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ABSTRACT
Crop improvement must accelerate to feed an increasing human population in the face of environmental changes.
Breeding programs can include anticipated climatic changes and genetic architecture to optimize improvement strategies.
We analyzed the genetic architecture underlying the response of Zea mays to combinations of water and nitrogen stresses.
Recombinant inbreds were subjected to nine combinations of the two stresses using an optimized response surface design,
and their growth was measured. Three-dimensional dose response surfaces were fit globally and to each polymorphic
allele to determine which genetic markers were associated with different response surfaces. Three quantitative trait loci
that produced nonlinear surfaces were mapped. Alleles that performed better in combinations of mid-range stresses
were typically not the alleles that performed best under combinations of extreme stresses. To develop physiologically
relevant models for future genetic analyses, we modeled the network that explains the response surfaces. The network
contains two components, an elliptical paraboloid and a plane, that each combine the nitrogen and water inputs. The
relative weighting of the two components and the inputs is governed by five parameters. We estimated parameter values
for the smoothed surfaces from the experimental lines using a set of points that covered the most distinctive regions of
the three-dimensional surfaces. Surfaces computed using these values reproduced the smoothed experimental surfaces
well, especially in the neighborhood of the peaks, as judged by three different criteria. The parameters exaggerated
the amplitudes of the simulated surfaces. Experiments using single stresses could misestimate responses to their
combinations and disguise loci that respond nonlinearly. The three-dimensional shape evaluation strategy used here
more thoroughly compares nonlinear, nonplanar responses. We encourage the application of our findings and methods
to experiments that mix crop protection measures, stresses, or both, on elite and landrace germplasm.
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Introduction

Crop improvement will need to accelerate in the coming decade,
as the human population increases and the abiotic environment
changes (Wheeler and von Braun 2013). Cultivar improvement
in stress resistance is key. While breeding programs can in-
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crease the rate of genetic gain by using genotype prediction to
shorten the breeding cycle time, (Jonas and de Koning 2013),
crop improvement depends on the immediate agricultural con-
text, complicating selection schemes (Cooper et al. 2014). So far,
cultivar improvement in maize has not significantly increased
stress tolerance on a large scale (Lobell et al. 2014). But there is
ample potential for improvement: the maximum yield in yield
competitions is typically one-third higher than the average yield
in comparable fields (Tollenaar and Lee 2002).

Crop performance in a variety of agricultural contexts is an
example of a complex phenotype. Each context differs in the
combinations of extant stresses, and the magnitudes of each in-
dividual stress, that the plants experience: and the responses of
different genotypes to those contexts can differ considerably. En-
suring the strong phenotypic signal needed for selection requires
knowing where the genetic architecture of the phenotype lies
on the continua of a few polymorphisms exerting large effects,
vs. many polymorphisms with small effects, because breeding
strategies necessarily differ. Thus, the costs and difficulties of
breeding escalate as the numbers of contexts and genotypes, and
phenotypic complexity, increase.

Breeding programs can optimize the use of their resources by
selecting germplasm in the most predictive environments (Hal-
lauer et al. 2010). However, this current-environment approach
does not necessarily include the most predictive environments
under climate change (Cairns et al. 2013; Makumburage et al.
2013). To predict performance in the out-of-range field envi-
ronments of the future, we will need a mechanistic view that
incorporates climate prediction, knowledge of the phenotype’s
genetic architecture, and understanding of the physiological
systems controlling the complex phenotype of response to com-
bined stresses (Cooper et al. 2014; Heslot et al. 2014).

There are examples of genetic dissection of abiotic stress com-
binations for the combination of heat and drought, and ultravio-
let radiation (UV) plus drought (Cairns et al. 2013; Makumburage
et al. 2013). In the (Cairns et al. 2013) study, genotypes with good
performance in drought or heat did not perform well in the
combined heat and drought environments. This is an example
of the breeder’s rule that selection for improvement should be
carried out in the target environment (Hallauer et al. 2010). A
controlled greenhouse-scale analysis of high UV stress combined
with moderate drought also indicated that loci important for one
stress did not have an important effect in the combined stress
treatment; and that the combined stress effect level was less than
additive, indicating a nonlinear protective interaction between
the two stresses (Makumburage et al. 2013).

Though analysis of the genetic control of the response to
combined stresses is rare, we have more information about phys-
iological responses for combinations within one or a few geno-
types. For example, plant protection chemical mixtures show
interaction effects (Dashevskaya et al. 2013), as do biotic/abiotic
combinations (Prasch and Sonnewald 2014; Kissoudis et al. 2014;
Suzuki et al. 2014). A common theme across all the types of
combinations examined is that the effect of the stress interac-
tion is not easily derived from single-effect responses. It is also
clear that application of a single, often severe stress treatment
is not predictive of response in lower stress levels (Mittler 2006;
Tardieu 2012; Zandalinas et al. 2017).

Work on mixtures of toxins illustrates the classes of phe-
notypes one might see in response to combined stresses. Or-
ganismal responses to mixtures of drugs and chemical toxins
are grouped into modes of action such as concentration addi-

tion/independent action, synergy/antagonism, dose-level, and
dose-ratio (Jonker et al. 2005). The shape of the responses to
the mixtures defines these different modes of interaction. In
favorable cases, mechanistic inferences can be drawn from an
analysis of the phenotypic responses to increasing levels of abi-
otic stress. Sigmoidally shaped functions indicate a buffered
signaling system, while peaks suggest the system includes a neg-
ative feedback that damps the response at higher levels. These
inferences can then be incorporated into more complex mathe-
matical and network models (Lucas et al. 2011; Keurentjes et al.
2013). (Reymond et al. 2003). As in the univariable, single stress
dose response case, the more complex interactions of mixtures
with the organism require more parameters to fit the observed re-
sponse to a model. Model complexity penalties are thus needed
for testing such fits. Response surfaces generated from more
than one input variable are most similar to multi-input analog
circuits, and analog systems are increasingly prominent model-
ing approaches in the natural sciences (Sarpeshkar 2014).

Increased growth and yield in maize under drought and low
nitrogen are genetically correlated; selection for one stress results
in enhanced performance in the other stress environment (Weber
et al. 2012). However, the correlation can vary by trait and by
the specifics of the stress level and genotype used (Bennett et al.
1989; Sadras and Richards 2014). Typically, only a few levels
of nitrogen and drought are applied; and factorial analyses are
used instead of surface-fitting approaches that could compare
equivalent stress intensities. For example, the half maximal
effective concentration, EC50, is often used as a comparison
point in toxicity studies (Piegorsch and Bailer 2005), but has not
been widely used for comparisons of abiotic stress tolerances in
plants (Claeys et al. 2014). Moreover, the EC50 compares values
of a single scalar, rather than the n-dimensional surfaces that
more accurately characterize the response. To better understand
the mechanisms of field-relevant stress responses, the interaction
between limited nitrogen and limited water in maize should be
examined over a large range of levels of the stresses and in
multiple genotypes.

The maize inbred lines B73 and Mo17 have different re-
sponses to drought and nitrogen. B73 exhibits top-fire and Mo17
barrenness under drought (A. Hallauer, personal communica-
tion), and their response to nitrogen differs by≈ 25% (Balko and
Russell 1980). These two inbreds are known to combine well
as a hybrid (Hallauer et al. 2010), with the hybrid having very
good performance under drought stress (A. Hallauer, personal
communication). We infer that there are interactions between
alleles of sets of genes in these parents that confer increased
stress tolerance in the hybrid. If this were the case, a popula-
tion of offspring from these parents would generate a range of
allele combinations from those sets of genes and would exhibit
different responses to varying stresses. Recombinant inbred pop-
ulations are especially useful for detecting important alleles that
segregate from the parent inbreds. Intermating of early gener-
ations of offspring to produce recombinant inbred lines (RILs)
increases detection power (Lee et al. 2002). For labor-intensive
phenotype scoring and scoring of the same genotype in many
environments, intermated RIL populations optimize power to
detect loci, though they do not provide single-gene resolution.

To date there is little information on the genetic architecture
of differences in response surfaces. Identifying models that de-
scribe phenotypic responses and the alleles that control model
parameters is helpful in optimizing crop improvement strate-
gies. In crops this has been carried out for single stresses such
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as drought, but there is little information on abiotic stress mix-
tures. As drought and limited nitrogen are the two most critical
stresses for maize production, and we already know that these
two stresses interact, combining them in a response surface de-
sign is a logical next step. We infer from stress combination
experiments and toxicological data that sets of specific alleles
should be able to control sensitivity of growth to combinations
of stress signals — not just the perception of such signals —
and thus shift the stress-tolerance system in maize among more-
responsive and less-responsive states. We detect such genetically
controlled differences in response state by mapping the maize al-
leles that control this shift in the response surfaces to increasing
abiotic stress across a range of stress combinations. The exper-
imentally observed response surfaces delimit parts of a larger
phenotypic space. We model points in this space corresponding
to the experimentally observed phenotypes with a nonlinear
producing function that combines two functions that depend on
both stresses.

Materials and Methods

Seed Stocks
The Zea mays intermated recombinant line population (IBM94)
derived from inbreds B73 and Mo17 (Lee et al. 2002) was pro-
vided by the Maize Co-op (http://maizecoop.cropsci.uiuc.edu/).
Seed stocks were increased using standard nursery conditions
at the North Carolina Central Agricultural Station, Clayton, NC.
Seed lots were genotyped using eight simple sequence repeat
markers; lines Mo066 and Mo062 failed genotyping quality con-
trol and were thus removed from the data analysis. The B73
parent inbred was used for random checks across factor levels
within the experiment.

Experimental Design and Plant Growth
A face-centered cubic experimental design (Pukelsheim 2006)
with five levels of drought and five levels of nitrogen was used to
examine dose response surfaces for mixtures of the two stresses.
The statistical program JMP v.6’s (SAS, Inc., Cary, NC, USA)
experimental design module was used to compare design matri-
ces and to generate the face-centered cubic sample points (see
Supplemental Figure 7). This experimental design has more bio-
logical replicates in the center portions of the response surface
to enable better fit of nonlinear functions. The experiment was
conducted in the Cape Fear Community College horticulture
greenhouse (GPS coordinates Lat: N 34◦ 19′ 24′′ (34.324◦) Lon:
W 77◦ 52′ 45′′ (-77.879◦), weather station KNCCASTL2) from
May–July 2011. Greenhouse maximum temperature was set to
38◦C.

Slow-release fertilizer was custom-mixed by Coor Farm Sup-
ply, Smithfield, NC, with clay pellets containing standard trace
minerals, 15% potassium, 15% phosphate, and nitrogen levels
of 0, 5, 7.5, 12.5, and 15%. For each fertilizer treatment level,
6.36 kg of fertilizer pellets were mixed with a 0.08 m3 bag of
MetroMix360 potting mix (SunGro, Vancouver, BC, CA). Deep
plant pots (MT38, 0.9 l, Stuewe and Sons, Tangent, OR, USA)
were filled with soil-fertilizer mix. Random soil-filled pots were
weighed, with an average weight of 350 g per pot. Seeds were
planted 1 cm below the soil surface. A random number was
generated for each plant pot within each water level using SAS
v9.2 (SAS Inc. Cary, NC, USA). The plant pots were sorted by
random number within each water level, so that neighboring
plants were of randomly chosen genotypes and nitrogen levels.
Water evaporation in plant pots containing B73 checks in the

greenhouse was examined May 20–24; the average difference in
weight between fully wet and dry pots over 24 hour was 170 g.
Drought was applied to experimental groups using this average,
with drought levels of 8, 20, 50, 80, and 92% of full weight (13
ml water, 34 ml water, 85 ml water, 136 ml water, and 156 ml
water applied per day per pot). Selective watering in different
amounts was applied from 20–30 days after planting, beginning
when the check plants were at the four-leaf growth stage. Soil
water potential was measured with a conductivity meter (EC-5,
Decagon Devices, Pullman, WA, USA); the selective watering
was stopped when the B73 check 8%-weight plant pots had an
average water potential of 2 percent. All pots were watered fully
for five days after drought treatment.

Trait Data Collection
Each plant pot was photographed against a 1 cm grid back-
ground 14 days after planting, before selective watering. Plants
were re-photographed using the same setup and focal length 35
days after planting, after recovery from selective watering.

Plant photographs were measured using ImageJ (Schneider
et al. 2012), with the internal centimeter ruler in each image
used to calibrate the pixel lengths for each measurement session.
Each person analyzing the images practiced on a calibration
image set until his or her accuracy was greater than 95%. All
plant images are available upon request. In our cubic-centered
face experimental design, the maximum sample size was either
n = 4 or n = 8. The complete trait data file is included as
Supplemental Data Files 2 and 3.

Parental Inbred Analysis
The initial plant height was thus subtracted from the final height
to generate z, the growth variable difference in height. Measured
initial, final and difference in plant heights for each parental
inbred for each stress treatment were fit with a full factorial
model (see Equation 1) using JMPv11 (SAS Inc., Cary, NC).

Mixture Surface Parameter Fits
For the check B73 inbred with adequate data points, the
height difference data were analyzed by the procedure of
Jonker et al. (2005) using Excel Mixtox analysis tools provided
by C. Svendsen (http://www.ceh.ac.uk/products/stats/mixture-
toxicity-analysistools.html). The Mo17 data had too few points
to generate a fit. The first step in the Mixtox analysis proce-
dure was to fit a single dose response relationship to the height
difference data using the log-logistic two-dimensional surface1

as a dose response model to determine the separate, single pa-
rameter effects of water and nitrogen. To fit the surface to the
water level, the data were filtered to only include points with the
lowest level of nitrogen that had a variation in the water level
— in this case, the nitrogen level was held constant at 2.5% in
order to analyze the single parameter effect of water. Similarly,
the surface was fitted for single-parameter nitrogen by holding
the water level constant at 20%. These fitted surfaces are the
empirical analogues of the partial derivatives of the response
surface with respect to water or nitrogen, constrained to lie on
the planes where nitrogen = 2.5% and water = 20%, respectively.
The fits of the log-logistic surfaces were further refined using
the Solver add-in in Excel to minimize the sum of squares (SS)
between the actual data points and the predicted model values.

1 Throughout, we use the more general term “surface” to denote surfaces in any
number of dimensions, including the “curves” traced by the successive positions
of a single point in an n-dimensional space.
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The second step in the analysis was to fit the mixtox mixture
dose-ratio and dose-level reference models and the deviation
models to the data. In order to optimize use of the solver, which
was set up use one measurement rather than replicates and was
not optimized for a cubic centered face design, an average was
taken for each of the treatment combinations in the larger data
set.

QTL Analysis of Quadratic Fit
As seeds germinate at different times, all the recombinant inbred
analyses were conducted on trait measurements adjusted for
initial plant size. To determine which markers are responsible
for creating significantly different dose response surfaces, we
fitted the response data for each marker to a smoothed surface,
then compared these to the surface fitted to all the markers from
all lines using an F-test (see Supplemental Materials 6). Since our
experimental design was optimized to detect interactions among
markers and stresses, we fit the data to a quadratic function; and
we focused on smooth surfaces to incorporate all the information
across levels efficiently. The smoothed surface used to fit the
data is Equation 1:

zi,w,n = αi,w,2x2
i,w + αi,n,2x2

i,n︸ ︷︷ ︸
elliptical paraboloid

+ αi,wnxi,wxi,n︸ ︷︷ ︸
hyperbolic paraboloid

+

αi,w,1xi,w + αi,n,1xi,n︸ ︷︷ ︸
plane

+ µ + αi,0 + εi,w,n︸ ︷︷ ︸
constants

,
(1)

where for each inbred line i treated with xi,w amount of water
and xi,n amount of nitrogen, zi,w,n is the observed phenotype
of that line for that combination of water and nitrogen; µ is the
mean; αi is the random effect of the line; and εi,w,n is the residual
error in the fit. The equation is the sum of four component
surfaces, marked underneath it.

First, an all-inclusive model was created that included all the
markers from all the lines (Motulsky and Christopoulos 2004).
Then for each marker, data from all the lines and all combi-
nations of water and nitrogen were divided into two groups
according to whether the genotype of the marker was B73 or
Mo17. The SAS procedure PROC MIXED was used to model
each surface. Due to non-random relatedness between recombi-
nant inbred lines, we incorporated kinship matrix information
into the analysis, as recommended by Malosetti et al. (2011);
kinship matrices were calculated using the SPAGEDI method
(Hardy and Vekemans 2002) within the TASSEL v3 program
(Bradbury et al. 2007).

The sums of squares for the individual marker models were
compared to the sums of squares of the all-inclusive model via
an F-statistic. The resulting raw P-values from the analysis
were adjusted using the approach described by Makumburage
and Stapleton (2011), by grouping correlated adjacent marker
P values with the Simes function in SAS (PSMOOTH). SAS
data steps were used to scan the Simes-adjusted P values for
groups of significant markers adjacent along the chromosome.
A false discovery rate of 0.05 and a Sidak adjustment of 0.05
were each separately used to adjust for multiple testing. Marker
data for each mapping line, SAS code for surface fits, P-value
adjustment, and raw and adjusted P-values are provided in the
Supplemental Data and Methods files (4, 5, and 1).

Response Surfaces of the Markers
The fitted response surfaces were plotted in three-dimensional
Cartesian space using R, recentering the intervals for water and

nitrogen (plotting details and code are provided in Supplemental
Methods File 11). For each marker, two response surfaces were
plotted, one for the B73 and the other for the Mo17 alleles in the
QTL region.

Annotation of QTL Loci

QTeller (http://www.qteller.com/) was used to assemble a list of
maize genes in the three chromosomal regions containing QTL
that changed the difference in height z, and the gene IDs were
placed into AGRIGO (Du et al. 2010) for annotation analysis.
All GO annotations within each QTL were used to create scaled
semantic-similarity plots through the Revigo interface (Supek
et al. 2011).

Modeling the B73 Surface with a Producing Function

The experimental response surfaces are individual points in a
higher-dimensional phenotypic space. This space represents all
possible combined stress phenotypes, including ones not yet
observed. Thus, exploring that space can identify novel, feasible
targets for crop improvement and provide mechanistic insight
into the stress response. While Equation 1 suffices for the statisti-
cal fit of the data, it is less well suited to exploring the variety of
stress responses. First, it offers little insight into possible mecha-
nisms of the responses. Structurally, the equation includes both
the elliptical and hyperbolic paraboloids, two “faces”, or com-
plex conjugates, of a larger function that subsumes both, with
little to suggest why one paraboloid might be favored over the
other in a particular phenotype. Second, of its eight parameters,
much of the numerical effect in the fits is carried by the constants
that shift the surfaces along the z axis (see Table 1). These shifts
are extraneous to the surfaces, and beg the question of what
drives their values. Under these circumstances, it would be too
easy to simulate phenotypes that had little intrinsic relationship
to plant’s physiology. We therefore sought a simpler expression
that could reproduce the shape of the response surfaces to a
reasonable approximation.

The single global maximum of the B73 surface immediately
suggested that the simplest function modeling the network re-
sponsible for the phenotype would involve a function that gener-
ates a peak. The simplest way to produce Mo17’s trough would
be to “flip” that peak with a mathematical operation that seems
plausible. The sharpness of the B73 peak immediately suggested
an elliptical paraboloid. A top-down (orthogonal) projection of
such a paraboloid’s peak into the water-nitrogen plane gives
an ellipse. For the response surfaces, the ratio of the major and
minor axes of the ellipses reflect the relative weighting of water
and nitrogen input variables for that phenotype. An elliptical
paraboloid is the simplest function that generates a single, easily
flipped peak. A two-dimensional Gaussian function is struc-
turally more elaborate and flipping requires the reciprocal of the
Gaussian. Periodic functions, such as transcendental or Bessel
functions, would have forced us to assume either that their other
peaks lay outside the evaluation interval or that the functions
were severely damped.

However, two asymmetries in the response surface indicate
the producing function is not just an elliptical paraboloid or
a similar peak-producing function. First, the maximum is not
centered at (0, 0, z), but is shifted in the water-nitrogen plane.
Second, the surface is “tilted” in the space so that the surfaces
formed by the intersection of the surface with the planes bound-
ing the evaluation intervals (−xwz, xwz, −xnz, and xnz) are not
identical to each other. While the peak can be shifted by adding
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a constant along xw, xn, or both, tilting requires the addition
of another function. We experimented with many possibilities
for this second function and operators to combine the first and
second functions, but found the simplest was to add a plane (see
Equation 3). The function was computed over the recentered
water and nitrogen intervals [−42, 42] and [−7.5, 7.5], respec-
tively, forming a 169× 31 matrix z of 5,239 cells whose values
specified the shape and position of the phenotypic surface. We
tested candidate combinations of the two functions by deleting
equation terms (which can be interpreted as network nodes)
and by varying the values of the parameters to confirm our hy-
pothesis. Deletion analysis was also recently recommended as
good practice for systems modeling (Babtie et al. 2014). Code to
generate the surfaces of candidate functions was implemented
in R (Supplementary File 12). Surfaces were plotted using the R
package rgl (Adler et al. 2017–present) in a standard orientation
(Supplementary File 16).

Generating Parameter Values for the Producing Function us-
ing Linear Models
To ask how well the producing function (Equation 3) accounts
for the smoothed experimental surfaces, we fitted parameter
values for using two different linear solvers2. We set the value
of c to {−1, 1} for the domed and trough-shaped experimental
surfaces, respectively, and estimated the values of (a, b, d, e) for

c(aXw
2 + bXn

2) + dXw + eXn, (2)

where X{n,w} are the vectors of xw and xn at sets of mesh points,
respectively.

The mesh points for these fits were defined by the intersec-
tions of surface axes and contours. For the domed surfaces,
a central axis was defined as the apparent major axis of the
distorted ellipsoid. For Mo17, the central axis was defined as
midway between the asymptotes of the trough. For both types
of surfaces, rays extending from the peaks at fixed angles rel-
ative to the central axes were defined, and the intersections of
those rays with a set of contours at fixed z values defined the
mesh points. These sets of mesh points were then passed to
the linear solvers. We used the linear solvers Solve and lsei in
the R package limSolve (Soetaert et al. 2009; Van den Meersche
et al. 2009). Both gave identical parameter values for these mesh
points. We report those obtained by lsei, since that algorithm
also computes the square root of the least square error fit. We
repeated these computations using the relative mesh points de-
scribed in the next section, but the fits were considerably worse
except for Mo17, as judged by the cumulated error measures. R
code for these computations is in Supplementary File 15.

Testing the Fit of the Producing Function to the Experimental
Surfaces
We next tested whether Equation 3 could reproduce the
smoothed, experimentally determined surfaces using the param-
eters obtained by the linear fits. The most distinctive and robust
features of these surfaces are their shape and approximate posi-
tion in space, rather than their precise location. Because varying
model parameters can change both shape and the position of the
surfaces in three dimensions, we are interested in shapes defined
relative to the peak of each surface, rather than with respect to

2 Throughout the text, we use the term “linear” in its strict mathematical sense
when referring to models. The statistical linear models we fitted included
quadratic terms (see Equations 1 and 2), in accordance with statisticians’ us-
age.

absolute coordinate values. The mesh points defined above do
not capture this shape information well. They are very sensitive
to rotation of the simulated surface relative to the experimental,
displacement of the surface along the z axis, and dilation and
contraction of the surfaces’ shapes.

Instead, we defined a set of mesh points that better capture
the intrinsic shapes of the surfaces. The peak of each surface
lies near a corner of the water-nitrogen (xw, xn) plane, so we
defined a crow’s foot mesh that radiates away from the peak and
towards the two opposite edges of the plane in two steps. First,
we defined a set of rays radiating from the peak at fixed slopes
relative to the origin, which is in the center of the xw, xn plane.
Domed surfaces (those other than Mo17) had rays at slopes
(0, 0.05, 0.099, 0.175, 0.32, 0.75) relative to the origin. For Mo17,
the slopes were (0,−0.05,−0.099,−0.175,−0.32,−0.75). Second,
we placed 10 mesh points along each ray at the same relative
distance from the peak, so 0.1 of the length of each ray segment
lying between the peak and the edges of the evaluation xw, xn
plane. Moving the peak relative to the xw, xn plane changes the
region of the surface spanned, the length of the ray segments,
and the absolute position of the mesh points projected onto the
evaluation plane.

To compare the smoothed experimental surfaces to those
generated from the fitted parameter values, we computed three
parameters for each pair of corresponding mesh points:

• ρ, the signed Euclidean distances between the surfaces;
• θ, the rotation between the experimental and simulated

surfaces, projected into the xw, xn plane; and
• δzr, the discrete difference of the relative changes in z along

the rays.

ρ estimates the displacement of the simulated surface in xw, xn, z
space relative to the experimental, due to either or both compo-
nents of the model. θ accounts for different amounts of rotation
over the surfaces, due to tilting of the planar component of the
producing function. δzr captures differences in the “bending” of
the surfaces, due to either or both components of the model. All
three parameters allow for intersecting surfaces. We computed
these parameters using all possible pairs of experimental and
simulated surfaces. Simulation of Mo17 using the fitted param-
eters placed the maximum in the corner of the plane opposite
that of the experimental surface. Similarly, simulation of QTL3-
Mo17 using the fitted parameters placed the peak at the lowest
edge of the evaluation plane. These errors in peak placement
made computation of ρ, θ, and δzr moot. R code to generate
mesh points, compute comparison parameters, and plot pla-
nar projections and heatmaps is in Supplementary File 14. We
used the R package superheat for the heatmaps and the image
function of package graphics for the planar projections (Barter
2017–present; R Development Core Team et al. 2017–present).
Both plots used the viridis package for color maps that are
less problematic for those with color blindness (Garnier et al.
2017–present).

Data and Code Availability

All supplemental files (input data, SAS analysis code,
outputs, supplemental methods, supplemental re-
sults, and outputs are available from FigShare at
https://figshare.com/s/3ef69b44d24d0953d625. Code
for modelling, fits, and simulation is on GitHub at
https://github.com/tonikazic/univariate_dose_response.git in
a public repository.
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(A) (B)

Figure 1 Parental Inbred Response Surfaces to Combined Drought and Nitrogen Deprivation. A quadratic surface was fit to the measured
trait of differences in plant height (z) and is shown for each parental inbred on the same scales. (A) The B73 inbred response surface;
(B) the Mo17 response surface.

Results

Effect of Stress Combinations on Parental Inbreds

The parental inbreds exhibited different responses to combina-
tions of nitrogen and water deprivation, with B73 showing more
variation in its response surface than Mo17 (Figure 1). The plots
are rotated to show the most severe stresses in the front center
corner, placing the normal full-water and full-nitrogen combi-
nation in the back. The intersections of the surface with the
height-nitrogen and height-water planes define the phenotypic
response at constant amounts of water and nitrogen, respectively,
corresponding to the partial derivatives δz/δxn and δz/δxw. B73
exhibited a domed surface, with the peak at moderate amounts
of water and nitrogen (Figure 1A). The domed response surface
for B73 is convex upward in the sense that it opens downward
towards negative values of z; and has a relatively high, and
highly curved, peak (large zmax and small discrete curvature,
K, that lies in the region of relatively high nitrogen and water
(Sullivan 2006). While B73 declined under the most severe condi-
tions (front center corner), it showed modest growth under both
moderate drought and very low nitrogen (e. g., the maximum of
δz/δxw at the surface’s right edge) and high drought and mid-
dle nitrogen (e. g., the maximum of δz/δxn at the surface’s left
edge). The worst condition was minimum water and maximum
nitrogen (rear left corner).

In contrast, Mo17 had little growth change under any stress
(Figure 1B). Its surface is a very shallow trough, or is concave
upward; |zmin| is small; |K| is larger; and the peak lies on a
corner. For Mo17, reducing nitrogen affected growth slightly
more severely than reducing water (compare the slopes along
the left front and right front faces of Figure 1B). We investigated
whether this small difference in Mo17’s change of heights could
be due to its decreased overall growth. We compared the initial
plant heights of B73 and Mo17 and found no significant differ-

ences between them (P = 0.18). When we compared the inbred
plant heights after deprivation, we found that the B73 plants
had more growth and greater differences between treatments
than Mo17 (comparing the factors inbred, nitrogen level, water
level and inbred by nitrogen level, at P < 0.05) (the numerous
sample sizes and confidence intervals are reported in Supple-
mental File 9). But when we scaled the differences in height
to adjust for the smaller Mo17 plants at the beginning of the
experiment, plant growth during the experiment was more pro-
nounced for Mo17 in mid-level nitrogen and low water-level
treatment combinations, while B73 growth was typically greater
when more water was available. This indicates that the Mo17
inbred line is less sensitive to drought provided at least some
nitrogen was present. Comparisons at very low nitrogen levels
did not exhibit any trend toward differences between parental
inbreds (Supplemental Figure 8). For both B73 and Mo17, the
slopes of the four lines intersecting each pair of the surfaces’
corners are different, indicating the plants’ responses vary with
extremal stress combinations.

Mixture toxicity models with two shape parameters, a and b
for water and nitrogen, were used to analyze the shape differ-
ences in the parent B73 inbred. (These two parameters are not
the same as the a and b of Equation 3, and we have typeset
them in a different font than is normally used in mixture toxicity
papers to emphasize this distinction.) B73 had the best fit to
a dose-ratio surface. a = 0.01 and b = 14.81, indicating that
the antagonistic effect of combined stresses is caused mainly by
nitrogen deprivation. This is consistent with the curvature of
the partial derivatives at the edges of the B73 response surface
in Figure 1A: δz/δxw is more sharply curved and has a higher
local maximum than δz/δxn.
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(A) QTL1: bin 1.06 gpm906a to IDP2465 (B) QTL2: bin 1.08 umc1838a to mmp22 (C) QTL3: bin 9.03 ufg71 to IDP1681

Figure 2 Loci with Significant Effects on the Phenotypic Response Surface. Three QTL with a Sidak-adjusted significant interaction surface
for differences in height were identified. At each QTL, the trait data were fit with a quadratic response surface separately for each
allele. The B73 allele is shown in orange and the Mo17 allele in blue. Each panel shows the QTL’s location (chromosome bin and
marker range indicated above) and surface fits for the allele differences at the locus. (A) Surfaces for QTL1, gpm906a – IDP2465; (B)
surfaces for QTL2, umc1838a – mmp22; and (C) surfaces for QTL3, ufg71 – IDP1681.

QTL that Change Phenotypic Response Surfaces

Chromosomal loci with significant interaction P values for the
response surface were fit to nitrogen deprivation and drought,
as indicated by intersecting surfaces in the illustrative plots in
Figure 2. We found three highly significant QTL that changed
the response surface fitted from the data on all lines and an
additional 50 QTL that have a false discovery rate-adjusted P-
values less than 0.05 (Supplemental Results File 9). The three
QTL with P values below the experiment-wise Sidak-adjusted
significance threshold of 0.05 are shown in Figure 2. Table 1
shows the parameter values obtained by fitting Equation 1 to
the experimental data.

For all three QTL, the response surface for the Mo17 allele
is upwardly convex, a shape resembling that of the B73 allele
and parent and very different from the upwardly concave shape
of the Mo17 parental surface. In contrast, the response surface
for all three QTL’s B73 allele resembled B73’s. The three QTL’s
alleles differ from each other and from B73 in many details,
including the magnitudes of z over their surfaces, the relative
magnitudes of the B73 and Mo17 surfaces, and the value and
position of zmax. The Mo17 allele’s surface for QTL1, shown
in Figure 2A, is pushed upward along the z axis, far above the
range of the Mo17 parent’s response in Figure 1B. For extremal
combinations of water and nitrogen, changes in the growth of
the Mo17 allele exceed those for the B73 allele. QTL2’s and
QTL3’s Mo17 surfaces lie mostly above those of their B73 al-
leles; for these loci, the B73 alleles exhibit better performance
under extremal conditions (see Figures 2B and 2C). Thus, the
phenotypic response surface can differ in shape and magnitude
within the population, and surface shape can be quite differ-
ent than the parent response surface in offspring carrying some
QTL allele combinations. Because of the quadratic equation we
fit (Equation 1), and the experimental design, which was opti-
mized to detect nonlinear interactions using this quadratic fit,
these QTL will have a crossover interaction between the allele
surfaces. We show this as intersections between B73 and Mo17
alleles’ response surfaces in plots of the QTL effect (Figure 2).
Like their parents, none of these alleles have surface corners that

lie on parallel lines.
The differences in surface shape between allele fits in all three

QTL, with flatter surfaces with increased combined stress and
peaks in the center of the response surface, indicate that nitrogen
and water stress have nonlinear effects on plant growth. When
these two stresses increase, the combined effect on changes in
plant height is less than expected from the independent action
of each stress. The domed surface shapes indicate that the better-
performing allele at mid-range combined stress is typically not
the allele that provides best performance in extreme conditions.
The highest water and nitrogen input conditions, which might
naïvely be assumed to support the most growth, exhibit less
growth and could be favored by a different allele than the mid-
range combinations.

Annotations of Gene Function in QTL Regions
Gene annotations under QTL provide a qualitative new data
type that can provide additional context to the mapping of chro-
mosomal loci. Annotations such as ”response to abiotic stress”
in the two QTL on Chromosome 1 (Figure 3A and 3B) are con-
sistent with our identification of these QTL as important for
response to drought and nitrogen fertilizer. QTL3 in bin 9.03
does not have unique annotations in stress response (Figure 3C);
this may indicate that a novel gene type is responsible for the
causal allele difference at this locus. The marker with the small-
est P value within the QTL1 region was IDP168, which tags gene
GRMZM5G828396. This gene is annotated as a basic Helix-Loop-
Helix (BHLH) transcription factor. The marker with the lowest
P value in the second QTL interval was umc1446, which tags
gene GRMZM2G162508; this gene is annotated as a polyketide-
synthase-like protein. The marker with the smallest P value in
the third QTL in bin 9.03, was mmp17b, which is between the
genes GRMZM2G538859 and GRMZM2G093187; neither gene
model has assigned annotations.

Modeling the Response Surfaces with a Producing Function
We define a complex phenotype as a function of at least three
variables, of which at least one is an input, or independent,
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marker αi,w,2 αi,n,2 αi,wn αi,w,1 αi,n,1 µ + αi,0 + εi,w,n

B73 -0.006042 -0.188712 0.025567 0.229554 0.997363 32.034927

Mo17 0.000814 -0.001170 -0.006244 -0.009502 0.063104 0.266425

QTL1-B73 -0.004447 -0.110527 0.007851 0.251079 0.542153 29.572431

QTL1-Mo17 -0.003192 -0.049303 0.004224 0.215691 0.317815 26.144178

QTL2-B73 -0.002367 -0.068065 0.006244 0.237807 0.418609 25.779661

QTL2-Mo17 -0.005370 -0.105151 0.007068 0.239113 0.497335 30.499056

QTL3-B73 -0.002917 -0.063999 0.008152 0.228592 0.411333 25.720664

QTL3-Mo17 -0.005307 -0.116559 0.005924 0.249475 0.525478 31.324343

Table 1 Parameter Values for Experimental Surfaces Fit to Equation 1.

(A) (B) (C)

Figure 3 Gene Ontology Annotations for QTL. All known genes in each QTL region were scanned for significant annotations. GO
process annotations are shown. Annotations were ordered by semantic similarity (Supek et al. 2011), with single genes under the QTL
having higher uniqueness (more red color). (A) QTL1, bin 1.06, bounded by markers gpm906a to IDP2465; (B) QTL2, bin 1.08, bounded
by umc1838a to mmp22; and (C) QTL3, bin 9.03, bounded by ufg71 to IDP1681.

variable; and at least one is an observable output, or dependent,
variable. Here, the phenotype has two input variables, water and
nitrogen; and an output variable, relative change in plant height.
We assume that all of the observed responses of the recombi-
nant lines are produced by a single network of the organism.
Together, these response surfaces form a space of phenotypes.
Different surfaces — different points in the phenotypic space —
result from different tunings of the network, rather than from
fundamental changes to the network’s topology. The greater the
range of observed phenotypes, the more the phenotypic space
is sampled and the more constraints an hypothesis must satisfy.
We call the mathematical function that reproduces the observed
phenotypes a “producing function”. The simplest producing
function delimits the most parsimonious form of the network,
because the two are equivalent conceptualizations of the same
biological reality. Tuning the function’s parameters to reproduce
the observed phenotypic responses is the same as tuning the
network.

So what is the producing function for the network sampled
in this experiment? Inspection of the experimental phenotypes
of Figures 1 and 2 suggested the simplest producing function is

that shown in Equation 3:

z = c
(

ax2
w + bx2

n

)
︸ ︷︷ ︸

elliptical paraboloid

+ dxw + exn︸ ︷︷ ︸
plane

, (3)

where z is the relative difference in height; xw, water; xn, ni-
trogen. a, b, and c are parameters governing the paraboloid’s
peak height and orientation (c) and its weighting of input water
(a) and nitrogen (b). d and e tilt the plane along the water and
nitrogen axes, respectively. In essence, the model says that the
growth response network of maize has two components that
read the values of the external water and nitrogen, an elliptic
paraboloid and a plane (see Figure 4A).

Both components are essential to reproducing the experimen-
tally observed surfaces, as shown by deleting terms in Equa-
tion 3. Omitting the elliptical paraboloid makes it impossible
to reproduce any experimental surface, since all have domes or
troughs; and omitting the plane makes all of the surfaces sym-
metric about the major and minor axes of the paraboloid and
place the maxima and minima at (0, 0, z). The relative weight-
ings of water and nitrogen within each component are different
(a and b vs. d and e), and independent of the weightings of
the two components. The relative weighting of the paraboloid
and planar components is controlled by all five parameters:
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(A)
(B)

Figure 4 Modeling of Response Surfaces with the Producing Function (Equation 3). (A) The producing function drawn as a network. The
elliptical paraboloid component is on the left, and the planar component on the right. Each term in the function is a node; the operators
are edges. The parameters of the producing function (Equation 3) are in magenta; results of mathematical operations on the input
nodes are shown in orange. The final equation is in yellow. (B) Sample simulated response surfaces and their projections into the
xw, xn plane. (left) B73-like response surface, (a, b, c, d, e) = (0.260, 0.305,−0.175, 2.575, 0.500); (right) Mo17-like response surface,
(a, b, c, d, e) = (0.0330, 0.4250, 0.0030,−0.0025, 0.5500). The color scale for each is the same for its surface plot and projection.

c(a+ b) > d+ e emphasizes the paraboloid nature of the surface.
Unlike Equation 1, where the parameters adjust the qualities
of the fit of the equation to the observed data, the producing
function explicitly treats the parameters as fundamental model
components that adjust the organism’s physiological response
to input water and nitrogen.

The producing function generates the experimentally ob-
served surfaces of the B73 and Mo17 parental inbreds. The
simulated surfaces in Figure 4B show good qualitative agree-
ment with the surfaces in Figures 1A and 1B. Setting c < 0 makes
the surface convex upward, while c > 0 produces the concave
upward surface of Mo17. a, b, and c together control the depth
of the dome or trough. d and e further adjust the position and
magnitude of the surface in all three dimensions, most notably
moving the peak about in xw, xn, z-space. Thus, the phenotypes
we observe are products of the entire network.

The Shapes of the Alleles’ Response Surfaces

How well does Equation 3 reproduce the shapes of the alleles’
response surfaces, the most distinctive and robust feature of
the phenotypes? The shapes show the patterns of the alleles’
responses to the stresses, indicate the relative importance of the
elliptical paraboloid and the plane, and are less sensitive to the
effects of errors due to small sample sizes.

The precision of the reproduction is affected by errors in
the data and the nature of the producing function. Optimizing
the design of the experiment for peak detection means that the
small sample sizes on the edges make it difficult to estimate the
surfaces there. As well, the relative “flatness” (small discrete cur-
vature, K) of the peak regions makes the positions of the maxima
especially sensitive to difficulties smoothing the experimental

data. On the modelling side, the producing function’s planar
component cannot reproduce the corners of the surfaces, since
these appear to form a nonplanar, twisted quadrilateral (a fea-
ture contributed by the hyperbolic interaction term, αi,wnxi,wxi,n,
of the quadratic Equation 1). Moreover, simulated surfaces that
are identical in shape to experimental ones can be rotated in the
xw, xn plane by minor changes in the values of a, b, d, or e, or in
the evaluation intervals.

The smoothed experimental surfaces fall into four, nondisjoint
categories:

domed more sharply domed, highest amplitude surfaces with
peaks in the high nitrogen, high water region (B73 and
QTL1-B73);

hybrid higher amplitude domed surfaces with the peaks dis-
placed from the high nitrogen, high water corner towards
the center of the water-nitrogen plane (QTL2-Mo17 and
QTL3-Mo17);

shoulder lower amplitude surfaces, with lower peaks on the
high water edge that slope more gradually downward as
nitrogen decreases (QTL1-Mo17, QTL2-B73, and QTL3-
B73); and

trough a very low amplitude trough with a peak at the lowest
water and highest nitrogen corner (Mo17).

These categories are illustrated by examining the positions of
the peaks in xw, xn, z (Table 2) and by projecting the surfaces into
the water-nitrogen plane (Figure 5). The smoothed experimental
surfaces, plotted to show each one’s amplitude, are shown in the
first and third columns of Figure 5. We emphasize that the mem-
bership of the domed and hybrid categories changes depending
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proxy B73 QTL1-Mo17 QTL2-Mo17 QTL3-Mo17 QTL1-Mo17 QTL2-B73 QTL3-B73 Mo17

xw 28.5 31.5 24.0 25.0 37.0 42.0 42.0 −42.0

xn 4.5 3.5 3.0 3.0 5.0 5.0 6.0 7.5

zmax 37.6 34.5 34.2 35.2 30.9 33.3 32.4 4.5

Table 2 Coordinates of the Peaks of the Smoothed Experimental Surfaces.

on the criteria. If one considers only the position of the peak
in the xw, xn plane, then B73 and QTL1-Mo17 only would form
the domed class, and QTL2-Mo17 and QTL3-Mo17 would form
the hybrid class. Weighting the position in z more than the peak
position classifies B73 as domed and QTL1-B73, QTL2-Mo17,
and QTL3-Mo17 as hybrid. Binning the zmax more coarsely
would eliminate the hybrid category all together. Adding other
univariate proxy criteria might further change the classification.

Comparison of Experimental and Simulated Surfaces

We fitted linear models to a set of points placed on the experi-
mental surfaces that radiated away from the peaks and covered
the central, best-determined parts of the surfaces. The points
avoided the edges and corners of the surfaces, where the experi-
mental design used the smallest sample sizes. We used models
with and without the experimental maxima to see if these af-
fected the fitted values.

Table 3 summarizes the values of a, b, d, and e and the cu-
mulative, scalar errors for each smoothed experimental surface
obtained by the linear fits using the mesh points. In general,
the fitted values distribute the numerical weight more evenly
among the four parameters than the fits to the quadratic model
of Table 1, even after the lumped linear constant µ + αi,0 + εi,w,n
is excluded. The exception is QTL3-Mo17, where nearly all of
the numerical weight is concentrated in e. Identical parameter
values were obtained by both fitting algorithms; the Table shows
the lsei results since this method also reports the cumulative
scalar errors. The mesh point sets used here included the experi-
mental peak. Omitting these slightly degraded the quality of the
fits, as estimated by the cumulative error scalars, for all alleles
except Mo17 (Supplemental Figure 10).

We report the square root of the solution norm, which is the
minimum of the least squares fit to the equation. The residual
norms for all the parameters was 0. We summarize the pattern
of parameter signs in the right-hand section of Table 3. The
pattern of pluses and minuses groups the surfaces into the two
parental types, (domed and trough); flatter, more shouldered
surfaces (QTL1-Mo17, QTL2-B73, QTL3-B73); a group of mod-
erately peaked surfaces (QTL1-B73 with QTL2-Mo17) that fall
into either the domed or hybrid categories, depending on the
weighting of the classification criteria. Finally, QTL3-Mo17 is a
hybrid surface based on the peak in xw, xn, z and the projection
into the evaluation plane, but has a distinct sign pattern. Group-
ing by signs makes it more visually obvious how the surface
fits in Figure 5 connect to the parameters in the function, and
emphasizes the overlap among the categories.

We used the parameter values from the linear fits shown in
Table 3 to generate simulations of the alleles’ response surfaces.
Figure 5 shows the smoothed experimental surfaces and their
simulations projected into the water-nitrogen plane. These are
plotted using the minimum and maximum of each surface to
set the scales. The producing function reproduces the major

shape features of the experimental surfaces. All four nondisjoint
categories of surfaces are generated with the correct membership,
and the corresponding differences in their shapes relative to the
experimental shapes fall into the same categories. Moreover,
the simulations show the expected sensitivities to sample sizes,
smoothing problems, lack of twist, and small shifts in fitted
parameter values. The fitted values rotate all surfaces counter-
clockwise and increase their amplitudes. They also displace
the peaks of the domed and hybrid surfaces (B73, QTL1-B73,
QTL2-Mo17, and QTL3-Mo17) from the high nitrogen, high
water corner towards the low-nitrogen edge, passing through
the center of the evaluation plane. A similar displacement is seen
for the shouldered surfaces, where the shift is toward the high
water edge; and Mo17’s surface is shifted to the low nitrogen,
high water corner.

The cumulative scalar estimates of error supplied by lsei
cannot capture how the quality of the simulations varies over
the surfaces. A linear model will necessarily emphasize the
highest magnitude values, which in these cases are the peaks,
and can exaggerate their impact in the generated surfaces. For
each experimental and simulated surface, we computed a set of
relative mesh points that better describe the shapes than those
used to compute the fitted parameters. These used a set of six
rays emanating from the peak at fixed slopes, placing the mesh
points at intervals of one tenth the length of the ray segment
bounded by the peaks and the water or nitrogen axes. We then
compared the shapes for each experimental/simulated pair of
surfaces at each corresponding relative mesh point using three
parameters: ρ, the Euclidean distance; θ, the rotation angle be-
tween the surfaces when projected into the water-nitrogen plane;
and δzr, the relative discrete difference along each ray, moving
away from the peak. For a baseline, we compared each simu-
lated surface (s) to its experimental one (e). The QTL3-Mo17 and
Mo17 simulations produced surfaces that were displaced too far
in the water-nitrogen plane to be included in the comparison.
These values are shown as heatmaps in Figure 6.

In the heatmaps, bluer shades indicate the closest fit for ρ;
for θ and δzr, the green color indicates the closest fit. The pre-
cision of fits was not uniform across any of the surfaces for
any parameter, which is visually apparent as blocks of different
colors in Figure 6. Different parameters had slightly different
blocks, justifying evaluating the fits as three different matrices.
Strikingly, the same experimental surface was often fit equally
well by multiple simulations, looking over all three parameters.
This is consistent with the nondisjoint subspaces we observe
in the experimental surfaces, and suggests we did not overfit
the parameters using the linear model. Consistent with this,
occasionally the self comparisons were not the best fit.

Judged by ρ, the surfaces divide into two groups. Experimen-
tal surfaces for QTL1-Mo17, QTL2-B73, QTL3-B73, QTL2-Mo17,
and QTL3-Mo17 had the most uniform, best fits when compared
to their simulations. The first three are shouldered surfaces; the
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B73 QTL1-Mo17

QTL1-B73 QTL2-B73

QTL2-Mo17 QTL3-B73

QTL3-Mo17 Mo17

experimental model experimental model

Figure 5 Experimental and Simulated Surfaces Projected into the Water-Nitrogen Plane. Each surface’s scale spans its maximum and
minimum. The left two columns show the domed and hybrid categories, and the right two columns the shoulder and trough categories.
Parameters used in the simulations were obtained from linear fits to the experimental data.

fourth a hybrid surface with the majority sign pattern; and the
last is the hybrid surface with the distinctive sign pattern shown
in Table 3. In constrast, B73 and QTL1-B73 had the most poorly
fitting surfaces when compared to their simulated versions. Both
are domed surfaces, with QTL1-B73 also classifiable as a hybrid
surface. We could not compare Mo17 to its simulated version,
but it fit all the other simulations about equally poorly, as one
would expect. The fits varied across the surfaces. In general, fits
were better in the central part of the surfaces, which had a higher
density of mesh points. For example in ρ, there were blocks of
better fit in rays r3, r4, and r5 throughout for most comparisons;
the fit decayed as we moved away from the peak and towards
the edges of the surfaces.

In θ, blocks of good quality fit are apparent, and the
domed/hybrid, shouldered, and trough sets can be readily iden-
tified. As with ρ, some surfaces were not always best fit by their
simulations; for example eQTL1-B73 to sQTL1-B73 had a poorer

fit than eQTL1-B73 to sB73. The rotation of simulated surfaces
relative to the experimental surfaces is apparent from the repeat-
ing vertical stripes of yellow for ray r1 next to the green stripes
for ray r2. The repeating yellow stripes of ray r1 indicate that all
the comparisons except those to the experimental Mo17 surface
reach their maximum rotation in the upper region of the mesh
points. Rotation decays on either side of r1, and is least in the
central region of the surfaces. Why? Recall that the rays are
of fixed slopes relative to a horizontal ray radiating leftward
from the peak. Rotation increases as the difference between the
absolute lengths of the rays compared increases: as the peaks
from which the rays are drawn shift in the xw, xn plane, these ray
lengths and the portion of the surfaces they subtend will change
correspondingly. Thus, the maximum rotation we observe along
ray r1 reflects greater length differences in the r1 rays relative
to the other ray pairs. There are two reasons why this could
occur. First, d and e together shift the peaks’ positions and rotate
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allele a b c d e (solutionNorm)1/2 sgn(a) sgn(b) sgn(d) sgn(e)

B73 -0.0463 -1.8005 -1 -0.0765 1.3540 146.0321 − − − +

QTL1-B73 -0.0429 -0.5926 -1 -0.3134 -0.9222 127.2874 − − − −

QTL2-Mo17 -0.0332 -0.4362 -1 -0.3681 -2.9073 134.1696 − − − −

QTL3-Mo17 -0.0636 0.0039 -1 -0.5199 -4.0788 112.6761 − + − −

QTL1-Mo17 0.0164 -0.6201 -1 1.2777 1.8758 89.4613 + − + +

QTL2-B73 0.0268 -0.4119 -1 1.7254 1.7119 81.4159 + − + +

QTL3-B73 0.0278 -0.4450 -1 1.6600 1.0073 83.2248 + − + +

Mo17 0.0259 0.2164 1 1.7406 -0.7203 34.1571 + + + −

Table 3 Parameter Values, Error, and Sign Pattern for Experimental Surfaces Fit to Equation 3. The experimental mesh points used in the fits
included the peak of each surface. The value of c was preset to produce the appropriate convexity. The residual norms were all 0.

ρ θ δzr

Figure 6 Heatmaps of ρ, θ, and δzr. The pairwise comparison of all 60 relative mesh points for each pair of experimental (e) and
simulated surfaces (s) are the rows; the values for the pair of mesh points are the columns. The columns are ordered by concentric
rings around the experimental peaks, so that the leftmost six columns are closest to the peak (:1) and the rightmost six furthest away
(:10). Within each set of six columns, the rays (r0, r1, . . . , r5) are arranged in order of increasing slope (non-Mo17) or decreasing slope
(Mo17). The scales are heatmap-specific.

the surfaces, so the rotations would reflect imprecision in the
estimates of d and e. Second, the nondisjointness of the surfaces’
categories may not be intrinsic to the system; perhaps an ad-
ditional term in the producing function would separate these
categories and provide better estimates of all the other parame-
ters, including d and e, possibly at the cost of more parameter
indeterminacy.

The final comparison in Figure 6 is the relative changes in
shapes of the surfaces along each ray, subtracting the experimen-
tal from the simulated surfaces, δzr. By this criterion, the shapes
are quite similar, as indicated by large areas of green. Ray r0
changes very slowly and uniformly until about mesh point :9
or :10, while ray r5, the most vertical ray, changes fastest and
most dramatically. As we descend from the peak, other rays also
start to change more rapidly. This is consistent with the changes
in ρ that we observe: differences in shapes will also appear as
differences in Euclidean distances among pairs of points. In this
δzr criterion, the values are negative if the simulation descends
more rapidly than the experimental and positive if the surface is

shallower. Most changes are towards sharper simulated surfaces
(blue), and a few to shallower simulated surfaces (yellow). This
is consistent with poorer estimates of the producing function’s
parameter values: all four control the sharpness and height of
the peak and the shapes of the sides of the surfaces.

Discussion

The parental inbred patterns of stress response did not predict
the responses of the Mo17 QTL alleles. Mo17 is the least re-
sponsive of all the lines, and lines with Mo17 alleles in mixed
RIL backgrounds have responses that show much greater, more
B73-like amplitudes. The trait response of the Mo17 bin 1.06
QTL allele (QTL1-Mo17) is greater than the corresponding B73
allele. In contrast, the Mo17 alleles for QTLs in bins 1.08 and
9.03 (QTL2-Mo17 and QTL3-Mo17) show more response than
their B73 alleles. However in all cases, the response surfaces of
the Mo17 alleles are convex upward like the B73 parent. Mo17
appears to contain allele sets that together restrain growth across
all environments (Figure 1B). The responses of the B73 alleles are
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damped and shifted by the addition of Mo17 germplasm in the
background. This transgressive segregation pattern is often seen
in mapping populations (Rieseberg et al. 2003) and indicates
that the parental inbreds contained alleles with antagonistic ef-
fects on the trait. Transgressive segregation and the changes
in response surfaces’ shapes suggest that other modifier genes
segregating within the populations are affecting the response to
combination stress.

We weighted our statistical model fit for overall polygenic
similarity, but specific epistatic interactions were not examined.
Epistatic interactions are common, but difficult to detect in
small mapping populations using combinatorial methods (Mäki-
Tanila and Hill 2014). However, it is likelier that any epistasis
one might deduce from a linear model is instead the result of
attempting to fit a linear model to a nonlinear response pheno-
type (Sailer and Harms 2017). A nonlinear function’s matrix
of coefficients captures both the interactions among genes and
the magnitudes of those interactions. Linear transformations
of nonlinear phenotypes partition that matrix into a matrix of
interactions — the adjacency matrix of a network — and a matrix
of interactions’ magnitudes. The more nonlinear the phenotype,
the greater the apparent importance of an epistatic interaction
term in the decoupled linear model. Paths through the network
select subsets of terms from the full nonlinear model, fragment-
ing the phenotype into multiple approximations that appear as
epistasis. Better nonlinear models would fold these apparent
epistases into the inherent nonlinearity of the response, distin-
guishing true epistatic interactions from nonlinear phenotypes.

Antagonistic, damped responses to combinations of stresses
were previously observed in this IBM population in an experi-
ment measuring changes in height under combinations of UV
and drought, which identified different QTL than we see here
for drought and low nitrogen (Makumburage et al. 2013). It is
possible that specific stress combinations have different genetic
control than the response surfaces that we studied in this work.
To test the extent of stress-combination specificity, dose response
analyses for more combinations of stresses would be needed.

All three of the QTL we identified have better performance
for one allele in the mid-range combined stress, at moderate
levels of water and nitrogen. Extreme values are often used in
lab-scale studies, though it is difficult to extrapolate from those
results to the more common, moderate stress settings (Tardieu
2012). Our QTL suggest that comparison of a control environ-
ment with an extreme stress environment could suffer from Type
II error, as none of our QTL show a pattern indicative of allelic
differences at the most extreme stress levels. This also fits with
indirect selection results in hybrids, where optimal conditions
show a relatively high level of genetic correlation with stress en-
vironment performance (Weber et al. 2012). Analysis of selection
efficiency on yield test winner plots as compared typical plots,
or classification of fields by optimality criteria, may be useful for
better prediction of performance in trials. Correlations between
optimal and stress environments are typically positive but the
extent of the correlation is not always as expected (Weber et al.
2012): this could reflect a history of selection for “good-middle”
stress performance alleles instead of a selection from a straight
linear surface.

More complex surface fits, such as dose-ratio (Jonker et al.
2005), provide additional information and require more data.
The B73 MixTox analysis shows that low nitrogen “over-
shadows” drought; in low nitrogen, having additional water
available does not improve growth. The over-riding importance

of nitrogen for growth is consistent with agricultural recommen-
dations for modern corn lines (Hallauer et al. 2010). Conversely,
keeping lower levels of nitrogen fertilization was found to ame-
liorate the effect of severe drought under certain conditions
(Sadras and Richards 2014). Given the transgressive segregation
we see in our mapping population, one reason for inconsistency
in tests of severe-stress amelioration may be genetic differences
in capacity for overshadowing. A comparison of response sur-
faces in lines selected for stress tolerance compared to unselected
lines would be a useful test of the genetic contributions to the
interactions between water and nitrogen use.

We observed that the parental B73 and Mo17 inbreds show
different patterns of combined stress response. These lines were
selected to create an excellent single-cross hybrid (Hallauer et al.
2010). This suggests that lines with little response or that tolerate
extreme stress may combine well with good-middle lines. To
test this, relationships between combination response surface
shape to combining ability could be done across a range of good
and poor combiner varieties, and across general and specific
combiner extremes.

Nonlinear changes in growth in response to combined
stresses is a complex phenotype. Just from the surfaces fit to the
experimental data, one can rule out an unbranched network sen-
sitive to both water and nitrogen, because the response’s peak
does not scale with the sum or product of the inputs. Similarly,
one can exclude two completely independent nodes, one for
each input. Instead, the two inputs interact so that the response
varies as a function of both: the phenotypes are produced by
the action of the entire network, rather than just paths through
it (Figure 4A). The nonlinear producing function of Equation 3
defines this interaction as the sum of two components, each of
which is sensitive to both water and nitrogen. Environmental
perturbations, such as varying available water and nitrogen,
change the intervals over which the producing function is eval-
uated by the plant. Genetic perturbations, such as the alleles
of the QTL identified in this work, delimit different regions of
the space of possible phenotypes. Of course, considering addi-
tional phenotypes or phenotypic dimensions might necessitate
changing the function.

The producing function is a simpler, more coarsely-grained
model that approximates the behavior of the system. It suc-
cessfully accounts for all the important qualitative features of
the experimentally observed phenotypes without assuming the
large constants of a regression model that here numerically dom-
inate the solution (Table 1). Surfaces generated using parame-
ter values obtained by linear fits approximated the shapes of
the experimental surfaces well, but were shifted downward in
three-dimensional space. Slightly tilting the plane component
of Equation 3 can strongly shift and rotate the position of the
peak in xw, xn, z. This suggests the model is quite sensitive to
variation in d and e and is consistent with our simulations (data
not shown).

Estimating parameters by fitting is more challenging with
nonlinear phenomena. Two questions arise: what should be
fitted? and how should it be fit? The first question is the fit
criterion. We tested a wide variety of objective functions, singly
and in combination to produce scalars or vectors, to describe
the surfaces through a set of proxies that are easier to com-
pute. None effectively discriminated among somewhat similar
surfaces. This is not surprising in retrospect: such a function
would behave as a unique, deterministic, multidimensional hash
function. This situation is likely to occur when considering com-
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plex phenotypes, which are inherently multivariate. Instead,
we used three evaluation criteria computed over a set of mesh
points spanning portions of the surfaces. Further characteriza-
tions of the resulting matrices, instead of visually inspecting
the heatmaps of Figure 6, might allow us to condense these
descriptions, especially since they exhibit periodic behaviors.
Nonetheless, the heatmaps illustrate how much the surfaces can
change as a function of the fitted parameter values and suggest
a more refined alternative to simple scoring schemes.

The second question is one of fitting method. The most com-
mon approach approximates the higher degree polynomial with
a linear statistical model, as we have done here. Our results
clearly demonstrate how poorly such methods can approxi-
mate nonlinear functions. A more sophisticated, but compute-
intensive, approach would be to fit a set of planes, approximat-
ing the surface as a set of three-dimensional splines. Another
approach is to optimize the fit of the model to the data using one
of many nonlinear optimization techniques (Bartholomew-Biggs
2008). Nonlinear optimizations require a good initial guess for
the parameter values. We found the values generated by the
linear fits were not good guesses, evidently placing the initial
point outside the feasible region of the optimization. Further
experimentation will be needed to improve the fits using this
approach.

Finally, one can search systematically for parameter combina-
tions that generate surfaces that match the experimental ones.
This is one way of asking how sensitive the phenotypes are to
variations in the parameters’ values. For nonlinear polynomial
functions, the relationship between sets of parameter values
and generated surfaces will not be regular or easily anticipated:
stepwise changes in parameter values will produce “clumps” of
generated phenotypes. The reasons for this clumpiness are in-
structive. The producing function maps between the parameter
and the phenotypic spaces. This mapping may be bijective (one-
to-one and onto): each point in the parameter space identifies
a unique response surface — a point in the phenotypic space
— and vice versa. The most common interpretation of complex
phenotypes in QTL experiments is that each is unique and that
its components are individually determined. This is consistent
with the assumptions that the mapping is bijective; that each
component of the phenotype is governed by a single parameter;
and that the fundamental properties of the two spaces, such as
their classification, point density, and smoothness, are the same.

But our results suggest these assumptions may not always be
sound. The phenotypes we observe fall into four overlapping
classes: domed surfaces, with the peak somewhat interior in the
water-nitrogen plane; hybrid surfaces, with a lower peak shifted
further into the water-nitrogen plane; shouldered surfaces, with
a still lower peak towards the edge of the plane; and trough
surfaces, with the peak at a corner of a very flat trough. The
close similarities of the phenotypes within each class, and the
overlap between the domed and hybrid classes depending on
the classification criterion, suggest that the parameter values
governing them can fall into rather broad ranges, a hallmark
of sloppiness in model systems that breeders commonly call
equifinality and statisticians call “parameter nonidentifiability”
(Transtrum et al. 2015; Luo et al. 2009; Hartung 2014; Hines et al.
2014). This interpretation is supported by extensive simulation
experiments: so far, we have been unable to identify unique com-
binations of parameter values that determine each individual
phenotype. The parameter ranges for the observed phenotypes
are not disjoint, another characteristic of sloppy systems (data

not shown). Thus, our data divide both the parameter and the
phenotypic spaces into nondisjoint subspaces.

One common suggestion is to map QTL using a producing
function’s parameters, rather than using a specific quadratic fit
(Reymond et al. 2003; Lamsal et al. 2017). Here, one asks for
alleles that shift the phenotype from one subspace to another,
presuming the alleles shift the plant from one parameter sub-
space to another. The usual objective of QTL experiments is to
map a peak that exerts a large change on a single parameter of a
phenotype. For example, c acts like a repressor in some sense,
and so it might seem tempting to fit our trait and genotype data
to that parameter in order to map repressor alleles. But the sub-
spaces we have identified are produced by all five parameters,
so it is likely that subsets of QTL will influence multiple pa-
rameters, perhaps differently; that these QTL subsets will not
be mutually disjoint; and the subspaces of the parameters will
differ in their stiffness and sloppiness.

We encourage application of our response surface and shape
modelling approaches to crop protection mixture or abiotic-
biotic mixture experiments to understand if there are a few
major-effect or many small-effect genes that control these cases.
This would affect the design of multi-environment trials. For
modeling and eventual causal understanding we need to know
the patterns of phenotypic responses and genetic control: not
just specific alleles for specific combinations, but alleles that
affect high-level patterns of response, such as the categories of
surfaces. For example, single transcription factors are high-level
regulatory effectors and have provided effective avenues for
crop improvement, and so might be candidates for changing
groups of parameter values that then shift higher order pat-
terns. Our work is the first step toward identifying higher order
regulatory environmental-response alleles, such as cellular tran-
scription factors and/or physiological regulatory factors such as
hormones (Cabello et al. 2014). The function we developed for
modeling the responses clearly shows the interaction of the two
stressors and the range of nonlinear responses of the system. The
response surface modelling and shape evaluation methods used
here will be useful in detecting such higher order patterns. The
overlapping categories formed by these phenotypes may reflect
genuine nondisjointness in phenotypic space or missing dimen-
sions that would separate the categories in a higher dimensional
space. The methods used here, applied to higher dimensional
data, offer one route to distinguish these hypotheses.
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10. Supplemental_Results_Figure_S3.pdf

• On GitHub at https://github.com/tonikazic/univariate-
_dose_response.git, a public repository:

11. replot MatLab surfaces in R in standard orientation:
replot_ann.r

12. generate surfaces according to Eqn 3: modified_eqn.r

13. library of proxies and other helper functions:
sweep_fcns.r

14. library of helper functions for analysis: analysis-
_fcns.r

15. linear estimation of parameters:
estimate_exptl_parameters.r

16. standard view for plotting surfaces in 3D: std_view.r
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.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2017. ; https://doi.org/10.1101/186791doi: bioRxiv preprint 

https://doi.org/10.1101/186791
http://creativecommons.org/licenses/by/4.0/

