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Summary 
DNA replication occurs in a defined temporal order known as the replication-timing (RT) 

program and is regulated during development, coordinated with 3D genome organization and 

transcriptional activity. Here, we exploit genome-wide RT profiles from 15 human cell types and 

intermediate differentiation stages derived from human embryonic stem cells to construct 5 

different types of RT regulatory networks. First, we constructed networks based on the 

coordinated RT changes during cell fate commitment to create RT networks composed of 

specific functional sub-network communities. We also constructed directional regulatory 

networks based on the order of RT changes within cell lineages and identified master regulators 

of differentiation pathways. Finally, we explored relationships between RT networks and 10 

transcriptional regulatory networks (TRNs), by combining them into more complex circuitries of 

composite and bipartite networks. Our findings show that RT networks can be exploited to 

dissect the cellular mechanisms that regulate lineage specification and cellular identity 

maintenance. 

 15 

 

 

Highlights  
● DNA replication timing (RT) programs were used to construct gene regulatory networks. 

● RT networks revealed functional organization of sub-network communities. 20 

● RT networks identified master regulators of cell fate commitment. 

● RT and gene expression circuitries define composite and bipartite networks. 
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Introduction  
During development, specific transcriptional programs and epigenetic landscapes are 25 

established that maintain the identities and functionality of the specialized cell types that 

emerge. Despite characterization of changes in transcriptome and epigenome during 

development (Gifford et al., 2013; Roadmap Epigenomics Consortium et al., 2015; Tsankov et 

al., 2015; Xie et al., 2013), little is known about the role of spatio-temporal genome organization 

in cell fate specification. Changes in gene activity and chromatin 3D organization are 30 

coordinated with dynamic changes in the temporal order of genome duplication, known as the 

replication timing (RT) program (Hiratani et al., 2010; 2008; Rivera-Mulia et al., 2015). Spatio-

temporal control of RT is conserved in all eukaryotes (Rivera-Mulia and Gilbert, 2016a; Solovei 

et al., 2016). RT is regulated during development in discrete chromosome units, referred to as 

replication domains (RDs), that align with topological associated domains (TADs) mapped by 35 

chromosome conformation capture techniques (Hi-C) and segregate into distinct nuclear 

compartments visualized by either cytogenetic or Hi-C methods (Jackson and Pombo, 1998; 

Moindrot et al., 2012; Pope et al., 2014; Rivera-Mulia and Gilbert, 2016b; Ryba et al., 2010; 

Sadoni et al., 2004; Yaffe et al., 2010). Hence, we reasoned that RT can be exploited to 

characterize regulatory relationships between 3D genome organization and gene expression 40 

control during development 

 

Previously, we generated the most comprehensive database of RT programs during human 

development and found that approximately half of the genome undergoes dynamic changes 

that are closely coordinated with the establishment of transcriptional programs (Rivera-Mulia et 45 

al., 2015). Additionally, we demonstrated that genes within developmentally RT regulated 

domains are high in the hierarchy of transcriptional regulatory networks (TRNs) and regulate RT 

constitutive genes (Rivera-Mulia et al., 2015). However, strong gene expression was not 

restricted to early replicating genomic regions and transcriptional activation during cell fate 

commitment often preceded RT changes (Rivera-Mulia et al., 2015; Rivera-Mulia and Gilbert, 50 

2016b). In fact, although a long-standing correlation between early replication and gene 

expression has been observed in all eukaryotes, the link between RT and transcriptional activity 

is complex and causal relationships have not been established (Rivera-Mulia and Gilbert, 

2016b; Solovei et al., 2016). Here, we test the hypothesis that RT can be regulated by the 

establishment of complex regulatory circuits of transcription factors rather than by the 55 

transcription levels of genes within each RD. We extracted RT values at the transcription start 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2017. ; https://doi.org/10.1101/186866doi: bioRxiv preprint 

https://doi.org/10.1101/186866
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rivera-Mulia et al., page 4 

sites (TSS) for all RefSeq genes (Ryba et al., 2011a) and constructed distinct types of RT 

regulatory network models based on: 1) correlation patterns in RT changes during cell fate 

commitment, 2) the temporal order of RT changes in each developmental transition and 3) 

combined networks that explore the crosstalk between RT and transcriptional regulatory 60 

networks (composite and bipartite networks). 
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Results 
Construction of RT networks 
To construct RT regulatory networks we defined a model that describes the relationship 65 

between all possible combinations of gene pairs (nodes), establishing gene interactions (edges) 

according to their correlated RT patterns during cell differentiation (Figure 1A). Distinct filters 

were applied in our model: a) we included only genes that change RT during development 

(removing RT constitutive genes, see methods), b) we established gene interactions (edges) 

between highly correlated gene pairs (correlation >0.75), c) we included edges only between 70 

genes separated by at least 500kb and/or in different chromosomes (Figures 1B-C and S1). 

Separation by >500kb was chosen to remove gene pairs within the same RD, which we have 

shown vary in size from 0.4 to 0.8 Mb (Hiratani et al., 2008; Pope et al., 2014; Rivera-Mulia et 

al., 2015). After applying these filters, gene pairs were extracted (green boxes in Figure 1C) and 

RT networks were constructed based on the Pearson’s correlation strength. Figure 1D and E 75 

illustrate hypothetical examples of two distinct RT patterns along a single cell differentiation 

lineage, the correlations for which constitute connections between gene pairs exploited to 

construct the corresponding RT networks. 

 

RT networks reflect functional gene regulatory interactions 80 

To determine the biological significance of RT networks, we examined their functional 

organization by performing ontology analysis of each sub-network community using the spatial 

analysis of functional enrichment (SAFE) algorithm (Baryshnikova, 2016; Costanzo et al., 2016). 

In order to identify functional sub-network communities, 2D maps of RT networks constructed 

as described above were generated by force-directed layout algorithm in Cytoscape (Shannon 85 

et al., 2003). Next, local neighborhoods within the global networks were identified according to 

the connectivity and distances between nodes (Blondel et al., 2008) and ontology analysis was 

performed to identify the most significant enrichment of functional attributes per neighborhood 

(Baryshnikova, 2016). To test our RT networks models, we first constructed an RT network 

using all RT correlated gene-pairs across all differentiation pathways (Figure 2A). Interestingly, 90 

we found that nodes were arranged in sub-network communities defined by interconnected 

genes; among those communities we found local neighborhoods with highly interconnected 

nodes of genes involved in specific functions, which were color coded based on the enrichment 

of functional ontology annotations (Figure 2A). Closer inspection of local neighborhoods 
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annotated with specific functions grouped the genes according to their ontology terms (Figure 95 

2B). Next, we generated RT networks independently for ectoderm, mesoderm and endoderm 

differentiation pathways. Remarkably, these RT networks contained local neighborhoods of 

genes annotated with specific functions related to each germ layer (Figure 2C-E). Overall, our 

results revealed that dynamic changes in RT are organized into complex regulatory networks 

linked to gene functions established during cell fate commitment. 100 

 

Directional RT networks identify master regulators of cell fate commitment 

Interestingly, for each of the RT regulatory networks constructed either for all cell types together 

(Figure 2A-B) or for each one of the germ layers separately (Figure 2C-E), we identified a local 

neighborhood associated with transcription factor (TF) activity. These findings suggest that gene 105 

regulation by TFs might be critical not only for the establishment of cell type-specific 

transcriptional programs but also for RT program control. Hence, in order to explore the 

hierarchical relationships in RT changes during development we constructed directional RT 

networks for each of the specific differentiation pathways towards pancreas, liver, smooth 

muscle, mesothelium, mesenchymal stem cells (MSCs) and neural precursors (NPCs). First, we 110 

classified the genes according to the order of RT changes during each differentiation pathway 

(Figure 3A), identified those that change during the earliest cell fate transitions and assigned 

directional edges to genes that changed in subsequent differentiation stages (see Methods). 

Directional RT networks were displayed either in 2D maps or in a hierarchical arrangement and 

nodes were color/size coded according to the order of the changes in RT during distinct 115 

differentiation pathways (Figure 3B-C). Constructing of directional RT regulatory networks 

allowed us to identify the earliest RT changes during development that constitute the master 

regulators of the gene interactions within lineage-specific RT networks (red nodes in Figure 3B-

C), as well as their targets and downstream relationships. Consistently, among the genes that 

change RT during the earliest developmental transitions, we identified key known regulators for 120 

specific differentiation pathways such as SOX17 for liver and pancreas, SOX1 for mesenchymal 

stem cells and MSX2 for smooth muscle, validating these nodes as master regulators of cell 

fate commitment (Figures 3D-E and S2).  
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To characterize the distinct levels of regulation we characterized the distribution of nodes in 125 

each hierarchy level. Master regulators were defined as all genes that change RT in the earliest 

differentiation transition (red node in Figure 3), while downstream nodes were classified 

according to the time during differentiation when they change RT: either as managers or 

effectors (green and blue nodes and grey nodes respectively in Figure 3F). Interestingly, we 

found that developmental establishment of RT networks occurs differently for each germ layer.  130 

For endoderm cell types (liver and pancreas) most of the changes occur very early during 

differentiation, with many master regulators changing to early replication and fewer 

downstream nodes in each of the subsequent differentiation stages (Figure 3G). In contrast, for 

mesoderm cell types (smooth muscle and mesothelium) few master regulators were connected 

with many downstream nodes. These differences may reflect fundamental principles regulating  135 

germ layer specification. Next, to identify the classes of genes in each hierarchical level, we 

performed an ontology analysis (Mi et al., 2017) and found that master regulators are enriched 

in receptor binding genes (growth factor receptors) and TFs (Figure 3H). This analysis reveals 

an intimate relationship between RT regulation and key regulators of cellular differentiation.  

 140 

RT network edges overlap with known transcriptional regulatory interactions 
Since we found that transcription factors are among the master regulators of RT networks, we 

analyzed whether the interactions within RT networks overlap with known gene regulatory 

interactions in transcriptional regulatory networks (TRNs) using a previously described set of 

cell type-specific networks of TFs (Neph et al., 2012). First, we identified the cell types that 145 

most closely match the TRNs to our RT networks, as follows: hESC-derived hepatocytes were 

compared to TRNs from HepG2 – a liver cancer cell line that retains morphological and 

functional hepatocyte properties (Berger et al., 2015; Knowles et al., 1980), hESC-derived 

mesothelial cells were compared to TRNs from HCF cells – cardiac fibroblasts that during 

development and in vitro differentiation can be derived from mesothelial cells (Mutsaers, 2004) 150 

and hESC-derived neural precursors were compared to TRNs from the SK-N-SH cell line after 

treatment with retinoic acid – SK-N-SH cells were derived from a neuroblastoma and retinoic 

acid causes differentiation to neural phenotype (Preis et al., 1988). Next, we constructed RT 

networks using only the subset of genes present in the TRNs (475 TFs) that change RT and are 

highly RT-correlated in each differentiation pathway (Pearson’s >0.75). Finally, we identified the 155 

number of common and unique edges to RT networks and TRNs. We found that in all three 

cases there was considerable and highly significant overlap when compared to the expected 
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overlap by randomly selecting the same number of edges (Figure 4A). In fact, significant overlap 

was also observed when all cell types from both RT networks and TRNs were classified per 

germ layer (Table S1) and common edges were identified for ectoderm and mesoderm, even 160 

when distinct cell types were used for each germ layer. These results further validate the gene 

regulatory interactions amongst genes identified in RT networks.  

 

Building blocks of RT networks are small motifs of >4 nodes that lack TRN edges 
Previous studies have explored the architecture of gene regulatory relationships by analyzing 165 

either transcriptional or protein interactions and found that complex cellular networks are 

constituted by sets of small network motifs, such as interactions between transcription factors 

and their targets (Alon, 2007; Zhang et al., 2005). Here, we performed a topology 

characterization of RT networks constructed with the subset of genes present in the TRNs –475 

TFs (Neph et al., 2012), to explore the most significant patterns of interactions. We computed 170 

all possible motifs composed by 2-4 nodes and identified the motifs with high occurrence in 

each RT network constructed per differentiation pathway (Figures S3-S5). Statistical 

significance of each motif pattern was calculated by comparison to randomized networks 

(Baiser et al., 2015; Elhesha and Kahveci, 2016; Milo et al., 2002). Consistent with previous 

observations in transcriptional and protein regulatory networks, we found that the most 175 

frequent motifs consist of interactions between less than 4 nodes for all differentiation 

pathways analyzed (Figure 4B). Similar results were observed when motifs were identified from 

all RT correlated genes in all cell types within each germ layer (endoderm, ectoderm and 

mesoderm). Since the predominant building blocks are small motifs with few nodes, RT 

networks of TFs are composed of separated multiple sub-networks. Additionally, since 180 

significant overlap between RT and transcriptional networks was observed in all differentiation 

pathways, we examined the presence of transcriptional edges within the RT networks motifs. 

Surprisingly, we found that although distinct transcriptional edges were present within some of 

the RT network motifs, the most frequent motifs did not contain TRN edges (Figures S3-S5), 

consistent with our hypothesis that RT can be regulated by the establishment of complex 185 

regulatory circuits of transcription factors rather than by the transcription levels of genes within 

each RD. 
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Composite networks: combining RT and transcriptional regulatory networks  
Intriguingly, although our findings demonstrate that RT networks are linked to cellular function 190 

and differentiation processes and significantly overlap with well characterized TRNs of TFs, our 

results above demonstrate that the majority of the RT networks motifs do not contain 

transcriptional edges. Hence, to better understand how the regulatory circuitries are 

established during cell fate commitment we constructed a model of composite regulatory 

networks by merging RT and TRNs. Previous studies have demonstrated that distinct types of 195 

interactions (such as protein-protein and transcription regulation) can be combined to explore 

more complex cellular circuitries (Vidal et al., 2011; Yeger-Lotem et al., 2004). Here, we 

combined the interactions observed in RT networks with those in the TRNs between TFs. First, 

we used as base networks the set of motifs from each RT network and identified the nodes that 

are also connected in TRNs (Figure 4C). Then we identified all the interactions between those 200 

RT nodes in the TRNs from matching cell types and constructed composite networks by 

adding the transcriptional interactions (Figure 4C). Interestingly, RT networks for each 

differentiation pathway are constituted by multiple unconnected motifs of >4 nodes; however, 

the addition of transcriptional edges revealed more complex and highly interconnected 

networks with all nodes interacting with at least 3 other nodes (Figure 4B-D). Importantly, every 205 

composite network contained known key regulators for each differentiation pathway such as 

SOX17 and GLIS3 for liver and MSX2, FOXP1 and WT1 for mesothelium (Figure 4D-E). Hence, 

our composite networks reveal biologically relevant gene interactions important for cell fate 

commitment. 

 210 

Bipartite networks reveal transcription factors as regulators of RT 
To further explore the relationship between RT and gene expression we identified the most 

significant genes expressed in each cell type and analyzed their correlation to RT networks. 

First, we analyzed genome-wide transcriptomes for the same cell types from which we 

obtained the RT programs (Rivera-Mulia et al., 2015). Our highly comprehensive 215 

characterization of gene expression, including multiple replicates for each differentiation stage, 

allowed us to identify with confidence the genes that are differentially expressed during cell fate 

commitment towards each cell type and the genes that better distinguish each intermediate 

stage. Co-expressed genes were identified by weighted correlation network analysis 

(Langfelder and Horvath, 2008). Strong correlations between gene expression levels are widely 220 
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used to identify regulatory interactions (Allocco et al., 2004; D’haeseleer et al., 2000; Gabr et 

al., 2015; Horvath and Dong, 2008; Laurenti et al., 2013; Li, 2002; Novak and Jain, 2006); thus, 

we used the most significant co-expressed genes to construct TRNs for each differentiation 

pathway. To decrease the complexity of the data we focused in the top 100 genes that are 

significantly co-expressed in specific cell types/intermediate differentiation stages. In all 225 

differentiation pathways and for each differentiation stage we found that transcription factors 

were among the most significant genes distinguishing each cell type (Figure 5A). Moreover, 

ontology analysis (Ashburner et al., 2000; The Gene Ontology Consortium, 2015) using the 

different subsets of genes revealed strong enrichment of genes regulating the development of 

each cell type (Table S2). 230 

 

Since we found that: a) TFs are among the master regulators in RT networks, b) interactions 

between TFs in TRNs significantly overlap with RT networks, c) key TFs are among the highest 

interconnected nodes in RT networks and, d) TF expression patterns distinguish each cell type, 

we next addressed whether TFs might be involved in the establishment of RT programs during 235 

development, and whether that role might be independent of their role in regulating 

transcription. Thus, we identified the genes whose RT patterns are highly correlated with the 

expression levels of the top 100 genes that distinguish each cell type. Then, we employed the 

correlation patterns between gene expression and RT changes to construct bipartite networks. 

Exemplary gene expression levels from a subset of TFs critical for pancreas development is 240 

shown in Figure 5B as well as genes with correlated patterns of RT regulation during pancreatic 

differentiation. Bipartite networks consist of two independent but interconnected networks: the 

TRN side contains genes that are co-expressed in specific developmental stages/cell types and 

the RT side contains genes whose RT changes were highly correlated with the expression 

patterns from the TRN side. An exemplary bipartite network for pancreatic development is 245 

shown in Figure 5C. Remarkably, ontology analysis using the set of genes of each sides of the 

bipartite network resulted in specific annotations relevant for regulation of pancreatic 

differentiation (Figure 5C). The bipartite network shown in Figure 5C was constructed using only 

the TFs co-expressed in pancreatic cells for visualization purposes; however, similar results 

and ontology terms were found using the complete set of genes co-regulated during pancreatic 250 

differentiation. These results further support our hypothesis that TRNs influence replication 

timing by mechanisms that are separated by the transcriptional regulation of downstream 

targets of TFs.  
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Discussion 
In this study, we introduced a new approach to construct gene regulatory networks exploiting 255 

the dynamic changes in DNA replication timing during development. RT is cell type-specific 

(Hiratani et al., 2010; Rivera-Mulia et al., 2015; Ryba et al., 2011b), regulation of RT is critical to 

maintain genome stability (Alver et al., 2014; Donley et al., 2013; Neelsen et al., 2013)  and 

abnormal RT is observed in disease (Dixon et al., 2017; Gerhardt et al., 2014a; 2014b; Ryba et 

al., 2012; Sasaki et al., 2017). Moreover, RT is closely related to the spatio-temporal 260 

organization of the genome with early and late replicating domains segregating to distinct 

nuclear compartments (Pope et al., 2014; Rivera-Mulia and Gilbert, 2016b). Furthermore, cell 

fate commitment is accompanied by dynamic changes in RT that are globally coordinated with 

transcriptional activity (Rivera-Mulia et al., 2015; Rivera-Mulia and Gilbert, 2016b). Hence, RT 

constitutes a functional readout of genome organization that is linked to gene regulation during 265 

development. We constructed RT networks based on the RT changes across 15 cell types and 

differentiation intermediates derived from human embryonic stem cells. We identified 

thousands of genes from different chromosomes that are co-regulated in RT during 

development (Figure 1C) and constructed distinct RT network models based on their dynamic 

changes.  270 

 

Confirming the link between RT and gene regulation, RT networks constructed based on 

correlated changes in RT are organized into multiple sub-network communities with 

neighborhoods associated with specific functions (Figure 2). We also developed a model of 

directional RT networks able to explore the hierarchical relationships between RT co-regulated 275 

genes and identify the master regulators of cell differentiation and their downstream targets. To 

validate our model of directional RT networks we characterized the gene interactions of specific 

differentiation pathways and consistently obtained key regulators of cell fate commitment as 

master regulators (Figure 3). The algorithms to construct these RT networks can be applied to 

explore the interactions of any gene of interest (see Methods for detailed information on the 280 

computational pipeline).  

 

Combination of TRNs and RT networks into composite and bipartite networks revealed new 

insights into gene regulation during cell fate commitment. First, we found that there is a highly 

significant overlap between TRNs and RT networks of TFs (Figure 4A). However, the RT 285 
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network motifs did not contain transcriptional edges, suggesting that the RT co-regulated TFs 

do not regulate each other’s transcription levels during cell fate commitment. Hence, 

establishment of RT regulatory networks of specific subsets of TFs might be necessary for the 

proper regulation (either at the level of RT or gene expression) of downstream genes in a more 

complex regulatory circuit to ensure and maintain the distinct cell identities. For example, TRNs 290 

may regulate RT independent of their direct role in transcriptional regulation, which in turn 

affects the responsiveness of RT-regulated genes to downstream transcriptional regulation. 

Second, composite networks solved the conundrum of high overlap between RT and TRNs 

with a lack of transcriptional interactions within the RT networks motifs; composite networks 

revealed  more complex circuitries in which transcriptional edges connected otherwise 295 

separated RT motifs (Figure 4D-E). Finally, construction of bipartite networks confirmed the key 

role of transcription factors in regulation of both transcriptional and RT programs during cell 

fate commitment (Figure 5), with hundreds of RT co-regulated genes correlated with expression 

levels of co-expressed TFs within the same differentiation pathways. This is of particular 

significance to our understanding of how RT is related to cell fate changes because, despite the 300 

correlation between early replication and transcriptional activity, no causal links have been 

unveiled (Rivera-Mulia and Gilbert, 2016b). In fact, knockout/ knockdown or overexpression of 

many transcription and chromatin structure regulators (including TFs such as C-MYC, N-MYC, 

MYOD and PAX5) has no effect on RT (Dileep et al., 2015) and combinatorial co-regulation of 

multiple TFs might be required to control TRNs (Gerstein et al., 2012; Novershtern et al., 2011). 305 

Hence, establishment of complex circuitries/complete regulatory TFs networks, rather than 

transcriptional induction of specific downstream targets, might be required to shape the RT 

program during development. 
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 515 
Figure 1. Coordinated changes in RT can be exploited to construct gene 
regulatory networks. 
A) RT programs of distinct cell types representing intermediate stages of human embryonic stem cell 

differentiation towards endoderm, mesoderm, ectoderm were analyzed for the construction of RT 

regulatory networks. B) Depiction of different highly RT correlated genes from distinct chromosomes and 520 
the establishment of network interaction edges between them. From all possible combinations of gene 

pairs, those co-located within 500kb were removed from the analysis. Regulatory interactions (edges) 

between gene pairs are considered only for genes located >500kb apart (co-located distant) or in distinct 

chromosomes (not co-located), i.e. edges between genes b-c and d-e were not included in the analysis. 

C) Number of gene pairs as function of RT correlation for distinct categories of gene pairs: co-located 525 
close (within 500kb), co-located distant (separated by > 500kb) and not co-located (from different 

chromosomes). Only gene pairs with RT correlations >0.75 and located at least 500kb apart were 

considered. D) RT patterns during cell fate commitment of distinct hypothetical genes. E) Construction of 

RT regulatory networks based on the Pearson’s correlation (distance between nodes are proportional to 

the correlation strength). 530 
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Figure 2. Functional annotation of RT networks. 
A) Global RT network constructed from the gene pairs correlated across all differentiation pathways from 

human ES cells. B) Detailed RT network neighborhood and its respective node organization. C-E) Global 535 
RT networks and functional local neighborhoods were constructed for differentiation pathways towards 

ectoderm (C), mesoderm (D) and endoderm (E). Interaction edges between gene pairs were established 

for highly correlated nodes (correlation >0.75) and the subset of most connected nodes (>20 edges) were 

used to visualize RT networks displayed as 2D maps by force-directed network layout algorithm in 

Cytoscape (Shannon et al., 2003). Highly connected local neighborhoods were annotated with functional 540 
ontology terms using SAFE algorithm (Baryshnikova, 2016) and displayed in distinct colors. Specific local 

neighborhoods were expanded and their nodes were arranged according to their associated GO terms in 

Cytoscape (Shannon et al., 2003).  
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Figure 3: Directional RT networks 545 
A) Distinct genes change RT at different time points during cell fate commitment and the order of RT 
changes can be used to construct directional RT networks. Red genes change during the first transition 
between differentiation stages while grey genes change at the last differentiation transition. B) 2D map of 
a directional RT network were constructed based on a source gene (central node) and downstream 
connected nodes. C) hierarchical display of RT networks was also constructed based on the order of RT 550 
changes. D) An exemplary directional RT network for liver differentiation is shown. The central node is 
SOX17 and all downstream nodes were connected based on temporal times during differentiation at 
which they change RT. E) A SOX17 downstream network based on the APOB gene exemplify 
downstream relationships in RT networks. F) SOX17 is a master regulator of endoderm development. The 
complete hierarchical RT directed network for SOX17 was constructed including all connected nodes in 555 
downstream differentiation stages. Green and blue nodes represent “manager” nodes that are connected 
to the final “effector” nodes at the lowest level of the network (grey nodes). G) Node distribution in each of 
the hierarchical levels for each differentiation pathway. H) Ontology analysis of master regulator nodes 
reveals receptor activation and transcription factor activity as key regulators of RT networks. Ontology 
analysis classification of gene classes and was performed using protein annotation through evolutionary 560 
relationship database –PANTHER (Mi et al., 2017).  
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Figure 4: RT and transcriptional networks overlap and can be combined into 
composite networks. 
A) Overlap analysis of RT and TRNs interaction edges. RT networks were constructed for matching cell 565 
types in the TRNs (Neph, et al., 2013) and common and unique interaction edges were identified. Only 

genes within the TRNs were used (475 transcription factors). Hypergeometric test was performed to test 

the overlap significance (p-values are shown). B) Motif analysis revealed that RT networks are constituted 

by small building blocks (>4 nodes). The most recurrent motif for each differentiation pathway is shown. C) 

Construction of composite networks by combining RT and transcriptional networks. RT networks were 570 
used to define the “base network” which include all nodes of RT correlated genes, interaction edges 

between RT nodes were extracted from TRNs. Composite networks included all RT edges (black 

undirected lines) transcriptional edges within RT network motifs (directed solid red arrows) and 

transcriptional edges outside RT network motifs (directed dashed grey arrows). Exemplary composite 

networks for liver (D) and mesothelium differentiation (E) are shown. For visualization purposes, only RT 575 
nodes with correlations >0.9 are shown. 
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Figure 5: Bipartite networks 
A) Transcription factors expression patterns distinguish each cell type/differentiation intermediate. Cell 
type-specific expression patterns were analyzed to identify the most significant differentially co-expressed 580 
genes, then the resulting genes were classified as TFs or other type. B) Expression patterns of exemplary 
key TFs of pancreas development correlate with the RT of downstream regulators of pancreatic 
differentiation. C) Bipartite network of pancreas development. The bipartite network was constructed 
based on the correlation between transcriptional activity of genes in the TRN side and RT changes of 
genes in the RT side. TRN genes are 50 TFs co-regulated during pancreas development. RT side 585 
contains 112 genes with RT patterns highly correlated (>0.8) with the expression levels of genes at the 
TRN side. Only edges between TRN and RT networks are shown (with each gene in the RT side 
connected with at least 0.75% of the nodes in the TRN side), as all nodes within each network are 
connected with all other. Ontology analysis of genes within each network was performed and specific 
annotations are shown at the bottom. 590 
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Methods 
Extraction of RT values at the TSS of NCBI RefSeq genes 

Replication Timing (RT) data from multiple cell types and intermediate differentiation stages 

derived from human embryonic stem cells (Rivera-Mulia et al., 2015) were used to extract the 

RT values at the transcription start sites (TSS) of all RefSeqs genes in R. Briefly, average RT 595 

profiles were obtained from replicates and TSS positions were used to predict RT values from 

the loess smoothed RT profiles (Ryba et al, 2011). This data consists of RT values at the TSS of 

all RefSeq genes from 15 cell types derived from hESC representing three main germ layers; 

ectoderm, mesoderm, and endoderm (Figure 1A). 

 600 

Construction of RT networks based on coordinated changes in RT 

We constructed RT networks for different subsets of cell types. We particularly focused on the 

three major germ layers and the entire set of cell types in our analysis. In our network models, 

each node represents a gene, and each edge represents a relationship between co-regulated 

RT of the corresponding two genes in those subset of cell types. More specifically, let us denote 605 

the set of genes selected with G = {g_1, g_2, ..., g_n}. Assuming that the number of cell types 

for the germ layer under consideration (ectoderm, mesoderm, endoderm, or all germ layers) is s. 

Let us denote the set of cell types with {c_1, c_2, . . . , c_s}. Each gene g_i ∈ G defines a 

vector, denoted with w_i. The jth entry of w_i is the replication timing of g_i in cell type c_j. We 

model the RT network using graph notation as G = (V, E), where V and E denote the set of 610 

nodes and edges respectively. Here ∀i, 1 ≤ i ≤ n, node vi ∈ V corresponds to gene g_i. To 

construct an edge between two nodes v_i1 and v_i2 of this network, we need to make three key 

decisions; (i) Is there an edge between v_i1 and v_i2?; (ii) Is gene g_i a switching gene? (iii) 

What is the physical proximity of the two corresponding genes g_i1 and g_i2 on the 

chromosome? 615 

 

For all pairs of genes g_i1, g_i2 ∈ G, we compute the Pearson’s correlation coefficient between 

their vectors w_i1 and w_i2. If the positive value of this correlation is greater than or equal to a 

user specified threshold ε then we say that g_i1 and g_i2 are correlated. We draw an edge 

between v_i1 and v_i2 and insert it to E if g_i1 and g_i2 are correlated.  620 
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We consider genes in two categories. (i) We call a gene switching if it is early replicating in at 

least one cell type and late replicating in at least one other cell type. (ii) We call a gene non-

switching otherwise (i.e., if it is consistently early replicating or consistently late replicating in all 

cell types). A gene having the same (or very similar) RT values across all cell types (non-625 

switching) will yield high correlation values with other genes with such behavior regardless of 

their RT values. Such a phenomenon will lead into false positive correlations. Thus, we 

compute the Pearson’s correlation coefficient for only the switching gene pairs to avoid false 

positive correlations. It is worth noting that this is an aggressive filter as some of the non-

switching genes may have high variation in their RT values although it is always early or late in 630 

replication. 

 
If two genes are located close to each other on the same chromosome, their RT values are 

expected to be highly correlated due to a natural outcome of the DNA replication process; when 

the replication starts at a site, it proceeds to the neighboring nucleotides on the chromosome. 635 

Such correlations have less significance as compared to those among physically distant genes, 

for the correlations between distant genes provide hints about the existence of complex 

interactions that regulate the order in which genes are replicated. To capture this, we classify 

each edge constructed in our RT network into one of the three categories as follows. For each 

edge e ∈ E between nodes v_i1 and v_i2 in our graph, we check the locations of g_i1 and g_i2 640 

on the DNA. If they are on the same chromosome, we say that they are co-located. Otherwise, 

we call them not co-located. When the two genes g_i1 and g_i2 are co-located, let us denote the 

difference between their starting positions in the chromosome with d_i1,i2. Given a user 

supplied distance threshold (denoted with μ) for the position between two genes, we are now 

ready to classify edge e into a category:  645 

• Class 1: close. We classify e into this category if g_i1 and g_i2 are co-located and 

d_i1,i2 < μ. 

 

• Class 2: co-located, distant. We classify e into this category if g_i1 and g_i2 are co-

located and d_i1,i2 ≥ μ. 650 

 

• Class 3: not co-located. We classify e into this category if g_i1 and g_i2 are not co-

located  
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In Fig1B, if two correlated genes are located as ‘b’ and ‘c’, they are considered as close. If one 655 

gene among two correlated genes is located as ‘a’ and the other is located in the range from ‘b’ 

to ‘c’, it is considered as co-located, distant. Finally, if one gene among two correlated genes is 

located in one chromosome and the other gene is located in a different chromosome, it is 

considered as not co-located. Thus, we compute the Pearson’s correlation coefficient for only 

not co-located gene pairs to avoid less significant correlations. 660 

 

From above three decisions we made, we construct RT networks for all-derm, ectoderm, 

mesoderm, and endoderm. Furthermore, we also construct RT networks for each differentiation 

path (for example, ESCs -> Lateral plate mesoderm -> Splanchnic mesoderm -> Smooth 

muscle). We call a gene early replicated if that RT value is greater than 0.3, call a gene late 665 

replicated if that RT value is less than -0.3, and call ambiguously replicated if that RT value is 

between -0.3 and 0.3 (See Fig1E). For each differentiation pathway, we only consider genes 

that are late replicated in at least one differentiation stage and early replicated in other stage. 

 

RT networks visualization  670 

To visualize our RT network, we focus on a set of highly connected sub networks, called 

community. First we construct RT network by computing the Pearson’s correlation coefficient 

for only not ‘co-located’ and ‘co-located distant’ gene pairs using only RT switching genes. 

Next, we detect communities in this RT network by running Louvain community detection 

algorithm (Blondel et al., 2008). This method is a heuristic method that is based on modularity 675 

optimization. It is known to outperform all other community detection methods in terms of 

computation time. Furthermore, the quality of the communities detected is good. After 

detecting communities in our RT network, all nodes have their own community ID. For clear 

explanation, we introduce an edge named ‘e’. This edge has two nodes, called n_1, and n_2. 

n_1 has c_1 community ID, and n_2 has c_2 community ID. Let us define d_1 be the number of 680 

neighbor nodes that have community ID c_2. Similarly, let us define d_2. We maintain only 

edges that both d_1 and d_2 is greater than degree_filter_threshold. 

With this filtered RT network, we use SAFE algorithm to annotate functional attributes for 

communities. SAFE (Baryshnikova, 2016) is an automated network annotation algorithm. Given 

a biological network and a set of functional groups or quantitative features of interest, SAFE 685 

performs local enrichment analysis to determine which regions of the network are over-

represented for each group of feature. Thus, local neighborhoods were identified and functional 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2017. ; https://doi.org/10.1101/186866doi: bioRxiv preprint 

https://doi.org/10.1101/186866
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rivera-Mulia et al., page 27 

attributes were annotated based on the gene ontology (GO) terms (Baryshnikova, 2016). Finally, 

we visualize the RT network as 2D maps in Cytoscape by applying force-directed layout 

algorithm (Shannon et al., 2003) with functionally annotated sub communities. 690 

 

Construction of Directional RT networks  

Directional RT networks were generated for each differentiation pathway for ‘late replicated to 

early replicated’ (LtoE) and ‘early replicated to late replicated’ (EtoL. In our late replicated to 

early replicated (LtoE) directed RT network model each node represents a gene that switches 695 

from late replicated to early replicated (LtoE). In creating these networks, we do not consider 

how much correlated two corresponding genes are. We only consider causality between two 

corresponding genes. For differentiation path ESCs (the earliest stage) -> Lateral plate 

mesoderm -> Splanchnic mesoderm -> Smooth muscle (the latest stage) of late replicated to 

early replicated (LtoE) directed RT network, we draw a directed edge from a gene that switches 700 

in earlier stage to a gene that switches in later stage only if the difference of switching stage is 

one or two. For example, if LtoE pattern of gene g_1 is L->E->E->E in the differentiation path 

ESCs -> Lateral plate mesoderm -> Splanchnic mesoderm -> Smooth muscle and LtoE pattern 

of gene g_2 is L->L->E->E in the same path, we draw an directed edge from g_1 to g_2 

because g_1 switches in Lateral plate mesoderm stage (earlier) and g_2 switches in Splanchnic 705 

mesoderm stage (later) assuming the change from LtoE of gene g_1 causes the change of gene 

g_2 in the next stage. Pattern L->E->E->E to pattern L->L->L->E is also valid. 

 
RT network edges overlap with known transcriptional regulatory interactions 

We compare the topologies of the RT networks we construct with those of TRNs. Particularly, 710 

we use the TRNs constructed using TFs (Neph et al., 2013). To do that, for each cell lineage, 

we count the number of edges common to its RT network and TRN. Recall that each edge in a 

RT network may or may not have a direction, whereas all the edges in TRNs have directions. In 

obtaining the number of common edges, we do not take the direction of edge in TRN into 

consideration. An undirected edge in the RT network overlaps with a directed edge in the TRN 715 

if the gene pairs corresponding to an edge are same in the RT network and the TRN. Using the 

number of common edges in the two networks, we calculate the p-value of the overlap from 

their hypergeometric distributions. This p-value quantifies the statistical significance of the 

evidence they share. The closer the p-value is to zero, the more significant the evidence is. 

Next, we explain how we calculate the p-value. Let us denote the number of nodes (i.e., genes) 720 
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in the given TRN with n. The total number of possible edges in the complete graphs with n 

nodes is 2×nC2 (i.e., the number of permutations of two nodes). Let us denote this number with 

M. Also, let us denote the number of edges in the TRN with m, the number of edges in the RT 

network with K, and the number of edges common to the TRN and the RT network with k. 

Assume that we have a randomly generated network with the same nodes as those in the RT 725 

network. Also, assume that this random network has m edges between randomly selected 

nodes. Let us denote the number of edges common to the given RT network and this randomly 

generated network using the random variable X. We compute the probability that the number of 

common edges between the two networks is equal to a given specific value (say i) as P (X = i) = 

(KCi × M-KCm-i ) / (MCm).The numerator in this probability mass function (PMF) describes the 730 

number of ways to pick exactly i edges from the RT network in m draws from a complete 

graph, without replacement. The denominator shows the number of alternative network 

topologies with the same nodes as the RT network, which has m edges. Using this PMF, we 

calculate the p-value of having more than or equal to k common edges between the RT 

network and the TRN as 𝑃(𝑋 = 𝑖)(
)*( . Thus, smaller p-value shows unexpectedly large 735 

number of common edges between the two networks. 

 
Construction of Composite RT and gene expression networks 

The composite network merges the interactions observed in RT networks (using only genes 

present in Neph et al., 2013 networks) with the interactions observed in Transcriptional 740 

Regulatory Networks (TRNs). Furthermore, we also visualized the composite networks using the 

following steps. Base network is a RT network. We then constructed a reduced RT network by 

considering all possible connected two, three, and four nodes subnetworks from base network. 

Among such two, three and four nodes RT subnetworks, we exclude non-connected ones. If an 

edge in the original TRN appears in these all possible subnetworks, then this edge is appended 745 

to the reduced TRN network with directed edge. We combine base network and reduced TRN 

network by taking the union of their edge sets. Additionally, if an edge in the original TRN 

appears in outside of all possible connected two, three, and four nodes RT subnetworks, then 

this edge is appended to the composite network with dashed edge. 

 750 
RT networks motif identification  
Motifs are defined as recurrent and statistically significant sub-graphs or patterns. We try to 

find motifs in the composite networks using the following motif finding algorithm. First, we 
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created all possible shapes of connected (in terms of undirected edges) two, three, and four 

nodes subnetworks that are consisted of undirected RT edges and/or directed TRN edges. 755 

Then, while iterating all possible subnetworks of composite network, we simply count the 

number of matching between each subnetwork of composite network and previously created 

each of all possible shapes. Also, we create multiple shuffled networks that have the same 

number of nodes and edges with the composite network to differentiate which shape can be a 

motif. We set z-score as 2.54 for a subnetwork of composite network to be a motif. 760 

 

Construction of bipartite RT and transcriptional networks 

A bipartite graph is a graph with two components. Each component is a set of nodes. In our 

model, first component is based on the expression patterns of genes, and the second 

component is based in the replication timing of genes. For our analysis, we started with the list 765 

of genes co-expressed in specific cell types that constitute the first component. We append an 

edge between the first component and the second component if replication timing of a gene in 

the second component is correlated with expression of a gene in the first component with more 

than a certain correlation threshold. Next, we removed a gene in the second component if the 

number of edges of this gene is less than the total number of genes in the first component * 770 

‘ratio’. In this way, we generated the list of genes that constitute the second component. 
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 15 

 all differentiation 
pathways 

ectoderm mesoderm endoderm 

RT network size 96 853 623 204 

TRN size 3303 843 865 292 

Common edges 15 108 71 9 

RT network-specific edges 81 745 552 195 

TRN-specific edges 3288 735 794 283 

Hypergeometric p-value 0.04502 4.619e-12 2.815e-07 0.32358 

Table S1. Overlap analysis of RT and TRNs interaction edges, related to main 
Figure 4. 
RT networks were constructed for matching cell types in the TRNs (Neph, et al., 2013) and 

common and unique interaction edges were identified. Only genes within the TRNs were used 

(475 transcription factors). Hypergeometric test was performed to test the overlap significance 20 

(p-values are shown). Ectoderm cell types = neural crest, mesenchymal stem cells and neural 

precursor cells. Mesoderm cell types = lateral plate mesoderm, splanchnic mesoderm, 

mesothelium and smooth muscle. Endoderm = definitive endoderm, immature hepatic, 

hepatoblast, liver (hepatocytes), primitive gut, posterior foregut and pancreas (pancreatic 

endoderm). 25 
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Cell type GO biological process # genes 
Fold 

Enrichment 
P value 

ESC somatic stem cell population maintenance 7 25.03 1.43E-04 
stem cell population maintenance 9 15.5 7.31E-05 

DE 

cell fate commitment of primary germ layer 5 38.27 2.22E-03 
formation of primary germ layer 7 13.16 1.07E-02 
endodermal cell differentiation 5 26.79 1.26E-02 
endoderm formation 6 25.72 1.37E-03 
endoderm development 6 17.38 1.31E-02 

Liver 
lipid homeostasis 7 13.74 8.11E-03 
liver development 8 13.44 1.55E-03 
hepaticobiliary system development 8 13.13 1.85E-03 

Pancreas 

pancreatic A cell differentiation 3 > 100 2.99E-02 
endocrine pancreas development 10 54.95 5.06E-11 
endocrine system development 11 19.32 1.54E-07 
pancreas development 14 41.67 6.64E-15 
enteroendocrine cell differentiation 4 45.12 1.94E-02 
glandular epithelial cell differentiation 5 28.2 9.84E-03 

Mesothel 

mesodermal cell fate specification 1 30.31 3.25E-02 
mesoderm formation 2 6.33 4.03E-02 
mesoderm morphogenesis 2 6.15 4.24E-02 
mesoderm development 3 5.17 2.08E-02 

Smooth 

Muscle 

metanephric smooth muscle tissue development 1 > 100 9.20E-03 
kidney smooth muscle tissue development 1 > 100 9.20E-03 
smooth muscle tissue development 2 21.65 3.98E-03 
muscle tissue development 6 4.53 2.23E-03 
myoblast fate commitment 1 43.3 2.28E-02 
muscle structure development 7 3.34 5.22E-03 

NPC generation of neurons 22 3.3 5.06E-03 
neurogenesis 22 3.08 1.54E-02 

NC neural crest cell migration 5 27.82 1.05E-02 
neural crest cell differentiation 6 18.17 1.02E-02 

MSC 
positive regulation of mesenchymal cell 

proliferation 

3 22.5 3.48E-04 
regulation of mesenchymal cell proliferation 3 17.5 7.19E-04 
mesenchymal cell development 4 13.13 2.68E-04 

Table S2. GO analysis of co-expressed genes in each cell type, related to main 
Figure 5. 
Co-expressed genes were identified by weighted correlation network analysis (Langfelder and 30 

Horvath, 2008) and ontology analysis (Ashburner et al., 2000; The Gene Ontology Consortium, 

2015) using the top 100 genes was performed for each cell type. 
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Figure S1. RT correlation per gene pairs, related to main Figure 1. 35 
Number of gene pairs as function of RT correlation for distinct categories of gene pairs: co-

located close (within 500kb), co-located distant (separated by > 500kb) and not co-located (from 

different chromosomes). All gene pairs were computed in (A) and gene pairs between genes 

that change RT significantly within each differentiation pathway (B) are shown. Only gene pairs 

with RT correlations >0.75 and located > 500kb apart were considered for RT networks 40 

construction. 
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Figure S2. Directional RT networks, related to main Figure 3. 
A) An exemplary directional RT network for pancreas differentiation is shown. The central node 

is SOX17 and all downstream nodes were connected based on times during differentiation at 45 

which they change RT. B) A SOX17 downstream network based on the SOX9 gene exemplify 

downstream relationships in RT networks. C and D) Exemplary directional RT networks for 

mesenchymal stem cells (MSC) and smooth muscle differentiation. 
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 50 
Figure S3. Highly represented motifs identified in liver RT networks, related to 
main Figure 4. 
All possible motifs composed by 2-4 nodes were computed and high occurrence motifs were 

identified. Statistical significance of each motif pattern was calculated by comparison to 

randomized networks. Shown are the most frequent motifs of 2-4 nodes in liver RT networks. RT 55 

edges are shown in red (undirected edges) and TRN edges are shown in black (directed edges). 
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Figure S4. Highly represented motifs identified in mesothelium RT networks, 
related to main Figure 4. 60 
Most frequent motifs of 2-4 nodes in mesothelium RT networks were identified as in Figure S2. 

RT edges are shown in red (undirected edges) and TRN edges are shown in black (directed 

edges). 
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Figure S5. Highly represented motifs identified in NPC RT networks, related to 65 
main Figure 4. 
Most frequent motifs of 2-4 nodes in NPC RT networks were identified as in Figure S2. RT 

edges are shown in red (undirected edges) and TRN edges are shown in black (directed edges). 
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