
Evaluation of Convolutionary Neural Networks
Modeling of DNA Sequences using Ordinal versus

one-hot Encoding Method

Allen Chieng Hoon Choong
Faculty of Cognitive Sciences and Human Development

Universiti Malaysia Sarawak

Kota Samarahan, Malaysia

allen.choong@gmail.com

∗Nung Kion Lee
Faculty of Cognitive Sciences and Human Development

Universiti Malaysia Sarawak

Kota Samarahan, Malaysia

nklee@unimas.my

Abstract—Convolutionary neural network (CNN) is a popular

choice for supervised DNA motif prediction due to its excellent

performances. To employ CNN, the input DNA sequences are

required to be encoded as numerical values and represented

as either vectors or multi-dimensional matrices. This paper

evaluates a simple and more compact ordinal encoding method

versus the popular one-hot encoding for DNA sequences. We

compare the performances of both encoding methods using three

sets of datasets enriched with DNA motifs. We found that the

ordinal encoding performs comparable to the one-hot method

but with significant reduction in training time. In addition,

the one-hot encoding performances are rather consistent across

various datasets but would require suitable CNN configuration to

perform well. The ordinal encoding with matrix representation

performs best in some of the evaluated datasets. This study

implies that the performances of CNN for DNA motif discovery

depends on the suitable design of the sequence encoding and

representation. The good performances of the ordinal encoding

method demonstrates that there are still rooms for improvement

for the one-hot encoding method.

Index Terms—DNA sequence encoding, convolutionary neural

networks, motif discovery

I. INTRODUCTION

CNN (Convolutional Neural Network) [1], [2] is currently

one of the most widely used deep learning methods in machine

learning due to its powerful modelling capability on complex

and large-scale datasets. Recently, CNN has been widely used

for learning DNA sequence datasets related to regulatory

regions and other functional landmarks [3]–[6]. The advantage

of CNN is its learning can be performed without the need of

engineered features. The intrinsic features in the raw dataset

are learned through the many layers structure which represents

the different abstraction of features. The layers in a CNN

consist of convolutionary and pooling layers. A convolutionary

layer consists of multiple maps of neurons which are called

filters. A filter convolves the inputs from the previous layer

to produce a reduced sample. It only connected to a patch

This study is supported by the Minister of Education Malaysia, Fundamental
Research Grant Scheme-FRGS/SG03(01)/1134/2014(01)

of the previous layer, which is named as ”receptive field”.

Moreover, all neurons in the filters detect the same features

of the previous layer but at different map locations. Different

filters might detect different types of features [7]. In a DNA

dataset, the features might represent different motifs enriched

in the input DNA sequences. In addition, [7] stated that the

exact locations and frequency of a feature are unimportant

to the learning purpose because the final output of the deep

learning is recognition of the input data. On the other hand, the

pooling layer summarizes the adjacent neurons by computing

their activity. As a result, the model parameters are greatly

reduced. After the last pooling layer, it has a fully connected

multi-layers perceptron neural networks.

CNN is designed to effectively models multi-dimensional

input data. Thus, it is powerful in solving problems related to

computer vision and image recognition [2] where the data con-

sists of images. To employ the CNN on DNA datasets, existing

works typically encode the nucleotides in DNA sequences by

using the one-hot method [3], [5], [6]. That is, each nucleotide

is encoded with a binary vector of four bits with one of them

is hot (i.e. 1) while others are 0. For instance A = (1, 0, 0, 0),
G = (0, 1, 0, 0), C = (0, 0, 1, 0), and T = (0, 0, 0, 1). This

sequence encoding method draws similarity to the Position

Frequency Matrix [8]. In which, the values in a vector are

considered as the probability of finding the four bases at a

certain position in a DNA sequence. Once encoded, an input

DNA sequence of length l is represented as 4 × l matrix. Or

in another word, a ”2D image” with one channel.

Methods for converting biological sequences into numerical

values have been existed in numerious past studies [9]. Those

encoding methods can be categorized into direct and indirect

encoding [9]. Direct methods represent each nucleotides/amino

acids with a numerical value or vector of numerical values.

They preserved the original order the bases appeared in a

biological sequence after the encoding. While the indirect

methods engineered a fixed number of features (numerical

values) from the biological sequences. The features can be

based on frequency counts of various k-mers (short sequence

segments of length k bp), biological, or biochemical properties.978-1-5386-0765-7/17/$31.00 2017 IEEE, ∗Corresponding author

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/186965doi: bioRxiv preprint

https://doi.org/10.1101/186965
http://creativecommons.org/licenses/by-nc/4.0/

In recent years, CNN and other deep learning techniques

are gaining popularity in supervised DNA motif prediction

because of their excellent performances. For example, in

DeepBind, it achieved an average of 0.85 AUC for evaluation

of 137 transcription factors, while MEME-Chip achieved

only 0.82. Some of the recent works of using deep learning

neural networks for DNA motif discovery are DeepBind [3],

DeepSEA [6], Basset [5], TFImpute [10], and FIDDLE [11].

All of those works are using one-hot encoding to encode the

input DNA sequences.

In this study, we propose a simple method to transform

DNA sequences into matrix representation. The matrices are

fed as input to CNN for classification model construction. We

evaluate our propose encoding method to the most popular

one-hot encoding method using the three sets of sequence

datasets. This paper is organized as follows. The next section

presents our method of this study including datasets used,

evaluation metric, and CNN structure. The Results section

presents our evaluation results with discussion. The last section

discusses the main findings and some issues for future studies.

II. METHOD

A. Ordinal encoding

In CNN, the input examples are assumed to be represented

as vectors or matrices of numerical values. In this study, we

evaluate the utility of using ordinal encoding method to encode

each nucleotide letter and thus a DNA sequence as a vector

of numerical values. One of the problems with the one-hot

encoding is the curse-of-dimensionality [12], in which for each

input sequence of length l, the number of input values would

be 4×l. It causes long training time and only short sequence is

computationally feasible for large-scale dataset. For examples,

in DeepBind the sequence length is limited to 14101bp long,

while Basset uses 600bp input sequences. While the one-hot

encoding has been claimed to represent the PFM [3] and has

a clear meaning of interpretation, for machine learning, that

is unnecessary useful since our aim is to learn the features

associated with different class labels. In our method, to reduce

the dimensions of input sequence the nucleotides are encoded

with numerical values. That is, A is represented by 0.25, C by

0.50, G by 0.75, and T by 1.00, respectively. For the unknown

nucleotide N, its value is 0.00. It is difficulty to justify how

those numbers are decided rather than with heuristic. But our

preliminary evaluation indicated that those are good choices

(results not shown).

The advantages of ordinal encoding is it requires less

computer memory resource and computations. Moreover, a

one-dimensional vector can be arbitrarily reshaped to a two-

dimensional matrix. Suppose we have a row vector v of size

1 × l, where l is an even integer, that represents an input

sequence. To transform a vector to a matrix of size m × n,

we simply reshape the vector v to m × n matrix. If l is not

multiple of n, zero values are padded at the last row.

B. Datasets

We have prepared three sets of datasets to compare the

ability of ordinal and one-hot encoding method to learn the

motif features enriched in the DNA sequences. The datasets

from Pazar database [13] are chosen for our comparative

evaluation. Pazar is an open-access and open-source database

that stores the transcription factor and regulatory sequence

annotation independently [13]. The datasets are experimentally

validated TFBSs. A set of mouse TF datasets were gathered

from Pazar. The details of the datasets are shown in Table I.

Another set of datasets collected from Pazar is the transcription

factors of human. The information of the datasets are shown

in Table II

Besides the datasets from Pazar, seven ChIP-seq datasets

used in ENSPART [14] are also been selected (NRSF,FOXA1,

CREB, FOXA2, OCT4, CTCF, STAT1).

To avoid classes imbalance problem, same number of

sequences from each dataset is sampled. Furthermore, the

sequences are truncated by removing bases that are beyond

900 bp. In our preliminary study (results not shown), using

longer sequence lengths only gives marginal improvement on

the accuracy rates but at the price of higher computational cost.

Sequences that are shorter than 900 bp are padded with the

vector [0.25, 0.25, 0.25, 0.25] for the one-hot encoding, while

0.00s are added for the ordinal encoding.

Table III shows the number of samples from each dataset,

number of sequences as training sets, validation sets, and

testing sets.

C. CNN Architecture

The evaluation study compares three (3) sequence repre-

sentation using the two encoding methods:(a) one-hot with

matrix representation; (b) ordinal encoding with square matrix

(Square) representation; and (c) ordinal with 1-dimensional

vector representation (1D). The CNN architectures employed

in our simulation are are shown in Table IV. The CNN labeled

”3Layer” is using three layers CNN with ordinal encoding and

square matrix representation.

”Square” representation uses a 30×30 input layer and ”1D”

uses 900×1 as a one-dimensional input layer. In addition, we

also uses a three-layers CNN with the 30× 30 square matrix

with ordinal encoding. All the CNNs employed the dropout

rate of 0.5. Dropout is applied before the output layer to reduce

overfitting of training [15]. All the layers use ReLU activation

function as recommended by [16].

The TensorFlow [17] is chosen as implementation of the

CNN. The softmax activation function is used at the output

layer. ADAM optimizer with the learning rate 10−4 is chosen

as the adaptive learning method. The mini-batch of 200 is used

in each epoch. Maximum epoch is set at 20000.

D. Evaluation Metric

The Area under curves (AUC) [18] is used as the perfor-

mance metric for the evaluation. We compare the one-hot and

ordinal encoding methods using the tensor-flow implementa-

tion of the CNN. In addition, we also compare with Basset

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/186965doi: bioRxiv preprint

https://doi.org/10.1101/186965
http://creativecommons.org/licenses/by-nc/4.0/

TABLE I
INFORMATION OF MOUSE DATASETS COLLECTED FROM PAZAR

Dataset GEO Number of sequences Average length of sequences File size
BCL6 GSE16723 1906 200.00 430.6k
CBP GSE29362 6372 89.96 738.5k
CDX2 GSE14586 59097 500.00 31.1M
CRX GSE20012 9661 182.47 2.0M
ERG GSE22178 36167 398.00 15.3M
ETS1 GSE29362 2359 127.22 361.5k
EZH2 GSE18776 4502 1449.55 6.6M
FLI1 GSE22178 19601 398.00 8.3M
GATA2 GSE22178 9234 398.00 3.9M
GFI1B GSE22178 8853 398.00 3.8M

TABLE II
INFORMATION OF HUMAN DATASETS COLLECTED FROM PAZAR

Dataset GEO Number of sequences Average length of sequences File size
AR GSE28126 10363 520.62 5.7M
CEBPA GSE29195 1644 107.71 219.7k
CEBPB GSE31939 17949 463.88 8.8M
EGR1 GSE21665 35354 1114.39 40.3M
EOMES GSE26097 61234 623.51 39.8M
ERA GSE25021 48007 324.12 16.8M
ETS1 GSE17954 19420 562.58 11.4M
EVI1 GSE25210 38636 200.00 8.7M
FOXH1 GSE29422 29292 250.88 8.1M
GABPA GSE24933 15740 98.40 2.0M

TABLE III
NUMBER OF SAMPLES FOR TRAINING, VALIDATION, AND TESTING FOR EACH TF DATASET.

Group ChIP-Seq Mouse (Pazar) Human (Pazar)
Number of datasets 7 10 10
Datasets CREB, CTCF, FOXA1,

FOXA2, NRSF, OCT4,
STAT1

BCL6, CBP, CDX2, CRX,
ERG, ETS1, EZH2, FLI1,
GATA2, GFI1B

AR, CEBPA, CEBPB,
EGR1, EOMES, ERA,
ETS1, EVI1, FOXH1,
GABPA

Number of samples in each dataset 1657 1906 1644
Number of training sets 8119 13342 11508
Number of validation sets 1160 1906 1644
Number of testing sets 2320 3812 3288
Total number of sequences 11599 19060 16440

TABLE IV
CNN’S LAYERS SETUP USED IN THE SIMULATIONS.

Onehot Square 1D 3layer
Input layer 900× 4 30× 30 900 × 1 30× 30

1st conv layer 12 × 4 6× 6 36× 1 6× 6

1st activation function ReLU ReLU ReLU ReLU
1st max pooling 2× 2 2× 2 2× 2 2× 2

2nd conv layer 8× 4 6× 6 36× 1 6× 6

2nd activation function ReLU ReLU ReLU ReLU
2nd max pooling 2× 2 2× 2 2× 2 2× 2

3rd conv layer 4× 4

3rd activation function ReLU
3rd max pooling 2× 2

Fully connected layer 1024 1024 1024 1024
Dropout 0.5 0.5 0.5 0.5
Output layer one-hot one-hot one-hot one-hot

and gkm-SVM. A five-fold cross-validation is used for all the

datasets. Basset and gkm-SVM do out AUC values in their

output. While for the CNN implemented by the TensorFlow,

the AUC values are computed by our own implementation.

III. RESULTS

Table V shows the comparison of average AUC rates

from 5-fold cross-validation using the ChIP-seq datasets. It

is observed that the square encoding method performed better

than one-hot encoding for all the datasets. That is a surprising

result since the one-hot has been the state-of-the-art encoding

method for DNA sequences in most of the recent CNN works.

It is also noted that the CNN with the square matrix performed

better than gkm-SVM for 4 out of the 7 datasets. Other than

that, Basset performed only better than CNN with square

encoding in 2 of the 7 datasets. The results indicate that the

two layers CNN might not be the most optimal architecture

for the one-hot encoding use. However, the 3 convolutionary-

pooling layers used by Basset is not better than the square

encoding with 2 layers. Another observation is that CNN-

based methods performed better that SVM in most of the

evaluated datasets. This shows that CNN is more powerful in

feature learning since it is able to learn the different abstraction

of the features through its convolutionary-pooling layers. gkm-

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/186965doi: bioRxiv preprint

https://doi.org/10.1101/186965
http://creativecommons.org/licenses/by-nc/4.0/

C
R

E
B

C
T

C
F

F
O

X
A

1

F
O

X
A

2

N
R

S
F

O
C

T
4

S
T
A
T

1

A
ve

ra
g
e

A
U

C

0.0

0.2

0.4

0.6

0.8

1.0

1D

3Layer

Onehot

Square

Basset

gkm−SVM

Fig. 1. Comparisons of the CNN average AUCs using the 1D, one-hot, and
square encoding . The AUC values are obtained from average of 5-fold cross-
validation using the ChIP-seq datasets.

SVM employed k-mer feature for the modeling. To give a

clearer comparison, Fig. 1 shows the graph of the average

AUC values for all the datasets.

Table III shows the comparisons of AUC values of CNN,

Basset, and gkm-SVM using ordinal or one-hot encoding for

the mouse datasets. It is noted that Basset performed better

than other methods (gkm-SVM, CNN with ordinal encoding)

in 9 out of 10 of the datasets. It obtained an average AUC

value of 0.949 for ten of the datasets. However, it is noted

that the CNN with square encoding produced AUC values

which are quite close to the Basset’s performance (average

AUC value on 10 datatasets is 0.92) and significantly better

than gkm-SVM for 6 out of the 10 datasets. We also noted

that the architecture used by the CNN might not be the most

optimal because the one-hot encoding results should be quite

close to the Basset since they are using the same encoding and

representation. This highlights the difficulty of benchmarking

CNN using different representations since their performances

are also affected by the architecture and parameter values

choices. It is also surprising to see that the AUC values

of CNN using the 1D sequence encoding are very close to

Basset. Fig. 2 illustrates the average AUC values for the mouse

datasets.

B
C

L
5

C
B

P

C
D

X
2

C
R

X

E
R

G

E
T

S
1

E
Z

H
2

F
L
I1

G
A
T
A

2

G
F

I1
B

A
ve

ra
g
e

A
U

C

0.0

0.2

0.4

0.6

0.8

1.0

1D

3Layer

Onehot

Square

Basset

gkm−SVM

NullSeq

Fig. 2. Comparison of the CNN average AUCs using the 1D, one-hot, and
square encoding. The AUC values are obtained from an average of 5-fold
cross-validation using the mouse datasets.

On the human datasets (i.e. Table VII), the gkm-SVM

performed the best in terms of average AUC values for 6 out

of 10 of the datasets. However, Basset obtained best average

of (0.91) of all the human datasets. Generally, the results are

quite mixed for the human datasets since the best predictors

for different datasets are distributed to all the methods used.

However, clearly, the one-hot with CNN does not perform as

good as other methods using the the mouse datasets. Fig. 3

shows the average AUC values for all the compared methods.

A
R

C
E

B
P
A

C
E

B
P

B

E
G

R
1

E
O

M
E

S

E
R

A

E
T

S
1

E
V

I1

F
O

X
H

1

G
A

B
P
A

A
ve

ra
g
e

A
U

C

0.0

0.2

0.4

0.6

0.8

1.0

1D

3Layer

Onehot

Square

Basset

gkm−SVM

NullSeq

Fig. 3. Comparison of the CNN average AUCs using the 1D, one-hot, and
square encoding. The AUC values are obtained from an average of 5-fold
cross-validation using the human datasets.

IV. DISCUSSION AND CONCLUSION

This study investigated how a simple ordinal encoding

method would perform in comparison with the state-of-the-art

one-hot encoding method for DNA sequences. Specifically,

the encoded sequences are meant for CNN learning which

expect the input examples are in vector or matrix format.

What are the desired properties of an encoding method for

CNN to model effectively the DNA sequences enriched with

motifs? That question is challenging because it would require

domain experts with the understanding of the relevant features

for the prediction of various classes of motifs. For instance,

it was discovered that the frequencies of the short sequences

(k-mers) in ChIP sequences are useful for the construction

of classification model [19], [20]; while for enhancers it was

found that the short repeats are important for their location

identification [21]. In addition, for predicting cis-regulatory

modules (CRM), the existent of a set of motif signals clustered

within a pre-defined region length in DNA sequences are

useful signature for their identification [21]. Other than that,

for histone marks which are associated with active enhancers,

previous studies found no clear sequence patterns that can be

signals for their identification [22]. However, past studies have

demonstrated that the k-mers are discriminating features for

various histone marks [23], [24] and ChIP sequences [19].

The one-hot encoding method which assumes the features in

DNA sequences can be detected by filters (i.e. PFMs) in the

convolutionary layers may not be able to detect those features

mentioned. Therefore, one-hot encoding may not detect dis-

tinctive features in different means of DNA sequences.

Our method is termed direct encoding as opposed to indirect

encoding [9]. The ordinal encoding is a direct encoding

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/186965doi: bioRxiv preprint

https://doi.org/10.1101/186965
http://creativecommons.org/licenses/by-nc/4.0/

TABLE V
COMPARISON OF THE AUCS OF 1D, 3LAYER, ONEHOT, AND SQUARE OF THE AVERAGE OF 5-FOLD AUCS WITH BASSET AND GKM-SVM ON CHIP-SEQ

DATASETS

ENSPART 1D 3Layer One-hot Square Basset gkm-SVM
CREB 0.9400 0.9295 0.9408 0.9488 0.9801 0.9681
CTCF 0.9591 0.9206 0.9028 0.9717 0.9563 0.9262
FOXA1 0.9572 0.9296 0.9369 0.9609 0.9344 0.8958
FOXA2 0.8688 0.8329 0.8030 0.8848 0.8684 0.9190

NRSF 0.8657 0.8406 0.8820 0.8889 0.8871 0.9681

OCT4 0.9110 0.8636 0.8378 0.8979 0.9270 0.8654
STAT1 0.8854 0.8268 0.8061 0.9302 0.8585 0.8866
Average 0.9124 0.8777 0.8728 0.9262 0.9160 0.9185

TABLE VI
COMPARISON OF THE AVERAGE AUCS USING DIFFERENT SEQUENCE ENCODING METHODS

WITH CNN VERSUS BASSET AND GKM-SVM ON THE MOUSE DATASETS

gkm-SVM*

Mouse 1D 3Layer One-hot Square Basset Complement NullSeq
BCL5 0.9980 0.9990 0.9988 0.9985 0.9991 0.7602 0.6695
CBP 0.9406 0.9351 0.9473 0.9284 0.9496 0.8824 0.6621
CDX2 1.0000 0.9989 1.0000 0.9989 1.0000 0.9747 0.8152
CRX 0.9651 0.9403 0.9592 0.9429 0.9630 0.8377 0.8022
ERG 0.8834 0.7883 0.8546 0.8635 0.8913 0.8062 0.8892
ETS1 0.9408 0.9343 0.9126 0.9461 0.9542 0.9308 0.9332
EZH2 1.0000 1.0000 1.0000 1.0000 1.0000 0.8354 0.6478
FLI1 0.8442 0.7430 0.8637 0.8168 0.8974 0.7923 0.8922
GATA2 0.8932 0.7826 0.8603 0.8755 0.9342 0.8670 0.8924
GFI1B 0.8623 0.7866 0.7986 0.8323 0.9004 0.8387 0.8774
Average 0.9328 0.8908 0.9195 0.9203 0.9489 0.8525 0.8081
* The “complement” uses the complement datasets as the negative datasets; while “NulSeq”

uses gkm-SVM null sequence function to generate the negative sequences.

TABLE VII
COMPARISON OF THE AVERAGE AUCS USING DIFFERENT SEQUENCE ENCODING METHODS WITH CNN VERSUS BASSET AND GKM-SVM ON HUMAN

DATASETS.

gkm-SVM
Mouse 1D 3Layer One-hot Square Basset Complement NullSeq
AR 0.8775 0.7372 0.8385 0.8314 0.9114 0.9207 0.9035
CEBPA 0.9525 0.9123 0.9558 0.9560 0.9482 0.9124 0.6785
CEBPB 0.7601 0.6771 0.7357 0.7853 0.8569 0.8705 0.9041

EGR1 0.9378 0.9142 0.9642 0.9275 0.9693 0.9570 0.7670
EOMES 0.7613 0.7035 0.7515 0.7605 0.8459 0.8803 0.8821

ERA 0.7466 0.6633 0.8413 0.6984 0.8572 0.8765 0.9028

ETS1 0.7849 0.7622 0.8009 0.7332 0.8758 0.8644 0.9309

EVI1 0.9968 0.9951 0.9943 0.9962 0.9933 0.8224 0.8217
FOXH1 0.8468 0.8127 0.8394 0.8339 0.8779 0.8843 0.9039

GABPA 0.9863 0.9519 0.9073 0.9569 0.9694 0.9737 0.9045
Average 0.8651 0.8130 0.8629 0.8479 0.9105 0.8962 0.8599

method which preserved the original order and position of

each nucleotide in a DNA sequence. Even after the 1D vector

is reshaped, the nucleotides ordering is still preserved in the

resulted matrix but in a different locations (e.g. rows). The

CNN would still be able to detect those features because of

the filters scanning.

Our evaluation results using various datasets showed that the

ordinal encoding with square matrix representation has good

performance on ChIP datasets. Nevertheless, Basset, which

is using the one-hot encoding has optimized architecture to

achieve good performances across all the datasets. While that

is the case, the results of the ordinal encoding with matrix

representation are quite close to Basset (one-hot) for the

Mouse and Human datasets. The advantage of the ordinal

encoding is its shorter input dimension which reduces the

computations of filters scanning in the convolutionary layer.

Likewise, the kernels in the pooling layer would require less

computations.

Table VIII shows the total running time for the three sets of

datasets for training the CNN classifiers. The simulation ran

on a Linux PC, with 8GB RAM, iCore7 (2.5GHz) processor

and 4GB NVidia GeForce 930M graphic card. It is clearly

seen that the Square encoding has saving of almost one third

of the running time in comparison to one-hot and 1D encoding

method. The 1D and one-hot encoding methods have almost

the same running time because the number of computations

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/186965doi: bioRxiv preprint

https://doi.org/10.1101/186965
http://creativecommons.org/licenses/by-nc/4.0/

required at both pooling and convolutionary layers grows with

the length of matrix (vector). Because the implementation is

different in terms of programming language and data structure

between Basset (using Torch7 and Lua) and TensorFlow

(Python), it is hard to compare the running time for both

tools. Basset took 17m20s for the ChIP-seq datasets, while

are 29m11s and 29m2s for the Human and Mouse datasets,

respectively.

TABLE VIII
TOTAL CNN RUNNING TIME USED FOR CHIP-SEQ, MOUSE, AND HUMAN

DATASETS USING CNN IMPLEMENTED BY TENSORFLOW.

ChIP-Seq Mouse Human
One-hot 89m38.2s 159m30.5s 123m31.6s
Square 24m19.2s 56m28.0s 58m45.0s
1D 87m46.9s 119m49.7s 121m7.6s
3Layer 23m13.3s 52m22.9s 52m20.8s

Our evaluation results also demonstrated that the 3Layer

CNN does not perform well for the square representation.

According to [25], CNN architecture decision is task-specific

and therefore, further tuning may necessary to find the suitable

architecture configuration.
The main conclusions from this study are:

• The ordinal encoding method for DNA sequences per-

forms comparably to the one-hot encoding. While the

one-hot encoding has better interpretation, it has not

much computational and performance advantages over

the simple ordinal encoding. This study did not investi-

gate the convergence behavior of both encoding methods.

• The reduced input dimensions using the ordinal encoding

allows CNN to learn the input examples with reduced

time. However, the speedup gained is depends on the

implementation of the CNN tool.

• Different encoding and representation methods may re-

quire customize tuning of CNN architecture and parame-

ters used. Currently, there is still lacked of guidelines on

choosing those parameters for learning DNA sequences.

REFERENCES

[1] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” in Advances in neural information processing
systems, 1990, pp. 396–404.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[3] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting
the sequence specificities of DNA- and RNA-binding proteins by deep
learning,” Nature Biotechnology, vol. 33, no. 8, pp. 831–838, jul 2015.

[4] C. Angermueller, H. Lee, W. Reik, and O. Stegle, “Accurate prediction
of single-cell DNA methylation states using deep learning,” bioRxiv,
2016.

[5] D. R. Kelley, J. Snoek, and J. Rinn, “Basset: Learning the regulatory
code of the accessible genome with deep convolutional neural networks,”
Genome Research, 2016.

[6] J. Zhou and O. G. Troyanskaya, “Predicting effects of noncoding variants
with deep learning-based sequence model.” Nature Methods, vol. 12,
no. 10, pp. 931–4, 2015.

[7] C. Angermueller, T. Pärnamaa, L. Parts, O. Stegle, F. Albert, S. Treusch,
A. Shockley et al., “Deep learning for computational biology.” Molec-
ular systems biology, vol. 12, no. 7, p. 878, 2016.

[8] G. D. Stormo, “DNA binding sites: representation and discovery,”
Bioinformatics, vol. 16, no. 1, pp. 16–23, jan 2000.

[9] N. K. Lee, D. Wang, and K. W. Tan, Neural Networks Applications
in Information Technology and Web Engineering. Kuching, Sarawak:
Borneo Publishing Co, 2005, ch. Protein classification using neural
networks : A review, pp. 2–14.

[10] Q. Qin and J. Feng, “Imputation for transcription factor binding predic-
tions based on deep learning,” PLOS Computational Biology, vol. 13,
no. 2, p. e1005403, 2017.

[11] U. Eser and L. S. Churchman, “FIDDLE: An integrative deep learning
framework for functional genomic data inference,” bioRxiv, 2016.

[12] P. Ng, “dna2vec: Consistent vector representations of variable-length
k-mers,” arXiv:1701.06279 [q-bio.QM], 2017.

[13] E. Portales-Casamar, D. Arenillas, J. Lim, M. I. Swanson, S. Jiang,
A. McCallum, S. Kirov, and W. W. Wasserman, “The PAZAR database
of gene regulatory information coupled to the ORCA toolkit for the
study of regulatory sequences,” Nucleic Acids Research, vol. 37, no.
Database, pp. D54–D60, 2009.

[14] N. K. Lee, A. C. H. Choong, and N. Omar, “ENSPART: An Ensemble
Framework Based on Data Partitioning for DNA Motif Analysis,”
in 2016 IEEE 16th International Conference on Bioinformatics and
Bioengineering (BIBE). IEEE, oct 2016, pp. 87–94.

[15] N. Srivastava, G. Hinton, and A. Krizhevsky, “Dropout: a simple way to
prevent neural networks from overfitting.” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural In-
formation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–
1105.

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[18] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, 2006.

[19] M. Ghandi, D. Lee, M. Mohammad-Noori, M. A. Beer, T. Manolio,
M. Maurano, R. Humbert et al., “Enhanced Regulatory Sequence
Prediction Using Gapped k-mer Features,” PLoS Computational Biology,
vol. 10, no. 7, p. e1003711, 2014.

[20] D. Lee, R. Karchin, and M. A. Beer, “Discriminative prediction of
mammalian enhancers from dna sequence,” Genome Research, vol. 21,
no. 12, pp. 2167–2180, 2011.

[21] L. L. Colbran, L. Chen, and J. A. Capra, “Short dna sequence patterns
accurately identify broadly active human enhancers,” BMC Genomics,
vol. 18, p. 536, 2017.

[22] N. K. Lee, P. K. Fong, and M. T. Abdullah, “Modelling complex features
from histone modification signatures using genetic algorithm for the
prediction of enhancer region.” Bio-medical materials and engineering,
vol. 24, no. 6, pp. 3807–3814, 2014.

[23] S. Nazeri, N. K. Lee, and M. Norwati, “Comparisons of enhancers
associated marks prediction using k-mer feature,” in International Con-
ference of IT in Asia (CITA15), Kuching, Sarawak, May 2015.

[24] D. U. Gorkin, D. Lee, X. Reed, C. Fletez-Brant, S. L. Bessling, S. K.
Loftus, M. A. Beer, W. J. Pavan, and A. S. McCallion, “Integration
of chip-seq and machine learning reveals enhancers and a predictive
regulatory sequence vocabulary in melanocytes,” Genome Research,
vol. 22, no. 11, pp. 2290–2301, 2012.

[25] H. Zeng, M. D. Edwards, G. Liu, and D. K. Gifford, “Convolutional
neural network architectures for predicting DNAprotein binding,” Bioin-
formatics, vol. 32, no. 12, pp. i121–i127, 2016.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2017. ; https://doi.org/10.1101/186965doi: bioRxiv preprint

https://doi.org/10.1101/186965
http://creativecommons.org/licenses/by-nc/4.0/

