age. Once the (presumably lowest) barrier is crossed,
the dynamic stability along the corresponding mode vec-
tor will be lost (see example trajectories 1 and 2 in Fig-
ure [5} which differ by the age at which barrier crossing
occurs). The resilience understood as the ability to re-
gain the homeostatic state disappears, and the deviations
of the physiological parameters develop beyond control.
The situation manifests itself as development of extreme
frailty (Figure and, eventually, certain death of the
organism. On a population level, the loss of stability hap-
pens approximately at the age range corresponding to the
average lifespan. The point on the aging trajectory cor-
responds to the middle-age to older-age transition and
signifies the end of health span.

The physical picture behind the presented scenario re-
veals the dynamic origins of the postulates underlying
the Strehler-Mildvan theory of aging [3], in which a lin-
ear decrease in vitality leads to an exponential increase in
mortality with age. We note that the aging at criticality
conjecture is then the necessary mechanistic link behind
the phenomenological vitality concept and the dynamics
of the physiological state variables. We relate the bi-
ological age with Strehler-Mildvan vitality deficit. The
stochastic drift along the aging direction is then nat-
urally the driving force behind the vitality attrition in
the Strehler-Mildvan theory. The exponential Gompertz
mortality increase with age appears to be a consequence
of a gradual loss of the dynamic stability in the directions
independent of biological age.

Since evolution of the physiological state vector is not
reducible to aging drift alone, biological age constitutes
an essential, but not the only contribution to human mor-
tality. Our work indicates that the bioage-independent
component of the risk of death is significant and asso-
ciated with extreme frailty; this is consistent with the
conclusions of [40] where a frailty index showed superior
performance compared to DNAm age in mortality pre-
dictions. Also, in an epigenome-wide association study
[41], the reported DNAm signature of all-cause mortal-
ity, was found to comprise a component independent of
the “epigenetic clock”. We show that the physiological
state vector fluctuations that are independent of bioage
and the associated component of mortality risk are sig-
natures of an organisms responses to stresses, diseases,
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and hazardous behaviors (e.g., smoking, Figure. Our
findings related to the impact of smoking agree with re-
sults obtained earlier in [35] where frailty index demon-
strated a significant correlation with methylation sites
associated with smoking. We also established that varia-
tions in the bioage-independent component of mortality
can be induced by smoking early in life, but reversed if
the individual quits smoking. Therefore, the biological
age-dependent and -independent components of mortal-
ity are independent factors contributing to human lifes-
pan determination.

In conclusion, this report demonstrates a way to quan-
tify human physical activity time series and extract lo-
comotor activity-based signatures of aging acceleration
and increased mortality risk in association with diseases
and hazardous lifestyles. A systematic study of aging
and frailty in a large NHANES dataset revealed the dy-
namical origin of biological age and its relation to the
characteristic increase in mortality with age, the Gom-
pertz mortality law.

On a practical level, the results of this study lead us
to propose using the hazard function, a property asso-
ciated with all-causes mortality, as an ultimate measure
of the health or wellness of an individual. This can then
be decomposed into the biological age-associated compo-
nent (which is determined by the accumulated effects of
the individuals life history), and the potentially modifi-
able biological age-independent component. Both mor-
tality components can be quantified from a single one-
week long physical activity track collected by a consumer-
grade wearable device.

Our findings highlight an opportunity for deployment
of fully automated wellness intelligence systems capable
of ambiently processing tracker information and provid-
ing dynamic feedback to the general public for improved
engagement in health-promoting lifestyle modifications,
disease interception, and clinical development of thera-
peutic interventions against the aging process.
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V. MATERIALS AND METHODS
A. NHANES dataset

Locomotor  activity  records and  question-
naire/laboratory data from the National Health
and Nutrition Examination Survey (NHANES) 2003-
2004 and 2005-2006 cohorts were downloaded from
[www . cdc.gov/nchs/nhanes/index . htm|. NHANES
provides locomotor activity in the form of 7-day long
continuous tracks of ”activity counts sampled at 1min
frequency and recorded by a physical activity monitor
(ActiGraph AM-7164 single-axis piezoelectric accelerom-
eter) worn on the hip. Of 14,631 study participants
(7176 in the 2003-2004 cohort and 7455 in the 2005-2006
cohort), we filtered out samples with abnormally low
(average activity count <50) or high (>5000) physical
activity. We also excluded participants aged 85 and
older since the NHANES age data field is top coded at
85 years of age and we desired precise age information
for our study.

To calculate a statistical descriptor of each partic-
ipant’s locomotor activity, we first converted activity
counts into discrete states with bin edges by, k = 1..K.
Activity level states 1...KK — 1 were then defined as half-
open intervals by < a < biy1, state 0 as a < b; and state
K as a > by, where a is the activity count value. In
this study, we defined 8 activity states with bin edges
by = e* — 1,k = 1..7. Thus, each sample was converted
into a track of activity states and a transition matrix
(TM) was then calculated for each participant (see be-
low). To ensure that our analysis dealt only with days
on which a participant actually performed some physi-
cal activity, we applied an additional filter. We excluded
days with less than 200 minutes corresponding to activ-
ity states > 0. Only participants with 4 or more days
that passed this additional filter were retained, yielding
a total of 11839 samples (age, years: 35123, range 6 —84;
women: 51%). For PCA and Survival analysis, the only
samples used were those for participants aged 40 and
older with known follow-up on survival/mortality out-
come (age, years: 59 + 12, range 40 — 84; women: 50%).
Once PCA loading vectors were identified, we plotted all
NHANES samples’ scores in Figure 2A] including those
for which survival/mortality data were not available.

Transition matrices (TM) T;;,¢ = 1.8, = 1...8 were
calculated as a set of transition rates from each state j to
each other state ¢ (the diagonal elements correspond to
the probability of remaining in the same activity state).
TM elements were calculated as T;; = N(j — ©)/N(j),
where N(j) is the number of minutes corresponding to
state j and N(j — 4) is the number of times the state j
was immediately followed by state ¢ (in the consecutive
minute along the sample record). We next converted the
TM from a discrete point map to continuous notation:
Wi; = Ti; — I, where I is the identity matrix. W, is the
proper TM for which the apparatus of the Markov chains
can be used. We used this property to calculate Power
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Spectral Densities (PSD) and eigenfrequencies (shown in
Figure based on the assumption that the Markov
chain model can be an approximation of observed activity
records. We flattened 8 x 8 TM of each sample into a 64-
dimensional descriptor vector for Principal Component
Analysis (PCA) and Survival analysis. Additionally, we
converted the flattened descriptor to log-scale to ensure
approximately normal distribution for elements of the lo-
comotor descriptor (a useful property for the stability of
the linear models that we applied in PCA and Survival
analysis). All near-zero elements (< 1073, which corre-
sponds to less than 10 transitions during a week) were
imputed by the value of 1073 before log-scaling.

B. UKBB dataset

We accessed data from UK Biobank (UKBB) under
the lapproved research project 21988 (formerly 9086). At
the time the present study was conducted (2015-2017),
locomotor activity data were available for 103710 UKBB
participants. Physical activity was measured using Axiv-
ity AX3 tri-axial accelerometers worn on the wrist for 7
consecutive days. The data were recorded in the low-level
format as continuous tracks of 3D acceleration values
sampled at 100Hz. Some tracks indicated that hardware
errors occurred during the monitoring period. Partici-
pants with more than 10 such hardware errors in their
track were excluded from our analysis, leaving 102914
participants. To make it possible to apply the PCA
and Survival analysis models established using NHANES
data to the UKBB data, we downsampled the original
UKBB tracks to 1min~! (as used in NHANES). For this
purpose, individual acceleration records were split into 1-
minute slices, and for each slice, the natural logarithm of
the sum over the power spectral density (PSD) of the sig-
nal within that slice was calculated. Each of these PSDs
was calculated from the absolute values of acceleration
using the Welch method with 512 points Hann window
function and 50% window overlap.

The downsampled UKBB tracks represent the level of
physical activity per minute but are quantitatively dif-
ferent from the NHANES activity counts. We used a
quantile normalization procedure to re-scale the UKBB
values to the range of discrete activity states of NHANES.
We selected NHANES participants in the age range 45-
75 and dropped 1/6 of participants with the lowest and
highest average activities. The combined tracks from the
remaining 2398 NHANES participants were used to cal-
culate the occupancy fractions p, = N(k)/N for each
NHANES activity state (here N(k) is the number of
times the state k was seen and N is the total number
of minutes in all tracks). Then we randomly selected
5000 UKBB participants from the same age range and
similarly dropped 1/6 of participants with the lowest and
highest average activities; this resulted in selection of
3288 UKBB participants. Using the combined UKBB
tracks from selected participants, we found UKBB bin
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edges bj, such, that the occupancy fractions for the cor-
responding activity states, were equal to the occupancy
fractions in NHANES. Note that such quantile normal-
ization automatically accounts for shift, linear and mono-
tonic non-linear scaling of values, and so the resulting
UKBB activity states are roughly equivalent to the ones
from NHANES. Once bin edges for UKBB were obtained,
the downsampled UKBB tracks were processed exactly as
described above for NHANES. TMs and corresponding
descriptors were obtained for 95609 UKBB participants
(age, years: average 62, median 63, range 43-79; women:

56%).

C. Survival analysis

We estimated hazard rate (i.e. mortality rate) for each
participant using parametric Cox-Gompertz proportional
hazard model in the form of maximal likelihood mini-
mization adapted from [20]. The model estimates mor-
tality rate in response to values of each sample explana-
tory covariates, the locomotor activity descriptors in our
study. In a general form, Cox proportional hazards are
uncertain up to an arbitrary baseline hazard function.
Cox-Gompertz model, in contrast, explicitly accounts for
Gompertz exponential increase of mortality with age and
provides an estimation of Gompertz parameters for the
studied dataset. We used NHANES survival and mortal-
ity follow-up data to train the model. The corresponding
parametric log-likelihood was maximized using theano
python package:

N
log L (Mo, T, 8) = Z? el xl) — elAt)
1 2
+ % ;5 (log My + (B,2;) + TAL;) — AB

where M, and I' are the initial mortality rate and mor-
tality doubling time constant of Gompertz law, respec-
tively; At; is the time between sampling of locomotor
activity and censored or death event (in years), x; is the
set of explanatory covariates (locomotor descriptors and
gender label to account for gender-related differences in
mortality) of i-th participant and f is the set of weight-
ing coefficients corresponding to locomotor descriptors.
To train the model we used the subset of participants for
whom mortality /survival outcome was known. Covari-
ates x; were normalized to zero mean and unit variance
across the said subset. Regularization parameter A is
introduced to account for overfitting. We screened A in
log-space range 1075 — 10° for stability of trained weight-
ing coefficients § and selected A = 0.1. We did not add
chronological age explicitly to the model because our in-
tention was to let the model attribute the age-related
increase in mortality completely to locomotor biological
age. The bioage-related and -independent components of
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log Mortality were obtained by linear detrending of log
Mortality on bioage.

D. Volcano plot

NHANES 2003-2006 study participants in the age
range 40-70 y.o. were divided into groups for each rel-
evant entry from NHANES Questionnaire and Labora-
tory data. For entries containing continuous data, par-
ticipants were divided into three groups by percentiles: 0
to 13, 14 to 86 and 87 to 100. For entries with categor-
ical data, participants were grouped by their categorical
label. In addition, we allocated two marginal groups cor-
responding to the first two and the last two labels, if an
entry had more than 3 categories. The means of log-
mortality were calculated for each group and differences
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of means for all possible combinations of group pairs were
evaluated for statistical significance (p < 0.001) by the
Mann-Whitney U test. For each pair of groups, we as-
signed the group containing more participants as the con-
trol group, while the other group was assigned as haz-
ardous. Therefore, the positive sign for Alog(mortality)
corresponds to the increased mortality for the hazardous
group. The difference of A log(mortality) for the bioage-
related component was referred to as aging acceleration,
and p-values were transformed using the —log 10 func-
tion. The significance level was adjusted for multiple test-
ing with Bonferroni correction with the factor of n = 10*
(total number of observed pairs rounded up to a power
of 10).

All analyses were conducted using a set of in-house
developed scripts in Python [www.python.org] and R
[www.r-project.org].
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Appendix A: Transition matrix theory.

Under the Markov chain model, the evolution of the
probability P; (¢) to find the system at state ¢ for the
system with N discrete states is governed by the master
equation which in the linear mode can be written as

N
= (ki Py (t

=1

— kP (t)), (A1)

where k;; > 0 is the rate of transition from state j to state
i. By introducing the transition matrix (TM) according
to

N
Wij = kij — §ij Z keia (A2)
e=1
we can rewrite Eq. as
N
=> Wi;Pi(t). (A3)
j=1

13

Note from Eq. and definition of k;; we have W;; > 0
for i # j, W;; <0 and

(A4)

from which it follows that the probabilty norm is pre-
served 4 (30 P;) =0, as it should be.

In the following analy51s we will assume that the TM
W is irreducible and has distict eignevalues. The reason-
ing for such asumptions will be provied later. Under this
assumptions W can be diagonalized

N
Wi; = Z Ak A B,

k=1

(A5)

where Ay and By are left (>, WijAr, = A\pAg;) and
right (Zj W;;jBij = A Bui) eigenvectors corresponding
to eigenvalue \;. Note that the systems of left and right
eigenvectors are the inverse for each other:

N N
Z Akinj = (Sij and Z AkiBmi = 5km (AG)
k=1 i=1

To solve Eq. [A3] we introduce
N
= Z A P; (1), (A7)
j=1
and using Egs. [A5] and [AG| rewrite Eq. [A3] as
Qi (t) = MQr (1),
for which the solution is
Qr (t) = Qi (0) M,
from which using Egs. [AG| and [A7] we get
Z Z ApjBrie'P) = Z Gy (t (A8)
k=1 j=1
N
t) = Ag;Brie™, (A9)
k=1

where Gjj (t) is the probability P (i,t[7,0) to find the
system at state 7 at time ¢ if the system originally was at
state j at time 0 and PY is the initial distribution.

The assumption that W has distinct eignavalues to-
gether with Eq. [A4] imply that W has exactly one zero
eigenvalue. Since the order of eigenvalues is arbitrary, we

can state that
M =0, . (A10)
Re)l; <0, 1<i<N,
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where the later unequality follows from W being a TM.
Indeed, W is real-valued, therefore for any eigenvalue
A; and corresponding left eigenvector A; we have

N
Nidij = Z WijAik,
k=1
and
N
/\?Afj = Z Wi Aik
where * is complex conjugate. After multiplying the first

equation by AY., the second by A;; and summing we get

77

QZZWM(

oy

Re i -|Ay] AT + Al Ai) +2W | Aij
Representing all A;;

pij exp (1¢;;), dividing by |Aij|2
ing Eq. we get

in exponential form A;; =
and replacing W;; us-

Re; =2) Wy, [';’?’f cos (i — ¢ij) — 1 (A11)

k] I

This equation holds for all ¢ and j. For a given i let us
choose a particular j such that p; < p;;. Since all py
and Wy for k # j are non-negative by definition, the Eq.
becomes Re A; < 0.

According to Eq. any equlibrium state is the right
eigenvector corresponding to the zero eigenvalue. Since
W has only one such eigenvector (up to scaling), we have
a unique equlibrium distribution given by

N
= Bu/Y By
j=1

The eigensystem has several interesting properties.

(A12)

From Egs. and we get Gy (+00) = A1;B1; and
the distribution at ¢ = +o0 is
N
° = B Z Aq;P; (A13)
j=1

For any initial distribution P° the corresponding P> is
an equlibrium state:

N N N
HPP =% > AyBue™ B Py =

j=1 _7:1 k=1m=1

N

= Z B A1, PY = P,

m=1

and since equlibrium is unique P>

>0 = P for any PY.
From this and Eq. we have

N
Aq; = const = 1/ZBlj'
j=1

(A14)

14
Using Eq. [A4] for the right eigenvectors By we get
N N N
Med Bri=2 > WiBe =0,
i=1 i=1 j=1
and therefor
N
> B =0, for A # 0. (A15)

i=1

Let as consider a discrete real-valued stochastic pro-
cess z (t) having value x; when system happens to be in
state i. According to the Wiener—Khinchin theorem, the
power spectral density S, (w) for the x () is the Fourier
transform of the autocorrelator

T

%/E[I(t+7’)l‘(t)]dt.

0

R, (1) = lim

T—4o00 (Alﬁ)

Using the fact that R, (7) is an even real-valued function
we obtain

+oo

S(w)y=2 / Ry () cos (wT) dr.

0

(A17)

Here we follow the common physical convention that the
total power of the signal is given by fj;f Sy (w) %2,
Expanding the Eq. [AT6] we get

TN N
Ry (1) :TETOOT/X;X;%P it +7lj,t) x; P (j,1)dt,
i=1j

(A18)
where P (i,t 4 7|j,t) is the probaility to find the system
at state j at time ¢ + 7 if the system was at state j at
time ¢ and P (j,t) is the probability to find the system
at state j at time ¢, with the evolution of the system
starting from some state P°. From the definitions we
have P (i,t +7|j,t) = Gj; (1) for 7 > 0 and P (j,t) =
P; (t). Using this and Eqgs. and rewrite Eq
as

Rzz (T) - T1—1>r—ﬁr-loo T k.
,5,k,m,n

where 7 > 0 and the summation is done for each index
from 1 to N. By rearranging and using Eq. we get

Rzz (T) = Z aciAijkie

©,3,k,n

A
kT(EjAlnBlen

from which using Eq. we finally obtain
N N N

T) =D Y > wiw; Ay B Pl for 7> 0.

i=1 j=1 k=1
(A19)

/ > @Ak Brie™ @ A B e PRt
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Note that R, (7) is not dependent on the initial distribu-
tion P?, as it is expected for the system with equlibrium
state. The integration of Eq. [AT9] using Eq. [AT7] is
straightforward, and we get

(A20)
The Eq. is valid for any irreducible diagonalizable
TM W. In particular, some A may be complex. How-
ever, for the real-valued matrix W complex eigenvalues
and corresponding eigenvectors always comes in complex
conjugate pairs, which, together with Eq[AT0] imply that
Sy (w) is always real positive, as any PSD should be.
Due to time symmentry of the fundamental physical
laws, for the systems in thermodynamic equilibrium the
detailed balance assumption is hold:
Wiijq =W;; P (A21)
Biological organisms as a whole are not systems in ther-
modynamic equlibrium and the description of the motion
using Markov chain model is only a rough approximation,
so there are no a priori reasons to assume the detailed
balance. However, experimetally the correlation between
Wi P{" and Wj; P is good, so it is interesting to see
how S, (w) looks under detailed balance assumption.
First we introduce a derived matrix

wij = Wi\ Py /P

With Eq. [A2T]hold, w is symmetric and therefore can be
eigendecomposed into

N
Wi = E N ki [k »
k=1

where all eignvalues Ay are real and eigenvectors uy are
orthonormal:

(A22)

(A23)

N N
> pkittks = 05 and Y friftmi = k-

(A24)
k=1 i=1
From Egs. and we get
Peq
Wij = P Z Ak kbl = Z MeAg;Bri,  (A25)

k=1 k=1

15

where

P{% and By = i - \/ P79,

K3

Aki = ,Uk:i/

from which using Eq. [A27] follows

(A26)

N N
ZAMB]VJ = 5ij and ZAMBmZ = 5km7

k=1 i=1
which imply that Eq. is an eigendecomposition of
W as in Eq. so we can use Eq. which becomes

=2 Z A2 <Z :cZB;”>

Here we used Ay; = Eki/Pieq7 obtained from Eq. to
express S, (w) via right eigenventors By, alone. Each of
the right eigenvectors By, is defined up to a multiplication
constant, however the scaling is fixed for By: from Egs.

[A24] and [A26] we have

(A27)

(A28)

from which we can find a proper scaling for an arbitrary
right eigenvector By:

N

Bk}’L Z Bk]

(A29)

The S, (w) can be calculated under detailed balance
assumption as follows: calculate the right eigensystem
for W, scale the found eigenvectors By, using Eq. 1fA29]
and finally calculate S, (w) using Eq. The same
procedure can be applied when the detailed balance as-
sumption holds only approximately, as long as we drop
the imaginary part of the found eigenvalues and right
eigenvectors. Note that even when all eigenvalues are
real, the Eq. is not equivalent to Eq. without
the detailed balance assumption. In particular, scaling
according to Eq. is not enought for Eq. to
hold, which is required for Eq. to be precise.

Appendix B: Appendix figures
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FIG. 6: Boxplots show distribution of hazard ratio calculated using locomotor activity data from UK Biobank
study for previous and current smoker groups along the bioage-related and bioage-detrended hazard components in
age range 40-70 y.o.
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