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Action-outcome (A-O) and stimulus-response (S-R) processes that are two forms of instrumental conditioning that are important components
of decisionmaking and action selection. The former adapts its response according to the outcome while the latter is insensitive to the outcome.
An unsolved question is how these two processes emerge, cooperate and interact inside the brain in order to issue a unique behavioral
answer. Here we propose a model of the interaction between the cortex, the basal ganglia and the thalamus based on a dual competition.
We hypothesize that the striatum, the subthalamic nucleus, the internal pallidum (GPi), the thalamus, and the cortex are involved in closed
feedback loops through the hyperdirect and direct pathways. These loops support a competition process that results in the ability for the basal
ganglia to make a cognitive decision followed by a motor decision. Considering lateral cortical interactions (short range excitation, long range
inhibition), another competition takes place inside the cortex allowing this latter to make a cognitive and a motor decision. We show how this
dual competition endows the model with two regimes. One is oriented towards action-outcome and is driven by reinforcement learning, the
other is oriented towards stimulus-response and is driven by Hebbian learning. The final decision is made according to a combination of these
two mechanisms with a gradual transfer from the former to the latter. We confirmed these theoretical results on primates using a two-armed
bandit task and a reversible bilateral inactivation of the internal part of the globus pallidus.

Keywords: Cortex, Basal Ganglia, Competition, Short-range Excitation, Long-range Inhibition, Segregated Loops, Direct Pathway, Hyperdirect
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Introduction1

Action-outcome (A-O) and stimulus-response (S-R) processes2

that are two forms of instrumental conditioning and important3

components of behavior. The former evaluates the benefit of an4

action in order to choose the best action among those available5

(action selection) while the latter is responsible for automatic6

behavior (routines), eliciting a response as soon as a known7

stimulus is present (Mishkin, Malamut, & Bachevalier, 1984;8

Graybiel, 2008), independently of the hedonic value of the stim-9

ulus. Action selection can be easily characterized using a simple10

operant conditioning setup such as for example, a two-armed11

bandit task where an animal must choose between two options of12

different value, the value being probability, magnitude or quality13

of reward (Pasquereau et al., 2007; Guthrie, Leblois, Garenne, &14

Boraud, 2013). After some trials and errors, a wide variety of15

vertebrates are able to select the best option (Herrnstein, 1974;16

Graft, Lea, & Whitworth, 1977; Matthews & Temple, 1979; Brad-17

shaw, Szabadi, Bevan, & Ruddle, 1979; Dougan, McSweeney, &18

Farmer, 1985; Herrnstein, Vaughan, Mumford, & Kosslyn, 1989;19

Lau & Glimcher, 2005, 2008; Gilbert-Norton, Shahan, & Shivik,20

2009). This selection is believed to result from the behavioral21

expression of the action-selection system. If the associated values22

are to be changed after only a few trials, the animal can still adapt23

its behavior and select rapidly the new best option. However,24

after intensive training (that depends on the species and the task)25

and if the same values are used all along, the animal will tend26

to become insensitive to change and persist in selecting the for-27

merly best option (Lau&Glimcher, 2005; Yin&Knowlton, 2006).28

29

Most of the studies on action selection and habits/routines30

agree on a slow and incremental transfer from the action-31

outcome to the stimulus-response system such that after32

extensive training, the S-R system takes control of behavior and 33

the animal becomes insensitive to reward devaluation (Packard 34

& Knowlton, 2002; Seger & Spiering, 2011). But very little is 35

known on the exact mechanism underlying such transfer and 36

one difficult question that immediately arises is when and how 37

the brain switches from a flexible action selection system to a 38

more static one. Our working hypothesis is that there is no need 39

for such an explicit switch. We propose instead that an action 40

expressed in the motor area results from both the continuous 41

cooperation (acquisition) and competition (expression) of the 42

two systems. 43

44

To do so, we consider the now classical actor-critic model of 45

decision making elaborated in the 1980s that posits there are 46

two separate components in order to explicitly represent the 47

policy independently of the value function. The actor is in charge 48

of choosing an action in a given state (policy) while the critic 49

is in charge of evaluating (criticizing) the current state (value 50

function). This classical view has been used extensively for 51

modelling the basal ganglia (Suri, R E & Schultz, W, 1999; Suri, 52

2002; Frank, 2004; Doya, 2007; Glimcher, 2011; Doll, Bradley 53

B, Simon, Dylan A, & Daw, Nathaniel D, 2012) even though the 54

precise anatomical mapping of these two components is still 55

subject to debate and may diverge from one model to the other 56

(Redgrave, Peter, Gurney, Kevin, & Reynolds, John, 2008; Niv, 57

Yael & Langdon, Angela, 2016). However, all these models share 58

the implicit assumption that the actor and the critic are acting in 59

concert, i.e. the actor determines the policy exclusively from the 60

values estimated by the critic, as in Q-Learning or SARSA. Inter- 61

estingly enough, (Sutton, R S & Barto, A G, 1998) noted in their 62

seminal work that one could imagine intermediate architectures 63

in which both an action-value function and an independent 64

policy would be learned. We support this latter hypothesis based 65
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on a decision-making model that is grounded on anatomical66

and physiological data and that identify the cortex-basal ganglia67

(CBG) loop as the actor. The critic — of which the Substantia68

Nigra pars compacta (SNc) and the Ventral Tegmental Area69

(VTA) are essential components — interacts through dopamine70

projections to the striatum (Leblois, Boraud, Meissner, Bergman,71

& Hansel, 2006). Decision is generated by symmetry breaking72

mechanism that emerges from competitions processes between73

positives and negatives feedback loop encompassing the full CBG74

network (Guthrie et al., 2013). This model captured faithfully75

behavioural, electrophysiological and pharmacological data we76

obtained in primates using implicit variant of two-armed bandit77

tasks — that assessed both learning and decision making — but78

was less consistent with the explicit version (i.e. when values are79

known from the beginning of the task) that focus on the decision80

process only.81

82

We therefore modified this early model by adding a cortical83

module that has been granted with a competition mechanism84

and Hebbian learning (Doya, 2000). This improved version of85

the model predicts that the whole CBG loop is actually neces-86

sary for the implicit version of the task, however, when the basal87

ganglia feedback to cortex is disconnected, the system is still able88

to choose in the explicit version of the task. Our experimental89

data fully confirmed this prediction (Piron et al., 2016) and al-90

lowed to solve an old conundrum concerning the pathophysiol-91

ogy of the BG which was that lesion or jamming of the output of92

the BG improve Parkinson patient motor symptoms while it af-93

fects marginally their cognitive and psycho-motor performances.94

An interesting prediction of this generalized actor-critic architec-95

ture is that the valuation of options and the behavioural outcome96

are segregated. In the computational model, it implies that if we97

block the output of the basal ganglia in a two-armed bandit task98

before learning, and because reinforcement learning occurred at99

the striatal level under dopaminergic control, this should induce100

covert learning when the model chooses randomly. The goal of101

this study is thus twofold: i) to present a comprehensive descrip-102

tion of the model in order to provide the framework for an exper-103

imental paradigm that allow to unravel covert learning and ii) to104

test this prediction in monkeys.105

Materials andMethods106

The task107

We consider a variant of a n-armed bandit task (Katehakis &108

Veinott, 1987; Auer, Cesa-Bianchi, Freund, & Schapire, 2002)109

where a player must decide which arm of n slot machines to play110

in a finite sequence of trials such as to maximize his accumulated111

reward. This task has received much attention in the literature112

(e.g. machine learning, psychology, biology, game theory, eco-113

nomics, neuroscience, etc.) because it provides a simple model to114

explore the trade-off between exploration (trying out a new arm115

to collect information about its payoff) and exploitation (playing116

the armwith the highest expected payoff) (Robbins, 1952; Gittins,117

1979). This task has been shown to be solvable for a large number118

of different living beings, with (Plowright & Shettleworth, 1990;119

Keasar, 2002; Steyvers, Lee, & Wagenmakers, 2009) or without a120

brain (Reid et al., 2016), and even a clever physical apparatus can121

solve the task (Naruse et al., 2015).122

The computational task 123

In the present study, we restrict the n-armed bandit task to n = 2 124

with an explicit dissociation between the choice of the option 125

(cognitive choice) and the actual triggering of the option (motor 126

choice). This introduces a supplementary difficulty because only 127

the motor choice – the physical (and visible) expression of the 128

choice – will be taken into account when computing the reward. 129

If cognitive and motor choices are incongruent, only the motor 130

choices matters. Unless specified otherwise, we consider a set of

Trial 1 Trial 2 Trial 3

P = 1.00

P = 0.66

P = 0.33

P = 0.00

Cue set 

Figure 1. Three task trials from a 4-items cue set (0,1,5,6) with respective
reward probabilities (1, 2/3, 1/3, 0).

131

cues {Ci}i∈[1,n] associated with reward probabilities {Pi}i∈[1,n] 132

and a set of four different locations ({Li}i∈[1,4]) corresponding 133

to the up, down, left, right positions on the screen. A trial is made 134

of the presentation of two random cues Ci and Cj (i ̸= j) at two 135

random locations (Li and Lj) such that we have Li ̸= Lj (see 136

Fig. 1). A session is made of n successive trials and can use one 137

to several different cue sets depending on the condition studied 138

(e.g. reversal, devaluation). Unless specified otherwise, in the 139

present study, exactly one cue set is used throughout a whole 140

session. 141

142

Once a legal motor decision has been made, reward is com- 143

puted by drawing a random uniform number between 0 and 1. If 144

the number is less or equal to the reward probability of the cho- 145

sen cue, a reward of 1 is given, else, a reward of 0 is given. If no 146

motor choice has been made or if the motor choice leads to an 147

empty location (illegal choice), the trial is considered to be failed 148

and no reward is given, which is different from giving a reward of 149

0. Best choice for a trial is defined as the choice of the cue associ- 150

atedwith the highest reward probability among the two presented 151

cues. Performance is defined as the ratio of best choices over the 152

total number of trials. A perfect player with full-knowledge can 153

achieve a performance of 1 while the mean expectation of reward 154

is directly dependent on the cue sampling policy1. 155

The behavioral task 156

With kind permission from the authors (Piron et al., 2016), we 157

reproduce here the details of the experimental task which is similar. 158

159

The primates were trained daily in the experimental room and 160

familiarized with the setup, which consisted of 4 buttons placed 161

on a board at different locations (0◦, 90◦, 180◦, and 270◦) and a 162

further button in a central position, which detects contact with a 163

monkey’s hand. These buttons correspond to the 4 possible dis- 164

play positions of a cursor on a vertical screen. The monkeys were 165

seated in chairs in front of this screen at a distance of 50cm (Fig. 166

2). The monkeys initiated a trial by keeping their hands on the 167

1For example on Fig. 1, if we consider a uniform cue sampling policy for
6*n trials, the mean expected reward for a perfect player with full knowledge is
3/6 × 1+ 2/6 × 2/3 + 1/6 × 1/3 = 14/18 ≈ 0.777...
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Saline or muscimol injection
 into the internal part of
the Globus Pallidus (GPi)

15 minutes before session

Cue presentation

(1.0 - 1.5 second)

Trial Start

(0.5 - 1.5 second)

Decision
(1.0 - 1.5 second)

Go Signal

Reward

Up

Down

Left

Right

Reward (juice) delivered
according to the reward
probability associated

with the chosen stimulus

Control

Figure 2. The behavioral task. The monkeys initiate a trial by keeping their hands on
the central button,which induced the appearance of the cursor in the central position of
the screen. After a randomdelay, two cues appears in 2 different positions. Themonkey
has a random duration time window (0.5s to 1.5s) to press the button associated with
one cue. It moves the cursor over the chosen cue and it has to maintain the position
for some duration. After this delay, the monkey is rewarded (0.3 ml of water) or not
according to the reward probability of the chosen cue.

central button, which induced the appearance of the cursor in the168

central position of the screen. After a random delay (0.5s to 1.5s),169

2 cues appeared in 2 (of 4) different positions determined ran-170

domly for each trial. Each cue had a fixed probability of reward171

(P1 =0.75 and P2 = 0.25) and remains the same same during a172

session. Once the cues were shown, the monkeys had a random173

duration timewindow (0.5s to 1.5s) to press the button associated174

with one cue. It moves the cursor over the chosen cue and they175

have to maintain the position for 0.5 s to 1.5 s. After this delay,176

the monkeys were rewarded (0.3 ml of water) or not according to177

the reward probability of the chosen target. An end-of-trial signal178

corresponding to the disappearance of the cursor was given, in-179

dicating to the monkeys that the trial was finished and they could180

start a new trial after an inter-trial interval between 0.5 s and 1.5s.181

Themodel182

The model is designed to study the implications of a dual com-183

petition between the cortex and the basal ganglia (BG).The com-184

petition inside the cortex is conveyed through direct lateral inter-185

actions (short-range excitation and long range inhibition, (H. R.186

Wilson & Cowan, 1972, 1973; Coultrip, Granger, & Lynch, 1992;187

Muir & Cook, 2014; Deco et al., 2014)) while the competition188

within the BG is conveyed through the direct and hyperdirect189

pathways (Leblois et al., 2006; Guthrie et al., 2013). Therefore,190

the indirect pathway and the external segment of the globus pal-191

lidus (GPe) are not included.192

Architecture193

Our model contains five main groups (see Fig. 3). Three of these194

groups are excitatory. These are the cortex (CTX), the thalamus195

(THL), and the subthalamic nucleus (STN). Two populations are196

inhibitory. They correspond to the sensory–motor territories of197

the striatum (STR) and the GPi. The model has been further tai-198

lored into three segregated loops (Alexander, DeLong, & Strick,199

1986; Alexander & Crutcher, 1990; Alexander, Crutcher, & De-200

Long, 1991; Mink, 1996; Haber, 2003), namely the motor loop,201

the associative loop and the cognitive (or limbic) loop. The mo-202

tor loop comprises the motor cortex (supplementary motor area203

(SMA), primary cortex (M1), premotor cortex (PMC), cingulate204

Cortex

Indirect Indirect STR

Thalamus

STN

GPi/
SNr

GPe

Hyperdirect Direct

SNc / VTA

Figure 3. Architecture of the model. The architecture of the model is centered around
the hyperdirect pathway (cortex→ subthalamic nucleus→ GPi/SNr→ thalamus→
cortex), the direct pathway (cortex→ striatum→ GPi/SNr→ thalamus→ cortex)
and the cortexwhere lateral interactions take place (not represented on the figure). The
external part of the globus pallidus, while not present in the model, is represented on
the figure as a reminder of the actual connectivity in the BG. Similarly, the substantia
nigra pars compacta is not explicitly represented in the model.

motor area (CMA)), the motor striatum (putamen), the motor 205

STN, the motor GPi (motor territory of the pallidum and the 206

substantia nigra) and the motor thalamus (ventrolateral thala- 207

mus (VLm and VLo)). The associative loop comprises the cog- 208

nitive cortex (dorsolateral prefrontal cortex (DLPFC), the lateral 209

orbitofrontal cortex (LOFC)) and the associative striatum (asso- 210

ciative territory of the caudate). The cognitive loop comprises 211

the cognitive cortex (anterior cingulate area (ACA), medial or- 212

bitofrontal cortex (MOFC)), the cognitive striatum (ventral cau- 213

date), the cognitive STN, the cognitive GPi (limbic territory of the 214

pallidum and the substantia nigra and) the cognitive thalamus 215

(ventral anterior thalamus (VApc, VAmc)). 216

Populations 217

Themodel comprises 12 populations: 5motor populations, 4 cog- 218

nitive populations and 2 associative populations (Fig. 4). These 219

populations comprises from 4 to 16 neural assemblies and pos- 220

sess each a specific geometry whose goal is to facilitate connectiv- 221

ity description. Each assembly is modeled using a neuronal rate 222

model (Hopfield, 1984; Shriki, Hansel, & Sompolinsky, 2003) that 223

give account of the spatial mean firing rate of the neurons com- 224

posing the assembly. Each assembly is governed by the following 225

equations: 226

τ dV
dt

= −V+ Isyn + Iext + h (1)

U = f(V+ V.n)) (2)

where τ is the assembly time constant (decay of the synaptic in- 227

put), V is the firing rate of the assembly, Isyn is the synaptic in- 228

put to the assembly, Iext is the external input representing the 229

sensory visual salience of the cue, h is the threshold of the as- 230

sembly, f is the transfer function and n is the (correlated, white) 231
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CTX

STN STR

GPi

THL

CTX

STR STN

GPi

THL

CTX

STR

Associative Loop Motor LoopCognitive Loop

Figure 4. Segregated loops. The model is further detailed into three segregated cir-
cuits (cognitive, associative, motor). The cognitive and motor circuit each comprises a
cortical, a striatal, a thalamic, a subthalamic, and a pallidal population while the as-
sociative loop only comprises a cortical and a striatal population. This latter interacts
with the two other circuits via diffused connections to the pallidal regions and from all
cortical populations. Arrows, excitatory connections. Dots, inhibitory connections.

Population Geometry τ Threshold Noise
Cortex associative (4,4) 10ms -3 1.0%

cognitive (4,1) 10ms -3 1.0%
motor (1,4) 10ms -3 1.0%

Striatum associative (4,4) 10ms 0 0.1%
cognitive (4,1) 10ms 0 0.1%
motor (4,1) 10ms 0 0.1%

GPi cognitive (4,1) 10ms -10 3.0%
motor (1,4) 10ms -10 3.0%

STN cognitive (4,1) 10ms -10 0.1%
motor (1,4) 10ms -10 0.1%

Thalamus cognitive (4,1) 10ms -40 0.1%
motor (1,4) 10ms -40 0.1%

Table 1. Population parameters

Name Value
Vmin 1
Vmax 20
Vh 16
Vc 3

Table 2. Parameters for striatal sigmoid transfer function

noise term. Each population possess its own set of parameters 232

according to the group it belongs to (see Table 1). Transfer func- 233

tion for all population but the striatal population is a ramp func- 234

tion (f(x) = max(x, 0)). The striatal population that is silent 235

at rest (Sandstrom & Rebec, 2002), requires concerted coordi- 236

nated input to cause firing (C. J. Wilson & Groves, 1981), and 237

has a sigmoidal transfer function (nonlinear relationship between 238

input current and membrane potential) due to both inward and 239

outward potassium current rectification (Nisenbaum & Wilson, 240

1995). This is modeled by applying a sigmoidal transfer func- 241

tion to the activation of cortico-costriatal inputs in the form of 242

the Boltzmann equation: 243

f(x) = Vmin +
Vmax − Vmin
1+ e Vh−x

Vc

whereVmin is the minimum activation,Vmax the maximum acti- 244

vation,Vh the half- activation, andVc the slope. This is similar to 245

the use of the output threshold in the (Gurney, Prescott, & Red- 246

grave, 2001) model and results in small or no activation to weak 247

inputs with a rapid rise in activation to a plateau level for stronger 248

inputs. The parameters used for this transfer function are shown 249

in Table 2 and were selected to give a low striatal output with no 250

cortical activation (1 spike/s), starting to rise with a cortical input 251

of 10 sp/s and a striatal output of 20 spike/s at a cortical activation 252

of 30 spike/s. 253

Connectivity 254

Even though the model takes advantage of segregated loops, they 255

cannot be entirely separated if we want the cognitive and the 256

motor channel to interact. This is the reason why we incorpo- 257

rated a divergence in the corticostriatal connection followed by 258

a re-convergence within the GPi (Graybiel, Aosaki, Flaherty, & 259

Kimura, 1994; Parent et al., 2000) (see Fig. 5). Furthermore, 260

we considered the somatotopic projection of the pyramidal cor- 261

tical neurons to the striatum (Webster, 1961) as well as their ar- 262

borization(Cowan & Wilson, 1994; C. J. Wilson, 1987; Parent et 263

al., 2000; Parthasarathy, Schall, & Graybiel, 1992) resulting in 264

specific localized areas of button formation (Kincaid, Zheng, & 265

Wilson, 1998) and small cortical areas innervating the striatum 266

in a discontinuous pattern with areas of denser innervation sepa- 267

rated by areas of sparse innervation (Brown, Smith, &Goldbloom, 268

1998; Flaherty & Graybiel, 1991). We also cinsidered the large 269

reduction in the number of neurons from cortex to striatum to 270

GPi (Bar-Gad & Bergman, 2001; Oorschot, 1996). These findings 271

combined lead to striatal areas that are mostly specific for input 272

from one cortical area alongside areas where there is overlap be- 273

tween inputs from two ormore cortical areas (Takada et al., 2001) 274

and which are here referred to as the associative striatum. 275

The gain of the synaptic connection from populationA (presy- 276

naptic) to population B (postsynaptic) is denoted as GA→B, and 277

the total synaptic input to population B is: 278
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CTX cog. STRT ass.

STRT cog.

GPi cog. THL cog.

THL cog.CTX cog. STN cog. GPi cog.

CTX cog. STRT ass. GPiT mot. THLT mot.

A

B

C

CTX cog.

CTXT mot.

CTX cog.

D
CTX cog. CTXT ass. STRT ass. GPi cog.

Figure 5. Partial connectivity in the cognitive and associative loops. For clarity, only
one assembly has been considered. The motor loop is symmetric to the cognitive one.
The “T” symbol on some name means the geometry of the group has been transposed
(for readability). A The direct pathway from cognitive cortical assemblies diverge from
cortex to associative and cognitive striatum. the pathway converges into cognitive GPi,
send parallel projection to the thalamus and forms a closed loop with the original cog-
nitive cortical assembly. B Thanks to the convergence of motor and cognitive pathways
in association striatum, there is a cross-talking between themotor and cognitive loops.
This allow a decisionmade in the cognitive loop to influence the decision inmotor loops
and vice-versa. C The hyperdirect pathway from cognitive cortical assembly diverges
from STN to GPi, innervating all cognitive, but not motor, GPi regions and feeds back to
all cognitive cortical assemblies. D The pathway from associative cortex and associative
striatum is made of parallel localized projections.

IBsyn = GA→B
∑
A

UA

whereA is the presynaptic assembly, B is the postsynaptic assem-279

bly, and UA is the output of presynaptic assembly A. The gains280

for each pathway are shown in Table 3. Gains to the correspond-281

ing cognitive (motor) assembly are initially five times higher than282

to each receiving associative area. Re-convergence from cognitive283

(motor) and association areas of striatum to cognitive (motor) ar-284

eas of GPi are evenly weighted.285

Task encoding286

At the trial start, assemblies in the cognitive cortex encoding the287

two cues C1 and C2 receive an external current (7Hz) and as-288

semblies in the motor cortex encoding the two positionsM1 and289

M2 receive similarly an external current (7Hz). These activities290

Pop. A Pop. B Pathway Pattern Gain
Cortex Striatum cog. → cog. • (i,1)→ (i,1) 1.0

mot. →mot. (i,1)→ (i,1) 1.0
ass. → ass. (i,j)→ (i,j) 1.0
cog. → ass. (i,1)→ (i,*) 0.2
mot. → ass. (1,i)→ (*,i) 0.2

STN cog. → cog. (i,1)→ (i,1) 1.0
mot. →mot. (1,i)→ (1,i) 1.0

Thalamus cog. → cog. (i,1)→ (i,1) 0.1
mot. →mot. (1,i)→ (1,i) 0.1

Cortex cog. → cog. (i,1)→ (*,1) ±0.5
mot. →mot. (1,i)→ (1,*) ±0.5
ass. → ass. (i,j)→ (*,*) ±0.5
ass. →mot. (*,i)→ (1,i) 0.025
ass. → cog. (i,*)→ (i,1) 0.01
cog. → ass. • (i,1)→ (i,*) 0.025
mot. → ass. (1,i)→ (*,i) 0.01

Striatum GPi cog. → cog. (i,1)→ (i,1) -2.0
mot. →mot. (1,i)→ (1,i) -2.0
ass. → cog. (i,*)→ (i,1) -2.0
ass. →mot. (*,i)→ (1,i) -2.0

STN GPi cog. → cog. (i,1)→ (i,1) 1.0
mot. →mot. (1,i)→ (1,i) 1.0

GPi Thalamus cog. → cog. (i,1)→ (i,1) -1.0
mot. →mot. (1,i)→ (1,i) -1.0

Thalamus Cortex cog. → cog. (i,1)→ (i,1) 1.0
mot. →mot. (1,i)→ (1,i) 1.0

Table 3. Connectivity gains and pattern between the different populations. For con-
nectivity patterns, “*” means all. For example, (1,i)→ (1,*) means one-to-all connec-
tivity while (1,i)→ (1,i) means one-to-one connectivity. Plastic pathways are indi-
cated by a “•” symbol.

Motor
CTX

Associative
CTX

Cognitive
CTX

Screen

Figure 6. Task encoding. Assemblies in the cognitive cortex encoding the two cuesC1
and C2 receive an external current and assemblies in the motor cortex encoding the
two positionsM1 andM2 receive similarly an external current. These activities are not
sufficient to disambiguate between the situation (C1/M1,C2/M2) and the situation
(C1/M2,C2/M1). This is the reason why the associative cortex encoding one of these
two situations receives an external current, (C1/M1,C2/M2) in the present case.
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are not sufficient to disambiguate between the situation (C1/M1,291

C2/M2) and the situation (C1/M2, C2/M1). This is the reason292

why the associative cortex encoding one of these two situations293

receives an external current (7Hz), (C1/M1,C2/M2) in the present294

case (see Fig. 6. The decision of the model is decoded from the295

activity in themotor cortex only, i.e. independently of the activity296

in the cognitive cortex. If the model chooses a given cue but pro-297

duces the wrong motor command, the cognitive choice will not298

be taken into account and the final choice will be decoded from299

the motor command that may lead to an irrelevant choice.300

Dynamic301

There exist two different competition mechanisms inside the302

model. One is conveyed through the direct and hyperdirect path-303

ways, the other is conveyed inside the cortex through short-range304

excitation and long range inhibition. The former has been fully305

described and analyzed in Leblois et al., 2006while the latter been306

extensively studied in a number of experimental and theoretical307

papers (von der Malsburg, 1973; H. R. Wilson & Cowan, 1972,308

1973; Amari, 1977; Callaway, 1998; Taylor, 1999). Each of these309

two competition mechanisms can lead to a decision as illustrated310

on Fig. 7 that shows the dynamic of the motor loop for all the311

population in three conditions. In the absence of the cortical in-312

teractions (gain of cortical lateral connections has been set to 0),313

the direct and hyperdirect pathway are able to promote a compe-314

tition that result in the selection of one of the two assemblies in315

each group. In the absence of GPi output (connection has been316

cut), the cortical lateral connections are able to support a com-317

petition that result in the selection of o the two assemblies, even318

though such decision is generally slower than the basal one. The319

result of the dual competition is a faster selection of one of the two320

assemblies prior to learning, when there is no possibility for the321

two competition to be non congruent (one competition tends to322

select move A while the others tend to select move B). We’ll see323

in the results section that if the result of the two competitions is324

non-congruent, the decision is slower.325

Learning326

Learning has been restricted to the cognitive channel on the327

cortico-striatal synapse (between the cortex cognitive and the328

striatum cognitive) and the cortico-cortical synapse (between the329

cortex cognitive and the cortex associative). There is most proba-330

bly learning in other structures and pathways, but the aim here is331

to show that the proposed restriction is sufficient to produce the332

behavior under consideration. All synaptic weights are initialized333

to 0.5 (SD 0.005) that are used as as a multiplier to the pathway334

gain to keep the factors of gain and weight separately observable.335

Allweights are boundbetweenWmin andWmax (seeTable 4) such336

that for any change ΔW(t), weightW(t) is updated according to337

the equation:338

W(t)←W(t) + ΔW(t)(Wmax −W(t))(W(t)−Wmin)

339

Reinforcement learning At the level of corticostriatal340

synapses, phasic changes in dopamine concentration have been341

shown to be necessary for the production of long-term potentia-342

tion (LTP) (Kerr &Wickens, 2001; Reynolds, Hyland, &Wickens,343

2001; Surmeier, Ding, Day, Wang, & Shen, 2007; Pawlak & Kerr,344
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Figure 7. Activity in the different populations during a single trial of action selection
before learning. The model is started at time t=0ms and allowed to settle to a steady
state before the presentation of the cues at t=500ms. Solid lines represents activity
related to the selected population, dashed lines represent activity related to the non
selected population. Decision threshold has been set to 40 spikes/s between the two
cortical populations and is indicated on the x axis. Raster plots are related to the corti-
cal populations and has been generated from the firing rate of 10 neurons. A Activity in
themotor populations in the absence of lateral competition in the cortical populations.
Thedampedoscillations during the settlingphase are characteristic of thedelayed feed-
back from the subthalamic nucleus (excitation) and the striatum (inhibitory) through
the globus pallidus and the thalamus. B Activity in the motor populations in the ab-
sence of the feedback from the basal ganglia (GPi) to the cortical populations via the
thalamus. Decision threshold is reached thanks to the direct lateral competition in both
cognitive and motor cortical channels. There is no damped oscillation since there is no
delay between the cortical populations and the decision times are slower than in the
previous case. C Activity in the motor populations in the full model with a dual com-
petition, one cortical, one basal. When congruent (cortical and basal decision are the
same), decision time for both themotor and cortical channels are faster than in the ab-
sence of one of the competition loop.
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Name Value
Wmin 0.25
Wmax 0.75
LTPRL 0.050
LTDRL 0.030
LTPHL 0.005
α 0.025

Table 4. Learning parameters

2008). After each trial, once reward has been received (0 or 1),345

the corticostriatal weights are updated according to:346

ΔWA
B = LTPRL × RPE× UB if RPE > 0 (3)
= LTDRL × RPE× UB if RPE < 0 (4)

where ΔWA
B is the change in the weight of the corticostriatal347

synapse from cortical assembly A to striatal assembly B, RPE is348

the reward prediction error, the amount by which the actual re-349

ward delivered differs from the expected reward,UB is the activa-350

tion of the striatal assembly, and μ is the actor learning rate. Gen-351

eration of LTP and long-term depression (LTD) in striatal MSNs352

has been found to be asymmetric (Pawlak & Kerr, 2008). There-353

fore, in the model, the actor learning rate is different for LTP and354

LTD. The RPE is calculated using a simple critic learning algo-355

rithm:356

RPE = R− Vi

where R, the reward, is 0 or 1, depending on whether a reward357

was given or not on that trial. Whether a reward was given was358

based on the reward probability of the selected cue (which ismost359

of the time the one associated with the direction chosen). i is the360

number of the cue chosen, and Vi is the value of cue i. The value361

of the chosen cue is then updated using the PE:362

Vi ← Vi + αPE

Hebbian learning At the level of cortico-cortical synapse, only363

the co-activation of two assemblies is necessary for the produc-364

tion of long-term potentiation (Bear & Malenka, 1994; Caporale365

&Dan, 2008; Feldman, 2009; Hiratani & Fukai, 2016). After each366

trial, once a move has been initiated, the cortico-cortical weights367

are updated according to:368

ΔWA
B = LTPHL × UA × UB

where ΔWA
B is the change in the weight of the cortico-cortical369

synapse from cognitive cortical assembly A to associative cortical370

assembly B. This learning rule is thus independent of reward.371

Experimental setup372

With kind permission from the authors (Piron et al., 2016), we373

reproduce here the details of the experimental setup as well as the374

surgical procedure since the two same monkeys were used for these375

new experiments.376

377

Experimental data were obtained from 2 female macaque378

monkeys (Macaca mulata). Experiments were performed dur-379

ing the daytime. Monkeys were living under a 12h/12h diurnal380

rhythm. Although food access was available ad libitum, the pri- 381

mates were kept under water restriction to increase their motiva- 382

tion to work. A veterinary skilled in healthcare and maintenance 383

in nonhuman primates supervised all aspects of animal care. Ex- 384

perimental procedures were performed in accordance with the 385

Council Directive of 20 October 2010 (2010/63/ UE) of the Euro- 386

pean Community. This project was approved by the French Ethic 387

Comity for Animal Experimentation (50120111-A). 388

Surgical Procedure 389

Cannula guides were implanted into the left and right GPi in both 390

animals under general anesthesia. Implantation was performed 391

inside a stereotaxic frame guided by ventriculography and single- 392

unit electrophysiological recordings. A ventriculographic can- 393

nula was introduced into the anterior horn of the lateral ventricle 394

and a contrast medium was injected. Corrections in the position 395

of the GPi were performed according to the line between the an- 396

terior commissure (AC) and the posterior commissure (PC) line. 397

The theoretical target was AP: 23.0mm, L: 7.0mm, P: 21.2mm.27 398

A linear 16-channel multielectrode array was lowered vertically 399

into the brain. Extracellular single-unit activity was recorded 400

from 0mm to 24 mm relative to the AC–PC line with a wireless 401

recording system. Penetration of the electrode array into the GPi 402

was characterized by an increase in the background activity with 403

the appearance of active neurons with a tonic firing rate (around 404

the AC–PC line). The exit of the electrode tips from the GPi was 405

characterized by the absence of spike (around 3-4 mm below the 406

AC–PC line). When a clear GPi signal from at least 3 contacts had 407

been obtained, control radiography of the position of the record- 408

ing electrode was performed and compared to the expected posi- 409

tion of the target according to the ventriculography. If the devi- 410

ation from the expected target was less than 1mm, the electrode 411

was removed and a cannula guide was inserted with a spare can- 412

nula inside so that the tip of the cannula was superimposed on the 413

location of the electrode array in the control radiography. Once 414

the cannula guidewas satisfactorily placed, itwas fixed to the skull 415

with dental cement. 416

Bilateral Inactivation of the GPi 417

Micro-injections were delivered bilaterally 15 minutes before a 418

session. For both animals injections of theGABAA agonist mus- 419

cimol hydrobromide (Sigma) or saline (NaCl 9‰)were randomly 420

assigned each day. Muscimol was delivered at a concentration 421

of 1μg/μl (dissolved in a NaCl vehicle). Injections (1μl in each 422

side) were performed at a constant flow rate of 0.2 μl/min using 423

a micro-injection system. Injections were made through a 30- 424

gauge cannulae inserted into the 2 guide cannulae targeting left 425

and right GPi. Cannulas were connected to a 25 μl Hamilton sy- 426

ringe by polyethylene cannula tubing. 427

Data Analysis 428

Theoretical and experimental data were analyzed using Kruskal- 429

Wallis rank sum test between the three conditions (saline (C0), 430

muscimol (C1) or saline following muscimol (C2)) for the 6 431

samples (12×10 first trials of C0 (control), 12×10 last trials 432

of C0 (control), 12×10 first trials of C1 (GPi Off/muscimol); 433

12×10 last trials of C1(GPi OFF/muscimol); 12×10 first trails of 434

C2(GPi On/saline); 12×10 last trials of C2(GPi On/saline)) with 435
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posthoc pairwise comparisons using Dunn’s-test for multiple436

comparisons of independent samples. P-values have been437

adjusted according to the false discovery rate (FDR) procedure438

of Benjamini-Hochberg. Results were obtained from raw data439

using the PMCMR R package (Pohlert, 2014). Significance level440

was set at P < 0.01.441

442

Experimental raw data is available from (Kase&Boraud, 2017)443

under a CC0 license, Theoretical raw data and code are available444

from (Rougier & Topalidou, 2017) under a CC0 license (data) and445

BSD license (code).446

Results447

Our model predicts that the valuation of options and the be-448

havioural outcome are two separate (but entangled) processes.449

This means that if we block the output of the basal ganglia before450

learning, reinforcement learning still occurs at the striatal level451

under dopaminergic control and this should induce covert learn-452

ing of stimuli value even though the behavioral choice would ap-453

pear as random.454

Protocol455

The protocol has been consequently split over two consecutive456

conditions (C1 & C2) using the same set of stimuli and a disso-457

ciated control (C0) using a different set of stimuli (using same458

probabilities as for C1 & C2).459

C0 60 trials, GPi On (model), saline injection (primates),460

stimulus set 1 (A1, B1) with PA1 = 0.75, PB1 = 0.25461

C1 60 trials, GPi Off (model), muscimol injection (primates),462

stimulus set 2 (A2, B2) with PA2 = 0.75, PB2 = 0.25463

C2 60 trials, GPi On (model), saline injection (primates),464

stimulus set 2 (A2, B2) with PA2 = 0.75, PB2 = 0.25465

Computational results466

H0 statistic (H) p value
C0 start = C2 start 2.965 0.0051
C1 start = C2 start 4.986 1.8e-6
C1 end = C2 start 3.099 0.0036

Table 5. Theoretical results statistical analysis. Kruskal-Wallis rank sum test between
the three conditions (saline (C0), muscimol (C1) or saline followingmuscimol (C2))with
posthoc pairwise comparisons using Dunn’s-test for multiple comparisons of indepen-
dent samples.

We tested our hypothesis on the model using 12 different ses-467

sions (corresponding to 12 different initializations of the model).468

On day 1, we suppressed the GPi output by cutting the connec-469

tions between the GPi and the thalamus. When the GPi output470

has been suppressed on day 1, the performance is random at the471

beginning as shown by the average probability of choosing the472

best option (expressed in mean±SD) in the first 10 trials (0.408473

±0.161) and remain so until the end of the session (0.525 ±0.164).474

Statistical analysis revealed no significant difference between the475

10 first and the 10 last trials. On day 2, we re-established connec- 476

tions between the GPi and the thalamus and themodel has to per- 477

form the exact same task as for day 1 using the same set of stimuli. 478

Results shows a significant change in behavior: the model starts 479

with an above-chance performance on the first 10 trials (0.717 480

±0.241) and this change is significant (see Table 5 and Fig. 8) as 481

compared to the start of C1, as compared to the end of C1 and as 482

compared to the start of C0, confirming our hypothesis that the 483

BG have previously learned the value of stimuli even though they 484

were unable to alter behavior. 485

Experimental results 486

H0 statistic (H) p value
C0 start = C2 start 3.181 0.0024
C1 start = C2 start 3.738 0.0004
C1 end = C2 start 2.803 0.0069

Table 6. Experimental results statistical analysis. Kruskal-Wallis rank sum test be-
tween the three conditions (saline (C0), muscimol (C1) or saline following muscimol
(C2)) with posthoc pairwise comparisons using Dunn’s-test for multiple comparisons of
independent samples.

We tested the prediction on two female macaque monkeys 487

which have been implanted with two cannula guides into the left 488

and right GPi (see Materials and Methods section for details). 489

In order to inhibit the GPi, we injected bilaterally a GABA ago- 490

nist (muscimol, 1μg) 15 minutes before working session on day 491

1 (C1). The two monkeys were trained for 7 and 5 sessions re- 492

spectively, each session using the same set of stimuli. Results on 493

day 1 shows that animals were unable to choose the best stimulus 494

in such condition from the start (0.433 ±0.236) to the end (0.492 495

±0.250) of the session. Statistical analysis revealed no significant 496

difference between the 10 first and the 10 last trials on day 1. On 497

day 2 (C2), we injected bilaterally a saline solution 15minutes be- 498

fore working session and animals had to perform the exact same 499

protocol as for day 1. Results shows a significant change in behav- 500

ior (see Table 6 and Fig. 8): animals start with an above-chance 501

performance on the first 10 trials (P=0.667 ±0.213), as compared 502

to the start of C1, as compared to the end of C1 and as compared 503

to the start of C0, confirming our hypothesis that the BG has pre- 504

viously learned the value of stimuli. 505

Discussion 506

Covert learning in the BG 507

These results reinforce the classical idea that the basal ganglia 508

architecture is based on an actor critic architecture where the 509

dopamine serves as a reinforcement signal. However, the pro- 510

posed model goes beyond this classical hypothesis and proposes 511

a more general view on the role of the BG in behaviour and the 512

entanglement with the cortex. Our results, both theoretical and 513

experimental, suggest that the critic part of the BG extends its 514

role beyond the basal ganglia andmakes it de facto a central com- 515

ponent in behavior that can evaluate any action, independently 516

of their origin. This hypothesis is very congruent with the results 517

introduced in Charlesworth, Warren, and Brainard (2012) where 518

authors show that the anterior forebrain pathway in Bengalese 519

finches contributes to skill learning even when it is blocked and 520
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Figure 8. Theoretical and experimental results. Histograms show themean performance at the start and the end of a session in day 1 and day 2 conditions for both themodel (A)
and the monkeys (B). At the start of day 2, the performance for both the model and the monkeys is significantly higher compared to the start and end of day 1, suggesting some
covert learning occurred during day 1 even though performances are random during day 1. C Individual trials (n=2x60) for all the sessions (n=12) for the primates. D Individual
trials (n=2x60) for all the sessions (n=12) for the model. A black dot means a successful trial (the best stimulus has been chosen), an outlined white dot means a failed trial (the
best stimulus has not been chosen). Measure of success is independent of the actual reward received after having chosen one of the two stimuli. The bottom part of each panel
shows the mean success rate over a sliding window of ten consecutive trials and averaged across all the sessions. The thick black line is the actual mean and the gray-shaded area
represents the standard deviation (STD) over sessions.
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Figure 9. Model performance during a single session. Filled dots indicate the chosen
cue between A and B. Filled red dots indicate if a reward has been received following
the choice. Reward probability is 0.75 for cue A and 0.25 for cue B. A Intact model (C0).
The BG output drives the decision and evaluates the value of cue A and cue B with a
strong bias in favor of A because this cue is chosen more frequently. In the meantime,
the Hebbian weight relative to this cue is strongly increased while the weight relative
to the other cue doesn’t change significantly. B Lesioned model (C1). The BG output
has been suppressed and decisions are random. Hebbian weights for cue A and cue B
are both increased up to similar values at the end of the session. In the meantime, the
value of cue A and cue B are evaluated within the BG and the random sampling of cue
A and cue B leads to an actual better sampling of value A and B. This is clearly indicated
by the estimated value of B that is very close the theoretical value (0.25).

does not participate in the behavioural performance. This is also521

quite compatible with (Ashby, Turner, & Horvitz, 2010; Hélie,522

Ell, & Ashby, 2015) who propose that the BG is a general purpose523

trainer for cortico-cortical connections. Here, we introduced524

a precise computational model using both reinforcement and525

Hebbian learning, supported by experimental data, that explains526

precisely how this general purpose trainer can be biologically527

implemented.528

529

This can be simply understood by scrutinizing a session in con-530

trol and lesion condition (see Fig. 9). In control condition, the531

model learns to select the best cue thanks to the BG. Because it532

learns what is the best stimulus, this induces a preferential selec-533

tion of the best stimulus in order to obtain a higher probability534

of reward. If the process is repeated over many trials, this leads535

implicitly to an over-representation of the more valuable stimuli536

at the cortical level and since cortex learns with Hebbian learn-537

ing, it is implicitly learned. Said differently, the value of the best538

stimulus has been converted to the temporal domain. In lesion539

condition, the selection is random and each stimulus is roughly540

selected with equal probability and this allows the BG to evaluate541

the value of the two stimuli even more precisely. We believe this542

is the same for the monkeys even though we do not have access543

to internal value and weights. However, we can see on Fig. 10544

that the estimated value of stimuli (computed as the probability545

of reward) reflects the highest value for the best stimulus. Sim-546

ilarly, the number of time a given stimulus has been selected is547

correlated with its actual value even if it is not significant.548
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Figure 10. Monkey performance during a single session. Filled dots indicate the cho-
sen cue betweenA andB. Filled red dots indicate if a reward has been received following
the choice. Reward probability is 0.75 for cue A and 0.25 for cue B. A In saline condition
(C0), themonkey is able to slowly choose for the best cuewith a slight preferences for A
at the end of the 60 trials. Estimation of the perceived value of the two cues shows the
actual value of A is greater than the value of B at the end of the session B In muscimol
condition (C1), the monkey choose cues randomly as indicated by the overall count of
choices A and B. Estimation of the perceived value of the two cues (dashed lines) reveals
a greater estimation of the value of A compared to the value of B.

From action-outcome to stimulus-response 549

These new results, together with our previous results (Piron 550

et al., 2016) shed a new light on a plausible neural mechanism 551

responsible for the gradual mix between an action-outcome 552

behavior and a stimulus-response one. The novelty in our 553

hypothesis is that there is no transfer per se. There is instead a 554

joint combination of the two systems that act and learn together 555

and we tend to disagree with the hypothesis of a hierarchical 556

system (Dezfouli & Balleine, 2013). In our case, the final 557

behavioral decision results from a subtle balance between the 558

two decisions. When a new task needs to be solved, the basal 559

ganglia initially drives the decision because it has initially a faster 560

dynamic. In the meantime, the cortex takes advantage of this 561

driving and gradually learns the decision independently of the 562

reward. We’ve shown how this could be the case for monkeys, 563

even though we lack experimental evidence that the decision in 564

muscimol condition is actually driven by the cortex. The actual 565

combination of the two systems might be more complex than 566

a simple weighted linear combination and this make the study 567

even more difficult to carry on. What we see at the experimental 568

level might the projection of a more complex phenomenon. 569

Persisting in a devaluated task does not mean the system is frozen 570

but the time to come back from a stimulus-response oriented 571

behavior might be simply much longer than the time to initially 572

acquire the behavior. 573

574

Finally, our results suggest a behavioral decision results from 575

both the cooperation (acquisition) and competition (expression) 576

of two distinct but entangled systems. 577
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