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Abstract 22 

A tremendous body of research in cognitive neuroscience is aimed at understanding how object 23 

concepts are represented in the human brain. However, it remains unknown whether and where 24 

the visual and abstract conceptual features that define an object concept are integrated. We 25 

addressed this issue by comparing the neural pattern similarities among object-evoked fMRI 26 

responses with behavior-based models that independently captured the visual and conceptual 27 

similarities among these stimuli. Our results revealed evidence for distinctive coding of visual 28 

features in lateral occipital cortex, and conceptual features in the temporal pole and 29 

parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and 30 

conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was 31 

highlighted by results from a searchlight analysis. Taken together, our findings suggest that 32 

perirhinal cortex uniquely supports the representation of fully-specified object concepts through 33 

the integration of their visual and conceptual features. 34 

  35 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2017. ; https://doi.org/10.1101/186924doi: bioRxiv preprint 

https://doi.org/10.1101/186924
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 36 

Semantic memory imbues the world with meaning and shapes our understanding of the 37 

relationships among object concepts. Many neurocognitive models of semantic memory 38 

incorporate the notion that object concepts are represented in a feature-based manner (Rosch and 39 

Mervis, 1975; Tyler and Moss, 2001; Rogers and McLelland, 2004). On this view, our 40 

understanding of the concept “hairdryer” is thought to reflect knowledge of observable 41 

perceptual properties (e.g., visual form) and abstract conceptual features (e.g., “used to style 42 

hair”). Importantly, however, there is not always a one-to-one correspondence between how 43 

something looks and what it is; a hairdryer and a comb are conceptually similar despite being 44 

visually distinct, whereas a hairdryer and a gun are conceptually distinct despite being visually 45 

similar. Thus, a fully-specified representation of an object concept requires integration of its 46 

perceptual and conceptual features.  47 

Neuroimaging research suggests that object features are stored in the modality-specific cortical 48 

regions that supported their processing at the time of acquisition (Thompson-Schill, 2003). 49 

However, neurocognitive models of semantic memory differ with respect to how distributed 50 

features relate to representations of unified object concepts. On one view, object concepts are 51 

thought to emerge through interactions among modality-specific cortical areas (Kiefer and 52 

Pulvermüller, 2012; Martin, 2016). Others maintain that they reflect the integration of modality-53 

specific features in trans-modal convergence zones (Damasio, 1989; Rogers et al., 2004; Binder 54 

and Desai, 2011), such as the anterior temporal lobes (ATL) (Patterson et al., 2007; Tranel, 2009; 55 

Lambon Ralph et al., 2017).  56 

The dominant view of the ATL as a semantic hub was initially shaped by neuropsychological 57 

investigations in individuals with semantic dementia (SD) (Patterson et al., 2007). Behaviorally, 58 
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SD is characterized by the progressive loss of conceptual knowledge across all receptive and 59 

expressive modalities (Warrington, 1975; Hodges et al., 1992). At the level of neuropathology, 60 

SD is associated with extensive atrophy of the ATL, with the earliest and most pronounced 61 

volume loss in the left temporal pole (Mummery et al., 2000; Galton et al., 2001). Most 62 

important from a theoretical perspective, patients with SD tend to confuse conceptually similar 63 

objects that are visually distinct (e.g., hairdryer – comb), but not visually similar objects that are 64 

conceptually distinct (e.g., hairdryer – gun), indicating that the temporal pole expresses 65 

conceptual similarity structure (Graham et al., 1994; see Peelen and Caramazza, 2012; Chadwick 66 

et al., 2016, for related neuroimaging evidence). Taken together, these findings suggest that the 67 

temporal pole supports multi-modal integration of abstract conceptual, but not perceptual, 68 

features. Notably, however, a considerable body of research indicates that the temporal pole may 69 

not be the only ATL structure that supports feature-based integration. 70 

The representational-hierarchical model of object coding emphasizes a role for perirhinal cortex 71 

(PRC), located in the medial ATL, in feature integration that is distinct from that of the temporal 72 

pole (Murray and Bussey, 1999). Namely, within this framework PRC is thought to support the 73 

integration of conceptual and perceptual features. In line with this view, object representations in 74 

PRC have been described in terms of conceptual feature conjunctions in studies of semantic 75 

memory (Moss et al., 2005; Bruffaerts et al., 2013; Clarke and Tyler, 2014, 2015; Wright et al., 76 

2015), and visual feature conjunctions in studies of visual processing (Barense et al., 2005, 2007; 77 

2012; Lee et al., 2005; Devlin and Price, 2007; Murray et al., 2007; O’Neil et al., 2009; Graham 78 

et al., 2010). However, it is difficult to synthesize results from these parallel lines of research, in 79 

part, because conceptual and perceptual features tend to vary concomitantly across stimuli (Mur, 80 

2014). For example, demonstrating greater neural pattern similarity in PRC between “horse” and 81 
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“donkey” than between “horse” and “dolphin” may reflect differences in conceptual or 82 

perceptual relatedness. Moreover, because studies linking PRC to the integration of visual 83 

features have primarily used pictorial stimuli, it remains unclear whether this result will hold in 84 

tasks that require assessment of visual features retrieved from semantic memory. Thus, although 85 

the representational-hierarchical account was initially formalized nearly two decades ago 86 

(Murray and Bussey, 1999), direct evidence of integration across conceptual and perceptual 87 

features remains elusive. 88 

In the current study, we used fMRI to characterize the representational structure of object 89 

concepts in the brain. More specifically, we sought to determine whether and where conceptual 90 

features are integrated with perceptual features, with an emphasis on visual semantics. This issue 91 

was probed, for the first time, using representational similarity analysis (RSA) (Kriegeskorte and 92 

Kievit, 2013) and a set of object concepts that were selected to ensure that conceptual similarity 93 

was not confounded with visual similarity. In a first step, we generated behavior-based models 94 

that captured the conceptual and visual similarities among these object concepts. Next, we 95 

scanned participants using task contexts that emphasized processing of either the conceptual or 96 

perceptual features of these objects. We hypothesized that both behavior-based models would 97 

predict the neural pattern similarities between object concepts, regardless of task context, in 98 

brain regions that support the integration of conceptual and perceptual features. Based on the 99 

neurocognitive models reviewed above, we anticipated that this result would be uniquely 100 

obtained in PRC (Murray and Bussey, 1999; Barense et al., 2011). In addition to PRC, our 101 

analysis also probed regions of interest (ROIs) that have been implicated in semantic processing 102 

(temporal pole and parahippocampal cortex), and visual processing (lateral occipital cortex) 103 
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(LOC). We also performed a searchlight analysis, which examined activity patterns within small 104 

spheres over the whole brain. 105 

 106 

Results 107 

Behavior-Based Similarity Models 108 

Using a data-driven approach, we first generated behavior-based models that captured the visual 109 

and conceptual similarities among 40 targeted object concepts (Figure 1A-B). Notably, our 110 

visual similarity model and conceptual similarity model were derived from behavioral judgments 111 

provided by two independent groups of participants. For the purpose of constructing the visual 112 

similarity model, the first group of participants (N = 1185) provided pairwise comparative 113 

similarity judgments between object concepts (Figure 1A). Specifically, a pair of words was 114 

presented on each trial and participants were asked to rate the visual similarity between the 115 

object concepts to which they referred using a 5-point Likert scale. Similarity ratings for each 116 

pair of object concepts were averaged across participants, normalized, and expressed within a 117 

representational dissimilarity matrix (RDM). We refer to this RDM as the behavior-based visual 118 

RDM.  119 

For the purpose of constructing the conceptual similarity model, a second group of participants 120 

(N = 1600) completed an online feature-generation task (McRae et al., 2005; Taylor et al., 2012) 121 

(Figure 1B). Each participant was asked to generate a list of conceptual features that characterize 122 

one object concept (e.g., hairdryer: “used to style hair”, “found in salons”, “electrically 123 

powered”, “blows hot air”; comb: “used to style hair”, “found in salons”, “has teeth”, “made 124 

of plastic”). Conceptual similarity between all pairs of object concepts was quantified as the 125 

cosine angle between the corresponding pairs of feature vectors. With this approach, high cosine 126 
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similarity between object concepts reflects high conceptual similarity. Cosine similarity values 127 

were then expressed within an RDM, which we refer to as the behavior-based conceptual RDM. 128 

We next performed a second-level RSA to quantify the relationship between our behavior-based 129 

visual RDM and behavior-based conceptual RDM. Critically, this analysis revealed that the 130 

model RDMs were not significantly correlated with one another (Kendall’s tau-a = .01, p = .09), 131 

indicating that differences in visual and conceptual features were not confounded across object 132 

concepts. In other words, ensuring that these different types of features varied independently 133 

across stimuli (e.g., hairdryer – gun; hairdryer – comb), rather than concomitantly (e.g., horse – 134 

donkey; horse – dolphin), allowed us to isolate the separate influence of visual and conceptual 135 

features on the representational structure of object concepts in the brain. In this example, a 136 

hairdryer and a gun are visually similar but conceptually dissimilar, whereas a hairdryer and a 137 

comb are visually dissimilar but conceptually similar.  138 

 139 

fMRI Task and Behavioral Results 140 

We next used fMRI to obtain measurements from which we could infer the representational 141 

structure of our 40 object concepts in the neural activity patterns of a third independent group of 142 

participants (Figure 2). Functional brain data were acquired over eight experimental runs, each of 143 

which consisted of two blocks of stimulus presentation. All 40 object concepts were presented 144 

sequentially within each block, for a total of 16 repetitions per concept. On each trial, 145 

participants were asked to make a “yes / no” property verification judgment in relation to a 146 

block-specific verification probe. Half of the blocks were associated with verification probes that 147 

encouraged processing of visual features (e.g., “is the object angular?”), and the other half were 148 

associated with verification probes that encouraged processing of conceptual features (e.g., “is 149 
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the object a tool?”). With this experimental design, we were able to characterize neural responses 150 

to object concepts across two task contexts: a visual task context (Figure 2A) and a conceptual 151 

task context (Figure 2B).  152 

Behavioral performance on the scanned property verification task indicated that participants 153 

interpreted the object concepts and property verification probes with a high degree of 154 

consistency (Figure 3). Specifically, all participants (i.e., 16/16) provided the same yes/no 155 

response to the property verification task on 88.4% of all trials. Agreement was highest for the 156 

“living” verification probe (96.8%) and lowest for the “non-tool” verification probe (73.2%). 157 

Moreover, the proportion of trials on which all participants provided the same response did not 158 

differ between the visual feature verification task context (Mean = 87.3% collapsed across all 159 

eight visual probes) and the conceptual feature verification task context (Mean = 89.5% 160 

collapsed across all eight conceptual probes) (z = 0.19, p = .85). Response latencies were also 161 

comparable across the visual feature verification task context (Mean = 1361ms, SD = 302) and 162 

the conceptual feature verification task context (Mean = 1388ms, SD = 317) (t (15) = 0.61, p = 163 

.55). 164 

 165 

ROI-Based RSA: Comparison of Behavior-Based RDMs with Brain-Based RDMs 166 

We next quantified pairwise similarities between multi-voxel activity patterns evoked by specific 167 

object concepts in the fMRI experiment (Figure 2). For the purpose of conducting ROI-based 168 

RSA, we focused on multi-voxel activity patterns obtained in PRC, the temporal pole, 169 

parahippocampal cortex, and LOC. ROIs from a representative participant are presented in 170 

Figure 4. These ROIs were selected a priori based on empirical evidence linking their respective 171 

functional characteristics to visual processing, conceptual processing, or both. Our primary focus 172 

was on PRC, which has been linked to integrative coding of visual object features and conceptual 173 
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object features across parallel lines of research (Barense et al., 2005, 2007, 2012; Lee et al., 174 

2005; O’Neil et al., 2009; Bruffaerts et al., 2013; Clarke and Tyler, 2014; 2015; Wright et al., 175 

2015; Erez et al., 2016). In contrast to PRC, the temporal pole has primarily been linked to 176 

processing of conceptual object properties (Mummery et al., 2000; Galton et al., 2001; Patterson 177 

et al., 2007; Pobric et al., 2007; Lambon Ralph et al., 2009; Peelen and Caramazza, 2012; 178 

Chadwick et al., 2016). A number of studies have also revealed a role for parahippocampal 179 

cortex in semantic contextual processing, though its functional contributions remain less well 180 

defined than the temporal pole (Bar and Aminoff, 2003, Aminoff et al., 2013, Ranganath and 181 

Ritchey, 2012).  Lastly, LOC, which is a functionally defined region in occipito-temporal cortex, 182 

has been revealed to play a critical role in processing visual form (Grill-Spector et al., 1999; 183 

Kourtzi and Kanwisher, 2001; Milner and Goodale, 2006). Because we did not have any a priori 184 

predictions regarding hemispheric differences, estimates of neural pattern similarities between 185 

object concepts were derived from multi-voxel activity collapsed across the ROIs in the left and 186 

right hemisphere.  187 

Mean object-specific multi-voxel activity patterns were estimated in each ROI using general 188 

linear models fit to data from the visual and conceptual task contexts, separately. Linear 189 

correlation distances (Pearson’s r) were calculated between all pairs of object concepts, which 190 

were then expressed in two brain-based RDMs for each ROI. Specifically, the brain-based visual 191 

task RDM captured the neural pattern similarities obtained between all object concepts in the 192 

visual task context (i.e., while participants made visual feature verification judgments) (Figure 193 

2A), and the brain-based conceptual task RDM captured the neural pattern similarities obtained 194 

between all object concepts in the conceptual task context (i.e., while participants made 195 

conceptual feature verification judgments) (Figure 2B).  196 
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We implemented second-level RSA to compare our behavior-based visual and conceptual RDMs 197 

(i.e., independent dissimilarity models) with the brain-based visual and conceptual task RDMs 198 

(i.e., neural pattern dissimilarity obtained in different verification task contexts) (solid arrows in 199 

Figure 5). These analyses were conducted in each ROI using a ranked correlation coefficient 200 

(Kendall’s tau-a) as a similarity index (Nili et al., 2014). Significance testing was performed 201 

using non-parametric permutation tests for all pertinent comparisons. A Bonferroni correction 202 

was applied to compensate for multiple comparisons (4 ROIs x 2 behavior-based RDMs x 2 203 

brain-based RDMs = 16 comparisons, yielding a critical alpha of .003). With this approach, we 204 

revealed that object concepts are represented by three distinctive similarity codes that differed 205 

across ROIs: visual similarity coding, conceptual similarity coding, and integrative coding. 206 

Results from our ROI-based RSA analyses are shown in Figure 6 and discussed in turn below. 207 

Lateral Occipital Cortex Represents Object Concepts with a Visual Similarity Code  208 

Consistent with its well-established role in the processing of visual form, patterns of activity 209 

within LOC reflected the visual similarity of the object concepts (Figure 6). Specifically, we 210 

obtained a significant correlation between the behavior-based visual RDM and the brain-based 211 

visual task RDM in LOC (Kendall’s tau-a = .05, p < .0001). Notably, however, the correlation 212 

between the behavior-based visual RDM and the brain-based conceptual task RDM was not 213 

significant (Kendall’s tau-a = .01, p = .20). In other words, activity patterns in LOC expressed a 214 

visual similarity structure when participants were asked to make explicit judgments about the 215 

visual features that characterized object concepts (e.g., whether an object is angular in form), but 216 

not when those judgments pertained to features that were conceptual in nature (e.g., whether an 217 

object is naturally occurring). Conversely, the behavior-based conceptual RDM did not 218 

significantly correlate with the brain-based visual task RDM (Kendall’s tau-a = .002, p = .45) or 219 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2017. ; https://doi.org/10.1101/186924doi: bioRxiv preprint 

https://doi.org/10.1101/186924
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

brain-based conceptual task RDM (Kendall’s tau-a = -.016, p = .87), indicating that conceptual 220 

similarities between object concepts did not capture neural pattern similarities in LOC in either 221 

task context. Considered together, these results suggest that LOC represents perceptual 222 

information about object concepts in a task-dependent visual similarity code that generalizes 223 

across visually similar object concepts that are conceptually distinct (e.g., hairdryer – gun), but 224 

not across conceptually similar object concepts that are visually distinct (e.g., hairdryer – comb).  225 

The Temporal Pole and Parahippocampal Cortex Represent Object Concepts with a Conceptual 226 

Similarity Code 227 

In line with theoretical frameworks that have characterized the temporal pole as a semantic hub 228 

(Patterson et al., 2007; Tranel et al., 2009), patterns of activity within this specific ATL structure 229 

reflected the conceptual similarity of the object concepts (Figure 6). Specifically, in the temporal 230 

pole we revealed a significant correlation between the behavior-based conceptual RDM and the 231 

brain-based conceptual task RDM (Kendall’s tau-a = .06, p < .0001). The behavior-based 232 

conceptual RDM was also significantly correlated with the brain-based visual task RDM 233 

(Kendall’s tau-a = .04, p < .0001). Thus, the temporal pole expressed a conceptual similarity 234 

structure regardless of whether participants were asked to make targeted assessments of 235 

conceptual features (e.g., whether the object is a tool) or visual features (e.g., whether it is 236 

symmetrical). The behavior-based visual RDM was not significantly correlated with either the 237 

brain-based conceptual task RDM (Kendall’s tau-a = .01, p = .19) or the brain-based visual task 238 

RDM (Kendall’s tau-a = -.001, p = .55), suggesting that the representational structure of object 239 

concepts in the temporal pole is not shaped by visual properties.  240 

Patterns of activity obtained in parahippocampal cortex, which has previously been associated 241 

with the processing of semantically-based contextual associations (Bar and Aminoff, 2003), also 242 
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reflected the conceptual similarity of the object concepts (Figure 6). Unlike the temporal pole, 243 

however, parahippocampal cortex expressed conceptual similarity structure in a task-specific 244 

manner. Specifically, the behavior-based conceptual RDM was significantly correlated with the 245 

brain-based conceptual task RDM (Kendall’s tau-a = .06, p < .0001), but not the brain-based 246 

visual task RDM (Kendall’s tau-a = .02, p = .10). The behavior-based visual RDM was not a 247 

significant predictor of neural dissimilarity structure captured by either the brain-based visual 248 

task RDM (Kendall’s tau-a = .002, p = .42) or the brain-based conceptual task RDM (Kendall’s 249 

tau-a = .009, p = .22).  250 

In sum, these results suggest that the temporal pole and parahippocampal cortex represent 251 

conceptual information in a manner that enables efficient generalization across conceptually 252 

related object concepts that are visually distinct (e.g., hairdryer – comb), but not visually related 253 

object concepts that are conceptually distinct (e.g., hairdryer – gun). That is, the degree of 254 

similarity between object-evoked activity patterns in these structures reflected the degree of 255 

conceptual feature overlap, but not visual feature overlap, between those object concepts. 256 

Notably, the temporal pole expressed this conceptual similarity code even when the information 257 

that it conveyed was orthogonal to task demands. For example, hairdryer and comb were 258 

represented more similarly than were hairdryer and gun, even when task demands encouraged 259 

processing of visual features in the visual task context. Conversely, our results suggest that 260 

parahippocampal cortex expresses conceptual similarity structure only when task demands 261 

prioritize processing of conceptual information in the conceptual feature verification task.  262 

Perirhinal Cortex Represents Object Concepts with a Similarity Code that Reflects Integration of 263 

Conceptual and Visual Features 264 
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Results obtained in PRC support the notion that this structure integrates conceptual and visual 265 

object features, as first theorized in the representational-hierarchical model of object 266 

representation (Murray and Bussey, 1999). Namely, we revealed that the behavior-based visual 267 

RDM and the behavior-based conceptual RDM were each significantly correlated with both the 268 

brain-based visual task RDM (behavior-based visual RDM Kendall’s tau-a = .07, p < .0001; 269 

behavior-based conceptual RDM Kendall’s tau-a = .05, p < .0001), and the brain-based 270 

conceptual task RDM (behavior-based visual RDM Kendall’s tau-a = .04, p < .001; behavior-271 

based conceptual RDM Kendall’s tau-a = .07, p < .0001) (Figure 6). These findings indicate that 272 

PRC simultaneously expressed both conceptual and visual similarity structure, and did so 273 

regardless of whether participants were asked to make targeted assessments of conceptual 274 

features (e.g., whether the object concept is living) or visual features (e.g., whether it is 275 

elongated). In other words, activity patterns in PRC captured the conceptual similarity between 276 

hairdryer and comb, as well as the visual similarity between hairdryer and gun, and did so 277 

irrespective of task context. Critically, these results were obtained despite the fact that the brain-278 

based RDMs were orthogonal to one another (i.e., not significantly correlated). Considered 279 

together, these results suggest that, of the a priori ROIs considered, PRC represents object 280 

concepts at the highest level of specificity through integration of visual and conceptual features.  281 

 282 

ROI-Based RSA: Comparisons of Brain-Based RDMs with Brain-Based RDMs 283 

We next implemented an additional second-level RSA in which we directly compared object-284 

evoked neural similarity patterns within and across our four a priori ROIs. These analyses were 285 

conducted using the same methodological procedures applied to compare behavior-based RDMs 286 

with brain-based RDMs. We first sought to quantify the representational similarity between the 287 
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brain-based visual task RDM and brain-based conceptual task RDM obtained within each ROI. 288 

This comparison is denoted by the dashed horizontal arrow in the bottom of Figure 5. Notably, 289 

these brain-based RDMs were significantly correlated with one another in PRC (Kendall’s tau-a 290 

= .06, p < .001), but not in the temporal pole (Kendall’s tau-a = .01, p = .28), parahippocampal 291 

cortex (Kendall’s tau-a = -.01, p = .69), or LOC (Kendall’s tau-a = .02, p = .18). This result 292 

suggests that PRC emphasized similar representational distinctions between object concepts 293 

regardless of whether those concepts were processed in the context of a visual or conceptual task 294 

context.  295 

In a second set of analyses, we examined whether activity in different ROIs reflected similar 296 

representational distinctions across object concepts within the same task context. To this end, we 297 

first compared the brain-based visual task RDM obtained in a given ROI with those obtained in 298 

all other ROIs. For example, we asked whether the brain-based visual task RDMs obtained in 299 

PRC and LOC were significantly correlated with one another for the visual task context. 300 

Interestingly, these analyses did not reveal any significant results between any of our ROIs (all 301 

Kendall’s tau-a < .029, all p > .12). These findings indicate that PRC and LOC, two regions that 302 

expressed a visual similarity code as revealed through comparison with the behavior-based visual 303 

RDM (Figure 3B), emphasized different visually-based representational distinctions between 304 

object concepts.  305 

We next compared the brain-based conceptual task RDM obtained in a given ROI with those 306 

obtained in all other ROIs. For example, we asked whether the brain-based conceptual task 307 

RDMs obtained in PRC and the temporal pole, were significantly correlated with one another. 308 

This set of analyses revealed a trend toward a positive correlation between PRC and 309 

parahippocampal cortex (Kendall’s tau-a = .05, p < .01, corrected critical alpha = .003), but no 310 
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such relationship between any other ROIs (all Kendall’s tau-a < .034, all p > .08). These findings 311 

suggest that although the brain-based conceptual task RDMs obtained in PRC, parahippocampal 312 

cortex, and the temporal pole were all significantly correlated with the behavior-based 313 

conceptual RDM, they may emphasize different conceptually-based representational distinctions 314 

between object concepts.   315 

 316 

Searchlight-Based RSA: Comparisons of Behavior-Based RDMs with Brain-Based RDMs 317 

Perirhinal Cortex is the Only Cortical Region that Supports Integrative Coding of Conceptual 318 

and Visual Object Features 319 

We next implemented a whole-volume searchlight-based RSA to investigate the neuroanatomical 320 

specificity of our ROI-based results. Specifically, we sought to determine whether object 321 

representations in PRC expressed visual and conceptual similarity structure within overlapping 322 

or distinct populations of voxels. If PRC does indeed support the integrative coding of visual and 323 

conceptual object features, then the same subset of voxels in this structure should express both 324 

types of similarity codes. If PRC does not support the integrative coding of visual and conceptual 325 

object features, then different subsets of voxels should express these different similarity codes.  326 

More generally, data-driven searchlight mapping allowed us to explore whether any other 327 

regions of the brain showed evidence for integrative coding of visual and conceptual features in a 328 

manner comparable to that observed in PRC. To this end we performed searchlight RSA using 329 

multi-voxel activity patterns restricted to a 100 voxel ROI that was iteratively swept across the 330 

entire cortical surface (Kriegeskorte et al., 2006; Oosterhof et al., 2011). In each searchlight ROI, 331 

the behavior-based RDMs were compared with the brain-based RDMs using a procedure 332 

identical to that implemented in our ROI-based RSA. These comparisons are depicted by the 333 
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solid black arrows in Figure 5. The obtained similarity values (Pearson’s r) were mapped to the 334 

center of each ROI for each participant separately. With this approach, we obtained participant-335 

specific similarity maps for all comparisons, which were then standardized and subjected to a 336 

group-level statistical analysis. A threshold-free cluster enhancement (TFCE) method was used 337 

to correct for multiple comparisons with a cluster threshold of p < 0.05 (Smith and Nichols, 338 

2009).  339 

All searchlight results are depicted in Figure 7, with corresponding cluster statistics, co-340 

ordinates, and anatomical labels reported in Table 1. Statistically thresholded group-level 341 

similarity maps are presented in Figure 6A for comparison of both behavior-based RDMs with 342 

the brain-based visual task RDM, and in Figure 6C for comparison of both behavior-based 343 

RDMs with the brain-based conceptual task RDM. To determine whether PRC expressed visual 344 

similarity structure and conceptual similarity structure in overlapping or distinct sets of voxels, 345 

we examined the extent of voxel overlap across similarity maps. In a first step, we asked whether 346 

there were any common voxels across the similarity maps obtained within each task context, 347 

separately. Overlapping voxels across similarity maps obtained through comparison of behavior-348 

based RDMs with the brain-based RDM derived from the visual task context are presented in 349 

Figure 6B. Overlapping voxels across similarity maps obtained through comparison of behavior-350 

based RDMs with the brain-based RDM derived from the conceptual task context are presented 351 

in Figure 6D. Within each task context, we revealed a contiguous cluster of voxels in left PRC in 352 

which both behavior-based RDMs predicted task-specific brain-based RDMs.  353 

In a second step, we examined whether any voxels were common across the task-specific 354 

overlapping clusters. In other words, we asked whether both behavior-based RDMs were able to 355 

describe the both brain-based RDMs derived from a common set of voxels (as depicted by the 356 
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black arrows in Figure 6E). Critically, left PRC was the only region in the entire scanned volume 357 

in significant clusters of voxels overlapped across all similarity maps (Figure 6E). This result 358 

indicates that a subset of voxels within PRC simultaneously expressed both visual and 359 

conceptual similarity structure, suggesting that this structure does indeed support integration of 360 

the visual and conceptual features that define an object concept.   361 

 362 

 363 

Discussion 364 

Although decades of research have aimed at understanding how object concepts are represented 365 

in the brain (Warrington et al., 1975; Hodges et al., 1992; Martin et al., 1995; Murray and 366 

Bussey, 1999; Chen et al., 2017), the fundamental question of whether and where their 367 

conceptual and perceptual features are integrated remains unanswered. Progress toward this end 368 

has been hindered by the fact that such features tend to vary concomitantly across object 369 

concepts. Here, we used a data-driven approach to systematically select a set of object concepts 370 

in which visual and conceptual features varied independently (e.g., hairdryer – comb, which are 371 

conceptually but not visually similar; hairdryer – gun, which are visually but not conceptually 372 

similar). By comparing behavior-based models of the visual and conceptual similarity structure 373 

of these object concepts with corresponding brain-based similarity structure we revealed novel 374 

evidence for an integrative coding process that binds conceptual object features with observable 375 

perceptual features in a task-invariant manner. This integrative coding, which we uniquely found 376 

in PRC, may guide complex behavior through the representation of objects and object concepts 377 

at the highest level of specificity. Moreover, we also revealed a representational distinction 378 

between PRC and the temporal pole as they relate to semantic memory. Namely, whereas PRC 379 

showed evidence of integrative coding across conceptual and visual features, neural activity 380 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2017. ; https://doi.org/10.1101/186924doi: bioRxiv preprint 

https://doi.org/10.1101/186924
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

patterns in the temporal pole were best understood in relation to a purely conceptual code. Taken 381 

together, these findings provide a first step toward filling a theoretically important gap in the 382 

cognitive neuroscience of semantic memory and object representation, more broadly.  383 

Our central finding is that patterns of activity within PRC reflected both the visual and 384 

conceptual similarities between object concepts. We interpret this result as evidence for 385 

integration for reasons directly related to our experimental design. First, the behavior-based 386 

visual RDM and behavior-based conceptual RDM (i.e., the models) used in the current study 387 

were not correlated with one another, indicating that these models accounted for different 388 

sources of variability in the relationships among the object concepts. For example, the behavior-389 

based conceptual RDM captured a relationship between “hairdryer” and “comb”, where none 390 

existed in the behavior-based visual RDM. Second, and despite the fact that these behavior-based 391 

RDMs were orthogonal to one another, they could each be used to describe the brain-based 392 

RDMs derived from both the visual and conceptual task contexts. Critically, across our ROI-393 

based RSA and our searchlight analysis, PRC was the only region in which we obtained this 394 

pattern of results. At the level of interpretation, the importance of these points is perhaps best 395 

illustrated with an example from our experiment. Specifically, our results indicated that while 396 

participants made conceptual judgments about objects in the fMRI scanner, such as whether a 397 

“hairdryer” is man-made or a “gun” is pleasant, the corresponding degree of neural pattern 398 

similarity between “hairdryer” and “gun” could be captured by their perceptual similarity, as 399 

indexed by behavioral ratings from an independent group of observers. Likewise, when 400 

participants made perceptual judgments about object concepts in the fMRI task, such as whether 401 

a “hairdryer” is angular or a “comb” is elongated, the corresponding degree of neural pattern 402 

similarity between “hairdryer” and “comb” could be captured by their conceptual similarity, as 403 
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derived from responses provided by an independent group of participants. In both cases, PRC 404 

carried information about semantic features that were neither required to perform the immediate 405 

task at hand, nor correlated with the features that did in fact have task-relevant diagnostic value. 406 

Moreover, results from our RSA-based searchlight mapping analysis indicated that a contiguous 407 

cluster of voxels in left PRC was the only region in the brain that showed this effect. Thus, 408 

despite the fact that we disentangled conceptual and perceptual feature overlap across objects 409 

and imposed task demands that biased processing toward one class of feature or the other, both 410 

types of information were ubiquitous and inseparable in PRC. When considered together, these 411 

results suggest that, at the level of PRC, it may not be possible to fully disentangle conceptual 412 

and perceptual information.  413 

Convergent evidence from studies of functional and structural connectivity in humans, non-414 

human primates, and rodents indicates that PRC is connected to the temporal pole, 415 

parahippocampal cortex, LOC, and nearly all other unimodal and polymodal sensory regions in 416 

neocortex (Suzuki and Amaral, 1994; Burwell and Amaral, 1998; Kahn et al., 2008; McLelland 417 

et al., 2014; Suzuki and Naya, 2014; Wang et al., 2016; Zhuo et al., 2016). Thus, PRC has the 418 

connectivity properties that make it well suited to be a multi-modal convergence zone that 419 

integrates object features that are both conceptual and perceptual in nature. Indeed, our results 420 

have linked LOC to the representation of visual semantic attributes, the temporal pole and 421 

parahippocampal cortex to the representation of conceptual attributes, and PRC to the 422 

representation of both types of object features. Notably, however, additional research is 423 

necessary to directly characterize the nature and direction of semantic information exchanged 424 

among these regions. Our findings are also of relevance to the proposal that PRC represents 425 

objects in a manner that reflects the highest degree of feature-based integration (i.e., the 426 
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representational-hierarchical model) (Murray et al., 2007; Graham et al., 2010; Barense et al., 427 

2010, 2011; see Lehky and Tanaka, 2016, for related discussion). Whereas previous research has 428 

primarily described its functional role at the level of either visual properties (Buckley and 429 

Gaffan, 2006; Murray et al., 2007; Graham et al., 2010; Barense et al., 2012) or semantic 430 

attributes (Noppeny et al., 2007; Bruffaerts et al., 2013; Clarke and Tyler, 2014, 2015), here we 431 

show for the first time that PRC integrates both types of features, perhaps at the level of fully-432 

specified object representations.   433 

What is the behavioral relevance of highly-specified object representations in which perceptual 434 

and conceptual features are integrated? It has previously been suggested that such representations 435 

allow for discrimination among stimuli with extensive feature overlap, such as exemplars from 436 

the same category (Murray and Bussey, 1999; Noppeny et al., 2007; Graham et al., 2010; Clarke 437 

and Tyler, 2015). In line with this view, individuals with medial ATL lesions that include PRC 438 

typically have more pronounced conceptual impairments related to living than non-living things 439 

(Warrington and Shallice, 1984; Moss et al., 1997, Bozeat et al., 2003), and more striking 440 

perceptual impairments for objects that are visually similar as compared to visually distinct 441 

(Barense et al., 2007, 2010; Lee et al., 2006). In neurologically healthy individuals, fMRI studies 442 

have also demonstrated increased PRC engagement for living as compared to non-living objects 443 

(Moss et al., 2005), for known as compared to novel faces (Barense et al., 2011; Peterson et al., 444 

2012), and for faces or conceptually meaningless stimuli with high feature overlap as compared 445 

to low (O’Neil et al., 2009; Barense et al., 2012). In a related manner, highly-specified object 446 

representations in PRC have also been linked to long-term memory judgments. For example, 447 

PRC has been linked to explicit recognition memory judgments when previously studied and 448 

novel items are from the same stimulus category (e.g., faces) (Martin et al., 2013, 2016), and 449 
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when subjects make judgments about their lifetime of experience with a given object concept 450 

(Duke et al., 2016). Common among these task demands and experimental manipulations is the 451 

requirement to discriminate among highly similar stimuli. In such scenarios, a highly-specified 452 

representation that reflects the integration of perceptual and conceptual features necessarily 453 

enables more fine-grained distinctions than a purely perceptual or conceptual representation. 454 

This study also has significant implications for prominent neurocognitive models of semantic 455 

memory that have characterized the ATL as a semantic hub (Rogers et al., 2006; Patterson et al., 456 

2007; Tranel, 2009). On this view, the bilateral ATLs are thought to constitute a trans-modal 457 

convergence zone that abstracts conceptual information from the co-occurrence of features 458 

otherwise represented in a distributed manner across modality-specific cortical nodes. Consistent 459 

with this idea, we have shown that a behavior-based conceptual similarity model predicted the 460 

similarity structure of neural activity patterns in the temporal pole, irrespective of task context. 461 

Specifically, neural activity patterns associated with conceptually similar object concepts that are 462 

visually distinct (e.g., “hairdryer” – “comb”) were more comparable than were conceptually 463 

dissimilar concepts that are visually similar (e.g., “hairdryer” – “gun”), even when task demands 464 

required a critical assessment of visual features. This observation, together with results obtained 465 

in PRC, demonstrates a representational distinction between distinct ATL structures, a 466 

conclusion that dovetails with recent evidence indicating that this region is not functionally 467 

homogeneous (Binney et al., 2010; Murphy et al., 2017). Rather, this outcome suggests that 468 

some ATL sub-regions play a prominent role in task-invariant extraction of conceptual object 469 

properties (e.g., temporal pole), whereas others appear to make differential contributions to the 470 

task-invariant integration of perceptual and conceptual features (e.g., PRC) (Lambon Ralph et 471 

al., 2017; Chen et al., 2017).  472 
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In summary, we used fMRI to characterize the representational structure of object concepts in 473 

the brain. Specifically, we generated behavior-based models that independently captured the 474 

conceptual and visual similarities among a targeted set of object concepts and used these models 475 

to predict brain-based neural similarities across two task contexts. Using this approach we 476 

revealed three distinct types of coding of object concepts. First, we found that LOC represented 477 

object concepts in a visually-based similarity code. Second, we found that the temporal pole and 478 

parahippocampal cortex represented object concepts in a conceptually-based similarity code, but 479 

that the temporal pole did so in a task invariant manner, whereas parahippocampal cortex only 480 

did so in the context of explicit conceptual feature judgments. Critically, and despite the fact that 481 

our visual and conceptual similarity models were not correlated with one another, we found that 482 

PRC uniquely supported the integrative coding of perceptual and conceptual features in a task 483 

invariant manner. At a broad level, our results suggest that PRC supports the representation of 484 

fully-specified object concepts in which perceptual and conceptual information is integrated.  485 

 486 

Methods 487 

Participants 488 

Behavior-Based Visual Similarity Rating Task and Conceptual Feature Generation Task 489 

A total of 2846 individuals completed online behavioral tasks using Amazon’s Mechanical Turk 490 

(https://www.mturk.com). Data from 61 participants were discarded due to technical errors, 491 

incomplete submissions, or missed catch trials. Of the remaining 2785 participants, 1185 492 

completed the visual similarity rating task (616 males, 569 females; age range = 18-53; mean age 493 

= 30.1), and 1600 completed the semantic feature generation task (852 males, 748 females; age 494 

range = 18-58 years; mean age = 31.7). Individuals who completed the visual similarity rating 495 
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task were excluded from completing the feature generation task, and vice versa. All participants 496 

provided informed consent and were compensated for their time. Both online tasks were 497 

approved by the University of Toronto Ethics Review Board. 498 

Brain-Based fMRI Task 499 

A separate group consisting of sixteen right-handed participants took part in the fMRI 500 

experiment (10 female; age range = 19-29 years; mean age = 23.1 years). This sample size is in 501 

line with extant fMRI studies that have used comparable analytical procedures to test hypotheses 502 

pertaining to object representation in the ventral visual stream and ATL (Bruffaerts et al., 2013; 503 

Devereaux et al., 2013; Martin et al., 2013, 2016; Clarke and Tyler, 2014; Erez et al., 2016). Due 504 

to technical problems, we were unable to obtain data from one experimental run in two different 505 

participants. No participants were removed due to excessive motion using a criterion of 1.5mm 506 

of translational displacement. All participants gave informed consent, reported that they were 507 

native English speakers, free of neurological and psychiatric disorders, and had normal or 508 

corrected to normal vision. Participants were compensated $50. This study was approved by the 509 

Baycrest Hospital Research Ethics Board.  510 

 511 

Stimuli  512 

As a starting point, we chained together a list of 80 object concepts in such a way that adjacent 513 

items in the list alternated between being conceptually similar but visually distinct and visually 514 

similar but conceptually distinct (e.g., bullet – gun – hairdryer – comb; bullet and gun are 515 

conceptually but not visually similar, whereas gun and hairdryer are visually but not 516 

conceptually similar, and hairdryer and comb are conceptually but not visually similar, etc.). Our 517 

initial stimulus set was established using the authors’ subjective impressions. The visual and 518 
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conceptual similarities between all pairs of object concepts were then quantified by human 519 

observers in the context of a visual similarity rating task and a conceptual feature generation 520 

task, respectively. Results from these behavioral tasks were then used to select 40 object 521 

concepts used throughout the current study.  522 

Participants who completed the visual similarity rating task were presented with 40 pairs of 523 

words and asked to rate visual similarity between the object concepts to which they referred 524 

(Figure 1A). Responses were made using a 5-point scale (very dissimilar, somewhat dissimilar, 525 

neutral, somewhat similar, very similar). Each participant was also presented with four catch 526 

trials on which an object concept was paired with itself. Across participants, 95.7% of catch trials 527 

were rated as being very similar. Data were excluded from 28 participants who did not rate all 528 

four catch trials as being at least ‘somewhat similar’. Every pair of object concepts from the 529 

initial set of 80 object concepts (3160) was rated by 15 different participants. 530 

We next quantified conceptual similarities between object concepts based on responses obtained 531 

in a conceptual feature generation task (Figure 1B), following task instructions previously 532 

described by McRae et al. (2005). Each participant was presented with one object concept and 533 

asked to produce a list of up to 15 different types of descriptive features, including functional 534 

properties (e.g., what it is used for, where it is used, and when it is used), physical properties 535 

(e.g., how it looks, sounds, smells, feels, and tastes), and other facts about it, such as the category 536 

to which it belongs or other encyclopedic facts (e.g., where it is from). One example object and 537 

its corresponding features from a normative database were presented as an example (McRae et 538 

al., 2005). Interpretation and organization of written responses were guided by criteria described 539 

by McRae et al. (2005). Features were obtained from 20 different participants for each object 540 

concept. Data were excluded from 33 participants who failed to list any features. A total of 4851 541 
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unique features were produced across all 80 object concepts and participants. Features listed by 542 

fewer than 4 out of 20 participants were considered to be unreliable and discarded for the 543 

purpose of all subsequent analyses, leaving 723 unique features. This exclusion criterion is 544 

proportionally comparable to that used by McRae et al. (2005). On average, each of the 80 object 545 

concepts was associated with 10.6 features.  546 

We used a data-driven approach to select a subset of 40 object concepts from the initial 80-item 547 

set. These 40 object concepts are reflected in the behavior-based visual and conceptual RDMs, 548 

and were used as stimuli in our fMRI experiment. Specifically, we first ensured that each object 549 

concept was visually similar, but conceptually dissimilar, to at least one other item (e.g., 550 

hairdryer – gun), and conceptually similar, but visually dissimilar, to at least one different item 551 

(e.g., hairdryer – comb). Second, in an effort to ensure that visual and conceptual features varied 552 

independently across object concepts, stimuli were selected such that the corresponding 553 

behavior-based visual and conceptual similarity models were not correlated with one another.   554 

 555 

Behavior-Based RDMs  556 

Behavior-Based Visual RDM 557 

A behavior-based model that captured visual dissimilarities between all pairs of object concepts 558 

included in the fMRI experiment (40 object concepts) was derived from the visual similarity 559 

judgments obtained from our online rating task. Specifically, similarity ratings for each pair of 560 

object concepts were averaged across participants, normalized, and expressed within a 40x40 561 

RDM (1 – averaged normalized rating). Thus, the value in a given cell of this RDM reflects the 562 

visual similarity of the object concepts at that intersection. This behavior-based visual RDM is 563 

our visual dissimilarity model.     564 
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Behavior-Based Conceptual RDM 565 

A behavior-based model that captured conceptual dissimilarities between all pairs of object 566 

concepts included in the fMRI experiment was derived from data obtained in our online feature-567 

generation task. In order to ensure that the semantic relationships captured by our conceptual 568 

similarity model were not influenced by verbal descriptions of visual attributes, we 569 

systematically removed features that characterized either visual form or color (e.g., “is round” or 570 

“is red”). Using these criteria a total of 58 features (8% of the total number of features provided) 571 

were removed. We next quantified conceptual similarity using a concept-feature matrix in which 572 

rows corresponded to object concepts (i.e., 40 rows) and columns to conceptual features (i.e., 573 

723 features – 58 visual features = 665 columns) (Figure 1B, center). Specifically, we computed 574 

the cosine angle between each row; cosine similarity reflects the conceptual distances between 575 

object concepts such that high cosine similarities between items denote short conceptual 576 

distance. The conceptual dissimilarities between all pairs of object concepts were expressed as a 577 

40 x 40 RDM. The value within each cell of the conceptual model RDM was calculated as 1 – 578 

the cosine similarity value between the corresponding object concepts. This behavior-based 579 

conceptual RDM is our conceptual dissimilarity model.  580 

 581 

Behavior-Based RSA: Comparison of Behavior-Based RDMs 582 

We next quantified similarity between our behavior-based visual RDM and behavior-based 583 

conceptual RDM using Kendall’s tau-a as the relatedness measure. This ranked correlation 584 

coefficient is the most appropriate inferential statistic to use when comparing sparse RDMs that 585 

predict many tied ranks (i.e., both models predict complete dissimilarity between many object 586 

pairs; Nili et al., 2014). Inferential analysis of model similarity was performed using a stimulus-587 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2017. ; https://doi.org/10.1101/186924doi: bioRxiv preprint 

https://doi.org/10.1101/186924
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

label randomization test (10,000 iterations) that simulated the null hypothesis of unrelated RDMs 588 

(i.e., zero correlation) based on the obtained variance. Significance was assessed through 589 

comparison of the obtained Kendall’s tau-a coefficient to the equivalent distribution of ranked 590 

null values. As noted in the Results section, this analysis revealed that our behavior-based visual 591 

and conceptual RDMs were not significantly correlated (Kendall’s tau-a = .01, p = .09). 592 

Moreover, inclusion of the 58 features that described color and visual form in the behavior-based 593 

conceptual RDM did not significantly alter its relationship with the visual behavior-based visual 594 

RDM (Kendall’s tau-a = .01, p = .09). 595 

 596 

Experimental Procedures: fMRI Feature Verification Task  597 

During scanning, participants completed a feature verification task that required a yes/no 598 

judgment indicating whether a given feature was applicable to a specific object concept on a 599 

trial-by-trial basis. We systematically varied the feature verification probes in a manner that 600 

established a visual feature verification task context and conceptual feature verification task 601 

context. Verification probes comprising the visual task context were selected to encourage 602 

processing of the visual semantic features that characterize each object concept (i.e., shape, 603 

color, and surface detail). To this end, eight specific probes were used: shape [(angular, 604 

rounded), (elongated, symmetrical)], color (light, dark), and surface (smooth, rough). Notably, 605 

all features are associated with two opposing probes (e.g., angular and rounded; natural and 606 

manufactured) to ensure that participants made an equal number of “yes” and “no” responses. 607 

Verification probes comprising the conceptual feature verification task context were selected to 608 

encourage processing of the abstract conceptual features that characterize each object concept 609 

(i.e., animacy, origin, function, and affective associations). To this end, eight specific verification 610 
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probes were used: (living, non-living), (manufactured, natural), (tool, non-tool), (pleasant, 611 

unpleasant).  612 

Procedures 613 

The primary experimental task was evenly divided over eight runs of functional data acquisition. 614 

Each run lasted 7m 56s and was evenly divided into two blocks, each of which corresponded to 615 

either a visual verification task context or a conceptual feature verification task context. The 616 

order of task blocks was counter-balanced across participants. Each block was associated with a 617 

different feature verification probe, with the first and second block in each run separated by 12s 618 

of rest. Blocks began with an 8s presentation of a feature verification probe that was to be 619 

referenced for all intra-block trials. With this design, each object concept was repeated 16 times: 620 

eight repetitions across the visual feature verification task context and eight repetitions across the 621 

conceptual feature verification task context. Behavioral responses were recorded using an MR-622 

compatible keypad. 623 

Stimuli were centrally presented for 2s and each trial was separated by a jittered period of 624 

baseline fixation that ranged 2-6s. Trial order and jitter interval were optimized for each run 625 

using the OptSeq2 algorithm (http://surfer.nmr.mgh.harvard.edu/optseq/), with unique sequences 626 

and timing across counterbalanced versions of the experiment. Stimulus presentation and timing 627 

was controlled by E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA). 628 

 629 

Experimental Procedure: fMRI Functional Localizer Task 630 

Following completion of the main experimental task, each participant completed an independent 631 

functional localizer scan that was subsequently used to identify LOC. Participants viewed 632 

objects, scrambled objects, words, scrambled words, faces, and scenes in separate 24s blocks (12 633 
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functional volumes). Within each block, 32 images were presented for 400ms each with a 350ms 634 

ISI. There were four groups of six blocks, with each group separated by a 12s fixation period, 635 

and each block corresponding to a different stimulus category. Block order (i.e., stimulus 636 

category) was counterbalanced across groups. All stimuli were presented in the context of a 1-637 

back task to ensure that participants remained engaged throughout the entire scan. Presentation 638 

of images within blocks was pseudo-random with 1-back repetition occurring 1-2 times per 639 

block. 640 

 641 

ROI Definitions  642 

We performed RSA in four a priori defined ROIs. The temporal pole, PRC, and 643 

parahippocampal cortex were manually defined in both the left and right hemisphere on each 644 

participant’s high-resolution anatomical image according to established MR-based protocols 645 

(Pruessner et al., 2002, with adjustment of posterior border of parahippocampal cortex using 646 

anatomical landmarks described by Frankó et al., 2014). Lateral occipital cortex was defined as 647 

the set of contiguous voxels located along the lateral extent of the occipital lobe that responded 648 

more strongly to intact than scrambled objects (p < 0.001, uncorrected; Malach et al. 1995). 649 

 650 

fMRI Data Acquisition 651 

Scanning was performed using a 3.0-T Siemens MAGNETOM Trio MRI scanner at the Rotman 652 

Research Institute at Baycrest Hospital using a 32-channel receiver head coil. Each scanning 653 

session began with the acquisition of a whole-brain high-resolution magnetization-prepared rapid 654 

gradient-echo T1-weighted structural image (repetition time = 2s, echo time = 2.63ms, flip angle 655 

= 9°, field of view = 25.6cm
2
, 160 oblique axial slices, 192 × 256 matrix, slice thickness = 656 
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1mm). During each of eight functional scanning runs comprising the main experimental task, a 657 

total of 238 T2*-weighted echo-planar images were acquired using a two-shot gradient echo 658 

sequence (200 × 200 mm field of view with a 64 × 64 matrix size), resulting in an in-plane 659 

resolution of 3.1 × 3.1 mm for each of 40 2-mm axial slices that were acquired in an interleaved 660 

manner along the axis of the hippocampus. The inter-slice gap was 0.5 mm; repetition time = 2s; 661 

echo time = 30ms; flip angle = 78°). These parameters yielded coverage of the majority of 662 

cortex, excluding only the most superior aspects of the frontal and parietal lobes. During a single 663 

functional localizer scan, a total of 360 T2*-weighted echo-planar images were acquired using 664 

the same parameters reported for the main experimental task. Lastly, a B0 field map was 665 

collected following completion of the functional localizer scan 666 

 667 

fMRI Data Analysis Software  668 

Preprocessing and GLM analyses were performed in FSL5 (Smith et al., 2004). Representational 669 

similarity analyses were performed using CoSMoMVPA (http://www.cosmomvpa.org/; 670 

Oosterhof et al., 2016) together with custom Matlab code (The MathWorks, Inc., Natick, MA). 671 

 672 

Preprocessing and Estimation of Object-Specific Multi-Voxel Activity Patterns 673 

Images were initially skull-stripped using a brain extraction tool (BET, Smith, 2002) to remove 674 

non-brain tissue from the image. Data were then corrected for slice-acquisition time, high-pass 675 

temporally filtered (using a 50s period cut-off for event-related runs, and a 128s period cut-off 676 

for the blocked localizer run), and motion corrected (MCFLIRT, Jenkinson et al., 2002). 677 

Functional runs were registered to each participant’s high-resolution MPRAGE image using 678 

FLIRT boundary-based registration with B0-fieldmap correction. The resulting unsmoothed data 679 
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were analyzed using first-level FEAT (v6.00; fsl.fmrib.ox.ac.uk/fsl/fslwiki) in each participant’s 680 

native anatomical space. Parameter estimates of BOLD response amplitude were computed using 681 

FILM, with a general linear model that included temporal autocorrelation correction and 6 682 

motion parameters as nuisance covariates. Each trial (i.e., object concept) was modeled with a 683 

delta function corresponding to the stimulus presentation onset and then convolved with a 684 

double-gamma hemodynamic response function. Separate response-amplitude (β) images were 685 

created for each object concept (n = 40), in each run (n = 8), in each property verification task 686 

context (n = 2). Obtained β images were converted into t-statistic maps; previous research has 687 

demonstrated a modest advantage for t-maps over β images in the context of multi-voxel pattern 688 

analysis (Misaki et al., 2010). These data were used for all subsequent similarity analyses.  689 

 690 

Representational Similarity Analysis (RSA) 691 

ROI-Based RSA: Comparisons of Behavior-Based RDMs with Brain-Based RDMs and Brain-692 

Based RDMs with Brain-Based RDMs 693 

We used linear correlations to quantify the participant-specific dissimilarities (1 – Pearson’s r) 694 

between all object-evoked multi-voxel activity patterns (n = 40) with each ROI (n = 4). 695 

Dissimilarity measures were expressed in 40x40 RDMs for each run (n = 8) and verification task 696 

context (n = 2), separately. Thus, for each ROI, each participant had eight RDMs that reflected 697 

the (dis)similarity structure from the visual feature verification task context, and eight RDMs that 698 

reflected the (dis)similarity structure from the conceptual verification task context. We then 699 

calculated one mean RDM for each feature verification task context by averaging run-specific 700 

RDMs across participants. Thus, one brain-based RDM was created for the visual task context 701 
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(i.e., brain-based visual task RDM) and one brain-based RDM was created for the conceptual 702 

task context (i.e., brain-based conceptual task RDM).  703 

We next examined how well each of the behavior-based RDMs fit each of the obtained brain-704 

based RDMs for each ROI. Model fit was quantified as the ranked correlation coefficient 705 

(Kendall’s tau-a) between behavior-based RDMs and the brain-based RDMs. Significance 706 

testing was performed using a stimulus-label randomization test (10,000 iterations per model) 707 

Bonferroni corrected for multiple comparisons.  708 

Searchlight-Based RSA 709 

Whole-volume RSA was implemented using 100-voxel surface-based searchlights (Kriegeskorte 710 

et al., 2006; Oosterhof et al., 2011). Each surface-based searchlight referenced the 100 nearest 711 

voxels to the searchlight center based on geodesic distance on the cortical surface. Neural 712 

estimates of dissimilarity (i.e., RDMs) were calculated in each searchlight using the same 713 

approach implemented in our ROI-based RSA. Correlations between behavior-based RDMs 714 

were also quantified using the same approach. The correlation coefficients obtained between 715 

behavior-based RDMs and brain-based RDMs were then Fisher-z transformed and mapped to the 716 

voxel at the centre of each searchlight to create a whole-brain similarity map. Participant-specific 717 

similarity maps were then normalized to a standard MNI template using FNIRT (Greve and 718 

Fischl, 2009). To assess the statistical significance of searchlight maps across participants, all 719 

maps were corrected for multiple comparisons without choosing an arbitrary uncorrected 720 

threshold using threshold-free cluster enhancement (TFCE) with a corrected statistical threshold 721 

of p < 0.05 on the cluster level (Smith and Nichols, 2009). A Monte Carlo simulation permuting 722 

condition labels was used to estimate a null TFCE distribution. First, 100 null searchlight maps 723 

were generated for each participant by randomly permuting condition labels within each obtained 724 
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searchlight RDM. Next, 10,000 null TFCE maps were constructed by randomly sampling from 725 

these null data sets in order to estimate a null TFCE distribution (Stelzer et al., 2013). The 726 

resulting surface-based statistically thresholded z-score were projected onto the PALS-B12 727 

surface atlas in CARET version 5.6. (http://www.nitrc.org/projects/caret/; Van Essen et al., 2001; 728 

Van Essen, 2005). 729 
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Table 1. Clusters in which behavior-based RDMs were significantly correlated with brain-based 1010 

RDMs as revealed using representational similarity searchlight analyses, with corresponding 1011 

cluster extent, peak z-values, and MNI co-ordinates
1
.   1012 

Region Cluster Extent Peak z-value x y z 

Visual Task Context 

Behavior-Based Visual RDM – Brain-Based Visual Task RDM 

Mid calcarine 1660 5.79 -2 -74 12 

R lateral occipital cortex 455 3.89 50 -66 4 

R perirhinal cortex 112 3.64 34 -12 -34 

L superior parietal lobule 110 3.21 -32 -40 44 

L perirhinal cortex 76 2.85 -30 -12 -36 

R superior parietal lobule 48 2.64 38 -54 54 

R fusiform gyrus 45 2.77 40 -46 -20 

R precuneus 29 2.66 12 -76 48 

R Inferior Temporal Gyrus 9 2.52 44 -22 -28 

Behavior-Based Conceptual RDM – Brain-Based Visual Task RDM 

L Perirhinal Cortex 368 3.96 -24 2 -38 

R Perirhinal Cortex 232 3.26 22 2 -36 

Overlap 

L Perirhinal Cortex 22  -30 -8 -38 

Conceptual Task Context 

Behavior-Based Conceptual RDM – Brain-Based Conceptual Task RDM 

L Perirhinal Cortex 79 2.88 -30 -10 -34 

R Parahippocampal Cortex 64 2.94 30 -24 -24 

L Temporal Pole 61 2.89 -34 4 -26 

R Temporal Pole 25 2.70 24 12 -36 

Behavior-Based Visual RDM – Brain-Based Conceptual Task RDM 

L Perirhinal Cortex 98 4.87 -26 -4 -10 

R Perirhinal Cortex 26 3.01 28 -12 -34 

Overlap 

L Perirhinal Cortex 31  -26 -8 -42 

Overlap across all Behavior-Based RDMs and Brain-Based RDMs 

L Perirhinal Cortex 16  -30 -8 -36 

 1013 
1
MNI co-ordinates are reported for the peak voxel in individual clusters and the centre of mass 1014 

for cluster overlap. 1015 

 1016 
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Figure Captions 1017 

Figure 1. Behavior-based representational dissimilarity matrices (RDMs). (A) Visual 1018 

similarity rating task (left) and corresponding 40x40 behavior-based visual RDM (right). (B) 1019 

Conceptual feature generation task with sample responses from two participants (left), abridged 1020 

feature matrix depicting the number of participants that listed each feature for each concept 1021 

(centre), and corresponding 40x40 behavior-based conceptual RDM (right). 1022 

Figure 2. Brain-based representational dissimilarity matrices (RDMs). (A) Example of 1023 

object-evoked neural activity patterns obtained across all eight probes in the visual task context 1024 

(left), mean object-specific activity patterns averaged across repetitions (center), and 1025 

corresponding 40x40 brain-based visual task RDM (right). (B) Example of object-evoked neural 1026 

activity patterns obtained across all eight probes in the conceptual task context (left), mean 1027 

object-specific activity patterns averaged across repetitions (center), and corresponding 40x40 1028 

brain-based conceptual task RDM (right). 1029 

Figure 3. fMRI feature verification task performance. Percentage of trials on which all 1030 

participants (i.e., 16/16) provided the same ‘yes/no’ response for each property verification 1031 

probe.   1032 

Figure 4. Regions of interest (ROIs) in a representative participant. Cortical regions 1033 

examined in the ROI-based RSA, including lateral occipital cortex (orange), parahippocampal 1034 

cortex (yellow), perirhinal cortex (pink), and the temporal pole (green).  1035 

Figure 5. Correlation-based representational similarity analyses (RSA). The dashed 1036 

horizontal arrow between behavior-based RDMs reflects second-level RSA in which the visual 1037 

and conceptual models were compared. Solid vertical and diagonal arrows reflect second-level 1038 
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RSA in which behavior-based RDMs were compared with brain-based RDMs. The dashed 1039 

horizontal arrow between brain-based RDMs reflects second-level RSA in which neural pattern 1040 

similarities from each task context were directly compared with each other. 1041 

Figure 6. ROI-based RSA results. Similarities between behavior-based and brain-based 1042 

representational dissimilarity matrices (RDMs) are plotted for each ROI. Similarity was 1043 

quantified as the ranked correlation coefficient (Kendall’s tau-a) between behavior-based RDMs 1044 

and the brain-based RDMs. Error bars indicate the standard error, estimated as the standard 1045 

deviation of 100 deviation estimates obtained from the stimulus-label randomization test. *** p < 1046 

.0001, ** p < .001. 1047 

Figure 7. Representational similarity searchlight mapping results. (A) Cortical regions in 1048 

which the brain-based visual task representational dissimilarity matrix (RDM) was significantly 1049 

correlated with the behavior-based visual RDM (left) and the behavior-based conceptual RDM 1050 

(right). (B) Overlap between brain-behavior similarity maps in the visual task context. (C) 1051 

Cortical regions in which the brain-based conceptual task RDM was significantly correlated with 1052 

the behavior-based visual RDM (left) and the behavior-based conceptual RDM (right). (D) 1053 

Overlap between brain-behavior similarity maps in conceptual task context. (E) Overlap among 1054 

brain-behavior similarity maps across both task contexts. The correlation coefficients (Kendall’s 1055 

tau-a) obtained between behavior-based RDMs and brain-based RDMs were Fisher-z 1056 

transformed and mapped to the voxel at the centre of each searchlight to create the whole-brain 1057 

similarity maps in panels A and C. Similarity maps in panels A and C were corrected for 1058 

multiple comparisons using threshold-free cluster enhancement (TFCE) with a corrected 1059 

statistical threshold of p < 0.05 on the cluster level (Smith and Nichols, 2009).  1060 
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A 
Brain-Based Visual Task RDM fMRI: Visual Task Context 

8 activity patterns obtained for each object concept using 
different visual feature verification probes in each run.  
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B 
Brain-Based Conceptual Task RDM fMRI: Conceptual Task Context 

8 activity patterns obtained for each object concept using 
different visual feature verification probes in each run.  
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