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CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch F-67400, France
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The body of vertebrate embryos forms by posterior elongation from a terminal growth zone called
the Tail Bud (TB). The TB produces highly motile cells that eventually constitute the presomitic
mesoderm (PSM), a tissue playing an important role in elongation movements. PSM cells establish
an anterior-posterior cell motility gradient which parallels a gradient associated with the degrada-
tion of a specific cellular signal (Fgf8) known to be implicated in cell motility. Here, we combine
electroporation of fluorescent reporters in the PSM to time-lapse imaging in the chicken embryo to
quantify cell diffusive movements along the motility gradient. We show that simple microscopic and
macroscopic mechano-chemical models for tissue extension that couple Fgf activity, cell motility and
tissue rheology at both the cellular and continuum levels suffice to capture the speed and extent of
elongation. These observations explain how the continuous addition of cells that exhibit a gradual
reduction in motility combined with lateral confinement can be converted into an oriented movement
that drives body elongation. The results of the models compare well with our experimental results,
with implications for other elongation processes in the embryo.
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Most vertebrate species exhibit an elongated body axis. This characteristic pattern is established during embryo-
genesis as the tissues progressively form in an anterior to posterior direction. Microsurgical ablation of the posterior
PSM (which contains the precursors of skeletal muscles and axial skeleton), severely reduces posterior elongation
movements, indicating that this tissue plays a major role in the control of posterior elongation of the embryonic axis
(Fig 1(A,E)). Analysis of cell motility in the chicken embryo PSM [1] shows that there is an antero-posterior gradient
in the activity of cells. However, locally, the motility inside the PSM of chicken and zebrafish embryos is manifested
by random, undirected, Brownian-like cellular motion [1, 13]. These random, diffusive movements contrast with the
oriented cell intercalation movements controlling elongation of the anterior parts of the embryo [13]. Furthermore,
inside the PSM, this gradient is downstream of a gradient of the secreted growth factor Fgf8, as shown schematically
in Fig. 1(A). Fgf8 is known to play an important role in cell motility [6]; indeed, increasing Fgf8 concentration in the
PSM causes cell motility to increase without any orientation preference [1], reducing the speed of elongation. While
earlier qualitative models focused on the role of cell addition at the TB[1], how this motility gradient generates a
driving force in an elongating tissue remains unstudied.

The observation that locally, cell motility is undirected needs to be reconciled with the emergence of oriented cellular
motion and posteriorly-oriented cellular motion leading to body elongation. A potential mechanism for the observed
directional cell velocity is thought to be the inhomogeneous mechanical pressure associated with cellular motility that
leads to the rectification of cell motion and to forces that cause the tissue to elongate. Because the expression of Fgf8
is highest at the posterior PSM, and Fgf8 expression decreases away from it, this leads naturally to a reduction in
motility anteriorly until the effects of adhesion cause the cells to eventually condense into somites. This hypothesis
is consistent with observations of outgrowths in other morphogenetic situations such as in the limb bud [8, 22]. As
new cells enter the PSM they are exposed to a high concentration of Fgf8 and become highly motile, but do not
move in an oriented manner. When combined with the confinement due to the presence of relatively immobile and
stiff lateral tissues [2], this yields an effective pressure that causes the body to extend. As Fgf8 degrades over time,
anteriorly positioned cells move less, before eventually coming to a rest as they aggregate into epithelial somites.
To better understand these processes, here we use quantitative experimental observations to measure the effective
diffusivity of cells as well as their elongational speed as a function of their location relative to the last formed somite.
Our observations suggest a minimal microscopic cellular description of a zone of proliferating cells with high motility
that we use to develop a quantitative cellular model, and an equivalent macroscopic continuum description of body
elongation based on the cellular model and experimental observations. Together, these complementary approaches
yield simple expressions for the speed and scale of body elongation consistent with our experimental measurements,
with implications for our understanding of outgrowth morphogenesis in other settings such as limb and gut formation.

I. EXPERIMENTAL OBSERVATIONS

Our experiments were carried out with chicken embryos at HH stages 10-11 [10], corresponding to the period
when the elongation of the embryo is most substantial [7]. A time-series of an elongating PSM is shown in Fig. 1(B)
(Supp. Movie 1). To measure the elongation rate we register the movement of the embryo with respect to the last
formed somite at the beginning of the experiment as depicted by the black dotted line in Fig. 1(B), and track the
advancement of the Hensen’s node, Le(t) as a function of time. In Fig. 1(C), we see that Le(t) increases linearly with
time, with a mean elongation rate V = (2.8± 0.3)× 10−2 µm/s (averaged from five embryos).

To evaluate the role of cell motility on overall body elongation, we now turn to study the movement of cells by
electroporating the PSM cells with fluorescent reporters specifically labeling cell nuclei (H2B-GFP) [11], as shown
in Fig. 1(D) (Supp. Movie 1). As a first approximation, the motion of the cells can be considered two dimensional
in the antero-posterior and medio-lateral directions because the relative ventro-dorsal depth of the PSM is small.
In the reference frame of the last fixed anterior somite, during a fixed acquisition time of 4 hours, posterior cell
trajectories show a larger net displacement than the anterior ones, consistent with prior experiments [1]. To quantify
the variations of cell motility along the body axis, we first divide the PSM into three regions: anterior, middle and
posterior as shown schematically in Fig. 1(E), and obtain the mean square displacement (MSD) of the cells given by
〈∆r2(t)〉, where ∆~r(t) = ~r(t)− ~r(0) defines the distance that the cell travels in a lag time t, as shown in the inset of
Fig. 1(F) [19, 23]. Decomposing the motion into a random diffusive term and an oriented drift term[17], we write the
MSD as:

〈∆r2(t)〉 = 4Dt+ v2t2. (1)
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FIG. 1. Axis elongation and cell diffusion in chicken embryo. (A) Schematic of an embryo at stage 10 of Hamburger-Hamilton.
Cell motility decreases from posterior to anterior, in correlation with a decrease in the Fgf8 concentration. A gradient of cell
density opposite to the motility gradient is shown in the schematic embryo (in green) (B) Time series of an elongating embryo.
The black dotted line shows the reference point for tracking the posterior elongation. Le(t) is the distance that the Hensen’s
node advances over time. Scale bars represent 200µm. (C) Elongation of the PSM, as a function of time. The slope gives the
average elongation rate V = (2.8± 0.3)× 10−2 µm/s (n=5, mean ± SEM). (D) Electroporated cells inside the PSM. Anterior
cells advance much less than the posterior cells for the same duration of time (here 4 hours). Scale bars are 200µm for whole
PSM and 25µm for zoomed tracks. (E) A schematic of the PSM showing the three regions considered for MSD analysis shown
in (F), as well as the depiction of the neighbouring tissues. New stem cells are generated by division of the progenitor cells
inside the TB, and move into the PSM. The movement of cells in the PSM is limited by the neural tube medially, the somites
anteriorly and the lateral plate laterally. (F) Average MSD for the anterior, middle and posterior PSM. Dashed lines are
adjustments by Eq.1. Inset shows a sketch of random motion.

where D is the effective population diffusivity and v is the local population drift velocity [19]. This model for cell
dynamics is in accordance with previous findings for chicken [1] and zebrafish [13] PSM elongation. Figure 1(F) shows
the mean MSD curves of the three regions (anterior, middle, posterior) defined in Fig. 1(E) and the fit to Eq. 1
(black dashed curve). From the fits we obtain DPost = (3.5± 0.7)× 10−2 µm2/s, DMid = (2.1± 0.4)× 10−2 µm2/s,
DAnt = (1.4 ± 0.3) × 10−2 µm2/s and vPost = (2.0 ± 0.2) × 10−2 µm/s, vMid = (1.1 ± 0.1) × 10−2 µm/s (mean ±
SEM), vAnt = (0.6± 0.1)× 10−2 µm/s. These estimates confirm the presence of a motility gradient of cells along the
AP axis.

All together, our observations quantify how the cells move in space and time along the PSM. When new cells are
added close to the tailbud, they are highly motile but move in random directions. As they move further away from
the zone of proliferation in the TB they gradually slow down and stop moving. We now turn to quantify the gradient
in motility coupled with the confinement provided by the (more rigid) lateral tissues and show that this suffices to
direct cell motility and explain body elongation as a chemo-mechanical process.
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FIG. 2. Microscopic cell-based simulation: (A) Schematic view of the Presomitic mesoderm used as a basis for a cellular
simulation. (B) Yellow and grey spheres represent motile and immotile cells respectively. The green spheres form a connected
wall which represents the tailbud and can move in response to pressure applied by the motile cells. The wall velocity is V and
the size of the cell is a. (C,D) Velocity and motility profiles for different τ values are calculated as in the experiments, by fitting
to Eq. 1. Inset: scaling x by L, 〈v〉 by U and 〈D〉 by D shows that the curves collapse onto each other demonstrating that L is
the relevant length-scale over which cells are motile. Here we express v, D and x in terms of dimensionless units as described
in our simulations (see Materials and Methods). Here we used D = 2.5, k = 100, a = 1 and γ = 50 in the simulation units.

II. MICROSCOPIC CELLULAR MODEL

We start with a simple cellular model built to mimic the experimental observations in a quasi-one dimensional
setting. Our simplifying assumptions, which are used in both cellular and continuum models, are that the width of
the PSM is constant, which is known to be approximately true for the region where cells are motile[2], and that the
cells cannot escape from the PSM owing to the constraints imposed by the somites anteriorly, the lateral plate laterally
and the neural plate medially. The assumption of quasi-one dimensional dynamics is manifested in the simulations by
using periodic boundary conditions in the direction perpendicular to the direction of elongation instead of rigid-walls
and in the fact that the density only depends on the elongation direction, in the continuum model. In the discrete
model, we model individual cells as soft, elastic, disks which move randomly in a manner analogous to a Brownian
particle, recognizing that the cause of random movement is not related to the temperature of the environment but
instead corresponds to the active but random motility of the cell [3, 14]. The equation of motion for a cell with
coordinates ri is:

γ ṙi = −∂U
∂ri

+ ξi(t) (2)

where γ is the viscous friction and we have assumed that inertial effects are negligible, so that we can consider
overdamped motion. The viscous friction is a result of the interaction of cells with the extra-cellular matrix (ECM)).
We assume that there is a short range repulsive interaction between cells of size a to guarantee that two cells cannot
occupy the same position and that the potential is harmonic, being given by:

U(x) =
1

2

∑
j

∑
i 6=j

uij , (3)

uij = k(|xi − xj | − a)2, |xi − xj | < a , (4)

uij = 0 , |xi − xj | ≥ a , (5)
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Note that in our simulations the cell-cell excluded volume interactions are conservative and thus collisions are elastic
but overdamped. The random force ξ(t) is assumed to be zero-mean and normally distributed with Gaussian statistics
so that:

〈ξi(t)〉 = 0 , (6)

〈ξi(t)ξi(t′)〉 = 2Mγδ(t− t′) , (7)

whereM is the single-cell activity/motility. In the following, we will also use a result from statistical physics [12], that
the microscopic diffusivity of a (Brownian) cell is related to the activity by the relation D = M

γ . Using the equations

for the motion of cells, we simulate their dynamics by ensuring that each cell that is injected at the PSM boundary
starts with the same initial activity; at each time step, we turn off the activity (and thus decrease the fraction of
motile cells) with a probability which increases exponentially with time:

Pr = 1− e−t/τ , (8)

where τ is the slowest time scale associated with kinetics of degradation of Fgf8 that initiates once the cell enters the
tailbud. In the following we will assume that for a given simulation, Fgf8 levels and thus τ , are constant, which is
approximately true in the experimental setup for the observed times of 4Hrs. We consider the dynamics of these cells
in a quasi-one-dimensional situation wherein the cells are confined between two rigid lateral walls (we assume that the
lateral plate is relatively stiff [2]), and further limited by the anterior region where the somite are stationary and cells
are non-motile. Since we are interested in the quasi-one dimensional case we use periodic boundary conditions instead
of rigid walls for the lateral plate (in both periodic and rigid boundary conditions cells cannot escape through the
boundaries). At the posterior end corresponding to the tailbud, we assume that cells can move as the body elongates
owing to a constant rate at which they are added in the space that is not occupied by other cells (Fig 2(A,B)). The
motivation for this assumption is the fact that cells are generated when the progenitor cells in the TB divide, enter
the PSM and become motile (Fig 2(A)). The movement of the cells from the PSM to the TB region is limited by the
available space in the PSM (the TB itself is not modeled in our quasi one-dimensional model). Therefore, also in our
model, if there is no free space, no cells are added, so that the rate of adding cells is limited by the motion of the PSM
and the maximal cell packing density ρ0. This implies that cells inside the TB divide in response to cell migration
from the TB to the PSM. While there are no direct evidence for this in embryo elongation, similar behavior was
recently observed in skin tissue [16]. The tailbud boundary is modeled as a wall of immobile cells attached to their
neighbors by elastic springs with spring constants kchain = 2k, and allowed to move posteriorly due to the mechanical
pressure exerted by the motile cells anterior to it. Our simulations show that after an initial transient, the motion
of the wall reaches a steady-state where cells added at a constant rate cause the wall to move at a constant velocity
(Supp. Movie 2). The fraction of motile cells is much larger near the moving wall, and as one moves anteriorly, this
density falls off quickly due to the decrease in the activity of Fgf8. Changing Fgf8 activity by changing τ and thus
varying the probability with which each individual cells stops moving (and thus the total fraction of moving cells),
changes the velocity and motility profiles (see figure 2(C,D)).

To understand these numerical results qualitatively, we note that a new cell can be added at the (moving) boundary
only when there is a gap of order of the size of one cell a (see Fig. 2(B)). This allows us to draw an analogy to the
Brownian ratchet problem which was introduced in the context of polymerization [18]. In the PSM region where the
internal tissue resistance to cell motion dominates any external resistance, as in our simulations, the rate of elongation

is limited by the waiting time for a gap to open that allows for the addition of a cell of size a i.e. Ta ∼ a2

D . Here D
is the activity (diffusivity) of a single cell, which is different than the population-averaged diffusivity of the cells D
(consistent with Eq. 1). In this limit of diffusion-limited elongation (Ta � τ), the speed of elongation scales as a/Ta,
i.e.

V ∼ U =
D
a
. (9)

Similarly, the length scale over which the fraction of motile cells falls off exponentially is

L = Dτ/a . (10)

We note that the other limit, i.e. τ � Ta is tantamount to adding cells that are not active, a situation that will
lead to a jammed state, and thus not relevant here. In Fig. 2(C,D) and insets, we show, by rescaling the velocity,
cell diffusivity and distance, that the observed dependence of the speed of elongation and the effective diffusivity as a
function of location from the wall is consistent with our simple scaling arguments. However, as can be noticed in the
inset of Fig. 2 C, although the wall velocity in our simulations V ∼ D/a, it is much larger than the cell drift velocity
〈v〉. This is because we used large values of the cell diffusivity to speed up our computations.
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III. MACROSCOPIC CONTINUUM THEORY

To complement the statistical model for the population dynamics of cell motility considered in the previous section,
we now turn to an effective macroscopic continuum theory that links the density of motile cells ρ(x, t) and the velocity
field v(x, t) of motile cells as a function of location x in a fixed lab frame, similar to that used to describe the dynamics
of active fluids [15]. A hydrodynamic description of the diffusion, advection and degradation of motile cells can then
be written in terms of the equations for mass and momentum balance as:

ρt + (ρv)x = (Dρx)x −
1

τ
ρ . (11)

σx = (−p+ ηvx)x = ξv , (12)

This first equation describes mass balance for the density of motile cells that moves, diffuses and degrades, while the
second one characterizes how an active pressure generated by the motile cells causes them to exert forces on each
other and thence the tailbud. Here, we have used the simplest linear relation linking the active pressure to the density
of motile cells p ∼ αρ, consistent with the microscopic model with α ∼ M (we have also considered other relations
of the form p ∼ αρq but found that q = 1 provides the best fit to the data and is consistent with simulations of active
Brownian particles[14]), and assumed that η is the viscosity of the fluid of motile cells and ξ is the viscous friction
associated with motion of the elongating tissue relative to the surrounding tissue (endoderm, ectoderm, neural tube
and lateral plate), and finally have neglected any inertial contributions.

To complete the formulation of the problem, we need to specify some boundary conditions for the free-boundary
problem. The position of the tailbud where new cells enter the domain is assumed to be s(t) so that the domain of
interest is x ∈ [s(t),∞). Assuming that motile cells enter the domain at a rate proportional to the difference between
their local density (at the boundary all the cells are motile) and the maximum cell density ρ0, we write the cell flux
as R(ρ0 − ρ(s)). This flux must be balanced by diffusion and advection of cells from the boundary so that

R(ρ0 − ρ(s))|x=s(t) = [−Dρx(s) + ρ(s)ṡ]|x=s(t) . (13)

which is reminiscent of a generalized Stefan-like condition in moving boundary problems in solidification. We also
have to satisfy force balance at the moving boundary so that

[−αρ+ ηvx]|x=s(t) = −F , (14)

where F is the resisting pressure exerted by the tissue ahead of the tailbud, and v(s) = ṡ (in the cellular simulation,
this force is a result of the dynamic friction between the wall cells and the substrate and thus depends on the velocity,
here we assume a more general force). Far from the tailbud, we assume that due to degradation of Fgf8, the density
and velocity of motile cells vanishes so that:

ρ(∞) = 0, v(∞) = 0 . (15)

Together, (11-12) along with the above boundary conditions determine the spatio-temporal evolution of the density
and velocity fields in the elongating embryo as well as the speed of elongation of the embryo itself, which will be found
by solving the equations self-consistently.

In a steady-state, relative to a co-moving frame with an origin attached to the elongating tip, the PSM boundary
is stationary, while the anterior moves at an unknown speed −V . Then we can write Eq. 11-12 at the moving frame,
in which it reduces to:

(v − V )ρx + ρvx = Dρxx −
1

τ
ρ , (16)

−αρx + ηvxx = ξ(v + V ) , (17)

together with the boundary conditions:

R(ρ0 − ρ(0)) = −Dρx(0) + ρ(0)V , (18)

−αρ(0) + ηvx(0) = −F , (19)
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FIG. 3. Macroscopic continuum model (A) Schematic showing half of the PSM in the neighborhood of the tailbud whose
position is s(t).(B,C) Experimentally measured velocity v(x) and diffusivity D(x) profiles (calculated using Eq. [1]) as a function
of distance from the tailbud compares well with the results of our continuum theory obtained by solving Eq. 11-12 for v(x)
and D(x) = Dρ(x)/ρ0 (continuous lines).

ρ(∞) = 0 , (20)

v(∞) = −V . (21)

To understand the dependence of the solution of Eq. (16-21) on the problem parameters, we rewrote the equations
in a form that depends on only five dimensionless parameters that are a combination of the parameters of the problem:

ε =
a2

Dτ
, β =

αρ0
ξD

, ν =
η

ξDτ
, µ =

aR
D
, f =

F

αρ0
. (22)
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Some of these parameters were known and some were obtained by fitting as will be explained below. The first param-
eter, ε = a/L� 1 links the microscopic picture characterized by cell size to the macroscopic picture characterized by
the elongation length scale L = Dτ/a. From the experiments, we find that the measured diffusivity at the tailbud
is D ≈ 0.1 µm2/s, while the typical degradation time-scale was found to be τ ≈ 2 × 104 s. Assuming that a typical
cell size of a ≈ 10µm, we find that ε ∼ 0.05, consistent with our approximation that body elongation is dominated
by the diffusively limited process of adding cells. Using the results of previous measurements of tissue rheology using
a micropipette aspiration technique [9], we estimate the viscosity of the PSM to be of the order of η ∼ 104 Pa · s.
We solve the coupled set of nonlinear equations using the MATLAB c© procedure BVP4C to find the velocity V ,
the density of motile cells ρ(x) and velocity v(x) self-consistently. We have found that the best agreement with the
experimental data was obtained for the dimensionless parameters values β ≈ 5000, ν ≈ 2000, µ ≈ 3 and f ≈ 0.001.

In Fig.3 B,C we show the experimentally determined moving average of v and D = Dρ/ρ0 as a function of position
relative to Hensen’s node (see Materials and Methods), showing a continuous decrease of both quantities from posterior
to anterior of the PSM and see that these results for the elongation velocity and effective motility profiles compare
well with our continuum model (given the choice of our dimensionless parameters). Our scaled results in the insets of
Fig. 2C,D show that we can qualitatively capture the dynamics of body elongation driven by gradients in cell activity.
Our calculated profiles for the velocity v(x) and diffusivity D(x) = Dρ(x)/ρ0 show a decaying form suggestive of a
simple exponential law. However, careful consideration of the different terms in Eq. [16-21] shows that while the
diffusive term associated with the density is small, the nonlinearities are not negligible and so our solution for the
density of motile cells (and the velocity) is not quite exponential.

From solving the equations self-consistently we also find that V ≈ 0.03µm/s. We note that f � 1 indicates that
F � αρ0 and thus the pressure resisting the tailbud motion is negligible compared to the pressure exerted by cell
motility. This also means that the elongation process depends quantitatively only on three dimensionless parameters;
the scaled activity β, the scaled addition rate µ and the scaled viscosity ν. When combined with our choices for
the dimensionless parameters, this allows us to estimate the friction coefficient ξ ≈ 0.7 Pa × s/m2, the active stress
αρ0 ≈ 1.323 Pa and the force resisting tailbud elongation F ≈ 1.45× 10−3 Pa. These values can serve as a reference
for future measurements on amniote embryos [21, 24].

IV. DISCUSSION

In vertebrate embryos posterior structures are formed sequentially by a combination of cell proliferation and cell
motility that together leads to body elongation. While it has long been observed that the elongation process involves
the posterior displacement of the tailbud with respect to the head, the physical mechanism that allows for this
elongation process to take place has not been clear. Here we have quantified this process in the context of body
elongation and shown that it occurs as a result of two effects: the addition of motile cells at a boundary (the TB)
that leads to forces generated by the rectification of random cell diffusivity by confinement, yielding a characteristic
velocity scale and length scale. Given that other embryonic outgrowths such as the vertebrate limb bud also exhibits
graded diffusive behavior of its cells downstream of Fgf8 signaling [8], the mechanism we propose for elongation might
be more widely applicable in a variety of different contexts in vertebrate morphogenesis.

V. MATERIALS AND METHODS

A. Chicken embryo preparation and electroporation

Fertilized chicken eggs were obtained from a commercial provider (Les Couvoirs de l’Est, Willgottheim, France)
and incubated at 37◦C in a humidified incubator. After 24 hours, stage 4-5 HH (Hamburger-Hamilton [10]) embryos
were mounted on filter paper and transferred ventral side up to 35 mm agar/albumen petri dishes for injection [4].
The electroporation of the PSM was performed using H2B-mCherry or H2B-Venus nuclear markers as described
previously [1]. Electroporated embryos were returned to incubator and left to grow to 10-11 HH stage before imaging.

B. Time-lapse imaging and track analysis

The imaging procedure used here is similar to previously described procedure [5, 20]. Briefly, the embryos were
transferred to custom made six-well observation chambers containing agar/albumin gel, and positioned ventral side
up. The time-lapse imaging was performed at 37◦C using a motorized upright microscope (Leica DMR, Leica Mi-
crosystems) with a 10x objective (N.A. 0.3) and a CCD digital camera (QImaging Retiga 1300i) at 10 frame/hr rate.
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At each time-point, bright-field and fluorescent images of the embryo were taken at 3 various fields to cover the total
length of the PSM. Post acquisition processing were performed on images as described previously [5, 20] to obtain a
2D time-series. Cell tracking and trajectory analysis was performed on fluorescent images using custom made Matlab
(MathWorks) routines. For each cell trajectory, the MSD is calculated and adjusted with Eq.1 to obtain D and v.
Each data point in Fig.3 is obtained using the Smooth function in Matlab.

C. Simulations

The simulations were performed by discretizing Eq. 2 using the Euler-Maruyama method with a Langevin term and
integrating in time. As usual for this kind of simulations, we use reduced, dimensionless units in which all energies
are given in terms of a typical energy w: E∗ = E/w, all lengths in terms of the typical cell size a, r∗ = r/a and
masses in terms of a mass unit M , m∗ = m/M . Using these fundamental units we can also reduce the temperature

(or motility) T ∗ = kBT/w, time t∗ = t
√
w/M/a, fraction ρ∗ = Na3/V (V is the volume) and any other physical

quantity of interest, where E∗, r∗,m∗, T ∗, t∗ and ρ∗ are all dimensionless.
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