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ABSTRACT  
 

Cortical neurons often respond to identical sensory stimuli with large variability. However, under 

certain conditions, the same neurons can also respond highly reliably. The circuit mechanisms 

that contribute to this modulation, and their influence on behavior remains unknown. Here we 

used novel double transgenic mice, dual-wavelength calcium imaging and temporally selective 

optical perturbation to identify an inhibitory neural circuit in visual cortex that can modulate the 

reliability of pyramidal neurons to naturalistic visual stimuli. Our results, supported by 

computational models, suggest that somatostatin interneurons (SST-INs) increase pyramidal 

neuron reliability by suppressing parvalbumin interneurons (PV-INs) via the inhibitory SSTàPV 

circuit. Using a novel movie classification task, we further show that, by reducing variability, 

activating SST-INs can improve the ability of mice to discriminate between ambiguous stimuli. 

Together, these findings reveal a novel role of the SSTàPV circuit in modulating the fidelity of 

neural coding critical for visual perception. 
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INTRODUCTION  
 
A longstanding aim of systems neuroscience is to relate neural activity to perception. In visual 

perception, it has been established that a key role of the primary visual cortex (V1) is to  

transform raw sensory information from the environment into a low-level percept1. Surprisingly, 

under laboratory conditions, V1 pyramidal neurons respond to repetitions of identical sensory 

stimuli with spike trains that vary greatly in both the number and the timing of spikes2,3. Although 

it is known that this unreliability limits stimulus selectivity4, its impact on perception, and more 

specifically, visually-guided behavior, remains unknown. Notably, a large part of this variability is 

generated internally within the cortex, as the same neuron can respond either reliably or 

unreliably under different conditions5,6. For example, increasing the size of the stimulus within 

the receptive field or its statistics from simple (gratings) to complex (natural scenes) increases 

reliabilty7. Additionally, arousal and attention decreases variability and increases task 

performance8–11. Collectively, these findings suggest that mechanisms might exist within the 

cortex to modulate response reliability depending on processing demands12. The goal of this 

study is to elucidate these mechanisms and study their influence on visual behavior in mice. 

Inhibitory neurons (INs) play an important role in controlling cortical activity at various 

temporal and spatial scales13. Hence, changes in cortical inhibition might be a potential 

mechanism responsible for modulating response reliability. It has been noted that inhibitory post 

synaptic potentials measured in cortical pyramidal neurons are precisely delayed relative to 

excitatory potentials during epochs of reliable firing14. This delayed inhibitory input is believed to 

quench stochastic excitatory inputs by limiting integration to a small window during which 

reliable spiking can occur15. Moreover, chronically blocking inhibition sharply decreases 

response reliability16,17. However, given their computationally diversity18, the specific role of 

different IN subtypes in modulating response reliability remains poorly understood. This study 

focuses on the two major IN classes – parvalbumin- (PV) and somatostatin-expressing (SST) 

INs – which provide distinct inhibitory control over pyramidal (EXC) neurons in layer 2/3 of 

mouse V1. PV-INs provide rapid, shunting inhibition onto the somatic compartment of EXC 

neurons19, and as a consequence, are able to powerfully control the response gain20,21 and 

spike timing22 of their targets. SST-INs, on the other hand, inhibit the distal dendrites of 

pyramidal neurons, where they can control synaptic integration23–25. SST-INs also receive strong 

recurrent excitation and have been found to influence network integration26,27. Importantly, these 

INs do not act independently as SST-INs also inhibit PV-INs28,29. Through this inhibitory 

SSTàPV circuit, SST-INs have the ability to control the inhibitory tone of both the dendritic and 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2017. ; https://doi.org/10.1101/187062doi: bioRxiv preprint 

https://doi.org/10.1101/187062


	 3 

the somatic compartments, making them ideal candidates to modulate variability both at the 

level of synaptic input and spiking output. However, little evidence exists to support this 

hypothesis. 

Here we developed a new line of double transgenic mice, and used a multifaceted 

approach to study how interactions between PV and SST-INs contribute to reliable sensory 

processing in V1. Using dual-wavelength calcium imaging, we found that SST-INs were more 

active during epochs of reliable pyramidal cell firing whereas PV-INs were more active during 

epochs of unreliable firing. This complementary activity was due to the inhibitory SSTàPV 

circuit. Using temporally-limited optical perturbations and computational models, we found that 

SST-INs improve reliability by suppressing PV-INs. Activating SST-INs as mice performed a 

natural movie classification task improved discrimination performance, whereas activating PV-

INs had the opposite effect, demonstrating that variability in V1 is detrimental to visual 

perception. Thus, our work identifies a novel mechanism in which PV and SST-INs work 

cooperatively, via the SSTàPV circuit, to modulate the fidelity of sensory processing. 

 

RESULTS  
 

SST and PV-INs have mutually exclusive dynamics during epochs of reliable firing 

We measured the reliability of V1 excitatory pyramidal (EXC) neurons in awake, passive mice to 

repeated presentations of naturalistic movies (five different movies) using two-photon calcium 

imaging. We used natural movies because they are known to drive sparse and reliable 

responses from EXC neurons across different species30–33. To target EXC neurons in layer 2/3 

of V1, we expressed the genetically encoded calcium indicator (GECI) GCaMP6f in PV-

tdTomato and SST-tdTomato mice (PV-Cre and SST-Cre x Ai14) via stereotactic injections of 

an adeno-associated virus (Fig. 1a, also see Methods). Since PV and SST-INs in these mice 

express the red fluorescent protein, tdTomato, we reasoned that the majority of tdTomato-

negative neurons would be EXC neurons. We quantified the trial-to-trial response reliability of 

these neurons for each movie by computing the average of all pair-wise correlations (corrected 

for differences in the mean firing rate) between single trial responses (see Methods). By this 

definition, reliability measures the degree of trial-to-trial similarity in evoked responses to a given 

movie. Expectedly, response reliability was strongly negatively correlated with between-trial 

variability (Fig. 1b, c), as the least variable neurons also had responses that were highly similar 

across trials.  
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In all imaged populations (10 mice, 1101 neurons), EXC activity patterns spanned a 

range from highly stereotyped and reliable responses to weak and variable activity. On average, 

however, most neurons (37.7±15.4%) in each population responded reliably (>0.4, i.e. similar 

responses on at least 40% of the trials) to at least one movie. EXC neuron activity was typically 

punctuated by brief epochs of highly reliable responses (see examples in Fig. 1b). The duration 

and magnitude these epochs varied from movie-to-movie, and were due to differences in the 

spatiotemporal statistics of these movies (Supplementary Fig. 1a-d). These observations 

agree with previous studies32,33, and establish that naturalistic movies can drive EXC neurons in 

mouse V1 to respond reliably and with low variability between trials. 

With the aim of elucidating the inhibitory mechanisms responsible for this reliable coding 

of naturalistic scenes, we first quantified the response properties of different IN subtypes to the 

same movies. Similar to EXC neurons, both PV and SST-INs responded to these movies with 

an approximate two-fold increase in response rate over spontaneous activity (Fig. 1d). Notably, 

there was no significant difference in evoked response rates between these INs (p = 0.131, 

rank-sum test). Additionally, movies, which activated a greater number of reliably responding 

EXC neurons, also recruited a comparable fraction of INs (Supplementary Fig. 1a). These 

results suggest that the same feed-forward factors, such as stimulus properties, that drive EXC 

neurons to fire reliably are also effective at recruiting both PV and SST-INs (Supplementary 
Fig. 1f, g). 

To further examine the relationship between EXC reliability and IN activity, we 

characterized PV and SST-IN activity around epochs of reliable/unreliable EXC neuron firing. In 

each simultaneously recorded neural population, we computed the reliability of EXC neurons 

and the mean rate of PV/SST-INs in 200 ms time bins following stimulus onset. In each time bin, 

we then computed the fraction of fraction of reliably responding EXC neurons (i.e. neurons with 

reliability >0.4), which gave us a measure of how consistently the population responded to each 

movie repetition, and the fraction of active PV/SST-INs. Aligning the fraction of active INs to the 

epoch of maximum reliability (which facilitated comparisons between different movies and 

populations, that each had different response dynamics), revealed that the majority of PV-INs 

were active during epochs of unreliable EXC neuron firing (Fig. 1e, f). In contrast, SST-INs were 

most active during epochs when EXC neurons were most reliable. Therefore, although similar in 

response magnitude, PV and SST-INs are active during distinct epochs of EXC neuron activity.  

Do INs also respond reliably to these movies? To better quantify the reliability of the 

different IN subtypes, we restricted GECI expression to INs by injecting an adeno-associated 

virus encoding a Cre-dependent variant of GCaMP6f in either PV-Cre or SST-Cre mice (Fig. 
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1g). This method allowed us to avoid neuropil contamination from neighboring EXC neurons. 

Interestingly, although PV-INs responded strongly to most movies, their responses were much 

more variable between trials (Fig. 1h, i). As a consequence, PV-INs were less reliable than 

EXC neurons. In contrast, SST and EXC neurons had similar reliability values (Fig. 1h, i).  
Taken together, these results suggest two complementary modes of inhibition with SST-

INs providing reliable inhibition during epochs of reliable EXC firing and PV-INs providing 

unreliable inhibition during unreliable epochs. 

 

The joint dynamics of SST and PV-INs scale with EXC reliability  

Given this complementary relationship between PV and SST-INs, we next sought to 

characterize the trial-by-trial interactions between PV and SST-INs within the same neuronal 

population. To gain independent genetic access to both cell types34, we crossed SST-Cre mice 

with PV-FlpO mice to create a new strain of double transgenic mice (referred to as SXP mice), 

where SST-INs express Cre recombinase and PV-INs express flp recombinase. To monitor the 

joint activity of these IN subtypes in vivo, we concurrently expressed the red GECI (jRGECO1a) 

in SST-INs and the green GECI (GCaMP6f) in PV-INs in SXP mice and performed dual-

wavelength calcium imaging (Fig. 2a). Using custom optics, we scanned the same field-of-view 

with two mutliplexed lasers – one tuned to 1020nm to excite jRGECO1a and the other tuned to 

920nm to excite GCaMP6f (see Methods). These wavelengths optimally excite each GECI with 

very little spectral overlap35 (Supplementary Fig. 2a). Notably, we observed a negligible 

fraction of co-labeled cells (data not shown), confirming that the labeled PV and SST-INs were 

indeed non-overlapping cell types18.  

To quantify the temporal relationship between these INs we first computed cross-

correlograms (CCG) single trial responses of PV and SST-INs. We then estimated the activation 

delay and the correlation strength between each pair from the Gaussian function that best fit the 

CCG (Ave. fit R2 = 78.9±4.6%, Fig. 2b). Across all recorded pairs, we measured an average 

time lag of -321 ms (CI: -360 to -283 ms), indicating that most SST-INs respond after PV-INs 

(75.44% of pairs, 5 mice, Fig. 2b, see also Supplementary Fig. 2b). Note that this delay 

measures the time difference between the peak calcium activity of SST and PV-INs, and not the 

spiking onset latency, which is significantly shorter36.   

Interestingly, the strength and timing of these interactions also differed between movies; 

with some movies evoking more temporally correlated and delayed activity than others (Fig. 
2c). Given that EXC neuron reliability also varied between movies, we next sought relate joint 

PV-SST activity with EXC reliability. However, due to technical limitations, we were unable to 
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record from all three cell types simultaneously. Thus, we compared simultaneously recorded 

joint PV-SST activity to EXC neuron reliability obtained from separate mice but using the same 

movies, and at similar cortical locations (data from Fig. 1). Movies that were more reliably 

processed (i.e. those with higher median EXC neuron reliability) evoked stronger activity from 

SST than PV-INs (Fig. 2d), which was consistent with our data in Fig. 1h. Furthermore, PV-SST 

pairs were more strongly correlated and had longer delays in movies that were more reliably 

processed, than movies that were less reliably processed (Fig. 2e, f). Multivariate linear 

regression analysis confirmed that the ratio of PV-to-SST activity, lag duration and the 

correlation strength between PV and SST-INs were all significant predictors of EXC neuron 

reliability (p = 0.0038, F-test relative to constant model).  

Our observation that peak SST activity is delayed relative to PV agrees with recent 

calcium imaging results showing that, across many different cortical areas, SST-INs respond 

after PV-INs37. Furthermore, in V1, sinusoidal gratings also elicit delayed responses36, albeit at 

a much shorter time scale. Possible mechanisms that could account for this delay include: (1) 

pooling of inputs from EXC neurons38, or (2) the inhibitory connection between SST and PV-

INs28. We took advantage of SXP mice to provide two additional pieces of evidence to support 

the latter claim. First, silencing SST-INs optically with ArchT strongly increased PV-IN firing rate 

(Supplementary Fig. 3a), confirming a strong inhibitory connection between SST and PV-INs. 

Second, optically activating SST-INs with channelrhodopsin-2 (ChR2), suppressed PV-INs and 

increased the duration off the temporal delay between PV and SST-INs (Supplementary Fig. 
3b). Therefore, these results suggest that this temporal delay is the result of the SSTàPV 

circuit, which suppress PV-INs as SST activity ramps up. 

Our experiments in SXP mice thus revealed the surprising result that the strength of 

temporal interactions between PV and SST-INs, which is coordinated by the SSTàPV circuit, 

vary with EXC neuron reliability. Therefore, it is possible that both SST-INs and PV-INs might 

work together to reduce variability. 

 

Intact inhibition from both IN subtypes is necessary for reliable coding. 

If reliable coding requires intact cortical inhibition, then perturbing the activity of INs should 

reduce reliability. To verify this claim, we used designer receptors activated by designer drugs 

(DREADDs) to chronically, and non-specifically perturb PV and SST-INs, while monitoring EXC 

reliability using calcium imaging. In separate PV- and SST-Cre mice we expressed either the 

inhibitory (hM4D(Gi)) or the excitatory (hM3D(Gq)) DREADD variant (Supplementary Fig. 4a; 

see Methods). Intraperitoneal injection of clozapine-N-oxide (CNO) either increased or 
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decreased IN activity in a chronic, non-specific manner (Supplementary Fig. 4b, f). 
Surprisingly, we found that either increasing or decreasing the activity of both PV and SST-INs 

strongly reduced EXC neuron reliability compared to saline controls (Supplementary Fig. 4c, 
g). This reduction in reliability was independent of the change in firing rate, as both suppressed 

and activated EXC neurons showed a reduction in reliability (Supplementary Fig. 4d, h). 

Notably, these perturbations disrupted the complementary relationship that these INs had with 

EXC reliability. Therefore, these chemogenetic manipulations not only demonstrate that intact 

inhibition from both IN subtypes is necessary for reliable coding, but also show that disrupting 

the precise relationship between PV and SST firing and EXC reliability can reduce reliability. 

 

SST and PV-INs bi-directionally modulate EXC neuron reliability 

Using SST-Cre and PV-Cre mice crossed with the Cre-dependent ChR2 mice (Ai32), we next 

asked how photo-activating each IN subtype specifically during epochs of either reliable or 

unreliable firing affected reliability. Since the timing and duration of these epochs are 

heterogeneous within any given population, we had no way of estimating a priori when EXC 

neurons would respond reliably during a particular movie. To circumvent this issue, we 

developed an optical stimulation strategy to activate ChR2-expressing PV and SST-INs (PV-Cre 

and SST-Cre x Ai32) at 22 different time points that spanned the entire duration of a movie (Fig. 
3a, see Methods). Specifically, we first created a distribution of stimulation events that spanned 

the duration of a movie, with the first and last events coincident with the onset and offset of the 

stimulus respectively, and the remaining events occurring at fixed interval of 200 ms. Then, on 

every movie repetition (trial), we picked a stimulation event from this distribution in a pseudo-

randomized manner (as illustrated in Fig. 3a). These brief blue (473 nm) laser pulses were 

sufficient to reliably excite both PV and SST-INs at all time points during a movie 

(Supplementary Fig. 5). Thereafter, with post hoc analysis, we focused primarily on stimulation 

events that coincided with epochs of either reliable or unreliable firing. 

We first investigated the effect of perturbing PV-IN activity (Fig. 3b). As expected, 

activating PV-INs suppressed EXC neurons shortly after laser onset. The magnitude of 

suppression was strongest when EXC neurons were most reliable and weakest when activity 

was unreliable (Fig. 3c). This suppression lasted for ~600 ms, reflecting polysynaptic effects 

caused by activating a large number of PV-INs, and we restricted our analysis of reliability 

during this time period of maximum suppression (Supplementary Fig. 7). Activating PV-INs 

significantly reduced the reliability of EXC neurons (Fig. 3d). In particular, increasing the 

strength of PV inhibition during epochs of reliable firing led to a ~20% reduction in EXC neuron 
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reliability (Fig. 3e), whereas further increasing PV-IN activity during epochs of unreliable firing, 

when they are normally most active (Fig. 1h), did not change reliability (Fig. 3f).   
These observed changes in reliability could be due to changes in either mean response 

rate (ΔRate) or between-trial variance (ΔVariance) or both. For example, a strong decrease in 

response rate, without a change in variability, could also reduce reliability. To quantify the effect 

these attributes had on ΔReliability, we used multivariate linear regression (model: ΔReliability ~ 

1 + ΔRate + ΔVariance). Surprisingly, we did not observe a correlation between ΔRate and 

ΔReliability following PV-IN activation in either response epoch, as neurons that were 

suppressed more did not exhibit a larger decrease in reliability (Figs. 3g, h). Instead, the 

reduction in reliability following PV-IN activation during periods of reliable firing was strong 

correlated with an increase in firing rate variance between the trials (ΔVariance: p < 10-3 vs. 

ΔRate: p > 0.05, t-test). This implies that the change in reliability following PV-IN activation was 

due to an increase in variability rather than a change in rate.  

Given the highly recurrent architecture of V1 layer 2/3, it is possible that, in addition to 

EXC neurons, perturbing PV-INs would also affect SST-INs. To answer this question, we 

conditionally expressed a FlpO-dependent ChR2 in PV-INs and a Cre-dependent GCaMP6f in 

SST-INs in SXP mice (Fig. 3i). Surprisingly, regardless of when in the movie we activated PV-

INs, we did not observe a suppression of SST-INs (Fig. 3j) or a change of SST-IN reliability 

(Fig. 3k). This result implies that there is not an inhibitory PVàSST connection28, and the 

reduction of EXC neuron rate is not sufficient to alter SST-IN activity. Importantly, this result 

implies that the reduction in EXC neuron reliability following PV activation is not due to a change 

in SSTàEXC inhibition, but rather due to direct PVàEXC inhibition. 

In contrast to PV-INs, activating SST-INs had a much weaker suppressive effect on EXC 

neurons (Fig. 4a, b, p < 10-4, one-way Kruskal-Wallis ANOVA relative to PV-ChR2). This was in 

part due to a disinhibitory effect caused by a lifting of PV inhibition following SST activation as 

~27% of the neurons (8/20 populations) showed an increased rate following SST activation. 

Also in contrast to PV activation, increasing the strength of SST inhibition increased the 

reliability of EXC neurons (Fig. 4c). This effect was most significant when SST-INs were 

activated during epochs of unreliable firing (Fig. 4e). This increase in reliability was correlated 

with a strong reduction in trial-to-trial variance and a modest increase in response rate (Fig. 4g). 

Multivariate linear regression confirmed that both variables had a significant effect on 

ΔReliability (ΔVariance: p < 10-5 and ΔRate: p < 10-2, t-test). Interestingly, further increasing the 

activity of SST-INs during periods of reliable firing did not alter EXC neuron reliability and only 

marginally reduced trial-to-trial variance (Figs. 4d, f).  
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Using SXP mice, we found that SST activation strongly suppressed PV-INs, regardless 

of when the stimulation occurred during the movie (Fig. 4h, i). Surprisingly, unlike EXC neurons, 

activating SST-INs when PV-INs were at their least reliable did not change their reliability (Fig. 
4j). Instead, PV-INs became more unreliable. Therefore, increasing SST inhibition influences 

both EXC neuron reliability and the dynamics of PV-IN inhibition. 

As a control, we repeated these activation experiments in mice, which expressed the red 

fluorescent protein tdTomato in either PV or SST-INs, instead of ChR2. In these mice, we found 

no significant change in either response rate or reliability of EXC neurons following laser 

stimulation (Supplementary Fig. 6). Additionally, we found that inferring firing rates via 

deconvolution did not influence our reliability calculation, as neurons that had reliable calcium 

transients also had reliable inferred rates (Supplementary Fig. 7a, b).  

Altogether, these results demonstrate complementary roles of PV and SST-INs in 

modulating EXC neuron reliability (summarized in Fig. 4k, l). In particular, increasing PV 

inhibition when EXC neurons are reliable decreases their reliability by increasing variability 

between trials, but does not alter SST-IN dynamics. On the other hand, increasing SST 

inhibition when EXC neurons are unreliable increases their reliability by a combined effect of 

decreased variability, and to a lesser extent, a disinhibitory increase in response rate, caused by 

a suppression of PV-INs.  

 

Computational model predicts that SST-INs increase reliability by suppressing PV-INs 

How do SST-INs increase EXC neuron reliability? Given the complementary relationship 

between PV and SST-INs, we hypothesized that the inhibitory SSTàPV circuit might play a role 

in coordinating activity between these INs and consequently modulating EXC neuron reliability. 

To test this hypothesis, we developed a computational model of V1 microcircuit dynamics that 

simulated the mean firing rate of different neural subtypes (Fig. 5a, see Methods). Our model 

comprised four rate-based units (EXC, SST, PV, and VIP-INs) that were interconnected through 

connectivity parameters39. Although, we did not investigate VIP-INs experimentally, we included 

them in the model for completeness. EXC, SST and PV units in our model received “visual” 

input from a bank of linear-nonlinear-Poisson (LNP) units40, each with Gabor-like spatiotemporal 

receptive fields of different orientations and spatial frequencies (Supplementary Fig. 8, see 

Methods). Due to the stochastic nature of the Poisson process, each trial produced “visual” 

inputs, that differed in both the number and timing of spikes. As previously reported, this method 

allowed us to accurately capture both the temporal dynamics and reliability of the same movies 

that we used in our experiments7. Additionally, each unit in the model also received independent 
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stochastic Poisson noise, which modeled background inputs. As a result, each unit, except for 

VIP, had an independent (uncorrelated) and a shared source of variability. 

First, we asked whether this model could recapitulate and explain the relationship 

between PV-SST delay and EXC reliability (Fig. 2). As in our experimental data, SST units in 

our model also lagged behind PV units with a variable delay (Fig. 5b). Removing the SSTàPV 

connection reduced the duration of the lag, and unexpectedly increased PV-SST correlation 

strength (Fig. 5c). This further confirms that the temporal relationship observed between PV-

SST pairs in vivo is due to the inhibitory SSTàPV circuit. Also similar to our experimental 

results, we observed a correlation between the duration of the PV-SST lag and EXC reliability, 

such that models with higher EXC reliability also had more delayed SST peak activity relative to 

PV peak activity (Fig. 5d). Removing the SSTàPV connection abolished this relationship, 

increased PV unit activity and reduced EXC neuron reliability (Fig. 5d). We performed 

multivariate regression analysis to identify which variables contributed most to this temporal 

relationship. Interestingly, the strength of the SSTàPV connection and the activity fraction of 

SST units to PV units were the biggest predictors of the lag duration (Fig. 5e). This implies that 

conditions, which strongly recruit SST-INs, such as reliable EXC neuron firing, will increase the 

dynamics of joint PV-SST activity. In further support of this mechanism, our model also 

accurately predicts that perturbing PV and SST activity for the entire stimulus duration will jointly 

reduce reliability (Supplementary Fig. 4e, i). Therefore, intact joint PV-SST dynamics is a 

necessary condition for reliable EXC neuron firing. 

Next, we asked whether this model could predict the results of our photostimulation 

experiments. We simulated optical activation by injecting a brief train of depolarizing current into 

SST units, with similar temporal properties as our experiments. As in our experiments, 

increasing the strength of SST inhibition increased EXC reliability and suppressed PV units 

(Fig. 5f, h). Notably, our model demonstrates that SST activation is most effective at increasing 

reliability when EXC units were unreliable. We found a strong correlation between the change in 

EXC reliability and the change in PV unit activity, such that large increases in reliability were 

accompanied with a strong suppression of PV unit activity (Fig. 5g). Changes in EXC unit firing 

rate, on the other hand, were poorly predictive of the increase in reliability (Supplementary Fig. 
9). Removing the SSTàPV circuit reduced the SST-induced suppression of PV units (Fig. 5h), 

and increased EXC variability (Fig. 5i). Thus, these simulations suggest that SST-INs increase 

reliability primarily by suppressing PV-INs. 

Our model also correctly predicted a decrease in reliability following PV activation (Fig. 
5j). Removing the SSTàPV circuit did not affect these results (p  = 0.12, Kruskal-Wallis one-
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way ANOVA). These results suggest that PV units might be injecting noise into EXC units. In 

support of this idea, transiently suppressing PV units by injecting a brief hyperpolarizing current 

increased reliability when EXC units were unreliable, but decreased reliability when EXC units 

were reliable (Fig. 5k). Therefore, our model supports the hypothesis that SST-INs reduce 

variability in EXC neurons by suppressing PV-INs through the SSTàPV circuit. 

 

Suppressing PV-INs improves EXC neuron reliability  

The main prediction of our model is that the increase in EXC reliability is caused by a SST-

induced suppression of PV-INs. To examine this prediction in vivo, we directly suppressed PV-

INs in mice that transgenically expressed Arch (PV-Cre x Ai35 mice, Fig. 6a). As expected, 

Arch-expressing PV-INs were strongly suppressed following green laser stimulation, with a 

latency that was comparable to SST activation (Fig. 6b). This method therefore mimicked the 

suppressive effect that SST activation had on PV-INs while avoiding the direct effect of SST 

inhibition on EXC neurons. 

Due to a transient lifting of somatic inhibition, optically suppressing PV-INs strongly 

increased response rates when EXC neurons were most active (Fig. 6c). Despite this increase 

in response rate, suppressing PV-INs during epochs of reliable firing did not significantly change 

either reliability or between-trial variance (Figs. 6d, e). On the other hand, reducing PV 

inhibition during epochs of unreliable firing increased EXC neuron reliability (Fig. 6f), similar to 

SST activation. This change in reliability was primarily due to a reduction in between-trial 

variance as ΔRate was not a statistically significant predictor (Fig. 6g, h). Under control 

conditions, the green laser alone was unable to change either the firing rate or the reliability of 

EXC neurons (Supplementary Fig. 6). Therefore, transiently reducing PV inhibition with Arch 

had a similar effect on EXC neuron reliability as increased SST-IN activity, confirming our 

prediction.  

Collectively, these experimental and computational results support a model, summarized 

in Supplementary Figure 10, in which PV and SST-INs work together to modulate the reliability 

of EXC neurons. In particular, an increase in SST activity and a corresponding suppression of 

PV-INs during can increase reliability, and an increase in PV activity can decrease reliability. 

 

Increasing reliability improves the ability to discriminate between uncertain stimuli 

It has been noted that trial-to-trial fluctuations in behavioral performance correlate with neuronal 

variability in higher cortical areas41. However, the impact of unreliable coding, especially in V1, 

on perception remains unknown. Specifically, we asked whether modulating the reliability of V1 
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neurons could directly influence visual perception. To answer this question, we trained PV-

ChR2 and SST-ChR2 mice on a Go/No-Go natural movie discrimination task. Specifically, 

water-restricted mice learned to discriminate between a target and a non-target movie (each 2s 

long) to gain a water reward (Fig. 7a). Wrong choices were punished with a brief acoustic white 

noise burst. We assessed performance by quantifying the number of correct responses, which 

is the total number of hits (licks to a target movie) and correct rejects (licks withheld to the non-

target movie). Mice were trained progressively until they became proficient at associating the 

target movie with a water reward, and were typically able to perform this task within 18-21 days 

(10 mice). Post-training, mice were able to maintain a high performance (Hit > 70% and Correct 

Reject > 70%) over several sessions (400-500 trials/session, Supplementary Fig. 11). Mice 

that failed to meet this criterion were excluded from further analysis. 

Once proficient, we increased the complexity of the task by altering the spatial statistics 

of both movies. It is well established that the phase spectrum of natural scenes is essential in 

image recognition because it contains salient structural information, such as the location of 

edges 42. We used this fact to introduce uncertainty in the target movie by blending its phase 

spectrum with the phase spectrum of the non-target movie at different fractions (Fig. 7b). We 

also equalized the amplitude spectra of these surrogate movies to the mean spectrum of the 

target and non-target movies (Supplementary Fig. 12a). All other image statistics (contrast, 

luminance, etc.) were also fixed between movies. As a result, mice could only use subtle 

differences in phase information to discriminate between these movies. Importantly, we 

observed no difference in EXC neuron reliability in naïve, untrained mice, between these movies 

(Supplementary Fig. 12b). Thus, in essence, mice had to perform a categorization task, where 

they assessed the similarity of the movie presented to the learned target movie (Fig. 7c). We 

reasoned that if increasing response reliability does improve stimulus selectivity, then mice 

should be able to correctly identify the rewarded target movie from “noisy” versions. 

Expectedly, mice licked more to movies that were similar to the target and less to movies 

that were similar to the non-target movie (Fig. 7e). We fit each psychometric curve with a two 

parameter logistic function 43, and assessed changes in bias (α) and slope (1/β) following IN 

activation. By this convention, a rightward shift of the psychometric curve corresponds to an 

increase in α, whereas an increase in slope would correspond to a decrease in β (see insets in 

Fig. 7g, h). To determine the effect that IN activation had on the ability of mice to accurately 

categorize these movies, we pulsed a blue (470 nm) LED at movie onset, on 50% of trials 

(randomly selected, Fig. 7a). In naïve, untrained mice, activating PV-INs under the same 

conditions suppressed reliability, whereas SST activation increased reliability, for all phase-
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blended movies (Fig. 7d), consistent with our earlier findings. Based on these results, we 

hypothesized that increasing SST inhibition should be increase discriminability between the 

phase-blended stimuli, which in turn would sharpen the psychometric curve (decreased β). In 

contrast, the increase in unreliability following PV activation would decrease discriminability and 

increase false alarms, which would flatten the psychometric curve (increased β). 

In agreement with this hypothesis, activating SST-INs sharpened psychometric curves 

(Fig. 7e), by decreasing bias and increasing the slope (Fig. 7f-h). These changes indicate that 

increasing SST inhibition lowered the detection threshold and increased movie discriminability. 

Notably, these changes were due to an increase in hit rate and a decrease in false alarm rate 

(Supplementary Fig. 12c-e), suggesting that mice made fewer mistakes following SST 

activation. In contrast, activating PV-INs flattened the psychometric curve (Fig. 7e) by 

increasing bias and decreasing the slope. Increasing PV inhibition also significantly decreased 

hit rates without changing false alarm rates, indicating that the mice were less able to 

distinguish the target from the non-target movies. 

Taken together, our results show that, by reducing neuronal variability within V1, SST-IN 

activation improves the ability of mice to recognize “noisy” versions of the target movie, whereas 

increasing PV inhibition is detrimental to performance (summarized in Fig. 7i).  

 
DISCUSSION  
 

Reducing trial-to-trial variability within cortical neuron networks is critical for accurate sensory 

information processing; however, the underlying neural mechanisms remain unknown. In this 

study, we used novel double transgenic mice and all-optical physiology to reveal a previously 

unknown role of the SSTàPV circuit in bi-directionally modulating the reliability EXC neurons to 

naturalistic stimuli in mouse V1.  

Our experiments reveal that a necessary condition for reliable sensory processing is 

active SST-INs and weaker/suppressed PV-INs, and that this mutual antagonism is maintained 

through the inhibitory action of the SSTàPV circuit. Surprisingly, a recent study identified PV-

INs, but not SST-INs, as critical regulators of reliability. A key reason for this difference is that 

Zhu and colleagues suppressed PV-INs for a much longer duration than our study (6 s vs. 110 

ms). The main advantage of our photo-stimulation method is that it allowed us to show that the 

effect of SST and PV-INs on modulating EXC variability is highly dependent on the current 

reliability of EXC neurons. Namely, SST-INs were less effective at increasing reliability during 

epochs of reliable firing, while PV-INs were less effective at reducing reliability during epochs of 
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unreliable firing. Furthermore, our model simulations showed that without the SSTàPV circuit, 

SST-IN activation decreased reliability. Our data therefore supports the idea that SST and PV-

INs must provide temporally restricted inhibition in relation to EXC neurons to change variability. 

Long term suppression of PV and SST-INs as would likely disrupt this relationship between 

these interneurons. Therefore, our findings, together with others27,44,45, underscores the 

importance of using precisely timed perturbations to study the dynamics of cortical inhibition. 

Importantly, we demonstrate that the responsibility of modulating response reliability does not lie 

exclusively with one IN subtype; instead, it is the co-operative dynamics between SST and PV-

INs, which is important for controlling the temporal fidelity of sensory processing. 

Previous work has shown that feed-forward inhibition, acting through fast-spiking PV-

INs, plays a critical role in shaping the temporal fidelity of EXC neurons. For example, the delay 

between inhibition and excitation creates a temporal integration window14,22 and variations in the 

duration of this window changes the spiking precision of EXC neurons to sensory stimulation46. 

However, sparse activity patterns, which are common during natural scene stimulation47, 

strongly recruit recurrent inhibition from SST-INs and only weakly recruit PV-INs48. Our work 

reconciles these observations and demonstrates how the SSTàPV circuit allows recurrent 

inhibition to modulate the strength of feed-forward inhibition during epochs of reliable coding 

under naturalistic conditions.  

We propose that a potential biophysical function of the SSTàPV circuit is to maximize 

the signal-to-noise ratio of EXC neurons by minimizing noise in the synaptic inputs and 

maximizing spiking at the soma. Specifically, SST-INs are ideally poised to alter synaptic 

integration in EXC neurons by altering the active properties of dendrites in a branch-specific 

manner 23,24,49,50. This, in turn, would allow only the most reliable inputs to be integrated16,51. Our 

observation that SST-INs lag behind PV-INs during periods of reliable firing implies that, during 

these epochs, inhibition is routed away from the soma and into the dendrites. Similar results 

have been observed in the hippocampus and the barrel cortex, where inhibitory inputs shift from 

the soma to the dendrite depending on the firing rate of the neuron48,52. Computational models 

have shown that this mechanism allows SST-INs to adaptively adjust the integration threshold 

at the soma, which in turn can increase the robustness of spiking in the presence of stochastic 

inputs53,54. Future studies should be aimed at using our dual labeling technique to further 

characterize the interactions between PV-SST INs during timescales more relevant to synaptic 

integration. There is also a growing body of evidence that basal forebrain cholinergic inputs55,  

long-range excitatory inputs from other cortical areas56,57 can modulate SST-IN activity. 
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Therefore, the SSTàPV circuit is an appropriate target for top-down factors, such as arousal 

and attention, to alter local computations in V1 by changing EXC neuron variability. 

The impact that sensory processing variability has on visual perception remains highly 

debated. Although several studies have established a relationship between trial-to-trial 

fluctuations in sensory neurons and perceptual decisions41,58, however, it is still unclear if these 

fluctuations can be filtered out at later processing stages59 and how this affects perception. Our 

behavioral results reveal that reducing variability, both in individual neurons and across the 

network, improves the discriminability of complex stimuli. In particular, we observed a marked 

decrease in false alarm rates following SST-IN activation, suggesting that mice were making 

fewer incorrect choices when neural reliability increased. Also, by manipulating the statistics of 

the target movie, we were able to show that SST-IN activation allowed mice to more effectively 

detect perturbations in stimulus appearance. Interestingly, a previous study found that activating 

PV-INs for long durations improved orientation discrimination in mice 60, and attributed this to an 

increase in both orientation selectivity and signal-to-noise ratio in EXC neurons. A key reason 

for this difference could be the change in circuit dynamics caused by long-duration PV 

stimulation61. However, despite this discrepancy in mechanism, both studies point toward a 

common theme that improved coding fidelity in V1, either through increased reliability or sharper 

selectivity, or both, can improve visual perception. This notion is further bolstered by several 

recent findings that both cholinergic modulation and higher cortical feedback, which also change 

response reliability and selectivity, can similarly improve stimulus discriminability56,62. 

Furthermore, through our novel categorization task, we are able to demonstrate, for the first 

time in mice, that reducing response variability early in sensory processing can also decrease 

perceptual uncertainty, as previously predicted by theoretical models63. 

In conclusion, our study establishes that PV and SST-INs have complementary roles in 

controlling neuronal response reliability. The cooperative action of these INs provides a powerful 

computational mechanism by which response variability can be titrated based on task demands 

and internal state to improve the coding of stimulus information. In addition to the visual system, 

this strategy could also be active in other cortical areas to effectively gate the flow of 

information. 
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FIGURES AND LEGENDS 

 

FIGURE 1  
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Figure 1. SST and PV-INs respond during distinct epochs of EXC neuron activity 
(a) Schematic showing experimental setup and method to record from EXC neurons. (b) Raster 

plots (trials vs. time) of two simultaneously recorded EXC neurons showing reliable and sparse 

responses to the same movie. Gray lines show trial-averaged responses and shaded areas 

denote SEM over trials. Shaded purple bar shows time period (epoch) when these EXC neurons 

are reliably activated. (c) Scatter plot showing strong negative correlation between inter-trial 

variance and response reliability. Each data point is the mean response reliability and the 

across-trial variance of each imaged population, error bars are SEM (19, each with 22-87 

neurons, 10 mice). (d) Comparison between evoked (averaged from 5 different movies) and 

spontaneous (spont., gray screen) activity for all the three cell types, expressed in number of 

inferred events per second. All cell types showed a significant increase in evoked response rate 

compared to spontaneous activity. Errorbars, SEM. (e) Histogram showing the fraction of active 

PV (left) and SST-INs (right) in 200 ms time bins aligned to peak EXC population reliability. 

Triangles above the histograms indicate mean time to peak activity. Significant difference 

between PV and EXC neuron activation times (p < 10-6) but no significant difference between 

activation times for SST and EXC neurons (p = 0.129). (f) Bar plots comparing the median 

fraction of active PV and SST-INs during epoch of unreliable and reliable EXC neuron firing 

respectively. Errorbars, 95% CI. Data in H and I are from 10 mice (1101 EXC neurons, 120 

SST-INs, 186 PV-INs). (g) Method to image INs. (h) Example raster plot of a PV and a SST-IN 

to the same movie. Format same as (b). (i) Histogram of PV and SST-IN reliability in relation to 

EXC neuron reliability (gray). Triangles above the histograms indicate mean reliability pooled 

over all neurons. Inset compares median reliability for all cell types. Each data point is the 

median reliability of each imaged population. Data from: PV = 8 mice (690 neurons); SST = 8 

mice (368 neurons); EXC = 10 mice (1101 neurons). All p-values computed using grouped, 

Bonferroni-corrected rank-sum test. 
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FIGURE 2  
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Figure 2. SST-INs are temporally delayed relative to PV-INs in reliably processed movies 
(a) Left: Experimental setup. Briefly, a 1020nm laser and a 920nm laser were combined using a 

half wave plate (HWP) and a polarizing beam splitter (PBS) to optimally activate jRGECO1a and 

GCaMP6f in SST and PV-INs respectively (see Methods). Middle: Example field of view 

showing co-labeled PV and SST-INs. Image covers a cortical area of 150µm x150µm. Right: 

Example calcium transients from simultaneously recorded interneurons. (b) Left: Trial-averaged 

responses from a pair of simultaneously recorded PV and SST-INs. Right: Cross-correlogram 

(CCG) of this pair. Orange line shows Gaussian fit to trial averaged CCG. Shaded areas, SEM 

over trials. (c) Difference in correlation for two different movies for the same PV and SST-IN 

pair. (d-f) More reliable movies have a stronger SST peak activity compared to PV (d), longer 

delays between SST and PV peak activity (e) and stronger PV-SST correlation at peak delay (f). 

Data are from 2292 pairs, 5 mice. Data points denote median ± 95% CI for each movie. P-

values computed using F-test to measure significance of the trend relative to a constant model. 
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FIGURE 3 
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Figure 3. Increasing PV-IN activity reduces EXC neuron reliability 
(a) Cartoon describing random stimulation strategy. A brief laser pulse (stimulation event) was 

applied at 22 equally spaced time points during a 4s movie (illustrated by the light blue lines). At 

each movie repetition, stimulation event time is drawn from this distribution at random (indicated 

by dark blue line). The bottom plots show the timing of each stimulation event in relation to the 

reliability of an example EXC neuron (black line). Following this, post hoc analysis was used to 

identify stimulation events that occurred within periods of reliable firing and unreliable firing 

(shaded purple and green respectively). (b) Cartoon of experimental setup. (c) Left: 

Representative example of an EXC neuron that is suppressed following PV activation. Blue line 

indicates the time of the stimulation event. Right: Change in firing rate for each PV stimulation 

event. To facilitate comparisons between movies and mice, all neurons were aligned to have a 

maximum reliability at 1s. All shaded areas are the 95% CI of the median. Yellow circles 

represent non-significant change (relative to 0) and were computed using a permutation test. P-

values (Bonferroni-corrected rank-sum test) compare changes in firing rate between epochs of 

reliable vs. unreliable responses (shaded bars). (d) Change in EXC reliability for each 

stimulation event. (e) Left: Representative raster plot of an EXC neuron showing a reduction in 

reliability following PV activation during the reliable firing epoch. Right: Box-whisker plots 

summarizing the effect of PV activation on EXC neuron reliability. Each dot is pooled data from 

one population.  P-value computed using Bonferroni-corrected Wilcoxon rank-sum test. (f) 
Same as (e), but shows no change in reliability when PV-INs are activated during epochs of 

unreliable firing. (g-h) Scatter plots quantifying the relationship between ΔReliability and a 

change in rate (ΔRate, left) or a change in between-trial variability (ΔVariance, right). Error-bars 

are the 95% CI of the median. P-values computed from multivariate linear regression analysis. 

(i) Cartoon describing method to study the effect of PV activation on SST-INs. (j) Left: 

Representative SST-IN that shows no change following PV activation. Right: No change in SST 

rate for all PV activation events. (k) No change in SST reliability for all PV activation events. 
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FIGURE 4 
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Figure 4. Increasing SST-IN activity increases EXC neuron reliability 
(a) Cartoon of experimental setup. (b) Left: Representative EXC neuron that shows a modest 

decrease in firing rate following SST activation (denoted by blue bar). Right: Change in firing 

rate for each SST stimulation event shown in relation to EXC neuron reliability on light-off trials. 

(c) Change in EXC neuron reliability for each SST stimulation event. (d) Representative raster 

plot of an EXC neuron and Box-whisker plot showing no change in reliability following SST 

activation during epoch of most reliable firing. (e) Same as (d), but showing that SST activation 

during epoch of least reliable firing can increase EXC neuron reliability. (f-g) Scatter plots 

quantifying the relationship between ΔReliability and a change in rate (ΔRate, left) or a change 

in between-trial variability (ΔVariance, right). Error-bars are the 95% CI of the median. P-values 

computed from multivariate linear regression analysis. Data in (b-g) are from 8 SST-ChR2 mice 

(622 neurons, 19 populations). (h) Cartoon describing method to study the SST activation on 

PV-INs. (i) Left: Representative PV-IN that is suppressed following SST activation. Right: PV-IN 

firing rate is significantly suppressed for all SST activation events. (j) SST activation reduces the 

reliability of PV-INs. Data in same format as Fig. 3 and are from 4 SXP mice (372 PV neurons) 

(k-l) Cartoon summarizing photo-activation results from Figs. 3 and 4. 
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FIGURE 5 

 
 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2017. ; https://doi.org/10.1101/187062doi: bioRxiv preprint 

https://doi.org/10.1101/187062


	 25 

Figure 5. Computational model predicts that SST-INs increase reliability by suppressing 
PV-INs 
(a) Cartoon illustrating connectivity between the four major units simulated in this model. Round 

connections indicate excitatory synapses, while blunt connections indicate inhibitory synapses. 

See Methods for details of the linear-nonlinear Poisson model. (b) Representative simulation 

showing the response of PV and SST units to a natural movie. Inset shows a zoomed view of 

the onset dynamics to highlight the temporal lag between PV and SST units. (c) The delay 

between PV and SST units is reduced when the SSTàPV connection is removed. Box-whisker 

plots quantify the change in time lag and correlation strength between PV and SST units with 

and without the SSTàPV connection. Data is pooled from 100 simulations each with randomly 

drawn connection weights. P-value computed using Kruskal-Wallis one-way ANOVA. (d) Left: 
Significant correlation between PV-SST delay duration and EXC unit reliability for the normal 

model, which is lost when SSTàPV connection is cut. Middle and Right: Removing the 

SSTàPV circuit increases PV unit firing rate while suppressing SST and EXC units. This 

perturbation also decreases reliability. Error bar, SEM over simulations. (e) Regression plots 

showing that the both the weight of the SSTàPV connection and the SST-to-PV activity ratio is 

predictive of the delay duration. (f) Model predicts that activating SST activation during epoch of 

unreliable firing will increase the reliability of EXC units. Inset, shows representative raster plot 

of an EXC unit (indicated by orange arrow). (g) Large changes in EXC unit reliability are 

associated with a large decrease in PV unit firing rate. (h) SST-induced suppression is reduced 

when the SSTàPV connection is cut. (i) Without the SSTàPV circuit, our model predicts that 

SST activation will reduce the reliability of EXC neurons. Inset, Box-whisker plots comparing the 

change in reliability with and without an intact SSTàPV connection. (j) Model predicts that PV 

activation will reduce reliability (left) and removing the SSTàPV connection will not affect this 

change in variability. (k) Suppressing PV units will result in an increase in variability. All data 

points are an independent simulation in which a natural movie is repeated 30 times. To test 

robustness, we repeated each simulation 100 times, each with randomly drawn connection 

weights. P-values in the scatter plots are computed from linear regression (see Methods). 
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FIGURE 6  
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Figure 6. Suppressing PV-INs increases EXC neuron reliability 
(a) Experimental setup. (b) Arch activation transiently suppresses PV-INs with short latency 

following laser onset. (c) Left: Suppressing PV-INs transiently increases the response rate of 

EXC neurons. Right: Change in firing rate for all PV suppression event. (d) Change in EXC 

neuron reliability, aligned to reliability on Laser-off trials. (e) Left: Representative raster plot of 

an EXC neuron showing no change in reliability following PV suppression during epoch of most 

reliable firing. Right: Box-whisker plot summarizing the effect of PV suppression. Each dot 

represents the median reliability from each imaged population.  P-value computed using 

Bonferroni-corrected rank-sum test. (f) Same as (e), but showing an increase in reliability 

following PV suppression during epoch of least reliable firing. (g) Changes in reliability that 

occur when PV-INs are suppressed during epoch of most reliable firing are weakly due to ΔRate 

(left) but not ΔVariance (right). Each data point in I and J shows median change for each 

imaged population. Error-bars are the 95% CI of the median. P-values computed from 

multivariate linear regression analysis. (h) Same as (g), but shows that the increase in reliability 

is strongly associated with a reduction in variance but not a change in rate. All data in this figure 

are from 8 mice (634 neurons, 22 populations). 
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FIGURE 7  
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Figure 7. Activating SST-INs improves the ability of mice to discriminate complex stimuli 
(a) Top: Experimental set up. Bottom: Schematic showing the timing structure of one trial. 

Licking during the response period window following a target movie resulted in a water reward. 

Licking outside the response window, or following a non-target movie, was not rewarded. (b) 
Example frames from phase blended movies. (c) Similarity between these movies and the target 

movie was quantified using the structural similarity index. Increasing the fraction of the target 

movie in the blend increased the similarity index monotonically. Non-target-biased movies 

(yellow shaded) were less similar, while target-based movies (green shaded) were more similar 

to the original target movie. (d) Left: Box-whisker plots showing a change in EXC neuron 

reliability for all movies following PV and SST activation in untrained mice. Each dot represents 

the median reliability of an imaged population of neurons. In both conditions, p < 10-4 

(Bonferroni-corrected rank-sum test) compared the LED-off condition. Right: SST activation 

improves, and PV activation decreases EXC reliability for each phase-blended movie. All 

changes in reliability are significant (p < 10-3, Fisher’s Exact Test for each movie relative to 0). 

Data from, PV-ChR2:  3 mice (98 neurons) and SST-ChR2: 3 mice (121 neurons). (e) 
Psychometric curves for two mice comparing the effect of SST and PV-IN activation on the 

proportion of correct responses to the different phase-blended movies. The solid lines show the 

logistic function that best fit the data points. Data points are the average proportion correct and 

the error bars are the SEM over all sessions. Left: Activating SST-INs increased lick probability 

to the target movie, and decreased licking to the non-target movies, resulting in a sharper 

psychometric function (blue line). Right: Activating PV-INs decreased licking for most stimuli, 

resulting in a flatter psychometric function. P values (indicated in figure) computed using one-

way Kruskal-Wallis ANOVA between LED-on and LED-off. (f-g) Scatter plots comparing the 

effect of activating PV (blue) and SST-INs (red) on the bias (f) and slope (g) of the psychometric 

function. Insets illustrate the effect of changing the bias and slope in a toy psychometric 

function. Each dot represents data from a single mouse and error-bars denote SEM over all 

sessions for that mouse. P-values computed using Friedman’s test (effect of laser vs. effect of 

IN activation) followed by post-hoc tests. The comparisons tested are: LED-on vs. LED-off (blue, 

PV-ChR2 and red, SST-ChR2) and difference for PV-ChR2 vs. difference for SST-ChR2 (black). 

(h) Scatter plot comparing the change in bias and slope following PV and SST activation. 

Activating SST-INs sharpened the slope and decreased the bias, whereas activating PV-INs 

had the opposite effect. Shaded ellipses represents the 95% CI over all sessions. Differences 

between SST and PV activation are significant, p < 10-4 (Friedman’s Test). All data in from F-H 

are from 6 SST-ChR2 mice and 4 PV-ChR2 mice. (i) Summary. 
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SUPPLEMENTARY FIGURES AND LEGENDS 
 

Supplementary Figure 1. Reliability values differ from between movies and depend on 
spatio-temporal statistics 
(a) Pie charts showing movie-wise distribution of reliably responding EXC (Top), PV (Middle) 

and SST (Bottom) neurons. Movies which recruit a greater fraction of reliably responding EXC 

neurons also recruit more reliably responding PV and SST-INs. (b) Movie-wise distribution of 

EXC neuron reliability. Inset, one-way ANOVA table showing pairs of movies with significantly 

different reliability values. (c) Movie-wise distribution of the duration of reliable epoch. The 

epoch duration (see inset) was defined as the length of time with reliability >0.4 for each neuron. 

(d) The spectral slope, which is a measure of spatial correlations between pixels was calculated 

from the spatial power spectral density of each movie as described previously33. Movies with 
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higher spectral slope (stronger spatial  correlations) had larger reliability values and longer 

epochs of reliable spiking. (e) The temporal power, which is a measure of the strength of 

temporal correlations between pixels, was computed by integrating the temporal power spectral 

density (left). Movies with stronger temporal correlations also had larger reliability values. (f) 
SST-INs respond more reliably in movies that have higher spectral slope. (g) Both PV and SST-

INs respond more reliably in movies that have higher temporal correlations. All data represented 

as mean +/- SEM. Data from: PV = 8 mice (690 neurons); SST = 8 mice (368 neurons); EXC = 

10 mice (1101 neurons). All trend P values computed using linear regression (F-test relative to 

constant model). 
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Supplementary Figure 2. Dual wavelength imaging of PV and SST neurons 
(a) Top: Images of jRGECO1a-expressing SST-INs and GCaMP6f-expressing PV-INs taken at 

920 nm and 1020 nm respectively. Bleed through from the green to the red channel can be 

clearly seen at 920 nm (indicated by yellow arrowheads). In contrast, no green signal can be 

detected at 1020nm. Bottom: No jRGECO1a activity can be detected at 920 nm compared to 

1020 nm. In contrast, no GCaMP6f activity can be detected at 1020 nm. Each trace is matched 

to the same neuron and shows activity in response to a series of natural movies (800 s long, 

acquired at 20 Hz). (b) Example showing trial-by-trial correlation between PV and SST-INs. 
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Supplementary Figure 3. SST-INs strongly inhibit PV-INs via the SSTàPV circuit 
(a) Inset, Cre-dependent ArchT was expressed in SST-INs while Flp-dependent GCaMP6f was 

expressed in PV-INs in SXP mice. Representative example trial-averaged firing rate from one 

PV-IN showing that suppressing SST-INs strongly increases the rate of PV-INs. Shaded area, 

SEM over trials. (b) Left: Response rate change in one representative population of PV-INs (8 

neurons) aligned to laser onset. All PV-INs increase their firing rate following suppression of 

SST-INs. Right: Quantification of change in response rate of PV neurons following SST 

suppression relative to response rate on laser-off trials. We observe a significant increase in PV 

activity (p < 0.001, permutation test) regardless when SST-INs are suppressed during a movie.. 

Shaded area, 95% CI. Data from 3 mice (121 PV neurons). (c) Inset, Cre-dependent ChR2 and 

jRGECO1a was expressed in SST-INs while Flp-dependent GCaMP6f was expressed in PV-INs 

in SXP mice. Representative example trial-averaged firing rate from one simultaneously imaged 

PV-SST pair, showing a strong suppression of PV-INs following SST-IN activation. The peak 

suppression occurs almost at the same time as SST-INs reach peak activation. (d) Left: 

Example cross-correlogram between all pairs of simultaneously recorded SST (n = 4) and PV-

INs (n = 9) for an example population, showing the effect of SST activation on the time lag 

between PV and SST-INs. Gaussian fit is not shown. Data here is averaged over all stimulation 

epochs. Shaded area, SEM. Right: Box-whisker plot showing that activating SST-INs increases 

the time lag between PV and SST-INs (p = 0.235, Bonferroni-corrected rank-sum test). Data 

from 3 mice (84 PV neurons, 39 SST neurons). 
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Supplementary Figure 4. Chronic, chemogenetic perturbation of both PV and SST-INs 
reduces EXC neuron reliability. 
(a) Schematic describing experimental set up. (b) Percent firing rate decrease in PV and SST-

INs expressing inhibitory DREADD following CNO injection (compared with saline controls). As 

with Fig. 1f, separately analyzed changes in firing rate during epochs of unreliable or reliable 

EXC neuron firing (EXC and INs (mCherry expressing) were imaged simultaneously). This 

analysis shows that inhibitory (Gi) DREADD non-specifically reduced the firing rates of PV and 

SST-INs. (c) Box-whisker plots showing the effect of suppressing PV and SST-INs on EXC 

neuron reliability. (d) Scatter plot relating the change in reliability to the DREADD-induced 

change in firing rate. The change in reliability was not due to a change in firing rate as neuron 

that either increased or decreased their firing rate had reduced reliability following CNO 

administration. (e) Model simulation with tonic IN suppression can reproduce the DREADD-

induced decrease in reliability. (f-i) Same as (b-e) but with Excitatory (Gq) DREADD instead. 

Data from: 3 mice each (SST-Gi-DREADD: 20 SST, 64 EXC; SST-Gq-DREADD: 23 ST, 52 

EXC; PV-Gi-DREADD: 38 PV, 72 EXC; PV-Gq-DREADD: 16 PV, 89 EXC). All P-values 

computed using one-way Kruskal-Wallis ANOVA. 
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Supplementary Figure 5. Laser activation reliably activates both PV and SST-INs  
(a-b) Example raster plot showing the effect of laser activation on a PV-IN expressing both 

GCaMP6f and ChR2. Shaded area, SEM over trials. (b) Left: Response rate trace of the same 

PV-IN as in (a), but aligned to laser onset instead. Right: Heat map showing the average 

change in response rate of all PV neurons relative to the Laser-off condition (n = 3 mice, 58 

neurons), aligned to pulse onset. All laser pulses, regardless of when they are applied during 

the movie, result in a strong increase in firing rate.  (c-d) Same as (a-b) but for SST-INs instead. 

These plots show that both PV and SST neurons are reliably and strongly activated following 

laser activation, regardless of when they are applied during the movie. (e-h) Quantification of 

firing rate (e, g) and reliability (f, h) change for all PV- and SST-INs. Data from: PV-Cre = 3 mice 

(58 neurons), SST-Cre = 3 mice (52 neurons). Shaded area represents 95% CI. All changes are 

significant p < 0.0001 (permutation test). 
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Supplementary Figure 6. Change in rate and reliability is not due to stimulation laser 
artifacts 
(a-c) No significant change in response rate in tdTomato-expressing mice following stimulation 

with either blue (a, b) or green laser (c). For details, see Methods. (d-f) No significant change in 

reliability in the same tdTomato-expressing mice. Data pooled from:  PV-tdTomato (blue laser) = 

3 mice (120 neurons), PV-tdTomato (green laser) = 3 mice (102 neurons), SST-tdTomato = 3 

mice (98 neurons). All p-values are non-significant (permutation test). Shaded areas represent 

95% CI of median. 
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Supplementary Figure 7. Deconvolution and analysis window length does not affect 
result 
(a) Reliability computed from inferred firing rates is similar to reliability measured from raw 

fluorescence changes (DF/F). Scatter plot shows that neurons with reliable DF/F will also have 

reliable inferred firing rates. (b) Change in reliability measured using DF/F without 

deconvolution. Data same as Figs 3 and 4. (c) Percent change in EXC neuron response 

following laser activation of PV-INs. All data analysis was limited to a 600 ms window indicated 

by the gray box. During this period, the laser maximally suppresses pyramidal neurons. (d) Plot 

of change in EXC reliability following PV activation at stimulus onset over different analysis 

window lengths. We found that changing the window length within 50 (1 frame) to 600 (12 

frames) ms following laser offset did not significantly affect the reduction in EXC reliability 

caused by PV activation. The effect, however was significantly diminished when the entire 4 s 

stimulus-on period (open circle) was included in the analysis. This is mainly due to the fact that 
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PV-INs stop exerting their inhibitory effect on EXC neurons after 650 ms as shown in (c). (e-f) 
Same as (c-d) but for SST-IN activation instead. Again changing the duration of the analysis 

window does not affect the increase in EXC reliability caused by SST activation. Data in c-f 

shown as mean +/- SEM for stimulation at stimulus onset. Analysis of other stimulation epochs 

yielded qualitatively similar results. All shaded areas are 95% CI of median. 
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Supplementary Figure 8. Linear-nonlinear Poisson cascade model to simulate visual 
input 
(a) Schematic showing components of the linear-nonlinear-Poisson (LNP) model. Model is 

described in detail in the Methods section. (b) Example input spike trains produced by the LNP 

model along with their estimated firing rates (blue lines, normalized to maximum) to two different 

natural movies. Note that the model captures the different temporal properties of each movie, 

and, as a result, produces different inputs for each movie. For each movie, these spike trains 

are summed and used as an input to either EXC, PV and SST units. (c) The LNP model is able 

to recapitulate the movie-wise trend in EXC neuron reliability observed in the experimental data 

(black dots, same as Supplementary Fig. 1). The grey dots are the average reliability of EXC 

units in the model (from 500 simulations, see Methods). Errorbars, SEM. 
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Supplementary Figure 9. Changes in reliability due to SST activation are poorly predicted 
by changes in EXC firing rate 
(a) Scatter plot showing no significant relationship between the change in EXC unit reliability 

and firing rate following SST unit activation. Each data point is an independent model simulation 

(see Fig. 5 and Methods). (b) In contrast, following PV unit activation, the change in EXC unit 

reliability can be predicted from a change in firing rate. P-values computed using multivariate 

linear regression. 
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Supplementary Figure 10. Cartoon summarizing main results of this paper 
(a) Changes observed during epoch of reliable firing. (i) In the normal condition (i.e. with no 

external perturbations), SST neurons are more active and more reliable than PV neurons during 

periods of reliable EXC neuron firing.  (ii) Activating PV neurons increases the activity and 

reliability of PV neurons, but does not change the activity of SST neurons (Supplementary Fig. 

3). This leads to a decrease in EXC neuron reliability and an increase in variability across trials 

(Fig. 3). (iii) Activating SST neurons increases the activity and reliability of SST neurons, and 

decreases the activity and reliability of PV neurons (Fig. 4). This leads to marginal increase in 

reliability. (iv) Directly suppressing PV neurons strongly disinhibits EXC neurons but does not 

significantly alter reliability. Therefore, a hallmark of periods of reliable firing is increased SST-

neuron activity relative to PV neurons because factors that increase SST activity increase 

reliability. (b) Same as (a), but for changes observed during epoch of unreliable firing. This 

shows that a hallmark of periods of unreliable firing is increased PV-IN activity relative to SST-

INs, because factors that increase PV activity decrease reliability, whereas factors that 

decrease PV activity increase reliability respectively.  

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 11, 2017. ; https://doi.org/10.1101/187062doi: bioRxiv preprint 

https://doi.org/10.1101/187062


	 42 

 

Supplementary Figure 11. Natural movie discrimination task training 

(a) Cartoon showing timing of stimuli and response window during training phase. (b) Cartoon 

illustrating order of stimuli during the various training stages (described in Supplementary Table 

2). (c) Representative lick raster of a well-trained mouse (during Stage 4). Each dot denotes a 

lick, and colored lines denoted trial-averaged lick rates. From this example, it can be seen that 

well-trained mice restrict their licking only during the response period. False alarms are 

generally caused by anticipatory licking. (d) Correct Reject and Hit Rate performance of two 

representative mice during the course of training from Stage 2 to Stage 4.  Each pair of bars 

corresponds to a training session. Stars indicate sessions in which performance crossed the 

threshold (dashed line). 
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Supplementary Figure 12. Description of phase-randomized movies and the effect of 
optogenetic manipulation on hit rate, false alarm rate and discriminability 
(a) Schematic illustrating of the method used to generate phase randomized movies. Further 

details are provided in the Methods. See also Supplementary Video 2. (b) Left: Quantification of 

mean luminance and contrast (standard deviation) of each movie frame in the phase 

randomized movies. Notice that all movies have been adjusted to have the same mean 

luminance and contrast. Right: Quantification of the phase content of each movie. Unlike the 

amplitude spectrum, there currently exists no method of parametrically analyzing the phase 

spectra of natural movies. To compare the distribution of phase angles in each movie, we fit a 

Gaussian to the histogram of phase angles (see inset). We define the phase dispersion as the 

half-width-at-half-maximum (HWHM) of this Gaussian fit. Movies with larger phase dispersion 

have more complex phase spectra with a lot more edges at different orientations. (c-d) 
Representative example from a SST-ChR2 (c) and a PV-ChR2 (d) mouse showing change in 

false alarm (FA) rate (lick during non-target movie) and hit rate (lick during target movie) over 

successive sessions. Each session consisted of approximately 400 trials. On average, both FA 

and Hit rate remained stable over sessions.  
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(e) Scatter plots showing effect of optogenetic stimulation on FA rate (left), Hit rate (middle) and 

discriminability (right). Data shown is from 4 PV-ChR2 mice and 6 SST-ChR2 mice. PV 

activation resulted in no significant decrease in FA rate (p = 0.345) but a significant decrease in 

Hit rate (p = 0.021) and discriminability (p < 0.001). In contrast, SST activation led to a 

significant decrease in FA rate (p = 0.018), an increase in Hit rate (p < 0.001), and an increase 

in discriminability (p < 0.001). All P-values computed with Wilcoxon rank-sum test relative to 

Light off condition.  
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Supplementary Table 1 
Figure Number Mouse Used Virus used 

1 and S1 PV-Cre and SST-Cre x 
Ai14. AAV1.Syn.GCaMP6f.WPRE.SV40 

1 PV-Cre and SST-Cre AAV1.Syn.Flex.GCaMP6f.WPRE.SV40 

2 and S2 PV-Flp x SST-Cre 
AAV1.Syn.fDIO.GCaMP6f.WPRE.SV40 and 
AAV1.Syn.Flex.NES.jRGECO1a.WPRE.SV40 
(1:2 mixture) 

S3a PV-Flp xSST-Cre 
AAV-CAG-Flex-ArchT-tdTomato and 
AAV1.Syn.fDIO.GCaMP6f.WPRE.SV40 
(1:2 mixture) 

S3b PV-Flp x SST-Cre 

AAV1-EF1-dflox-hChR2(H134R)-
mCherry.WPRE,  
AAV1.Syn.Flex.NES.jRGECO1a.WPRE.SV40, 
AAV1.Syn.fDIO.GCaMP6f.WPRE.SV40 
(1:1:1 mixture) 

S4 PV-Cre and SST-Cre 

AAV1.Syn.GCaMP6f.WPRE.SV40 
AAV2/1-HSYN-DIO-hM3Dq-mcherry (or 
AAV2/1-HSYN-DIO-hM4Di-mcherry) 
(1:1 mixture) 

3 PV-Cre x Ai32 AAV1.Syn.GCaMP6f.WPRE.SV40 and 
AAV2-CAG-FLEX-tdTomato (1:2 mixture) 

3 PV-Flp x SST-Cre 

AAV1-EF1-fDIO-hChR2(H134R)-
mCherry.WPRE 
AAV1.Syn.Flex.GCaMP6f.WPRE.SV40 
(1:2 mixture) 

4 SST-Cre x Ai32 AAV1.Syn.GCaMP6f.WPRE.SV40 and 
AAV2-CAG-FLEX-tdTomato (1:2 mixture) 

4 PV-Flp x SST-Cre 

AAV1-EF1-dflox-hChR2(H134R)-
mCherry.WPRE,  
AAV1.Syn.fDIO.GCaMP6f.WPRE.SV40 
(1:2 mixture) 

S5 PV-Cre and SST-Cre x 
Ai32 

AAV1.Syn.GCaMP6f.WPRE.SV40 and 
AAV2-CAG-FLEX-tdTomato (1:2 mixture) 

S6 PV-Cre and SST-Cre x 
Ai14 AAV1.Syn.GCaMP6f.WPRE.SV40 

6 PV-Cre x Ai35 AAV1.Syn.GCaMP6f.WPRE.SV40 and 
AAV2-CAG-FLEX-tdTomato (1:2 mixture) 

7 PV-Cre and SST-Cre x 
Ai32 No virus 

 
Summary of mouse genotype and viruses used for each experiment sorted by figure number. 
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Supplementary Table 2 
 

 
Summary of training stages. Mice have to achieve at least 70% correct on each stage before 
moving to the next stage.  
 
  

Stages 
Target 
movie 
Probability 

Stimuli order Reward Type 
Reward 
available (from 
movie start, s) 

Number of  
Sessions 

(Ave.) 
0 40% Deterministic Auto  0.5  10 
1 20% Deterministic Auto 0.5 3 
2 20% Deterministic Lick to initiate 0.5 5 
3 20% Deterministic Lick to initiate 0.7  3 
4 20% Random Lick to initiate 1.0  8 
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METHODS 
 
Experimental Animals 

All experiments were carried out under protocols approved by MIT’s Committee on Animal Care 

and conformed to NIH guidelines. The main mouse lines used in this study are: Pvalb-IRES-Cre 

(PV-Cre, Jax: 008069), Sst-IRES-Cre (SST-Cre, Jax: 013044), Pvalb-2A-FlpO-D (PV-Flp, Jax: 

022730), Ai32 (RCL-ChR2(H134R)/EYFP, Jax: 012569), Ai35 (RCL-Arch/GFP, Jax: 012735) 

and Ai14 (RCl-TdT-D, Jax:007908). All mice (see Supplementary Table 1) were maintained on 

a C57BL6/J background. Only mice older than 8 weeks old were used in this study. Mice were 

housed in the vivarium on a standard 12 hour light/dark cycle and were housed at maximum 5 

mice in each cage. Experiments were performed during the light portion of the cycle. 

To create SXP mice, we crossed homozygous male SST-Cre mice with heterozygous 

female PV-Flp mice. Pups from the first off-spring generation (F1) were genotyped at postnatal 

day 21 using a commercial service (Transnetyx), and only pups that expressed Cre and Flp 

were selected. Only F1 pups from 3 breeder lines were used in this study.  

To create PV-ChR2, SST-ChR2 and PV-Arch mice, we crossed homozygous male PV-

Cre or SST-Cre with heterozygous female Ai32 or Ai35 mice. Again, F1 pups were genotyped at 

postnatal day 21 using a commercial service (Transnetyx), and only pups that expressed Cre 

and GFP, the fluorophore attached to ChR2, (or EYFP in the case of Ai35 mice) were selected. 

Only F1 pups from 6 breeder lines were used in this study.  

 
Surgical procedures 

Adult mice (between 8-10 weeks old) were an anesthetized with 1–2% isoflurane (vol/vol) and a 

sterile surgery was performed described previously 33,64. First, a small circular piece of scalp 

was excised to expose the skull. After cleaning and drying the skull using a razor blade and 

sterile cotton swabs, a custom-built head-post was implanted to the exposed skull with 

cyanoacrylate glue (Loctite) and cemented with dental acrylic mixed with black paint (C&B 

Metabond). A craniotomy (3 mm in diameter) was made over the left V1 (2.5 mm lateral and 0.5 

mm anterior to lambda). Care was taken not to damage the dura during the craniotomy.  

 Depending on the experiment, a cocktail of  adeno-associated viruses (AAVs, described 

in list below) were then injected using a beveled pipette (20-30-μm diameter tip Drummond 

Scientific) backfilled with mineral oil at a speed of 50 nl/min at 5-6 injections sites. Between 100-

150 nl of virus was injected per injection site. After each injection, pipettes were left in the brain 

for an additional 5-10 minutes (depending on injection volume) to prevent backflow and to 
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ensure proper virus spread. Following virus injections, a chronic imaging window was placed in 

the craniotomy. The imaging window consisted of an inner 3mm glass window and an outer 

5mm glass window (Warner Scientific), which were glued together using optically transparent 

UV curing glue (Norland Optical). Once mice recovered from anesthesia, they were returned to 

their home cage and were singly housed. Mice were provided with analgesia (meloxicam, 0.1 

mg per kg of body weight) subcutaneously three days post-surgery. Imaging experiments 

typically started 14 to 21 days post-surgery to allow for sufficient viral expression and recovery. 

Mice with limited optical access due to bone growth or infection were excluded from further 

analysis. 

 

Two-photon imaging 

Imaging was performed using a Prairie Ultima two-photon system (Bruker) driven by two 

Spectra Physics Mai-Tai lasers, both passed through a Deep-See modules (Spectra Physics). 

Imaging was performed using high performance objective lens (Olympus XL 25x Plan N 

objective, NA = 1.05). In most experiments (except dual wavelength imaging, see below), we 

tuned the laser to 965nm to enable us to optimally visualize both GCaMP6f and tdTomato 

fluorescence. To separate red and green fluorescence, we used a 565nm dichroic filter, a 

520/40nm green filter and a 600/50nm red filter (all from Chroma). We used a removable curtain 

made from blackout material (Thorlabs) and a custom holder to isolate the visual display from 

the microscope. 

 In dual wavelength imaging experiments, we tuned one laser to 920nm to excite 

GCaMP6f and another laser to 1020nm, which was the limit of the laser, to excite jRGECO1a. 

Both laser beams were multiplexed using a half wave plate and a polarizing beam splitter 

(Thorlabs) before being focused onto a pair of galvanometer mirrors. In doing so, mirrors 

scanned both laser beams over the same neural field-of-view. This allowed us to image from 

jRGeco1a-expressing SST and GCaMP6f-expressing PV neurons within the same neural 

population simultaneously. 

In all experiments, images were acquired using ScanImage3.8 in Matlab (Vidrio 

Technologies) at 20 Hz, 512 × 100 pixels (2x optical zoom). The images covered a cortical area 

of approximately 150 μm × 150 μm. Images were collected at a depth of 180-280 μm below the 

pial surface, which corresponds to cortical layer 2/3. Prior to imaging, mice were habituated to 

head-fixation for 2-3 sessions to reduce stress and anxiety. Typically, 5-8 non-overlapping 

fields-of-view (FOV, each an independent neural population) was collected for each mouse. 

FOVs were determined by hand mapping the receptive field locations of neurons in the FOV by 
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moving a sinusoidal grating within a 20-degree Gabor-patch around the screen in 20x20 degree 

square patches. FOVs without visually evoked responses to these stimuli or those with 

receptive fields close to the edges of the monitor were discarded. 

 

Visual stimuli 

Natural movies from Van Hateren database as previously described33, were displayed on a 

gamma-corrected, 7-inch 1080p LCD computer monitor (Xenarc) placed 3 inches in front of the 

contralateral eye. All movies were in grayscale. This computer monitor covered a visual space 

of approximately 50x70 degrees. Stimulus timing was controlled using Psychtoolbox-3 with 

custom written Matlab (Mathworks) scripts. Each movie was presented for 4s (30 frames/s) and 

were interleaved with 4s iso-luminant gray screen. Each movie frame was adjusted to have a 

luminance of 128 (mean of pixel histogram) and an RMS contrast of 32 (RMS of pixel 

histogram) on a 0-255 grayscale using the SHINE toolbox65. 

 

Chemogenetic activation and inactivation 

Chronic IN activation and inhibition was accomplished with Cre-dependent DREADD (hM3Dq or 

hm4D1 respectively) in PV-Cre and SST-Cre mice. AAV viruses encoding these DREADDs 

were co-injected with an AAV viruses encoding GCaMP6f into layer 2/3 of visual cortex, 

following which mice were implanted with a cranial window as described above. On the day of 

the experiment, a field-of-view was first chosen by hand-mapping spatial receptive fields of EXC 

neurons (mCherry-negative) as described above. We measured the reliability of EXC and INs 

within this field of view to repeated presentations of natural movies as described above (“before 

condition”). The spatial location of this field-of-view was noted and reference images were 

taken.  Clozapine-N-Oxide (CNO, Sigma-Aldrich) was dissolved in 0.9% sterile saline to an 

effective concentration of 1mg/kg. Mice received an intraperitoneal injection of either CNO or 

0.9% saline (control) after one imaging session and were allowed to recover in their home cage 

for approximately one hour before imaging commenced again. We used the references images 

and the spatial location of the find the same field of view. We were consistently able to find the 

same population of cells before and after CNO administration. 

We took several steps to ensure that the same cells were include in the “before” and 

“after” conditions. First, we registered both fields-of-view by maximizing cross correlation to the 

same reference image (CV template matching, ImageJ). Next, the same ROI masks were used 

to segment images collected after Saline or CNO administration. Cells in the after condition that 

moved relative to the original ROIs were not analyzed. 
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Optical activation and inactivation 

A 473nm (blue, 200mW peak power) laser and a 532nm laser (300 mW peak power, both from 

Opto Engine LLC) were used to activate ChR2 and Arch respectively. Both lasers were coupled 

to a 0.12 NA optical fiber (Thorlabs) and these fibers were launched into the uncaging beam 

path of the two-photon microscope. The uncaging beam path was co-aligned with the imaging 

path such that the single wavelength laser illuminated the same FOV as the two-photon laser. In 

this way, we were able to provide focused activation (or inactivation) of neurons within the same 

FOV. These single wavelength lasers were triggered using a TTL pulse generated by the visual 

stimulus computer (see description below). Laser power at the tip of the objective was 1.5mW 

for ChR2 and 2.5mW for Arch experiments respectively. Laser power was measured before the 

start of each experiment. Using single cell imaging, we determined that these laser powers were 

sufficient to reliably drive activation (or suppression) of PV and SST neurons (see 

supplementary figure). These power values are also consistent with previously published 

reports using similar mice45,66. 

 In all experiments, we used a stimulus-triggered random stimulation protocol to 

activate/inactivate cells. Each stimulation pattern consisted of four 20ms pulses of laser with a 

10ms inter-pulse interval (i.e. 110 ms total duration per stimulation epoch). In Arch experiments, 

we used 2x40ms laser pulses with a 5ms inter-pulse interval (175 ms total duration).  This pulse 

pattern was applied at 22 different frames during a natural movie. The frame numbers that 

triggered the pulses were fixed for each experiment. Specifically, the first pulse occurred at 

stimulus onset (i.e. triggered by frame number 1), the last pulse occurred at stimulus offset 

(frame number 240) and the remaining 20 pulses were chosen at a fixed interval. Before the 

start of each experiment the order of these pulses were pseudo-randomized such that, in each 

experiment, all pulses appeared in random to each other. The random order was noted and 

used for post hoc analysis (described in the next section). This was done to minimize spurious 

network activity caused by rhythmic photo-stimulation. In order to calculate reliability, each pulse 

pattern was repeated 10 times. This resulted in a total of 220 laser-on events and 10 laser-off 

events (used for controls). Also, to prevent adaptation to repeated presentations of one movie, 

we interleaved the “pulsed” movie with a “non-pulsed” movie, during which no laser was applied. 

As a consequence, the network was allowed at least 8s to recover before the next laser pulse 

was applied.  

To determine which two movies to select, we first presented 40 repetitions of five 

different movies and computed reliability of each neuron in that FOV as described below. 

Movies with the highest two reliability values were then selected as the “pulsed” and “non-
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pulsed” movie respectively. This method was repeated systematically for each FOV, and helped 

us reduce the number of unreliable or non-visually responsive neurons. 

 

Visually responsive neurons and spike rate inference  

All data analysis was performed with custom written Matlab (Mathworks) and ImageJ (NIH) 

macros (NIH) that called built-in functions. Following imaging, images stacks (tiff format) were 

first corrected for motion artifacts using an open-sourced ImageJ plugin 

(https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin) that maximized the 

cross-correlation coefficient between frames. Frames with excessive motion artifacts that could 

not be corrected were also discarded. Frames with photostimulation laser artifacts were also 

discarded from analysis (usually 1-2 frames) and cubic spline interpolation was used to smooth 

over these blanked frames.  

Next, neuronal ROIs were manually segmented in ImageJ (NIH) using the Cell Magic 

wand tool (https://www.maxplanckflorida.org/fitzpatricklab/software/cellMagicWand/) and 

fluorescence time series for each neuron was computed by averaging pixels within each ROI. A 

modified version of the Cell Magic wand tool was used to identify a surrounding neuropil region, 

which was an annulus of outer diameter = (15 pixels + diameter of cell) around each cell. This 

data was then imported into Matlab for further analysis. The raw fluorescence of each cell was 

computed using the formula: 𝐹 = 𝐹#$% − 𝐹'()*+,-.. 

All data analysis was performed using custom written scripts in Matlab. Significantly 

visually responsive cells were determined from the fluorescence time changes (ΔF/F) by 

performing a one-tailed Student’s t-test between visually evoked (4s movie on) and 

spontaneous responses (4s gray screen in between movies). To obtain a better estimate of the 

spontaneous activity we also collected 120 s of activity to an iso-luminance gray screen before 

the start of each experiment. Only cells with p < 0.001 were classified as visually-responsive.  

We used a two-step procedure to estimate the firing rates of visually-responsive cells. 

We first detected statistically significant calcium transients from the ΔF/F time series of each 

neuron   by analyzing the distribution of positive-going and negative going calcium transients as 

described previously (Dombeck et al., 2007; Danielson et al., 2016). This method allowed us to 

minimize the number of false-positive calcium transients induced by brain motion (false-positive 

error rate <1%). Next, we filtered the ΔF/F time series of each neuron such that non-significant 

transients were 0, while significant transients were untouched. Following this, we used an 

optimized deconvolution algorithm for GCaMP6f67 to infer the firing rate for each neuron. Briefly, 

this algorithm inferred the probability of spiking from statistically significant calcium transients. 
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To convert this probability into a firing rate (measured in events/s), we multiplied each 

probability by 20 Hz, the frequency at which the calcium transients were sampled. Unless 

otherwise stated, all data analysis was performed using inferred firing rates. 

 

Change in firing rate and change in reliability following photostimulation 

In all photostimulation experiments, analysis was restricted to 600 ms time window (12 imaging 

frames) following laser activation. Within this time window, we determined the change in firing 

rate using the following formula 

Δ𝑅𝑎𝑡𝑒(𝑝) =
𝑅𝑎𝑡𝑒7$8(*	:' 𝑝 − 𝑅𝑎𝑡𝑒7$8(*	+;;(𝑝)

𝑅𝑎𝑡𝑒7$8(*	+;;(𝑝)
 

where 𝑝	is the pulse number. Since each neuron responded at different time points of the movie, 

averaging this across population of neurons would obscure any changes in the firing rate (or 

reliability). Thus, we aligned the firing rate trace of each neuron obtained on the Laser-off trials 

(control condition) such that the maximum rate occurred at 1s following stimulus onset. This 

index was then used to align the firing rate traces on the Laser-on trials.  

Response reliability to natural movies was calculated using the equation: 

Reliability =
2

TF − T
fH,J − fK,J, fL,J − fM,J
fH,J − fK,J fL,J − fM,J

N

LOHPQ

N

HOQ

 

where	i, j ∈ 1, T  index trial numbers and fH,J is the rate on the ith trial for movie A,  fK,J is the 

average rate for that trial and fJ  is the average across trials (mean rate). Thus, from this 

equation the response reliability is the average correlation of all pairwise combinations of trials, 

corrected for differences in mean firing rate33. Similarly, we computed an unbiased estimate of 

the firing rate variance between trials for movie A using the formula 

Variance =
1

T − 1
fH,J − fJ

F
N

HOQ

 

In photo-stimulation equations, the change in reliability induced by laser activation was 

calculated using the formula: 

Δ𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑝) =
𝑅𝑒𝑙7$8(*	:' 𝑝 − 𝑅𝑒�7$8(*	+;;(𝑝)

𝑅𝑒𝑙7$8(*	+;;(𝑝)
 

 Similar to the firing rate, we aligned the reliability on the Laser-off trials such that each 

neuron was maximally reliable at 1s. The same time index was then used to align reliability on 

the Laser-on trials. To determine the epoch of maximum and minimum reliability, we calculated 

the time index corresponding the maximum and minimum reliability on the Laser-off trials from 
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unaligned traces. For the regression analysis shown in Figures 3, 4 and 6, we computed the 

change in variance using the simple formula,  

Δ𝑉𝑎𝑟 𝑝_$`,_-' = 𝑉𝑎𝑟7$8(*	:' 𝑝_$`,_-' − 𝑉𝑎𝑟7$8(*	:;; 𝑝_$`,_-' . 

A similar formula was used to calculate Δ𝑅𝑎𝑡𝑒 and Δ𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦. 

 

Behavior: Water restriction and Rig 

PV-Cre x Ai32 (PV-ChR2) and SST-Cre x Ai32 (SST-ChR2) mice were implanted with a cranial 

window and a head post. Mice were allowed to recover from surgery for 1-2 weeks before 

beginning water restriction. Specifically mice were placed on a water restriction schedule in 

which they received a minimum daily amount (40μL water per gram, daily mouse weight) 68. 

Weight, behavior and general condition, were monitored by veterinary staff.  

Mice were trained on a custom-built behavior rig 64. Visual stimuli were presented on the 

same Xenarc monitors used in physiological experiments (described above). In this set-up the 

monitors also covered a visual space of ~70x90 degrees. Water was delivered to the mice via a 

conductive lick spout 68. 

 

Behavior: Training schedule 

Once stable body weight was reached, mice began training on the natural movie discrimination 

task. Typically, mice were trained daily (7 days a week) in one-hour sessions. On the first two-

three training days, mice were head-fixed and given water reward in order to acclimatize to both 

head fixation and drinking from a waterspout. The two movies that evoked the most reliable 

responses were selected to be the target and non-target movies respectively. Each movie was 

presented for 2s (30 frames/s) and were interleaved with 2s isoluminance gray screens. We 

presented these movies using an “odd-ball” paradigm, such that the target movie appeared with 

a lower probability than the non-target movie. In early stages of training (see below), the target 

movie appeared with a probability of 20% and were presented in deterministic order, such that 

one target movie appeared after a run of four non-target movies. In later stages, we randomized 

the order, such that the mouse could not use movie history to predict the next movie. We 

reasoned that this “odd-ball” paradigm would keep the mice more engaged in the task as the 

relevant stimuli only appeared rarely. 

A summary of the different training stages is shown in Supplementary Table 2. In the 

first stage (Stage 0), mice were taught how to associate a water reward with the target movie. 

Specifically a 5μL water reward was given to mice 2s into the target movie. Once mice achieved 

a stable hit rate (HR) of 90% over three consecutive sessions, mice were graduated to Stage 1. 
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In Stage1, the non-target movie was introduced (80% of trials) and mice were trained to 

withhold licking. False alarms (FA) were indicated with a 200ms white noise burst. In this stage, 

mice were auto-rewarded on every target movie trial. Once correct reject rate (CR) reached 

80% mice were graduated to the next stage.  In Stages 2-3 the probability of auto-reward was 

gradually reduced from 50% (Stage 2) to 25% (Stage3). Mice were promoted to Stage 4 only 

once they were able to achieve a CR and HR of 80%.  In Stage 4, target and non-target movies 

were played in a deterministic sequence but no auto-reward was given. Finally in Stage 5, mice 

were trained on the randomized sequence. Once mice reached a HR and CR > 70% on the 

randomized sequence they were tested on the Target discrimination version of the task. 

Typically, training lasted for 3-4 weeks with mice completing 400-600 trials per day. 

 

Behavior: Movies used in classification task 

In this version of the task, three more movies were introduced and the mice had to determine 

which movies from this ensemble had more target-like features. Specifically, to create these 

movies we blended the phase spectrum of the non-target movie with the phase spectrum of the 

target movie according the formula 

𝑃ℎ𝑎𝑠𝑒'(% = 𝛼𝑃ℎ𝑎𝑠𝑒e$* + (1 − 𝛼)𝑃ℎ𝑎𝑠𝑒g+'he�* 

with 𝛼 = 0,0.25,0.5,0.75,1 . Also we replaced the amplitude spectrum of all movies with the 

mean amplitude spectrum of the non-target and target movie. 

𝐴𝑚𝑝'(% = 0.5(𝐴𝑚𝑝e$* + 𝐴𝑚𝑝g+'he$*) 

 All movies were corrected to have the same mean luminance and contrast using the 

SHINE toolbox 65. Movies with	𝛼 = 0.75,1  were treated as target movies and presented with a 

probability of 0.4, whereas movies with	𝛼 = 0,0.25,0.5  were treated as non-target movies and 

were presented with a probability of 0.6. Non-target movies were not rewarded except for 𝛼 =

0.5, which was rewarded on 50% of the trials. On average mice completed between 400-800 

trials of the classification task per day. 

 We compared similarity between the phase-blended stimuli with the target movie using 

the structural similarity index (SSIM). The SSIM uses image structural information, such as 

mean, variance and covariance, to estimate dependencies between pixels (Wang et al., 2004). 

Specifically, we computed SSIM between images 𝑖 and 𝑗 using the following equation: 

𝑆𝑆𝐼𝑀 𝑖, 𝑗 = 	
2𝜇-𝜇t + 𝑘-𝐿 F 2𝜎-t + 𝑘t𝐿

F

𝜇-F + 𝜇tF + 𝑘-𝐿 F 𝜎-F + 𝜎tF + 𝑘t𝐿
F  
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where, 𝜇-,t  and 𝜎-,t is the mean and standard deviation of images 𝑖 and 𝑗 respectively, 𝜎-t is the 

covariance and 𝐿 is the dynamic range of the image. For further details, see (Wang et al., 2004). 

 

Behavior: Behavioral testing and optogenetic stimulation  

Once mice were proficient at this task, we optogenetically activated ChR2-expressing neurons 

using a fiber-coupled 470nm LED source on 50% of the trials. Here, we used 8 pulses, 10ms 

each with a 10ms inter-pulse-interval (150 ms in total). The onset of stimulation was coincident 

with the movie onset. The average power at the tip of the fiber was 8mW, and the power 

spectral density was similar to what we used for physiology experiments. We assessed 

performance by computing the hit rate (HR) and false alarm rate (FAR) using the following 

equations: 

𝐻𝑅 =
#𝐻𝑖𝑡

#𝐻𝑖𝑡 + #𝑀𝑖𝑠𝑠
				𝐹𝐴𝑅 =

#𝐹𝐴
#𝐹𝐴 + #𝐶𝑅

 

where #𝐻𝑖𝑡 is the number of licks and #𝑀𝑖𝑠𝑠 are the number of misses to the target-

biased movies, and #𝐹𝐴 is the number of licks and #𝐶𝑅 number of misses to the non-target-

biased movies Using these equations, we computed the discriminability (𝑑′) between target and 

non-target movie (Figure S9) as,  

𝑑} = 𝜙hQ 𝐻𝑅 − 𝜙hQ 𝐹𝐴𝑅  

where 𝜙hQ is the CDF of a standard Gaussian with 0 mean and 1 variance, which was 

computed using the norminv function in Matlab. 

To determine the effect that LED activation had on task performance, we fit sigmoidal 

psychometric functions to the proportion of correct response independent on LED-on and LED-

off trials using the following equation: 

𝑃𝑟𝑜𝑏 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =
1

1 + exp 𝛼 − 𝑃ℎ𝑎𝑠𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝛽

 

where parameters 𝛼  and 𝛽 , which represent the bias and slope respectively, were 

determined using least squares regression. Specifically, increasing 𝛽  decreases the slope 

indicating less sensitivity to the phase fraction. Increasing 𝛼 shifts the psychometric to the right, 

indicating an increase in detection threshold. Thus, an improved performance (more sensitive at 

detecting the target movie) at this movie classification task manifests in a reduction both in 𝛼 

and 𝛽. Only trials with fit quality >85% were kept (12/18 session). Significance of the fit was 

determined by performing a chi-squared test. All changes were compared to LED-off trials.  

 
Multi-unit rate-based neural network model 
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We built a four-unit rate-based model of layer 2/3 of visual cortex to study the effects that the 

SST-PV dynamics had on EXC neuron reliability.  Each population was represented by a single 

rate-based equation: 

𝜏`
𝑑𝑟
𝑑𝑡

= 𝑟 + 𝑓 𝑊 �𝑟
�

+ 𝐼`
�-8	-',)� + 𝐼`

��	-',)� + 𝐼`
:,�+  

where 𝑟  is the firing rate of the cell population 𝑥 (EXC, PV, SST, VIP). PV units had a time 

constant 𝜏` = 10𝑚𝑠, while EXC, SST and VIP units had a slower time constant 𝜏` = 20𝑚𝑠. We 

modeled the rate-current transfer function of each population using the power-law function: 

𝑓 𝐼 = 0.01 𝐼 P
F.F 

EXC, PV and SST units received “visual input” (𝐼`
�-8	-',)�) which accurately reflected the 

temporal activity of natural movie stimulation (Supplementary Fig. 8a, b). This visual input was 

the summed activity of a bank of 50 linear-nonlinear-Poisson units. The linear filter consisted of 

a spatial log-Gabor receptive field (total 6 different orientations (0-180o) and ranged in size from 

12-18o of visual angle) and gamma functions with a range of temporal delays (140-200ms). 

These spatiotemporal receptive fields closely resemble those seen in mouse visual cortex 33,69. 

Because we did not know the locations of the RFs a priori, we randomly picked 50 possible 

locations on the screen. The same natural movies used in our experiments were first convolved 

with each spatio-temporal log-Gabor filter, which was then rectified with a point-wise nonlinearity 

to produce a firing rate estimate. This firing rate estimate was then used to generate an 

inhomogeneous Poisson spike train. To generate input to the different units in the model, we 

filtered this Poisson spike train through a facilitating alpha synapse to generate the current 

𝐼`
�-8	-',)� . The weight of each synapse was varied from trial-to-trial, which together with the 

stochastic nature of the Poisson process, created trial-to-trial variability in the model that closely 

resembled the variability observed between movies (Supplementary Fig. 8c). EXC and PV 

units received summed input from units with smaller log-Gabor sizes while SST unit received 

input from larger log-Gabor sizes reflecting differences in preferred spatial frequencies of each 

cell type36. VIP units did not receive any visual input. 

All units received background current (𝐼`
��	-',)�), which was modelled as a stochastic 

Poisson process. We varied input rates between the different units (EXC and SST = 10 Hz, PV 

= 24Hz, VIP =15 Hz) to match spontaneous firing rates observed in vivo. In this way, the 

spontaneous activity was uncorrelated between each neuronal subtype in our model, and 

therefore represented an independent source of noise. 
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 In experiments with optogenetic perturbation, we modelled optogenetic input into both 

PV and SST units (𝐼`
:,�+ ) as a train of square wave pulses which mimicked the temporal 

properties the laser stimulation used in our experiments. To test for robustness and to mimic 

natural trial-to-trial variability of ChR2 and Arch, we varied the pulse amplitude by +/- 10% in 

each trial by drawing values from a uniform distribution. The amplitude values were: SST-ChR2 

= 25 mA, PV-ChR2 = 45 mA, PV-Arch = -50 mA. 

 Connections between populations were given via the following weight matrix: 

𝑊 =

𝑊𝑒𝑒 𝑊𝑒𝑝 𝑊𝑒𝑠 𝑊𝑒𝑣
𝑊𝑝𝑒 𝑊𝑝𝑝 𝑊𝑝𝑠 𝑊𝑝𝑣
𝑊𝑠𝑒 𝑊𝑠𝑝 𝑊𝑠𝑠 𝑊𝑠𝑣
𝑊𝑣𝑒 𝑊𝑣𝑝 𝑊𝑣𝑠 𝑊𝑣𝑣

=

0.817 −0.986 −0.412 −0.35
0.8535 −0.99 −0.387 −0.09
0.878 0 0 −0.34
0.578 0 −0.334 0

 

where 𝑊 � is the weight of the connection from neuron 𝑦 to neuron 𝑥. In some experiments, we 

removed the SSTàPV connection by setting 𝑊�� = 0. This weight matrix reflects the known 

connectivity between neuron subtypes in the visual cortex, and is derived from previously 

published results39,70. 

 To compute reliability, we simulated 30 trials with the same visual stimulus, and used the 

same equation defined above to compute EXC unit reliability. To test the robustness of our 

model to parameter changes, we created 500 models (each dot in Fig. 5) by independently 

varying all the parameters of the model by +/- 10% of their current values. Numerical integration 

was performed in Matlab using the forward Euler method with a time step of 0.05 ms. 

 To determine which factors (e.g. PV suppression, EXC suppression, etc.)  contributed 

the most to the changes in EXC unit reliability following PV/SST activation/suppression, we 

performed multivariate linear regression using the following model: 

∆𝐸𝑋𝐶	𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦~𝛽� + 𝛽QΔ𝑆𝑆𝑇	𝐹𝑖𝑟𝑖𝑛𝑔	𝑅𝑎𝑡𝑒 + 𝛽FΔ𝑃𝑉	𝐹𝑖𝑟𝑖𝑛𝑔	𝑅𝑎𝑡𝑒 + 𝛽�Δ𝐸𝑋𝐶	𝐹𝑖𝑟𝑖𝑛𝑔	𝑅𝑎𝑡𝑒

+ 𝛽�EXC	reliability	(pre) 

Linear regression was performed in Matlab (fitlm) and statistical tests (Students T 

statistic) were computed to assess the significance of each predictor. 

 
Statistical Analysis 

All statistical analysis was performed using custom written scripts in Matlab and R. No tests 

were conducted to determine sample size. Data were first tested for normality using the 

Shapiro-Wilk Test. All data presented in this paper are non-normally distributed, thus all 

statistical tests were conducted using non-parametric statistics. Our experiments involved 

testing the influence of laser activation on the same population of neurons, thus all comparisons 

were performed using non-parametric repeated-measures ANOVA (Friedman Test) with 
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Bonferroni’s correction and rank-sum post-hoc tests with significance value was set to 0.05. 

Post-hoc tests were performed using the two-tailed Wilcoxon rank-sum test relative to the 

Laser-off condition. To determine if the change in reliability was significant, we performed 

permutation tests (corrected for family-wise error rate) where we resampled with replacement 

(10,000 permutations) from the change distribution and tested if the sampled distribution was 

significantly different from 0 using a one-tailed rank-sum test. Unless otherwise stated, data are 

presented as median ± 95% CI (calculated using bootstrap sampling). All confidence intervals 

were determined using bootstrap. All box-whisker plots show median (notch), inter-quartile 

range (box edges) and data range (whiskers). All p-values are labeled in the figures and their 

corresponding legends. 

 
Data and code availability 

All scripts used in analysis and model simulations, and raw imaging and behavior data is 

available from the corresponding author upon reasonable request. 
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