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Abstract 
 
Cancer cells can acquire profound alterations to the structure of their genomes, including 
rearrangements that fuse distant DNA breakpoints. We analyze the distribution of 
somatic rearrangements across the cancer genome, using whole-genome sequencing 
data from 2,693 tumor-normal pairs. We observe substantial variation in the density of 
rearrangement breakpoints, with enrichment in open chromatin and sites with high 
densities of repetitive elements. After accounting for these patterns, we identify 
significantly recurrent breakpoints (SRBs) at 52 loci, including novel SRBs near BRD4 
and AKR1C3. Taking into account both loci fused by a rearrangement, we observe 
different signatures resembling either single breaks followed by strand invasion or two 
separate breaks that become joined. Accounting for these signatures, we identify 90 
pairs of loci that are significantly recurrently juxtaposed (SRJs). SRJs are primarily 
tumor-type specific and tend to involve genes with tissue-specific expression. SRJs were 
frequently associated with disruption of topology-associated domains, juxtaposition of 
enhancer elements, and increased expression of neighboring genes. Lastly, we find that 
the power to detect SRJs decreases for short rearrangements, and that reliable 
detection of all driver SRJs will require whole-genome sequencing data from an order of 
magnitude more cancer samples than currently available. 
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Introduction 
 
 Rearrangements can substantially alter the structure and function of the genome 
and underlie many strongly oncogenic driver alterations in cancer1. A single 
rearrangement involves both the breaking of DNA and the formation of novel aberrant 
juxtapositions between pairs of genomically distant breakpoints, often affecting large 
stretches of DNA in a single event. Rearrangement topologies may be relatively simple 
(deletions, inversions, duplications or balanced translocations), or highly complex, as in 
the chromosomal shattering of chromothripsis2 or clustered reciprocal rearrangements of 
chromoplexy3. A single rearrangement can generate novel fusion gene products, affect 
gene expression by altering gene copy number (dosage effects), or affect gene 
expression by altering gene regulatory networks in cis4. Cis-regulatory effects of a 
rearrangement can alter expression of genes up to two megabases from the event 
locus5, and the changes in copy-number induced by a single rearrangement can span 
over one hundred megabases. A complete understanding of the landscape of selective 
pressures for rearrangements must therefore account for both loss-of-function and gain-
of-function effects, and the possibility that a single rearrangement can alter two or more 
genes simultaneously6.  

Whole-genome sequencing data are required to detect rearrangements genome-
wide, as the vast majority of rearrangement breakpoints lie outside of exons. As such, 
large pan-cancer rearrangement analyses have been limited by the relatively small 
numbers of cancers profiled by whole-genome sequencing. However, several questions 
are often more easily addressed in pan-cancer analyses, due to the size of the datasets 
involved and the ability to compare data from different cancer types 
(https://doi.org/10.1101/162784). 

Here we assess rearrangements across 2,693 cancer whole-genomes from 30 
histological subtypes as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG). 
We identify genome-wide patterns that both predict the distribution of breakpoints and 
rearrangements and inform the mechanisms by which they are formed. Accounting for 
these patterns, we discover significantly recurrent breakpoints (SRBs) and significantly 
recurrent juxtapositions (SRJs) between pairs of loci brought together by a 
rearrangement. These recurrent events include both known and novel candidate drivers 
and are associated with substantial changes in gene expression. We further find that the 
recurrent SRJs, more than other types of somatic genetic events, are strongly 
associated with cell-of-origin, suggesting that SRJs are shaped by the epigenetic state of 
the cell. Finally, we calculate the statistical power required to identify SRJs. We show 
that this is highly dependent on the genomic distance between the two breakpoints of a 
rearrangement, and find that, when taking into account all distances, we are 
substantially underpowered to detect important events. 

Results 

 

Rearrangement density along the genome is determined most strongly by 
chromatin structure and sequence features 

 

We analyzed 292,253 high-confidence somatic rearrangements (584,506 
breakpoints) in 2,693 cancer-whole genomes across 30 histological cancer subtypes as 
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part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) of the International 
Cancer Genome Consortium (ICGC) (Supp. Note; Supp. Figs. 1-3). The effects of each 
of these rearrangements may derive primarily from the disruption of genomic locations of 
one or both of their breakpoints (such as disruption of a tumor suppressor) or may result 
from the generation of a novel juxtaposition between loci due to reorganization of the 
genome, as in the case of BRAF-KIAA1549 fusions. We therefore analyzed both where 
breakpoints tended to occur (the one-dimensional analysis) and which pairs of loci 
tended to be juxtaposed (the two-dimensional analysis; Fig. 1a). 

Sources of variation in the 1D and 2D rearrangement densities could be from 
mechanistic biases towards rearrangements involving certain genomic loci, or from 
selective pressures that lead to enrichment of specific rearrangements among cancers. 
We first evaluated genome-wide patterns suggestive of mechanistic pressures and then 
identified specific loci where rearrangements were significantly enriched. This provided a 
catalog of candidate driver SRBs in the 1D analysis and SRJs in the 2D analysis events.  

For the 1D analysis, we modeled genome-wide background variations in 
breakpoint density (Fig. 1b, top) using a gamma-Poisson (GP) model7 where DNA 
breaks follow a Poisson distribution that can vary based on local genomic features (see 
Methods; Supp. Fig. 4, 5; Supp. Table 1). We found that the density of short-
interspersed nuclear elements (SINEs), fragile sites, gene expression, replication timing, 
and DNAase hypersensitivity sites were significant predictors of increased breakpoint 
density. Early replication timing, H3K36me3 density, GC content and heterochromatin 
were significantly predictive of decreased breakpoint densities (Ext. Fig. 1).  

For the 2D analysis, we determined how the density of rearrangements between 
any two loci (Fig. 1b, bottom) varied with the genomic distance between those loci (the 
rearrangement’s “span”), the breakpoint density and sequence features of the two loci, 
and rearrangement topology.  

Most rearrangements are short. Between 2 Kbp to 20 Mbp, the frequency of 
rearrangements is approximately inversely proportional to the rearrangement span (Fig. 
2a), and the probability density drops by four orders of magnitude over this distance. 
This is similar to the global contact probability as a function of genomic distance 
determined by Hi-C mapping of non-cancer genomes8, and distributions of lengths for 
somatic copy-number alterations in cancer9,10. Rearrangements also tend to stay within 
the same topologically associated domain (TAD; Fig. 2b), supporting the role of three-
dimensional chromatin organization in partner selection9,11. 

The rate of rearrangements between any two loci is highly correlated with the 
rate at which each locus connects to other genomic loci (after controlling for 
rearrangement span; p < 10-10 for all spans; Supp. Fig. 6). For example, frequent 
rearrangements at chromosome 12 reflect juxtapositions to loci across the genome (Fig. 
1b).  

Rearrangements with high junction microhomology are substantially enriched in 
the cancer genome. Overall, for rearrangements with junction microhomology between 3 
and 10 bp, each additional base of microhomology is associated with an approximately 
two-fold reduction in the number of rearrangements observed (Fig. 2c), a slower drop 
rate than the approximately four-fold reduction expected by chance12. We suspect that 
many of these rearrangements are due to microhomology-mediated end-joining (MMEJ); 
the effect of additional base-pairing on MMEJ has been confirmed in budding yeast13. 
For rearrangements with longer microhomology (>11 bases), we find each additional 
base of microhomology is associated with only a 7% decrease in the number of 
rearrangements observed. This transition may reflect a shift to single-strand annealing 
(SSA). In yeast, the transition from MMEJ to SSA appears to occur at 12-13 bp13. 

Although rearrangements with high microhomology are enriched, as much as 
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70% of somatic rearrangements in our cohort are likely to be non-microhomology 
mediated. We determined this number by assuming that repair mechanisms that are not 
microhomology-mediated generate a random distribution of observed lengths of 
microhomology12 (Ext. Fig. 2). 

We next compared microhomology levels across topologies, using the 
topological classification from Li et al (https://doi.org/10.1101/181339). We distinguished 
single, “isolated” rearrangements that were distant from other rearrangements from 
clusters of multiple “linked” rearrangements that represented more complex events. 

Among rearrangements with low microhomology (≤11 bp), isolated rearrangements tend 
to be short, whereas linked events tend to be long (Fig. 2d). Both isolated and linked 
rearrangements with high microhomology (>11 bp) are enriched with short events. The 
relationship between complex rearrangement topology and non-homologous or 
microhomology-mediated repair processes has been proposed in the context of 
chromothripsis2 and DNA replication mechanisms14 and may explain some of this 
observed bias. 

We also observed significant enrichments for rearrangements connecting two 
genes and rearrangements connecting two repetitive elements, particularly for 
rearrangements connecting either two different long-terminal repeat (LTR) transposons 
or short-interspersed nuclear elements (SINE; Fig. 2e; Ext. Fig. 3; Supp. Fig. 6). 
Repetitive elements are sources of instability in the genome, and neighboring Alu 
elements have been reported to be sites of frequent recombination in the human 
genome15,16. Rearrangements joining repetitive elements from the same family exhibited 
significantly higher junction microhomology than rearrangements with only a single 
breakpoint within a repetitive element (Fig. 2f), suggesting that the former are enriched 
due to microhomology-mediated repair. 

We used this information to develop two mathematically simple background 
models for the 2D analysis (Ext. Fig. 4; see Methods) that explicitly account for both the 
span distribution and the frequency with which each locus suffers rearrangements. The 
first model hypothesizes that the background probability that loci i and j will be 
juxtaposed is pa

ij = qisij + qjsji, where qi is the marginal probability of a rearrangement 
initiated in locus i and sij is the conditional probability that a break at i will connect to site 
j. This “break-invasion” model is reminiscent of mechanisms like non-allelic homologous 
recombination (NAHR), which involve a break in one locus followed by invasion into 
another17. The second model hypothesizes the background probability pij

b = ririlij, where 
ri, rj are the breakpoint densities and lij is a length factor connecting i and j. This “double-
break join” model is reminiscent of non-homologous end joining (NHEJ) or MMEJ18, 
which involve separate breaks in two loci with an erroneous join. 
 The extent to which different classes of rearrangements fit either model therefore 
indicates the physical process that generated those rearrangements. We tested 
rearrangements stratified by level of homology, topology, and span (Fig. 2g). 
Rearrangements with no junction homology (<2 bp) show preference for the double-
break join model, but rearrangements with increasing homology show increasing 
likelihood to be represented by the break-invasion model. Rearrangements whose 
junctions included an insertion longer than 10 bp (independent of junction homology), a 
characteristic often attributed to microhomology-mediated break-induced replication 
(MMBIR)19, were 10% more likely to fit the break-invasion model (p<10-4). Simple 
rearrangements tended to fit the break-invasion model whereas complex events tended 
to fit the double-break join model (p<10-4). Rearrangements shorter than 1 Mbp tended 
to fit the break-invasion model, whereas longer and interchromosomal rearrangements 
tended to fit the double-break join model (p<10-4 in all cases). 
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Significantly recurrent breakpoints reflect multiple selective processes 
 

The 1D analysis identified 52 loci where breakpoints were observed at rates 
significantly above the predictions of the background model, covering 38 Mbp or 1.2% of 
the genome (Supp. Table 2). The median size of a locus was 501 Kbp (s.d. 794 Kbp). 
Among the 2,693 genomes, 1,524 (57%) contained at least one SRB. The most 
significantly altered loci were sites of oncogenic fusions and regions surrounding 
recurrent somatic copy-number alterations (SCNAs), including a small number of fragile 
sites. From the top twenty recurrent loci, (Fig. 3a), five contained genes that are 
recurrently amplified (TERT, ERBB2, VMP1/MIR-21, CCND1, MDM2), four overlapped 
recurrent deletions of known tumor suppressors (CDKN2A, PTEN, TP53, RB1), seven 
contained genes involved in known oncogenic fusions (TMPRSS2, ERG, BRAF, IGH, 
KIAA1549, BCL2, RUNX1), and four involved genes at known fragile sites (FHIT, 
WWOX, LSAMP, PTPRD). Most SRBs were observed across several tissue types, but 
several of the known oncogenic fusions were identified in only a single tissue type. 

The rearrangements at the most significant loci exhibited two broad patterns 
(Ext. Fig. 5). In the first, the rearrangement breakpoints were clustered at one end, but 
the partner breakpoints were widely dispersed. These were largely associated with 
recurrent SCNAs. The second pattern involved rearrangements where both breakpoints 
were tightly clustered, resulting in oncogenic fusions. 

With these patterns in mind, we developed a simple metric to quantify how tightly 
breakpoints cluster within each locus, to better group loci by their potential functional 
effects. For each locus, we calculated a “rearrangement dispersion-score” (RD-score) as 
the median absolute deviation of the distance between breakpoints, normalized by the 
median distance between breakpoints. The RD-scores of the 52 SRBs exhibited a 
bimodal pattern with a local minimum at 0.075. Nine loci had RD-scores below 0.075, 
with each locus containing genes involved in known oncogenic gene-gene fusions (e.g. 
IGH). We therefore classified these loci as “fusion-type” (Fig. 3b). The other 43 loci had 
RD-scores above this threshold and were associated with recurrent SCNAs and novel 
loci. 

Among SCNAs, a major difficulty has been distinguishing recurrent alterations 
that are primarily driven by genome fragility from those resulting from positive 
selection10,20. We sought to improve this distinction by taking into account the 
rearrangements that generate these SCNAs. Fragile sites are thought to be generated 
from replication errors, and are associated with late-replicating21 and low gene-density 
regions of the genome10. We therefore scored the non-fusion loci by their gene density 
and replication timing, and found that the loci clustered into two distinct groups (Fig. 3c). 
The late-replicating, low gene-density group comprised nine loci, including each of the 
four known fragile sites among the top twenty loci. We therefore term these “fragile type” 
events. The remaining 34 non-fusion loci included known driver SCNAs and several loci 
not currently known to be altered by recurrent SCNAs. We therefore segregated these 
remaining 34 loci into those with significantly elevated copy-number (‘amplifications’, 
n=20), those with significantly decreased copy-number (‘deletions’, n=9), and copy-
neutral events (n=5) (Fig. 3d; Supp. Table 2). 

Although both fragile type and deletion events were associated with copy-loss, 
they appear to have different functional consequences. In particular, the rearrangements 
in more than one third of the deletion clusters were associated with biallelic inactivation 
of known tumor suppressor genes, whereas only 20% of rearrangements in fragile type 
clusters were (p<0.001; Fig. 3e).  

The five rearrangement classes (fusions, fragile, deletions, neutral, 
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amplifications) also had varied impact on the expression of genes in the immediate 
vicinity of their breakpoints. For each class, we compared the distance from the SRB to 
the gene with the most altered expression in the rearranged tumors, within a 1 Mbp 
window. Fusion-type clusters had the shortest distance to the nearest tissue-specific 
enhancer (Fig. 3f), and the change in expression of the most expression-altered gene 
was significantly greater than for deletions, neutral loci, fragile sites, and random non-
significant breakpoints (p<0.05 in all cases; Fig. 3g). Of the three cluster types, fragile 
clusters displayed the weakest correlations with expression of neighboring genes, in 
agreement with the hypothesis that these are often passenger events that are not under 
selection20.  

Many of the SRBs indicate novel and potentially functionally relevant events. For 
example, we observed recurrent deletions on chromosome 19 just upstream of BRD4 
and NOTCH3, which were significantly enriched for rearrangements in ovarian (10 
tumors, p < 10-8) and breast (6 tumors, p < 0.006) adenocarcinomas (Fig. 3h). BRD4 is 
a chromatin regulator and a candidate target of BET-bromodomain inhibitor therapy in 
several cancer types22,23, including ovarian and triple-negative breast cancer24,25. 
NOTCH3 is located 36 Kbp away from BRD4 and its activation may play a role in 
ovarian cancer26–28. The rearrangements in this locus tended to create tightly clustered 
<50 Kbp deletions near the BRD4 promoter in both ovarian and breast 
adenocarcinomas. These rearrangements also tend to occur in cancers with 
amplifications of BRD4 and NOTCH3 (Fig. 3i), but are highly focal and do not contribute 
to those amplifications. Ovarian cancers, but not breast cancers, with these 
rearrangements had slightly increased expression of NOTCH3, consistent with its 
amplified state (Fig. 3j). However, BRD4 expression was significantly decreased in the 
breast tumors and exhibited no change in the ovarian tumors, despite having increased 
copy-number in both tumor types. These findings, coupled with the expected result of 
disrupting the BRD4 promoter, raise the possibility that this cluster of rearrangements 
reduces BRD4 expression in cancers where it would otherwise have been 
overexpressed. Overexpression of BRD4 has previously been found to suppress cell 
growth29. Deletions of promoters to prevent gene overexpression in the context of 
amplification has to the best of our knowledge not previously been reported in cancer. 

 
 
Significantly recurrent juxtapositions exhibit tissue-specific effects on expression 

 
The 2D analysis (see Methods) identified 90 SRJs (juxtaposition clusters that 

were significantly enriched above expected rates; Supp. Table 4). Among the 30 most 
significant SRJs (Fig. 4a), 12 correspond to known oncogenic SRJs as curated by the 
COSMIC database (http://cancer.sanger.ac.uk/cosmic). An additional two clusters have 
been recently described to be oncogenic: a recurrent t(2;7) translocation between 
THADA and IGF2BP3 in thyroid adenocarcinoma30 (in all cases we list the 5’ end of the 
SRJ first) and a recurrent t(22;23) translocation between BEND2 and EWSR1 in 
pancreatic endocrine tumors31. The sixteen remaining clusters include five with a known 
driver gene in the COSMIC cancer gene census (MDM2, EGFR, TERT, ROS1, ERCC5). 
Eight loci (TMPRSS2, ERG, ROBO2, BRAF, TERT, BASP1, NEDD4L, and IGH) were 
involved in more than one SRJ, a significantly higher number than would be expected by 
randomly choosing from all loci genome-wide (p < 10-4, permutation test), indicating 
different SRJs often share common molecular targets.  

Strikingly, nine of the ten most significant clusters comprise rearrangements from 
only a single cancer type. This restriction to individual cancer types seems to be specific 
to SRJs and contrasts with the other two major modes of somatic genetic alteration: 
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copy-number alteration and single nucleotide variation, where the 10 most significant 
SCNAs and SNVs were each observed in an average of 11.9 and 6.7 cancer types, 
respectively (Supp. Table 5).  

The finding that SRJs tend to be cancer-type restricted indicates that they are 
uniquely shaped by the epigenetic state of the cells in which they are observed. The 
epigenetic features that lead to this tissue specificity could favor mechanisms that 
generate specific rearrangements (e.g. due to varying three-dimensional organization of 
DNA among tissues) and/or tissue-specific selection pressures (e.g. differences in the 
transcriptional effects of the rearrangement or selective advantage for lineage-specific 
oncogenes)32,33. We hypothesized that the SRJs underwent positive selection in large 
part due to tissue-specific effects on expression of proto-oncogenes4,34.  

We found three pieces of evidence that, as a rule, SRJs are enriched for their 
tissue-specific effects on expression of one of the rearrangement partners. First, 
rearrangements involved in SRJs lead to significant overexpression of one 
rearrangement partner relative to randomly selected rearrangements (Fig. 4b left panel, 
p<10-4). Second, the rearrangement partner that is not overexpressed in the rearranged 
samples tends to have high expression levels in that tissue relative to other tissue types, 
suggesting that the rearrangement brings tissue-specific regulatory elements associated 
with this gene to its partner (Fig. 4b right panel, p<2e-9). Third, the distance to the 
nearest tissue-specific enhancers is smaller for SRJs than for rearrangements overall 
(Ext. Fig. 6, p<1e-6). 

In many cases, the selective pressures favoring SRJs also involve generation of 
novel protein coding sequences (including truncated and chimeric proteins). To some 
extent, this is expected: 33% of the mappable genome is covered by introns and exons, 
so a randomly placed rearrangement has a 56% chance of having at least one 
breakpoint fall within an intron or exon, and indeed 56% of all rearrangements do so. 
However, the rate is higher among SRJs, for which 68% have at least one breakpoint 
within an intron or an exon (p < 10-7).  

However, the generation of novel protein coding sequences is not a general 
feature of SRJs. Only eleven of the 30 most significant SRJs generate novel protein 
coding sequences in all affected samples. An additional six exhibit a mix of protein-
disruptive and nondisruptive rearrangements (Fig. 4a), but the protein-disruptive 
rearrangements in these six cases always occur within the first two introns of the 
disrupted gene, which can leave most of the affected protein intact35. Moreover, SRJs 
that generate novel proteins exhibit similar changes in expression to those that do not 
generate novel proteins (p=0.4; Fig. 4c), suggesting that altering gene expression is a 
function of both classes of SRJs. 

The effects of SRJs are exemplified by the most significant cluster without a 
known COSMIC fusion: t(2;7) translocations between THADA and IGF2BP3 in five 
thyroid cancers. In all five cases, the rearrangements connected THADA, truncated 
between introns 27 and 32, to a region just upstream of IGF2BP3 on chromosome 7, 
always in the sense direction (Ext. Fig. 7a). Although not described in COSMIC, 
THADA-IGF2BP3 fusions were recently shown30 to lead to IGF2BP3 overexpression, 
promoting transformation. In our analysis, IGF2BP3 was the most highly overexpressed 
gene in samples with THADA-IGF2BP3 fusions, possibly because THADA has the 
highest tissue-specific expression in normal thyroid tissue (Ext. Fig. 7b). THADA-
IGF2BP3 juxtapositions were also mutually exclusive with rearrangements involving RET 
and other mutational driver events in thyroid cancers (e.g. BRAF; Ext. Fig. 7c), and 
were anticorrelated with RET expression (Ext. Fig. 7d).  

The finding that juxtapositions tend to be tissue-specific does not imply that the 
oncogenes they generate are tissue-specific. For example, we found two novel SRJs 
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involving TERT. TERT is known to undergo recurrent amplifications in 14 cancer types36, 
recurrent promoter mutations in over 50 cancer types37, and promoter rearrangements in 
16 cancer types38. In our analysis, we identify significant juxtapositions between the 
TERT promoter region and BASP1 in 4 melanomas (p<10-7) and between the TERT 
promoter region and NDUFC2 in two melanomas and one medulloblastoma (p<10-8). 
Among melanomas, these rearrangements are mutually exclusive to the C225T and 
C250T TERT promoter mutations (p<10-3, Fig. 4d). Examination of the TERT-BASP1 
cluster indicates that in all four samples the rearrangement is part of a complex event 
resulting both in focal gains of TERT and what appears as a relocation of enhancers in 
and adjacent to BASP1 to the TERT promoter region (Fig. 4e). Similarly, the TERT-
NDUFC2 rearrangements in the two melanoma samples result in both focal amplification 
of TERT and relocation of enhancers within a TAD containing NDUFC2 and ALG8 to just 
upstream of TERT (Ext. Fig. 8c).  

Most SRJs were identified in only two or three samples, but even at this level of 
recurrence were highly significant. For example, we identified a translocation between 
EGFR on chromosome 7 and a locus adjacent to KL and STARD13 on chromosome 13 
in two esophageal adenocarcinomas and one glioblastoma (Fig. 4f). The likelihood of 
such narrow specific sites on two different chromosomes being connected in three 
different samples is less than 10-8. Additional features of these rearrangements support 
an oncogenic role. First, in all three samples these rearrangements appear to contribute 
to focal amplifications of EGFR. Second, EGFR was overexpressed beyond the 
expected level based upon its copy-number status in the glioblastoma sample (the only 
one with RNA-seq data; Fig. 4g), suggesting the rearrangement juxtaposed active 
regulatory elements to EGFR. Third, such regulatory elements seem to be active in 
esophageal tissue, where STARD13 has somewhat higher expression than in most 
other tissues (Fig. 4g). Fourth, the glioblastoma sample with RNA-seq data exhibited 
low expression of KL and STARD13 relative to other glioblastomas39. Both of these 
genes have been proposed to act as tumor suppressors40. A second example is a 
translocation connecting a region between KITLG and TMTC3 on chromosome 12 with a 
locus just downstream of ITFG1 on chromosome 16, in two leiomyosarcomas (Fig. 4h). 
Again, the likelihood of such specific regions on two different chromosomes being 
connected in even two samples is less than 10-8. Both of these samples show 
overexpression of ITFG1, a conserved transmembrane protein that may interact with the 
PP2A pathway and play a role in cell adhesion41,42 (Fig 4i). Both TMTC3 and KITLG 
have high expression in normal fibroblast tissue (z-score > 3; Fig. 4i) and harbor an 
enhancer rich genomic region, suggesting that the overexpression of ITFG1 may be due 
to the relocation of enhancers to its promoter region. 

 
 
TAD-disrupting rearrangements increase expression of neighboring genes more 
than TAD-preserving rearrangements and reveal novel oncogenic events  
 

We further investigated the effects of rearrangements on expression by 
examining their interaction with TAD structure. TAD boundaries form functional barriers 
separating enhancer-promoter interactions43,44, and rearrangement-mediated TAD 
disruption can lead to activation of oncogenes4. For this reason, relative to TAD-
preserving rearrangements, TAD-disrupting rearrangements have been proposed to 
have a larger impact on gene expression45. However, there has been no systematic 
investigation of such effects.  

We therefore assessed the impact of rearrangements on gene expression, 
segregating rearrangements according to their spans and whether they disrupt nearby 
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TADs on gene expression. We used CESAM, an analytical framework that we recently 
developed to integrate breakpoints with gene expression data and tissue-specific 
enhancer maps, to identify rearrangements associated with enhancer hijacking4,34. We 
found that TAD-disrupting rearrangements had a significant positive effect on gene 
expression compared with TAD-preserving rearrangements (p<0.001). We also found 
that this difference was most pronounced for rearrangements of 100-400 Kbp and 
became insignificant for >500 Kbp rearrangements (Fig. 5a). 

We also performed a systematic search for specific rearrangements that disrupt 
TAD structures and are associated with strong (more than two-fold) changes in 
expression of nearby genes. We applied CESAM to TAD-bound breakpoint clusters for 
six sets of tumor samples, grouped by cell of origin (endoderm, mesoderm, ectoderm, 
neural crest, gastrointestinal and female urogenital organs) and evaluated all TADs for 
which at least three samples exhibited intra-TAD breakpoints and for which gene 
expression data were available. 

Out of a total of 605 TAD-bound regions with sufficient data for CESAM analysis, 
we identified 190 TAD-bound regions whose disruption was associated with significant 
dysregulation of at least one gene (177 exhibiting upregulation and 13 downregulation; 
Supp. Tables 3 and 6). These included all 7 of the 54 SRBs and all 7 of the 90 SRJs for 
which we had sufficient number of samples with expression data to perform these 
analyses. Among these, 37 genes were classified as cis-activating events associated 
with enhancer juxtaposition. Many of the genes for which rearrangements were 
associated with upregulated gene expression were known oncogenes, including BCL2, 
MYC, TERT, and IGF2BP3 (noted above). 

Across the cell-of-origin groups, between 7% and 45% of affected TADs were 
associated with dysregulated gene expression, with tumors of neural crest and 
gastrointestinal origin displaying the highest proportions. The most highly upregulated 
CESAM hit associated with cis-regulatory rearrangement was a previously identified 
enhancer-hijacking event leading to IGF2 upregulation4 in gastrointestinal tissues 
(mRNA expression 39-fold upregulated).  

Several breakpoint clusters associated with robust expression alteration in cis 
could not be ascribed to previously described cancer gene loci. For example, we 
observed a breakpoint cluster at 10p15 (chr10:4.8 - 5.2 Mb), detected both in the 1D and 
TAD-bound CESAM analysis, which was associated with greater than two-fold 
upregulation of three AKR1C genes (AKR1C1, AKR1C2, and AKR1C3) within 11 Kbp of 
the breakpoint in seven lung squamous cell and two liver cancers (Fig. 5c). All 
breakpoints coincided with a cluster of lineage-specific enhancers at the locus, 
suggesting that the rearrangements may alter promoter-enhancer interactions at the 
locus to activate gene expression. Integration with chromatin conformation data revealed 
the AKR1C-family activating breakpoints to intersect with an insulated neighborhood46, 
which are three-dimensional topological structures that have been suggested to contain 
and ‘shield’ hard-wired enhancer-promoter interactions. All three AKR1C genes are 
within this insulated neighborhood and exhibited dysregulated expression in samples 
with these rearrangements. AKR1C proteins are aldo/keto reductases and involved in 
maintenance of steroid homeostasis. Ectopic expression of AKR1C genes can transform 
cell lines in vitro and germline mutations have been linked to increased susceptibility to 
lung cancer47,48.  

We also identified an interesting pattern of rearrangements near DSG3, leading 
to upregulation in 13 breast cancer samples. Whereas the DSG3 gene is situated at a 
TAD boundary, the rearrangements clustered inside this TAD, up to 2 Mbp away from 
the gene locus (Fig. 5d and Supp. Table 3). suggesting that these rearrangements 
perturb the TAD structure to activate DSG3 gene expression. DSG3 is involved in cell-

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/187609doi: bioRxiv preprint 

https://doi.org/10.1101/187609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

cell adhesion and has previously been implicated has a putative oncogene with a role in 
augmenting cell migration and invasion49,50, but the mechanism of upregulation has not 
been previously determined. 

Larger cohorts are required to detect SJRs that recur in up to 20% of cancers 
within individual tissue types 

 
A central question in cancer genome discovery is how many samples need to be 

analyzed to detect recurrent driver events. We calculated the number of samples 
needed to obtain 90% power to detect SRJs as a function of the rate above background 
at which those SRJs recur and the distance between their breakpoints.  

We first noted that more samples are required to detect short SRJs than long 
ones (Fig. 6a) due to the higher background rate (‘noise’) of the short events. For 
example, to detect a 100 Kbp SRJ that recurs in 0.5% of cancer samples (corresponding 
to 13 or more patients in our cohort) would require almost 3,000 samples--approximately 
the size of our pan-cancer sample set. (Reliable detection of such short SRJs will also 
require analytic improvements; see Methods.) Conversely, a 100 Mbp SRJ that recurs 
in 0.5% of cancers would require only slightly more than 1,000 samples. 

We next integrated across rearrangement spans to determine how many 
samples are necessary to obtain 90% power to detect recurrent fusions across 90% of 
paired loci genome-wide (Fig. 6b, see Methods). We found that our pan-cancer analysis 
of 2,693 samples is limited to detecting rearrangements that recur in approximately 0.4% 
of all cancers.  

However, SRJs tend to be tissue-specific, so we also calculated power using the 
number of samples available for each tissue type. We found that our current dataset, 
comprising 18-317 samples per tissue type (tissues with less than 15 samples were not 
considered), is powered to reliably detect 90% of driver fusions only for fusions that 
recur at a minimum of 2% (in liver cancers) to 21% (bladder cancers) above the 
background rate (Fig. 6b). For most cancer types, we are powered to detect events that 
recur in 5-20% of samples. 

A down-sampling analysis of our data also indicated that we have not yet 
reached power to detect all recurrent driver fusions. When sufficient power is obtained 
(‘saturation’), reducing the number of samples modestly should not reduce the number 
of significant fusions clusters identified. However, when we down-sampled using random 
subsets with varying sample sizes, we found an additional novel SRJ for every additional 
25 samples and no evidence of a plateau at sample numbers near the full dataset (Fig. 
6c). SRJs that recur in greater than 12% of samples in a single tissue type did approach 
saturation, but SRJs that recur in fewer samples did not. For example, reducing the 
number of samples by 14% results in loss of detection of QKI-NTRK2 fusions in pediatric 
gliomas--a potentially therapeutically relevant event51. The finding that low-recurrence 
SRJs are not approaching saturation suggests that adding more samples would uncover 
additional significant events. 

Discussion 
 

The distribution of rearrangements in the cancer genome is shaped by both the 
mechanisms of their formation and the fitness advantages they confer on the cell. Our 
analysis revealed significant predictors of the distribution of rearrangement across the 
genome and identified known and novel rearrangements that recurred more often than 
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expected given these predictions. Many of these recurrent rearrangements are likely 
driver events subject to positive selection, but it is possible some of them reflect 
mechanistic biases we did not account for. Indeed, nine of the SRBs likely reflect fragile 
sites in the genome.  

Achieving a full understanding of the biological effects of recurrent 
rearrangements is complicated by the vast heterogeneity of their structure. We modeled 
rearrangements as both isolated breakpoints and as two-breakpoint juxtapositions. The 
vast majority of somatic rearrangements are in complex linked clusters, often involving 
several chromosomes (Li et al, cosubmission). Explicitly accounting for more complex 
topologies may improve our ability to detect driver rearrangements. Long-range 
connectivity information in the form of long read sequencing52, linked-reads53 and optical 
mapping techniques54 will be particularly useful for unravelling the structure of complex 
rearrangements. Such DNA sequencing should be accompanied by RNA sequencing to 
determine the expression consequences of these events. 

Future efforts should be directed towards generating whole-genome sequencing 
data from many more cancers. The space of possible juxtapositions is the length of the 
genome squared, rather than simply the length of the genome, as is the case for other 
somatic genetic events. Large numbers of observed events are required to fill this space 
to understand the mechanistic biases influencing their distribution. Moreover, positively 
selected juxtapositions tend to be tissue-specific, and these are naturally more difficult to 
detect than alterations which span cancers. Our analysis indicates that we currently 
have sufficient power to detect fusions that recur in greater than 5-10% of cancer 
samples within each tissue type. However, we know that events that recur at lower rates 
can be biologically and clinically significant. For example, ALK-EML4 fusions recur at a 
rate of 1-3% in lung adenocarcinomas (and only one sample in our cohort)55,56. At 
current sample numbers, we appear to be discovering a new novel fusion for every 25 
cancer samples we sequence--a remarkable return on investment. 
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Figure Captions 
 
Figure 1: Analysis overview. a) Schematic indicating rearrangements and 
rearrangement junctions in three hypothetical genomes (top) and the two analysis 
approaches (bottom): the 1D analysis for recurrent breakpoints and the 2D analysis for 
recurrent juxtapositions between pairs of loci. b) The 1D density of breakpoints genome-
wide (top) and 2D density of juxtapositions (bottom) across 2,693 cancer genomes. 

Figure 2: Determinants of the 2D density of rearrangements across the cancer genome. 
a) The distribution of spans (distances between breakpoint; x-axis) for intra-
chromosomal rearrangements, superimposed upon an inverse power law distribution. b) 
Observed (red arrows) and expected distribution of (gray) numbers of rearrangements 
with both breakpoints within the same TAD (topologically associated domain; top)or with 
breakpoints that cross TADs (bottom). The expected distribution is based on permuted 
data. c) The frequency of rearrangements as a function of bases of microhomology. d) 
Enrichment of rearrangements categorized by topology (isolated, left; linked, right) and 
bases of microhomology relative to all rearrangements of similar span, as a function of 
rearrangement span (horizontal axis). e) Fold-enrichment or depletion for 
rearrangements between different elements for nine different genomic relationships, 
compared with the permuted background. Error bars represent 3 standard deviations of 
the fitted background distribution. f) Breakpoint microhomology for rearrangements 
connecting repetitive elements of the same class (green) or rearrangements with only 
one breakpoint in a repetitive element (orange). Comparisons with four stars indicate 
p<0.0001. g) Likelihood that rearrangements were generated by two breaks followed by 
a join, divided by the likelihood they were generated by a single break followed by strand 
invasion, for subsets of rearrangements categorized by levels of homology, topology, 
and distance between breakpoints. Error bars represent one standard deviation 
calculated by the bootstrap method, and stars indicate significant differences from the 
first subgroup of each category (p<0.0001). 

Figure 3: Significantly recurrent breakpoints (SRBs). a) The relative enrichment for 
events per histologic subtype (x-axis) for the top twenty most significantly rearranged loci 
(y-axis) is indicated by the size of the circles displayed. b) Ranking of RD-scores, 
representing the median absolute deviation of the distance between breakpoints relative 
to the median distance between breakpoints, for the 52 loci with SRBs. c) Gene 
densities (x-axis) and replication timing (y-axis) for recurrent breakpoint loci that were 
not classified as fusions. Known fragile sites (green) and driver SCNAs (blue: deletion; 
red: amplification) are annotated for the top 20 loci. d) Classification of recurrent 
breakpoint loci using RD-score, gene density, replication timing, and T/N coverage 
ratios. e) Fraction of recurrent breakpoint loci associated with biallelic inactivation of a 
known tumor suppressor gene. f) Distance in bp to the nearest tissue-specific enhancer 
(y-axis) for each breakpoint class. Dashed grey line represents randomly selected 
breakpoints. g) Expression fold-change (y-axis) for the gene with the most altered 
expression within 1 Mbp of the cluster centroid compared to samples without a 
breakpoint at the cluster locus. Random controls (in dashed boxes) represents randomly 
selected breakpoints. h) SRBs near BRD4 in breast ductal and ovarian 
adenocarcinomas. i) Gene expression in FPKM (y-axis) for BRD4 and NOTCH3 in 
breast and ovarian tumors with (rar-BRD4) and without (nr-BRD4) BRD4 
rearrangements. 
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Figure 4: Significantly recurrent fusions. a) The thirty most significantly recurrently fused 
loci (y-axis), displayed by the relative fraction of events per histological subtype (x-axis). 
Fusion clusters are annotated by whether they are in the COSMIC list of oncogenic 
fusions (left bar, black box if on the list), whether at least one of their breakpoint loci 
overlaps a gene on the COSMIC cancer gene list (center), and whether all (solid black) 
or some (triangle) of the rearrangements within a cluster fall within introns or exons. b) 
Expression correlates for fusions in clusters in the COSMIC list (blue), other clusters 
(red), or not in any cluster (yellow). Displayed on the left is fold expression enrichment of 
the most highly overexpressed gene in the primary locus in cancer samples with these 
fusions relative to cancers of the same histology without the fusion. The primary locus is 
defined as the fusion breakpoint within 100 kb of the gene that is most highly 
overexpressed in samples with the fusion. Displayed on the right is the median 
expression level, in cancer samples of the same tissue type but without the fusion, of the 
gene closest to the partner locus breakpoint. Expression levels for the partner locus 
represent z-scores calculated across all cancers without the fusion. c) Fold expression 
enrichment of the most highly overexpressed gene in the primary locus, for fusions that 
disrupt protein-coding sequences (blue) and fusions that do not (red). d) Comut plot 
indicating TERT promoter mutations and rearrangements across all melanomas in the 
dataset. Promoter mutations and rearrangements were mutually exclusive. e) 
Rearrangements between TERT promoter and BASP1 and MYO10 locus result in focal 
amplification of TERT and relocation of enhancers to its promoter region. f) Recurrent 
translocation between EGFR in chromosome 7 and the KL/STARD13 locus on 
chromosome 13. In all three samples the rearrangement contributed to the amplification 
of EGFR. g) EGFR expression in GBM tumor tissue after adjusting for copy-number (left) 
and KL and STARD13 expression in normal tissues (right). The single sample with the 
rearrangement and expression data showed high EGFR even after copy-number 
adjustment. h) Recurrent translocation in two leiomyosarcomas between a locus 
bordering TMTC3 and KITLG on chromosome 12 and a locus bordering ITFG1 and 
PHKB on chromosome 16. i) Expression of TMTC3 and KITLG in (left) sarcomas with 
and without the rearrangement, and (right) fibroblasts compared to other tissue types. 

Figure 5: Impact and association of rearrangements on gene expression. a) Effects on 
expression (vertical axis) of TAD-disrupting and -preserving rearrangements, as a 
function of their span (horizontal axis). b) Volcano plot of significance (vertical axis) and 
associated gene-expression fold-change (horizontal axis) of CESAM hits for 1D, 2D and 
TAD-bound analyses. c) Schematic of rearrangements in the vicinity of AKR1C genes 
(top), locations of enhancers and TAD domains (middle), and expression of local genes 
(bottom) in samples with and without these rearrangements. d) Schematic of 
rearrangements in the vicinity of DSG genes on chromosome 18 (top), locations of 
enhancers and TAD domains (middle), and expression of local genes (bottom) in 
samples with and without these rearrangements.  

Figure 6: Power and saturation analysis of fusions. a) Number of tumor-normal pairs 
needed to detect fusions with 90% power as a function of the fusion’s span and the rate 
above background at which it recurs. The red asterisks indicate the numbers of samples 
required to detect 100 Kbp and 100 Mbp fusions that recur at 0.5% above their 
background rates. b) Number of samples (y-axis) required to detect 90% of recurrent 
fusions across 90% of pairs of loci, as a function of the median number of 
rearrangements per sample (x-axis) and the rate above background at which the fusion 
recurs (solid lines). The vertical dashed lines represent the median rearrangement rates 
of each cancer type, and the stars on these lines indicate the numbers of whole 
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genomes analyzed for that cancer type. c) Number of significant fusions (y-axis) 
detected after down-sampling the data to various sample sizes (x-axis). Fusions that 
recur at high (>12%) and low (<12%) rates above background are indicated in black and 
red, respectively; their sum is indicated in blue.  

 

Extended Figure Captions 

Extended Figure 1: Genomic covariates predictive of rearrangement breakpoint 
frequency (orange) and SNVs (purple) using a Gamma-Poisson regression model. 
Regression coefficients less than zero predict a lower variant rate, and coefficients 
greater than zero predict a higher rate. The GP model explained 71% of the variability 
for SNVs and 12% for rearrangement breakpoints. 

Extended Figure 2: Genome-wide frequency of different levels of microhomology. Blue 
circles indicate observed data and black line indicates levels of microhomology expected 
by chance in non-microhomology mediated joining. The red region is attributed to NHEJ 
repair while the blue region corresponds to microhomology-mediated repair. 

Extended Figure 3: Enrichment or depletion for rearrangements fusing different 
genomic elements, compared with a permuted background. Enrichment scores near 1.0 
(gray line) match a permuted background. Error bars represent three standard 
deviations. There were an insufficient number of fusions between different fragile sites to 
accurately assess an enrichment score. 

Extended Figure 4: Two models for predicting the background rate of somatic fusions in 
the cancer genome. The break-invasion model (left) describes rearrangements that form 
at one locus (with probability qi) followed by invasion into another locus, with transition 
probability sij. The double-break join model (right) describes rearrangements where both 
breakpoints occur independently (probabilities ri and rj), and then fuse together with a 
factor lij, which is a function of the distance between the breakpoints. b) The frequencies 
of rearrangements as a function of breakpoint densities, relative to model predictions. 
The observed frequencies of rearrangements are shown as a surface while the 
frequency predicted by the two models is indicated by solid blue and gray grids for the 
double-break join and break-invasion models, respectively. The left panel presents 
frequencies of isolated short rearrangements, and the right panel presents frequencies 
of linked inter-chromosomal rearrangements.  

Extended Figure 5: The two broad patterns of rearrangements observed at SRBs. a) 
Sites of recurrent SCNAs, such as CDKN2A, contain rearrangements whose partner loci 
are widely dispersed. b) Sites of recurrent juxtapositions, such as BRAF-KIAA1549, 
contain rearrangements whose partner loci are tightly clustered. 

Extended Figure 6: For SRJs, the distance from the partner site to the nearest 
enhancer is significantly smaller compared to randomly selected breakpoints. 

Extended Figure 7: Recurrent t(2;7) fusions involving THADA and IGF2BP3 in thyroid 
adenocarcinoma. a) Schematic of rearrangement b) Expression of IGF2BP3 in thyroid 
samples with and without the rearrangement. Stars indicate a significant difference 
(p<0.01). c) THADA-IGF2BP3 are mutually exclusive with other known drivers of thyroid 
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cancers, and d) are anticorrelated with RET expression. 

Extended Figure 8: TERT-NDUFC2 fusion in two melanoma samples connecting TERT 
with an enhancer-rich region next to NDUFC2. Both samples also have focal 
amplifications of TERT. 

 

Supplementary Figure Captions 

Supplementary Figure 1: The cohort of cancer genomes included in this study. a) A 
total of 2,693 cancer genomes were included, spanning 37 tumor types. b) Of the 2,693 
donors with whole genome sequencing data, 1,241 had associated RNA-seq data (light 
blue). 
 
Supplementary Figure 2: The merged rearrangement call set. a) Distribution of somatic 
rearrangements by tumor type. b) Comparison of the length of microhomology for 
somatic rearrangements, as called by SvABA (x-axis) and DELLY (y-axis). The area of 
the circle is proportional to the number of calls with a given microhomology. The two 
methods were largely consistent, with a zero-intercept linear model showing a slight 
trend towards higher microhomology calls from SvABA (perfect agreement: 1, observed: 
0.928). c) Distribution of rearrangement call by support variant detection tool. d) 
Correlation between tumor cellularity and number of rearrangements (y-axis), by tumor-
type (x-axis). There was no significant correlation between cellularity and number of 
rearrangements detected. 
 
Supplementary Figure 3: Schematic of the germline CNV and class switch 
recombination filtering on the merged rearrangements calls. a) Germline CNVs identified 
by SvABA and present in 4 or more genomes from the PCAWG cohort were compared 
against the merged somatic rearrangements. Somatic rearrangements where each side 
overlapped the same germline CNV were reclassified as germline CNVs and excluded 
from further analysis. b) Example of filtering class switch recombination rearrangements 
at the IGH@ locus. Rearrangements that begin in IGH@ (purple, portion shown), IGK@ 
or IGL@ and connect to a different locus (e.g. BCL2, portion shown in green) are 
retained. Rearrangements with both breakpoints in the immunoglobulin loci are 
removed. 
 
Supplementary Figure 4: Gamma-Poisson model for identifying signatures of 
mechanism and selection for rearrangement breakpoints. a) Histogram of breakpoint 
counts per 50 Kbp bin (with only one sample-breakpoint per bin). The distribution more 
closely follows a Gamma-Poisson (red) than a Poisson (green). b) Diagram of the full 
breakpoint model (red) and a naïve control with no covariates (green) and a randomized 
control with all covariates but shuffled around the genome (blue). The full model 
produces the highest log-likelihood (y-axis, bar chart), relative to the naïve and random 
models. c) Scaled regression coefficients (x-axis) for the three models using 11 
covariates. Positive coefficients increase the predicted breakpoint count, negative 
coefficients lower the breakpoint count. The naïve model used only the mappability 
covariate. Error bars represent 95% confidence intervals. 

Supplementary Figure 5: Quantile-quantile (QQ) plot of the probability that the 
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breakpoint frequency within each 50 Kbp locus in the genome occurred at the observed 
rate or higher (y-axis) compared against a uniform probability distribution (x-axis). The 
genomic inflation factor (red) for this model was 1.09. An inflation factor much lower than 
or much greater than unity describes a poorly fit model. 
 
Supplementary Figure 6: Regression plots of the relationship between the number of 
rearrangements connecting loci i and j and the breakpoint density at i (excluding 
rearrangements to j). Four distances between i and j are tested: a) span < 5x104 b) 106 < 
span < 5x104 c) span > 106 and d) inter-chromosomal translocations. 
 
Supplementary Figure 7: Permutation model for identifying two-dimensional correlates 
of rearrangements. a) Schematic of the Swap method. A sparse matrix representing 
rearrangements [1] is permuted by swapping the x and y coordinates of two randomly 
selected points, perfectly preserving the breakpoint counts per locus. After a burn-in 
period, swaps that disrupt the rearrangement length distribution are rejected [4]. The full 
permutation scheme is applied N times to create N separate matrices [5]. Connections 
between two loci are represented as areas on the matrix, and rearrangements are tallied 
by their membership in different areas [5]. The histogram of rearrangement tallies (black) 
from the N permuted matrices are compared with the observed tally (red line) [6]. b) 
Euclidean distance between the permuted and empirical rearrangement span 
histograms (y-axis) as a function of the number of swaps (x-axis). After an initial period 
of 5 million swaps for inter-chromosomal translocations (no span dependence), intra-
chromosomal swaps move the span distribution initially away from the observed 
empirical distribution. The swaps are then rejection sampled to accept only those that 
move the span distribution back towards the observed. c) The distribution of fusions in 
the PCAWG cohort (original) compared with the permuted distribution from Swap 
(permuted data). d) Swap results for true SINE elements (left), compared with 
randomized SINE elements (right). e) Same as (d), but restricted to only inter-
chromosomal rearrangements. 

Supplementary Figure 8: Binning scheme for the fusions recurrence analysis. 
Distributions of (left) bins sizes and (right) number of rearrangements per bin. 
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ONLINE METHODS 

Annotation of potential functional effects of rearrangements  

 We annotated the potential functional effects of each rearrangement based on the 
locations and orientations of its breakpoints. Gene definitions for genome build hg19 were 
obtained from the UCSC Table Browser57. Breakpoints were annotated by whether they fell inside 
the body of a gene, and by all of the genes fully or partially contained within 100 Kbp of either 
side of the break. Intergenic breakpoints were annotated with the distance to the nearest gene. 
 Rearrangements were evaluated for whether they could produce a possible in-frame 
sense fusion transcript. The CCDS database58 from hg19 was obtained from the UCSC Table 
Browser. With the CCDS intervals, breakpoints contained within a gene were annotated by which 
intron or exon they overlapped with, and the coding frame (1,2, or 3) of the first exon opposite the 
direction of the breakpoints. Candidate fusions were called as in-frame and sense if 1) the relative 
orientations of the breakpoints and directionality of the gene resulted in a potential sense fusion 
and 2) the two breakpoints we in the same coding frame. 
 
Classification of rearrangements by topology  
 

We classified the rearrangements into topological groups based on their orientations, 
spans, and whether they were significantly closer to neighboring breakpoints than expected by 
chance, potentially indicating a complex rearrangement. A detailed description for this 
classification scheme is described in our companion paper by Li et al. We combined the 
classifications by Li et al into five major groups (complex rearrangement clusters, simple 
deletions, simple inversions, tandem duplications and translocations) and examined their 
distribution across the genome.  
 
Assessing the significance of somatic rearrangement breakpoints  
 
Modeling breakpoint counts with a Gamma-Poisson regression model 
 

To model the background rate of somatic breakpoints, we first established a discrete 
coordinate system on which to evaluate genomic covariates and breakpoint counts. We binned 
the genome into 50 Kbp bins, with 1 Kbp of overlap between bins to reduce edge effects. 
Excluding gaps in the reference genome (hg19) and the sex chromosomes, this produced 50,561 
loci. Complex events with many tightly clustered breakpoints could dominate the breakpoint count 
at a single bin and cause an over-estimation of the prevalence of breakpoints at those loci. To 
account for this, we only considered one breakpoint per donor per locus. After removing locus-
donor duplicates, 336,496 breakpoints (55% of all breakpoints) were counted within our model. 
The number of breakpoints per bin ranged between 0 and 120, with a median of 5.0 and mean of 
6.1. The vast majority of bins (99.0%) of bins contained 20 or fewer breakpoints, and 2.6% 
contained zero breakpoints. 

The detected rate of breakpoints across the genome is also confounded by the mapping 
quality within a locus. Rearrangements in regions that are difficult to align to (e.g. alpha-satellite 
repeats) were rejected by our variant callers, leading to a relative depletion of events in regions 
with low mappability. To control for this effect, we use the concept of “eligible territory” from 
Imielinski et al59, and normalized the breakpoint counts within each locus by the number of bases 
eligible for breakpoint detection. To establish an eligible territory, we used the “universal mask” 
described in Li 201460 and used in Imielinski et al59. Briefly, this mask filters regions of low 
mappability, low complexity and sites of unusually high numbers of aberrant SNV calls from the 
1000 Genomes Project. 

The distribution of breakpoint frequencies per bin was widely over-dispersed (D = 9.12), 
suggesting a Gamma-Poisson (GP) fit to the data (or equivalently, a negative binomial). 
Compared with a Poisson fit, the GP distribution produced a 1.1-fold higher log-likelihood (Supp 
Fig. 4a). We therefore elected to model the breakpoint frequencies using a GP regression model, 
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where the log of the expected value of the breakpoint counts per bin could be modeled as a linear 
combination of genomic covariates within each bin. 

We then applied a GP regression model for breakpoint count data, adapted from the 
model for SNVs and indels from Imielinski et al59, and specified as: 

, 
where wi is the eligible territory of locus i, Bi is the breakpoint count at locus i, xji is the matrix 
describing the values of covariate j at locus i, and (theta) is a single scalar representing the shape 
parameter of the distribution. The regression coefficients (beta) were then found by maximum 
likelihood estimation using MASS::glm.nb in R-3.3.2, which utilizes the NB2 parameterization of 
the GP function. The source code for the GP model is available at 
https://github.com/mskilab/fish.hook. 
 
Genomic covariates that predict breakpoint frequencies 

 
We hypothesized that local sequence features (e.g. density of repetitive elements), 

replication-timing, chromatin state, epigenetic modifications, and other genomic features, could 
be predictive of breakpoints rates within our GP model. We therefore fit our GP model using both 
“interval” covariates that indicate genomic regions (e.g. SINE elements), and “numeric” tracks that 
indicate values (e.g. GC content) associated with genomic regions. To enable direct comparisons 
between different covariates, each covariate was transformed to a z-score, centered at zero, 
using stats::scale (R-3.3.2). The complete list of genomic covariates and their scaled covariate 
scores are for both the breakpoint and SNV models are listed in Supp. Table 1. We evaluated 
the effects of these covariates using three different GP models: the full model with all covariates, 
a naïve model using only the mappability covariate, and a random model using all covariates but 
with permuted annotations of genomic locations for each track. We then calculated the log-
likelihoods of each model using stats::logLik (R-3.3.2), and found that the full model achieved a 
significantly higher log-likelihood than the naïve or random models (Supp. Fig 4b). The random 
model scored very slightly higher than the naïve model, likely due the added degrees of freedom 
and possibility for over-fitting. However, relative to the full model, the difference was small, 
suggesting that the full model has a low degree of over-fitting. The naive and random models 
each explained 0.02% of the variance (Pearson R2) compared to 12% for the full model. 

We note that several factors are limiting the variance explained of the full model. First, 
the training set of the regression model included loci that undergo selection which can not be 
excluded a priori, and therefore inherently limit the variance explained. This is in contrast to SNVs 
were synonymous mutations can be used to construct the background model. Second, in this 
work we study a set of covariates (Supp. Table 1), and it well may be that additional covariates 
and relationships (e.g. non-linear) would result in a better model. Third, heterogeneities in 
breakpoint rates, for example across different cancer types, may require independent treatment 
(addressed by Li et al).  

 
Assessing the significance of loci with high breakpoint rates 
 

We used the full GP model to estimate the background rates for each locus and to 
calculate the probability that ci or more events would be observed at locus i. The count data ci is 
restricted to a non-negative integer, and the probabilities will be a slight over-estimate of the true 
value. To correct for this, we use the procedure employed in Imielinski et al59 to select a random 
probability from a uniform distribution between the probability of observing ci breakpoints and the 
probability of observing ci + 1 breakpoints. To correct for multiple hypothesis testing, we 
calculated the false discovery rate (FDR) using the Benjamini-Hochberg method61. At an FDR 
cutoff of 10%, we observed 206 separate 50 Kbp loci (0.4% of the tested loci) to be significantly 
enriched for breakpoints beyond the predicted rate.  

We next attempted to determine which breakpoints at each locus under positive selection 
were themselves likely driver rearrangements. We noted that the breakpoint counts at many loci 
were dominated by rearrangements from a small subset of tumor types, suggesting that the 
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rearrangements in these tumor types were drivers. Some rearrangements from other tumor types, 
however, would often also be seen at background rates expected for these tumor types. 

We therefore calculated an enrichment p-value (binomial test) that tumor type T was 
enriched at that locus: 

 

 
where k is the number of breakpoints from tumor type T intersecting the locus, n is the total 
number of breakpoints intersecting the locus, and rT is the fraction of breakpoints from tumor type 
T within the entire PCAWG cohort. Using this enrichment score, we considered as driver 
rearrangements only rearrangements from the most enriched tumor-type and any tumor-type x 
with log(px/ptop) < 3. Analysis of the p-values distribution and quantile-quantile plot (Supp. Fig. 6) 
shows a uniform distribution without apparent biases of p-values.  

The 206 significantly recurrent 50 Kbp loci tended to form clusters around a smaller 
number of distinct loci (e.g. around CDKN2A). We therefore merged these clusters together by 
joining significant loci and their intervening regions if they were separated by fewer than 200 Kbp. 
This reduced the 206 recurrent 50 Kbp bins in 52 significantly recurrent loci. 

 
Comparison of recurrent breakpoint loci with significantly recurrent SCNAs and known fusions 
 
 We compared the significantly recurrent breakpoint loci with sites of significantly recurrent 
SCNAs obtained from GISTIC262 analyses and available on 
https://www.synapse.org/#!Synapse:syn8341168 and the COSMIC cancer database curated list of 
gene fusions in cancer (http://cancer.sanger.ac.uk/cosmic/fusion). Recurrent breakpoint loci that 
overlapped a GISTIC peak region (deletion or amplification) from either the pan-cancer 
(all_cancers) analysis or any tumor-type specific analysis were considered as representing a 
recurrent SCNA. Recurrent breakpoint loci among the top twenty (ranked by q-value) were 
labeled according to their overlap with known cancer genes from the COSMIC cancer gene 
census (http://cancer.sanger.ac.uk/census). Recurrent fusions were considered supportive of a 
known fusion if the two loci involved in the recurrent fusion overlapped both genes from an entry 
in the COMIC fusion database.  
 
Classification of rearrangement patterns at sites of recurrent breakpoints 
 
 To predict the functional effects of the recurrent breakpoint loci, we scored each locus 
based on its pattern of rearrangements and genomic covariates. For each rearrangement 
containing a significantly recurrent breakpoint, we calculated the “RD-score”, which we defined as 
the median absolute deviation (MAD) of the breakpoint-breakpoint distance (or 109 for inter-
chromosomal rearrangements) divided by the median breakpoint-breakpoint distance. For inter-
chromosomal rearrangements, we evaluated only rearrangements to the most frequent 
chromosome. Rearrangements at sites of known recurrent oncogenic fusions exhibited low RD-
scores (e.g. IGH-BCL2, RD-score: 0.01), while breakpoints at known fragile and driver SCNA 
sites exhibited a high RD-score. Hartigans’ dip-test (in R v3.3 - diptest::dip.test) supported a non-
unimodal distribution (p = 0.02) with a discriminant of 0.075. The RD-score for all significant loci is 
listed in Supp. Table 2. Recurrent breakpoints with RD < 0.075 were classified as supporting 
fusion-type driver events.  
 For each recurrent breakpoint locus not classified as fragile-type or fusion-type, we 
evaluated whether the breakpoints tended to delete, amplify or leave unchanged (neutral) the 
copy-number state of the adjacent region. For each locus with width Wi, we calculated the mean 
tumor-over-normal coverage ratio from the raw coverage tracks (binned to 2 Kbp). We then 
compared this with the mean tumor-over-normal coverage ratio for the region immediately to the 
left (width Wi) and immediately to the right (width Wi). Regions with significantly higher coverage 
profiles in the target window were classified as amplification-type, while regions with significantly 
lower coverage were classified as deletion-type. 
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Identifying mechanistic factors influencing fusion partner selection 
 

We developed Swap, a non-parametric model for identifying factors that influence the 
frequency with which two genomic locations will be fused (Supp. Fig. 7a). Swap controls for the 
frequency of breaks at a given locus and the span (l) dependence of rearrangements, which 
favors short events by a factor proportional to the inverse of the rearrangement span. Swap is 
available at https://github.com/walaj/ginseng. 

Swap permutes the data by randomly choosing two rearrangements (x1, y1) and (x2, y2), 
with the requirement that they either both represent inter-chromosomal translocations, or both 
represent intra-chromosomal rearrangements. The x and y coordinates are then swapped to 
create the new rearrangements (x1, y2) and (x2, y1). This preserves the total number of 
breakpoints at a given locus (no new x or y coordinates are produced), while randomizing the 
fusions joining two breaks.  

The random swaps tend to change the span distribution from the 1/l distribution towards 
a uniform distribution. To preserve the empirical span distribution, after an initial unconstrained 
set of permutations, Swap only accepts only intra-chromosomal swaps that move towards the 
empirical span distribution. To calculate the difference between the swapped and empirical span 
distributions, we log-transformed the span distributions and created a histogram with 20 equally 
spaced bins in log-space. After each swap we find the Euclidean distance D between the 
observed empirical histogram Hempirical and the histogram Hpermuted from the permuted matrix 
(Supp. Fig. 7b). We continue randomly swapping points until the distance between the permuted 
and the empirical histogram is less than 5%. The final product is a permuted set of 
rearrangements that has the same distribution of spans and breakpoints as the original data 
(Supp. Fig. 7c). 

To test the hypothesis that a rearrangement fuses loci A (e.g. all SINE elements) to loci B 
(e.g. all LINE elements), Swap compares the number of observed A-B fusions with the 
distribution of A-B connections in the collection of randomized matrices. The A-B enrichment or 
depletion factor is the ratio between the observed average number of permuted A-B connections 
(see Supp. Fig. 6). As the number of matrices increases, the distribution of A-B connection tends 
towards a normal distribution. We therefore fit the permuted A-B connection frequencies to a 
normal distribution with the MASS::fitdist package in R-3.3 to obtain confidence intervals at +/- 
1.96 standard deviations from the mean. 

One possible explanation for signal enrichment of fusions between two tracks (or different 
elements within one track) is that the genomic distance between these elements is similar to the 
observed span distribution of the rearrangements. To test whether this was the case, we 
randomized the locations of the SINE elements (SINE-SINE fusions being the most enriched 
signal) and applied Swap using the randomized SINE track. We further ran Swap using only inter-
chromosomal translocations, which removes any possibility of confounding by the rearrangement 
span distribution. We observed no enrichment or depletion for connections between the 
randomized SINE elements, using either the full model or the inter-chromosomal-only model 
(Supp. Fig. 7d). The degree of enrichment for SINE-SINE elements was nearly identical between 
the full model (1.19 fold-enrichment) and the inter-chromosomal only model (1.23 fold-
enrichment). 

Break-invasion and double-break join models 
 

We considered two simple background models based on the span distribution and the 
frequency with which each locus suffers rearrangements. The first model hypothesizes that the 
background probability is ���

�� � ����� � �����, where qi is the marginal probability of a 
rearrangement initiated in locus i and sij is the conditional probability that a break at i will connect 
to site j. Since we cannot distinguish between the start and end sites, we also add the reciprocal 
term, to yield a probability proportional to the local rate of retreatments connecting sites i and j. 
The marginal of the start site, qi, is determined from the empirical breakpoint density, Ri, by 
applying preconditioned conjugate gradient descent optimization to the following problem: 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/187609doi: bioRxiv preprint 

https://doi.org/10.1101/187609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

�� � � �����
�

� ��    	
 
 

� ��

�

� 1 

 
�� � 0     	
  

 
The conditional probability matrix is determined from the empirical span distribution, illustrated in 
Fig. 2a. The second model hypothesizes that the background probability is ���

�� � �������, where ri 
and rj are the breakpoint densities and lij is a span factor connecting sites i and j found by solving 
the following constrained nonlinear optimization problem: 
 

����
�� ������������� � ��
�

�

� 
 

� �����
�

� 1    	
 

The function f transforms the probability matrix to a span distribution function corresponding to 
the empirical distribution, l (Fig. 2a).  

Both of these models have physical interpretations: in the first case, a genomic locus 
undergoes a break followed by invasion into another locus; and in the second case, both genomic 
loci undergo breaks followed by an erroneous join. We therefore termed the first model “break-
invasion” and the second model “double-break join” (Ext. Fig. 4a). These physical interpretations 
are reminiscent of known DNA repair mechanisms. For example, non-allelic homologous 
recombination (NAHR)17 involves strand invasion after an initial break, similar to the physical 
interpretation of the break-invasion model. Conversely, non-homologous end joining (NHEJ) and 
MMEJ18 involve two or more breaks that are fused, similar to the physical interpretation of the 
‘double-break join’ model.  

Each of these models implies different distributions of fusions across the 2D map, 
enabling us to determine which model best fit the fusion patterns we observed. For example, 
simple, short rearrangements fit the probability distribution described by the break-invasion 
model, whereas complex interchromosomal rearrangements fit the distribution described by the 
double-break join model (Ext. Fig. 4b). 
 

Assessing the significance of somatic rearrangement fusions 
 

To construct the probability matrices of the break-invasion, ���
��, and double-break join, 

���
��,models, we divided the genome into bins containing a target of 100 rearrangements per bin. 

To avoid cases in which a cluster of rearrangements is divided into two bins, we imposed a 
minimal distance between breakpoints of 2 Kbp; if a bin boundary falls between two breakpoints 
not meeting this condition the bin is extended until the condition is met. The distribution of bins 
sizes is shown in Supp. Fig. 8a; the median bin size is 467 Kbp. Correspondingly, the distribution 
in the number of breakpoints per bin is shown in Supp. Fig. 8b; the median number is 91. The 
normalized distribution of number of breakpoint is the parameter ri used to construct the two 
models. After binning the genome, we constructed the rearrangement matrix, kij, by assigning 
each rearrangement in our dataset to a tile. Each sample was only allowed to contribute up to 
one rearrangement per tile. 

The overall background rate of events is represented by a linear combination of the 
break-invasion and double-break join models. We defined the local rearrangement probability as 

��� �  �����
�� � �1 � ������

��,where the linear combination is taken over a set of parameters ��. We 
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chose to use the distance between breakpoints as a natural choice for the classifier in this two-

dimensional genomic representation. We divided the 2D space into short (≤1 Mbp), long (>1 

Mbp), and inter-chromosomal translocations, and obtained the values of �� by minimizing the 
Bayesian Inference Criteria (BIC). A list of recurrent rearrangements was then generated by 
calculating a p-value in each tile with a binomial test statistics against kij, followed by control of 
multiple hypotheses using the Benjamini–Hochberg false discovery rate procedure.  

One possibility is that these recurrent juxtapositions were mechanistically rather than 
selectively favored, for instance because they have high rates of microhomology, enabling 
microhomology-mediated repair. In fact, the opposite is true: only 14% of the recurrent fusions 
exhibited more than 2 bases of microhomology, significantly lower than the genome-wide average 
(25%; p<10-4). 

Power calculations 
 

To analyze the number of tumor-normal pairs needed to reach saturation in the detection 
of fusions we employed a binomial power model63. We defined a null distribution, Hnull ~ 
Binomial(N,pnull), where pnull = 1-(1-p90)

m is the probability of a patient having at least one 
rearrangement, p90 , is the 90th percentile value of pij from our background model probabilities, 
and m is the median number of rearrangements per sample. The two-dimensional genomic 
fusions map was divided into 100 x 100 kbp tiles in this power analysis.  

We performed the analysis first as a function of the distance between breakpoints with 
median number of rearrangements per sample of the entire cohort (Fig. 6a). The second analysis 
was performed as a function of the median number of rearrangements per sample, spanning 
values represented by the ICGC histologies with more than 15 samples (Fig. 6b). For each total 
number of tumor-normal pairs, N, the general procedure involved: 1) finding the minimal number 
of patients needed to reach significance level of p < 0.1/(# of tiles) based on Hnull; 2) using this 
value, calculating the minimal rate above background, r, that yields 90% power of the alternative 
distribution, Halt ~ Binomial(N,pnull + r); 3) calculating contour lines of constant value rates above 
background. 
 

CESAM analysis 
 
 CESAM integrates rearrangement-derived breakpoints with RNA-seq data (FPKM-UQ) to 
identify expression changes associated with breakpoints in cis, as previously described 4. In brief, 
normalized RNA-seq expression is regressed on a rearrangement breakpoint matrix, using 
tissue-type, total number of rearrangements and principal components of the breakpoint matrix as 
covariates. Expression data was dosage-adjusted prior to the analysis by normalizing the 
expression level of each gene (FPKM) to the copy number level of the gene in each tumor 
sample. This was done to remove effects due to copy-number dosage effects, i.e. not attributable 
to cis-effects. 

Three types of CESAM analyses were pursued to identify recurrent breakpoints 
associated with expression changes in cis: i) genomic regions of clustered breakpoints (termed 
‘breakpoint_cluster’ in the CESAM analysis), ii) breakpoint fusion regions (termed 
‘fusion_analysis’), and iii) TAD-bound breakpoints separated by germ-layer (termed ‘TAD-
bound’). For each analysis, only regions with at least three tumors having associated RNA-seq 
data. The ‘breakpoint_cluster’ and ‘fusion_analysis’ was performed on the complete pan-cancer 
set and for each histology type separately (annotated e.g. “PCAWG” and “1D_ORGAN_Lymph”, 
respectively in Supp. Table 3 and 6).  

The association between adjusted gene expression changes of CESAM hits with 
breakpoints was assessed by computing the average of copy number-adjusted gene expression 
fold-change for each histology type.  

To assess whether CESAM hits were associated with juxtaposition of normally distant 
enhancer elements, the distant breakpoint of a rearrangement (here defined as the breakpoint 
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most distant to the gene-of-interest) was intersected with tissue-matched enhancer regions 64 with 
a window of +/- 20 Kbp. Significance was assessed by random shuffling of breakpoint positions 
on the mappable genome (alpha<0.1) and annotated as “cis_activating_enhancer” (Supp. Table 
3). 
 

Rearrangement-types and effect on expression, enhancer-distance and TSGs 
 

For each cluster of rearrangements ci, the genomic centroid position of the breakpoints 
was taken and the most deregulated gene within a window of +/- 1 Mbp of the centroid was 
identified. 

To calculate the fold-change expression, for each of ci, with a set of tumor samples 
having a breakpoint at the cluster (denoted SV+) and a set of control samples without a 
breakpoint in the cluster (denoted rearrangement-), expression fold change was calculated as the 
median of the expression of SV+ samples divided by the median of the expression of SV- 
samples. A randomized background set was calculated for each ci by random sampling (n=100) a 
breakpoint from the PCAWG rearrangement set and computing fold-change as above with the 
same set of SV+ and SV- samples.  

The distance to the nearest tissue-specific enhancer was computed as described under 
CESAM analysis. 

Biallelic inactivation was assessed as described in detail in our accompanying PCAWG 
paper (Radhakrishnan et al) by requiring a copy-number loss of one allele and a disruptive 
rearrangement of the other allele. Only curated tumor-suppressor genes were assessed, as 
described in Radhakrishnan et al. Enrichment of biallelic inactivation for each rearrangement 
cluster type was assessed by comparing the frequencies to a permuted set (Fisher’s exact test, 
n=1,000), showing enrichment of biallelic inactivation at DEL-type (p<0.005), NEUTRAL-type 
(p<0.001) and FRAG-type (p<10-13) and depletion of AMP-type (p<10-10) and FUSION-type (p<10-

26) rearrangement clusters. 

Rearrangement span and effect on TADs 
 

The association between rearrangement size, TAD-disruption, and gene expression was 
assessed for TAD-bound CESAM analysis rearrangements. Each rearrangement was associated 
with the gene expression of the most significant CESAM-identified gene and separated into TAD-
disrupting and TAD-preserving. Fold-change expression change was associated with 
rearrangement span (50 Kbp sliding bins with 25 Kbp overlap) with a 2nd order polynomial fit. 

Statistical calculations and software 
 

Statistical calculations for performed using R-3.3.2. Student’s t-test calculations were 
obtained from stats::t.test. Wilcox rank-sum tests were obtained from stats::wilcox.test. The 
Spearman rank correlation coefficients were calculated using stats::cor. The negative binomial 
and Poisson distributions were fit to the breakpoint count histogram using MASS::fitdistr.  
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Extended Figure 3
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Extended Figure 4
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