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Experiments show that evolutionary fitness landscapes can have a rich combinatorial structure due
to epistasis and yet theory assumes that local peaks can be reached quickly. I introduce a distinction
between easy landscapes where local fitness peaks can be found in a moderate number of steps and
hard landscapes where finding evolutionary equilibria requires an infeasible amount of time. Hard
examples exist even among landscapes with no reciprocal sign epistasis; on these, strong selection
weak mutation dynamics cannot find the unique peak in polynomial time. On hard rugged fitness
landscapes, no evolutionary dynamics — even ones that do not follow adaptive paths — can find a local
fitness peak quickly; and the fitness advantage of nearby mutants cannot drop off exponentially fast
but has to follow a power-law that long term evolution experiments have associated with unbounded
growth in fitness. I present candidates for hard landscapes at scales from singles genes, to microbes,
to complex organisms with costly learning (Baldwin effect). Even though hard landscapes are static

and finite, local evolutionary equilibrium cannot be assumed.

Fitness landscapes combine numeric fitnesses and a
mutation-graph into a combinatorially structured ge-
netic space where each vertex is a possible genotype (or
phenotype). The numeric structure is given by a function
that maps each genotype to a fitness; typically represented
as a non-negative real number and having different physical
operationalizations in different experimental systems. The
mutation-graph specifies which genotypes are similar, typi-
cally as edges between any two genotypes that differ in a sin-
gle mutation. We usually imagine fitness landscapes as hills
or mountain ranges, and continue to assume — as Wright [1]
originally did — that on an arbitrary landscape “selection will
easily carry the species to the nearest peak”. A local peak
might not be the tallest in the mountain range, so reaching it
can prevent us from walking uphill to the tallest peak. This
has directed much of the work on fitness landscapes toward
how to avoid these sub-optimal peaks or how a population
might move from one peak to another |1} 2]. But we seldom
consider that even reaching that local peak might be impos-
sible in any reasonable amount of time. Instead, a careful
analysis (formal mathematical proofs for all statements are
available in the supplementary appendix (SA)) shows that it
is more accurate to imagine fitness landscapes as mazes with
the evolutionary equilibria as exits. Evolution cannot see far
in the maze and must rely only on local information. In hard
mazes, we can end up following exponentially long winding
paths to the exit because we cannot spot the shortcuts. Or,
worse yet, the hardest mazes might not have any shortcuts
and even the most clever and farsighted navigator won’t know
how to reach the exit in a feasible amount of time.

Epistasis & semi-smooth landscapes

What makes some fitness landscapes difficult to navigate is
that the effects of mutations at different loci can interact with

each other. Epistasis is a measure of the kind and amount
of inter-loci interactions. If the fitness effect of a mutation
a — A can have a different sign depending on the genetic
background b or B of another locus then these two loci are
said to have sign epistasis (Figure and SA Definition .
If both mutations have one sign on their own, but the op-
posite sign together — either bad + bad = good or good +
good = bad — then the landscape has reciprocal sign epistasis
(35 14]; Figure |1df and SA Definiton . A classic example of
reciprocal sign epistasis is a lock-and-key, changing just one
of the lock or the key breaks the mechanism, but changing
both can be beneficial. Finally, magnitude epistasis (positive
and negative; SA Definition [3)) are inter-loci interactions that
deviate from additivity, but do not change the sign of fitness
effects. This type of epistasis does not change the combinato-
rial structure of the landscape or the computational difficult
of finding equilibra. As such, I treat it simply as a lack of
sign-epistasis.

A landscape without sign epistasis — like the Escherichia
coli B-lactamase fitness landscape measured by Chou et al.
[5] in figure [2a] - is called smooth ([4, [6] and SA [B]), so let’s
call a fitness landscape semi-smooth if it has no reciprocal
sign epistasis. The fitness graphs (|4] and SA E[) of semi-
smooth fitness landscapes are equivalent to acyclic unique
sink orientations previously defined by Szabd & Welzl [7]
for the analysis of simplex algorithms (SA Definition [10| and
Proposition . Since reciprocal sign epistasis is a necessary
condition for multiple peaks (SA Corollary El and Poelwijk
et al. [3]), smooth and semi-smooth fitness landscapes have
a single peak x*. Further, there are short adaptive paths in
both: from any genotype x there always exists some adaptive
path to z* of length equal to the number of loci on which
z and z* differ (SA Theorem [I2). This means that an om-
niscient mutator could always find a short adaptive path to
the peak. But unlike smooth landscapes, in a semi-smooth
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Figure 1: Three different kinds of epistasis possible in fitness graphs. Arrows are directed from lower fitness genotypes
towards mutationally adjacent higher fitness genotypes. Genes a, A and b, B are labeled such that fitness w(AB) > w(ab).
In the center of each graph is a marker for the type of epistasis, the marker’s various rotations & reflections cover the cases
where AB does not have the highest fitness. For this more exhaustive classification and discussion see SA Figure [] and
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landscape not every shortest path is adaptive and not every
adaptive path is short. And since evolution does not have the
foresight of an omniscient mutator, it is important to check
which adaptive path evolutionary dynamics will follow.

When selection is strong and mutation is weak (SSWM
dynamics; introduced by Gillespie [8]), the population can be
represented as a single point on the fitness graph with an evo-
lutionary step corresponding to a selective sweep that moves
the population to a neighbouring genotype with higher fit-
ness. A number of rules have been suggested for which fitter
neighbour will take over the population |9]; the two most com-
mon rules are to select a fitter mutant uniformly at random, or
to select the fittest mutant. All SSWM rules will quickly find
the fitness optimum in a smooth fitness landscape. But there
exist semi-smooth fitness landscapes such that when start-
ing from a random initial genotype, an exponential number
of evolutionary steps will be required for either the random
fitter mutant (|10]; SA Theorem or fittest mutant (SA
Theorems and see Figure [3| for a small example land-
scape on six loci) dynamics to find evolutionary equilibrium.
In other words, even when there is a single peak and adap-
tive paths of minimal length to it, SSWM dynamics can take
exponential time to find that peak.

These results show that combinatorial complexity, with-
out the need for suboptimal local peaks, can be enough to
stop evolution from reaching equilibrium within a reasonable
timescale. Although evolutionary time is long, it is not rea-
sonable to think of it as exponentially long. For example,
exponential search over biallelic genotypes on just 60 loci at
a rate of 1 per second would require more seconds than the
time since the Big Bang. With 360 loci, we wouldn’t finish
even if all the atoms in the universe were searching at that
rate in parallel. Thus, I introduce a distinction between easy
and hard families of fitness landscapes. If we can guarantee
for any landscape in the family that an evolutionary equilib-
ria can be found in a time the scales as a polynomial in the
number of loci — as is the case for smooth fitness landscapes —
then that is an easy family of landscapes. We’ll call a family
of landscapes hard if we can show that the family contains
landscapes where finding an evolutionary equilibrium requires
a super-polynomial amount of time — as I showed above for
semi-smooth fitness landscapes.

Given their exponential size, it is impossible to completely
measure whole fitness landscapes on more than a few nu-
cleotides. But with improvements in high-throughput second-
generation DNA sequencing there is hope to measure local
fitness landscapes of a few mutations away from a wildtype.
Puchta et al. [11] estimated the fitness of 981 single-step mu-
tations of a 333-nucleotide small nucleolar RNA (snoRNA)
gene in yeast. They found no neighbours fitter than the wild
type gene, this suggests that the snoRNA gene’s fitness land-
scape is easy. In constant, Li et al. [12] estimated the fitness
of 207 single-step mutants of a 72-nucleotide transfer RNA
(tRNA) gene, also in yeast, finding two neighbours that are
significantly fitter than the wildtype and a number that are
fitter but only within experimental noise. Thus, the wildtype
tRNA gene is not at a local fitness peak, and suggests this sys-
tem as a candidate for hard fitness landscapes. Both studies
also looked at many 2- and 3-step mutants, and the hard land-
scape of tRNA was measured to have more than 160 cases of
significant sign epistasis [12], with none in the snoRNA land-
scape |11] mirroring the difference between hard semi-smooth
fitness landscapes and easy smooth landscapes.

Rugged landscapes & approximate equilibria

But there exist natural fitness landscapes that are even more
complicated than semi-smooth ones. For example, we know
that they can contain reciprocal sign epistasis like the Lo-
zovsky et al. [13] Plasmodium falciparum dihydrofolate re-
ductase fitness landscape in figure Although there is
not enough data to justify probability distributions over large
landscapes (for discussion, see SA , the biological intu-
ition is that natural landscapes are a little rough and have
multiple peaks. The NK-model is a family of fitness land-
scapes |15, |16] that was introduced to study this ruggedness.
It allows tuning epsitasis: the fitness contribution of each of
the n loci depends not only on its gene, but also on the genes
at up to K other loci (SA Definition [23).

For K > 2, the NK-model has hard fitness landscapes
where from some initial genotypes, any adaptive walk to a
local peak is exponentially long (SA Corollary . On such
landscapes, any adaptive evolutionary dynamic — including,
but not limited to, all the SSWM dynamics we’ve considered
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Figure 2: Two examples of empirical biallelic fitness landscapes on four loci. Arrows are directed from lower fitness
genotypes to higher and evolutionary equilibria are circled. Examples of adaptive dynamics are highlighted with thick black
arrows. Figure based on the E. coli B-lactamase data of Chou et al. [5], is a smooth landscape with no sign epistasis.
Thus, it contains a single optimum (1111). Figureis based on Lozovsky et al. [13]’a P. falciparum dihydrofolate reductase
growth rate data in the absence of pyrimethamine. It has two peaks (0011 & 1111) and both single sign (an example in

yellow; 4) and reciprocal sign epistasis (example in red;+). Based on Szendro et al. [14]’s Figure 1.

so far — requires an exponential number of steps to reach evo-
lutionary equilibrium. Even if an omniscient mutator could
always choose the most clever adaptive single mutation to
arise, the adaptive path would be unbounded over polyno-
mial timescales. The most notable natural candidate for such
a hard case might be the landscapes with unbounded growth
in fitness observed in the E. Coli long-term evolutionary ex-
periment [17] and similar model systems [18]. Current the-
oretical accounts of this rely on models where unbounded
growth is directly built-in and the higher-order combinato-
rial structure of the mutation graph is ignored. Instead, we
can acknowledge combinatorial complexity and explain these
results by recognizing the existence of hard families among
classic models of finite static fitness landscapes.

To better integrate the numeric structure of fitness, con-
sider a genotype z to be at an s-approximate equilibrium [19]
if each of z’s mutational neighbours y have fitness w(y) <
(14 s)w(x) (SA Definition 28). On the hard rough fitness
landscapes above — and also the winding semi-smooth land-
scape dynamics inset of Figure [3] and SA — this selec-
tion coefficient [20] drops off at the slow rate of s(t) ~ 1/t
for fittest mutant dynamics. In fact, if a landscape family’s
smallest possible adaptive fitness step €, is at least an ex-
ponential fraction of the max possible fitness wmax (i.e. if
€w > Wmax/2P°Y M) then fittest mutant dynamics will en-
counter an s-approximate evolutionary equilibrium with mod-
erately small s in a moderate number of mutational steps
(polynomial in n and 1/s; SA Theorem . Thus, on even
the hardest family of landscapes, s(t) can decay as fast as
a power law. However, on hard fitness landscapes, it is not
possible for s(t) to decrease faster. In particular, on hard
fitness landscapes, it is not possible to find an s-approximate
evolutionary equilibrium for very small s in a feasible amount
of time (i.e. not possible in time polynomial in n and In1/s;

SA Corollary or to have s(t) =~ e~* (SA Theorem .

On hard landscapes, the selection coefficient decreases as
a power law and not at the exponential rate that is typical
of equilibration in non-biological systems. Given that s is
defined in the same way as the selection coefficient of popula-
tion genetics [20], these results allow us to link the distinction
between easy and hard fitness landscapes to the rich empir-
ical literature on fitness traces and declining fitness gains in
microbial evolution experiments |18]. In particular, this slow
decay in selection coefficient is consistent with the rule of de-
clining adaptability observed in various microbial long-term
evolution experiments |17, |18, |21], suggesting that at least
some naturally occurring microbial fitness landscapes might
be hard.

Baldwin effect & any evolutionary dynamics

As we move from single genes [11} [12], to microbes 17} 18],
and on to large organisms, a richer space of possible evolu-
tionary dynamics opens up. To capture this rich space of
possibilities, we need to abstract beyond adaptive dynamics
by considering arbitrary mutation operators, demographies,
population structures and selection functions — even ones that
can cross fitness valleys and distribute the population over
many genotypes. To make sure that we’ve considered all pos-
sibilities, I'll model arbitrary evolutionary dynamics as a sub-
set of all polynomial time algorithms. This takes us into the
realm of the computational complexity class of polynomial
local search (PLS; Johnson et al. [22], Roughgarden [23] and
SA@. But even for these most permissive population updat-
ing procedures, evolution will sometimes require an infeasible
amount of time to find a local fitness peak in the NK-model
with K > 2 (SA Theorem [25] and Corollary 27)), or to find an
s-approximate equilibrium for very small s (SA Corollary.
Evolution will be trapped in the maze of hard fitness land-
scapes and not reach anywhere near the ‘exit’ of evolutionary


https://doi.org/10.1101/187682
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/187682; this version posted September 12, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

.. N
*4tesese
HE il

4 6

L
8 10 1z 14

000111

000000

Figure 3: Winding semi-smooth fitness landscape. An example on six loci of the winding semi-smooth fitness landscapes
from SA[C:2Jon which the length of the path followed by fittest-mutant SSWM dynamics scales exponentially with the number
of loci. Here the black arrows are the fittest available mutation, and the adaptive path takes 14 steps to reach the fitness
peak at 000011. For the generalization of this landscape to 2n-loci, it would take 2"+! — 2 steps for fittest mutant dynamics

to reach the fitness peak at (00)"~'11 (SA Theorem . Inset is the selection coefficient (s(t) = maxyen(z,)ufz}

w(y)—w(z).
w(x) ’

SA [D.2) versus mutation step number () for the fittest mutant adaptive path.

equilibrium.

This general result is most relevant to paradoxes like the
Baldwin effect 25]. As Simpson [25] noted: “[c]haracters
individually acquired by members of a group of organisms
may eventually, under the influence of selection, be reinforced
or replaced by similar hereditary character”. For Simpson
this possibility constituted a paradox: if learning does
not enhance individual fitness at equilibrium and would thus
be replaced by simpler non-learning strategies then why do
we observe the costly mechanism and associated errors of in-
dividual learning? Most resolutions of this paradox, explain
the Baldwin effect by focusing on non-static fitness in rapidly
fluctuating environments that are compatible with the speed
of learning but not with evolutionary adaptation. But these
dynamic landscapes are not necessary if we acknowledge the
existence of hard static fitness landscapes. Since learning
is just another polynomial time algorithm then — even if it
can help guide or speed-up evolution — on these hard fitness
landscapes the population will still not be able to find an
evolutionary equilibrium. Without evolutionary equilibrium,
the paradox of costly learning dissolves even in static fitness
landscapes. This suggests that if we want a family of natural
examples of evolution on hard fitness landscapes among more
complex organisms then populations with persistent costly
learning might be good candidates.

It is standard to frame adaptationism as “the claim that
natural selection is the only important cause of the evolution
of most nonmolecular traits and that these traits are locally
optimal” . Here, I showed that these are two indepen-
dent claims. Even if we assume that (1) natural selection
is the dominant cause of evolution then — on hard fitness
landscapes — it does not follow that (2) traits will be locally

optimal. Given the popularity of equilibrium assumptions in
evolutionary biology, I expect that a number of other para-
doxes in addition to the Baldwin effect could be eased by
recognizing the independence of these two claims.

Currently, finding a species away from a local fitness peak
is taken as motivation for further questions on what mech-
anisms cause this discrepancy. In this context, these results
provide a general answer: hard landscapes allow adaptation-
ist accounts for the absence of evolutionary equilibrium even
in experimental models with static environments — like the
tRNA gene in yeast or the long-term evolutionary exper-
iment in E. coli [17]. By treating evolution as an algorithm,
we see that time is a limiting resource even on evolutionary
timescales. These hard landscapes can be finite and decep-
tively simple — having only limited local epistasis or not hav-
ing reciprocal sign-epistasis — and yet allow for unbounded
fitness growth.

But a system found at a local fitness peak — like the
snoRNA gene in yeast — currently merits no further ques-
tions. The results in this report show that establishing evo-
lutionary equilibrium should not be the end of the story. We
need to also explain what mechanisms make the relevant fit-
ness landscapes easy. The tools of theoretical computer sci-
ence allow us to refine our logical characterization of such fit-
ness landscapes to guarantee that local peaks can be found in
polynomial time. For example, we could consider constraints
on the gene-interaction network (SA , or the type of in-
teraction possible between genes to separate easy from
hard landscapes. This opens new avenues for both empirical
and theoretical work.

On easy landscapes, it is reasonable to assume that evo-
lution finds locally well adapted genotypes or phenotypes.
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We can continue to reason from evolutionary equilibria, de-
bate questions of crossing fitness valleys, and seek solutions
to Wright [1]’s problem of “a mechanism by which the species
may continually find its way from lower to higher [local]
peaks”. But with hard landscapes, it is better to think of
evolution as open ended and unbounded. We will have to
switch to a language of “adapting” rather than “adapted”,
reason from disequilibrium, and seek mechanisms by which
the species selects which unbounded adaptive path to follow.
Theoretical computer science and combinatorial optimization
offer us the tools to make rigorous this distinction between
easy and hard fitness landscapes.
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Appendices

In these appendices, I formally define the concepts introduced within the body of the report and prove the theorems on
which the conclusions are based. The structure of the appendices is below:

[A] Formal definitions of fitness functions, fitness landscapes, fitness graphs, and adaptive. I focus specific attention on
epistasis (A.1)) because it can be used to define broad families of landscapes, like:

[B] Smooth fitness landscapes: these are the source of a lot of intuition and early model of fitness landscapes. So, I briefly
remind the reader of important properties of smooth landscapes.

@ Semi-smooth fitness landscapes: these share many properties in common with fitness landscapes, and have a charac-
terization theorem that is structured in a similar was to smooth landscapes. However, computationally semi-smooth
landscapes, unlike smooth ones, can be hard. In subsection [C.1} I use the equivalence of semi-smooth fitness landscapes
and acyclic unique sink orientations of cubes to adapt hardness results from the analysis of simplex algorithms. This
provides hard landscapes for fitter mutant SSWM dynamics. In the subsequent subsections, I show how to construct
hard fitness landscapes for fittest mutant SSWM dynamics from specific start and random start .

NK-model of fitness landscapes: this is a tunable rugged fitness landscape model that — unlike the previous two — can
have many peaks. To analyze this model of landscapes, I review the complexity class PLS, show that the NK-model
is PLS complete for K > 2, and discuss the generality of the results. In subsection I focus on easy instances of
the NK-model and provide an intuition for why assuming simple distributions on fitness landscapes is unreasonable and
might have made the existence of hard families difficult to spot.

A Fitness landscapes, graphs, and adaptive paths

In 1932, Wright introduced the metaphor of a fitness landscape |1]. The landscape is a genetic space where each vertex is
a possible genotype and an edge exists between two vertices if a single mutation transforms the genotype of one vertex into
the other. In the case of a biallelic system we have n loci (positions), at each of which it is possible to have one of two alleles,
thus our space is the n-bit binary strings {0,1}". We could also look at spaces over larger alphabets; for, example 4 letters
for sequence space of DNA, or 20 letters for amino acids; but the biallelic system is sufficiently general for us. A mutation
can flip any loci from one allele to the other, thus two strings =,y € {0,1}" are adjacent if they differ in exactly one bit.
Thus, the landscape is an n-dimensional hypercube with genotypes as vertexes. The last ingredient, fitness, is given by a
function that maps each string to a non-negative real number. For the purposes of this report, the exact fitness values or
their physical interpretations do not matter. Only their rank-ordering matters.

Individual organisms can be thought of as inhabiting the vertexes of the landscape corresponding to their genotype. And
we imagine evolution as generally trying to ‘climb uphill’ on the landscape by moving to vertexes of higher fitness.

Definition 1. In a fitness landscape with fitness f, a path vi...v; is called adaptive if each v;+1 differs from v; by one bit

and f(vit1) > f(vi).

For the most general evolutionary dynamics, the paths taken don’t have to be strictly increasing in fitness; i.e. they don’t
have to necessarily be adaptive. If any evolutionary dynamic produces only adaptive paths, though, then it is called an
adaptive dynamic.

Sometimes it is useful to represent a fitness landscape as a fitness graph by replacing the fitness function by a flow: for
adjacent genotypes in the mutation-graph, direct the edges from the lower to the higher fitness genotype. This results
in a characterization of fitness landscapes of a biallelic system as directed acyclic graphs on {0,1}". Fitness peaks would
correspond to sinks, and adaptive paths to paths that follow the edge directions. I will consider a population at evolutionary
equilibrium if it finds a local peak in the fitness landscape; i.e. sink in the fitness graph. Crona et al. [4] introduced this
representation into theoretical biology, but fitness graphs have been used implicitly in earlier empirical studies of fitness
landscapes |14} [28430]. Using fitness graphs is particularly useful empirically because it is difficult to quantitatively compare
fitnesses across experiments. Although if pairwise competitions are used to build an empricial fitness graph, it is important
to verify that the graph is transitive (acyclic) |31]. In theoretical work, the fitness graph approach has made the proofs
of some classical theorems relating local structure to global properties easier and shifts our attention to global algorithmic
properties of evolution instead of specific numeric properties.

A.1 Epistasis

Epistasis is a measure of the kind and amount of inter-loci interactions. Consider two loci with the first having alleles a or
A, and the second b or B. Assume that the upper-case combination is more fit: i.e. f(ab) < f(AB).

al
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Figure 4: Three different kinds of epistasis possible in fitness graphs: no epistasis (1), sign epistasis (1,%), and reciprocal
sign epistasis (}). Arrows in the fitness graph are directed from lower fitness genotypes towards mutationally adjacent higher
fitness genotypes. In the middle of each fitness graph is a symbol showing the kind (and orientation) of epistasis. Note that
the bottom left (O) and top right (©) fitness graphs violate transitivity.
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Definition 2. Two alleles are non-interacting if the fitness effects are additive and independent of background: f(AB) —
f(aB) = f(Ab) — f(ab), f(AB) — f(Ab) = f(aB) — f(ab).

In magnitude epistasis this additivity is broken, but the signs remain: f(AB) > f(aB) > f(ab) and f(AB) > f(Ab) >
f(adb). The difference between non-interacting alleles and magnitude epistasis is not invariant under rank-order preserving
transformation of the fitness function, thus I will not distinguish between the two types. Throughout the paper, I will use
no epistasis to mean both non-interacting alleles and magnitude epistasis.

Definition 3. If f(AB) > f(aB) > f(ab) and f(AB) > f(Ab) > f(ab) then we will say that there is no epistasis between
those alleles.

A system has sign epistasis if it violates one of the two conditions for magnitude epistasis. For example, if the second locus
is b then the mutation from a to A is not adaptive, but if the second locus is B then the mutation from a to A is adaptive.

Definition 4. Given two loci, if f(AB) > f(aB) > f(ab) > f(Ab) then there is sign epistasis at the first locus.

Finally, a system has reciprocal sign epistasis if both conditions of magnitude epistasis are broken, or if we have sign
epistasis on both loci [32].

Definition 5. Given two loci, if f(AB) > f(ab) but f(ab) > f(Ab) and f(ab) > f(aB) then there is reciprocal sign epistasis
between those two loci.

Figure @visualizes all the fitness graphs on two alleles and categorizes the type of epistasis present.

B Smooth fitness landscapes

If a fitness landscape has no sign epistasis then it is a smooth landscape and has a single peak z* [4, |6]. Every shortest path
from an arbitrary x to z* in the mutation-graph is an adaptive path — a flow in the fitness graph — and every adaptive path
in the fitness graph is a shortest path in the mutation graph [4]. Thus, evolution can quickly find the global optimum in
a smooth fitness landscape, with an adaptive path taking at most n steps: all smooth fitness landscapes are easy. For an
example, see the smooth Escherichia coli B-lactamase fitness landscape measured by Chou et al. |5] in Figure

Proposition 6 ([4, 6]). If there is no sign epistasis in a fitness landscape, then it is called a smooth landscape and has a
single peak x*. FEwvery shortest path (ignoring edge directions) from an arbitrary genotype x to =™ is an adaptive path, and
every adaptive path from x to x* is a shortest path (ignoring edge directions).

C Semi-smooth fitness landscapes

Since a smooth landscape is always easy, let’s introduce the minimal amount of epistasis: sign epistasis, without any reciprocal
sign epistasis.

Definition 7. A semi-smooth fitness landscape on {0,1}" with fitness function f is a fitness landscape that has no reciprocal
sign epistasis. Such a fitness function f is also called semi-smooth.

Given a landscape on n bits, I will use sublandscape spanned by S C [n] to mean a landscape on {0, 1}5 where the indexes
in S can vary but the indexes in [n] — S are fixed according to some string u € {0, 1}[’475‘ Note that the whole landscape
is a sublandscape of itself (taking S = [n]). Reciprocal sign epistasis between bits ¢ and j corresponds to a sublandscape on
{i,j} that has two distinct peaks. Now note a couple of important properties of semi-smooth landscapes:

Proposition 8. If a fitness landscape on {0, 1}" has some sublandscape with more than one distinct peak then it has reciprocal
sign epistasis.

The proof will show that a minimal multi-peak sublandscape must have size 2. I will do this by considering longest walks
in a sublandscape.

Proof. Let’s consider a minimal sublandscape L that has more than one distinct peak: that means that if this sublandscape
is spanned by S (i.e. {0,1}°) then no sublandscape spanned by 7' C S has multiple peaks.

Since L is minimal, its peaks must differ from each other on each bit in S, for if there was a bit 4 € S on which two peaks
agreed then that bit could be fixed to that value and eliminated from S to make a smaller sublandscape spanned by S — {3}
with two peaks. Thus, the minimal multipeak sublandscape has precisely two peaks.

Claim: In a minimal multipeak sublandscape, from each non-peak vertex, there must be a path to each peak.

Let’s prove the claim by contradiction: Consider an arbitrary non-peak vertex x, and suppose it has no path to the z*
peak. Since any path from z in L must terminate at some peak, take the longest path from x to the peak y* that it reaches,
and let y be the last step in that path before the peak. Notice that y must only have one beneficial mutation (on bit ), the
one to the peak. For if it had more than one beneficial mutation, it could take the non-peak step to 3’ and then proceed
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from ¢y’ to y* (z* is not an option by assumption, and there are only two peaks in L) and thus provide a longer path to the

peak. Now consider the landscape on S — {i}, with the ith bit fixed to y;. Since y; is the same as zj (both are opposite of
yi), «* is still a peak over S — {i}, but so is y (since it’s only beneficial mutation was eliminated by fixing 4 to y;). But this
contradicts minimality, so no such x exists.

Now that we know that we can reach each peak from any vertex z, let us again consider the longest path from x to y*
with y as the last step in that path before the peak, and i as the position of the last beneficial mutation. Since all non-peak
vertexes must reach both peaks, there must be some other beneficial mutation j from y to x’ that eventually leads to z*.
But if 2’ is not a peak then it must also have a way to reach y*, but then we could make a longer path, contradicting the
construction of y. Thus 2’ must be the peak x*.

This means that * and y* differ in only the two bits ¢ and j. But in a minimal multipeaked sublandscape they must differ
in all bits, so S = {4, j}; i.e. this sublandscape is an example of reciprocal sign epistasis. O

Corollary 9. A fitness landscape without reciprocal sign epistasis has a unique single peak.
Proof. This follows from the contrapositive of Proposition [8] since the whole landscape is a sublandscape of itself. O

The above theorem can also be restated in the terminology used to analyze simplex algorithms.|7] [10]

Definition 10. A directed acyclic orientation of a hypercube {0, 1}™ is called an acyclic unique sink orientation (AUSO) if
every subcube (face; including the whole cube) has a unique sink.

This makes the contrapositive of Proposition [8|into the following proposition:
Proposition 11. A semi-smooth fitness landscape is an AUSO

Theorem 12. A semi-smooth fitness landscape has a unique fitness peak x* and for any vertexr x in the landscape, there
exists a path of length ||z* @ z||1 (Hamming distance to peak) from x to the peak.

Proof. The unique peak z* is just a restatement of Corollary @ To show that there is always a path of Hamming distance
to the peak, I will show that given an arbitrary x, we can always pick a mutation k that decreases the Hamming distance to
z* by 1.

Let S be the set of indexes that « and «* disagree on, |S| = ||z @ z||:. Consider the sub-landscape on S with the other
bits fixed to what  and z* agree on. In this sublandscape z* is a peak, thus by Proposition [8| z isn’t a peak and must have
some beneficial mutation k € S. This is the k we were looking for. O

Note that this proof specifies an algorithm for constructing a short adaptive walk to the fitness peak z*. However, this
algorithm requires knowing z* ahead of time — i.e. seeing the peak in the distance. But evolution does not know ahead
of time where peaks are, and so cannot carry out this algorithm. Even though a short path to the peak always exists,
evolutionary dynamics might not follow it.

C.1 Hard landscapes for random fitter SSWM

The simplest evolutionary rule to consider is picking a mutation uniformly at random among ones that increase fitness. This
can be restated as picking and following one of the out-edges in the fitness graph at random; i.e. this is equivalent to the
random-edge simplex pivot rule [10]. Proposition allows me to use the hard AUSOs constructed by Matousek & Szabo
[10] as a family of hard semi-smooth landscapes.

Theorem 13 ([10] in biological terminology). There exist semi-smooth fitness landscapes on {0,1}" such that SSWM

—Q(nt Q(nl/3)

dynamics starting from a random vertex, with probability at least 1 — e ) follows an adaptive path of at least e

steps to evolutionary equilibrium.

In other words, multiple peaks — or even reciprocal sign-epistasis — are not required to make a complex fitness landscape.
In fact, AUSOs were developed to capture the idea of a linear function on a polytope (although AUSOs are a slightly bigger
class). It is not surprising to find the simplex algorithm in the context of semi-smooth landscapes, since we can regard it
as a local search algorithm for linear programming where local optimality coincides with global optimality. Linear fitness
functions are usually considered to be some of the simplest landscapes by theoretical biologists; showing that adaptation is
hard on these landscapes (or ones like them) is a surprising result.
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C.2 Construction of hard semi-smooth landscapes for fittest SSWM

One might object to taking random fitter mutants because sometimes the selected mutations are only marginally fitter than
the wildtype. It might seem natural to speed-up evolution by always selecting the fittest possible mutant. Here I show that,
in general, this does not help.

Consider a fitness landscape on {0,1}™ with semi-smooth fitness function f that if started at 0™ will take k steps to reach
its evolutionary equilibrium at z*. I will show how to grow this into a fitness landscape on {0, 1}er2 with semi-smooth
fitness function f’ that if started at 0™ "2 will take 2(k + 1) steps to reach its evolutionary equilibrium at 0™11.

For simplicitly of analysis, let us define the following functions and variables for all points in {0,1}™ that aren’t an
evolutionary equilibrium under f; i.e. all except =*. Let

+ — _
s (w)—QEN(I) ;Itl‘a}((y)>f(z)f(y) f(@) 1)
and
s (x) =

fly) = f(=) (2)

min
yEN(2) s.t. f(z)+sT(2)>f(y)>f(z)

where N(x) are the neighbours of z in the mutation graphs; i.e. genotypes that differ from z in one bit.

Now overload these into constants, as follows: define s* = min, s*(z) and s~ = min, s~ (z). Suppose that f is such that
s~ < sT; otherwise set s~ = s /2 (do this also, if N(z) s.t. f(z) + st (z) > f(y) > f(x) is empty for some non-equilibrium
Let @ y mean the XOR between z and y. Consider the ‘reflected’ function f(z @ z*). Note that if f(z) is semi-smooth
then so is f(z@®x™), since it just relabels the directions of some dimensions. The reflected function preserves all the important
structure. In particular, if under f(z) it took k steps to go from 0™ to ™ then under f(z @ x*) it will take k steps to from
from z* to 0™.

Now define f: {0,1}™"2 — R as:

f(z) ifa=b=0
flz)+s~ ifa#band z # z*

f'(zab) = S f(z*) + s~ ifa=0,b=1and z=2z" 3)
flz®) + st ifa=1,b=0and z =2z~

flz@z™)+ f(z*)+2sT fa=b=1

Basically the 00 subcube is the original landscape, the 10 and x01 subcubes serve as ‘buffers’ to make sure that the walk
doesn’t leave the first subcube before reaching £*00, and the z11 is the original landscape reflected around z* that takes us
from £*11 to 0™11.

Notice, that f’ has the same st and s~ as f.

Now we just need to establish some properties:

Proposition 14. Fittest mutant SSWM dynamics will not leave the {0,1}™00 subcube until reaching x*00.

Proof. By definition, the fittest mutant (i.e. neighbour over {0,1}™) from each genotype = € {0,1}™ that isn’t z* in f, has
a fitness advantage of st or higher. Hence adding two extra edges from 200 to 210 and x01, each with fitness advantage
s~ < s will not change the edge that fittest-mutant SSWM picks. O
Proposition 15. SSWM dynamics will not leave the {0,1}™11 subcube after entering it.

Proof. This is because f’ has strictly greater fitness on the {0,1}"11 subcube than on the other three subcubes. Confirming
this, note that for every z € {0,1}™:

flz®z™) + f(z)+2sT > fla*) + 25T since f is non-negative (4)
> f(z") + st since sT > 0 (5)
> fz")+s™ since s > s~ (6)
> f(x)+s~ since " is fitness peak of f (7
> f(z) since s~ >0 (8)

Proposition 16. If f on {0,1}™ has no reciprocal sign-epistasis then f' on {0,1Y™2 has no reciprocal sign-epistasis.
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Proof. Consider any pair of genes ¢, € [m]. Among these first m genes, depending the last two bits, we are looking
at landscapes on {0,1}™00, {0,1}™01, {0,1}™10, or {0,1}™11, with the fitness given by f(z),f(z) + s~ ,f(x) + s~, or
flx®z*)+ f(x*) +2sT (respectively). All these landscapes have isomorphic combinatorial structure to f and thus the same
kinds of epistasis. Since f has no reciprocal sign-epistasis, all these subcubes lack it, too.

Now, let’s look at the case of where the gene pair goes outside the first m genes. Consider an arbitrary gene i € [m], let
uw € {0,1}1 v € {0,1}™ " be arbitrary. Label a, A € {0, 1} such that f(uav) < f(uAv). look at the subcube u{0, 1}v{0, 1}*:

A01 All

A00 Al0

a0l all

a00 —— > al0

The solid black edges have their directions from the definition of a and A. The red edges have their direction because
st > s~ > 0. The green edges have their direction because of Prop. The direction of the dotted black edge will depend
on if xx contains 0 (point up) or 1 (point down) at position i, but regardless of the direction, no reciprocal sign epistasis is
introduced.

O

Corollary 17. Given f' on {0,1}™"2, the fittest mutant SSWM dynamics starting at 0™ 12 will take 2(k + 1) steps to reach
its unique fitness peak at 0™11.

Proof. By Prop. the walk will first proceed to £*00 taking k steps. From z*00, there are only two adaptive mutations
2*10 or 2*01, and the first is fitter. From z*10 there is only a single adaptive mutation (to £*11), taking us to k + 2 steps.
From z*11, by Prop. it will take us k more steps to reach 0™11; totaling 2(k + 1) steps. O

Theorem 18. There exist semi-smooth fitness landscapes on 2n loci that take 2" — 2 fittest mutant steps to reach their
unique fitness peak at 02" ~V11 when starting from 0°™.

Proof. We will build the family of landscapes inductively using our construction, starting from an initial landscape:

f1(11) =6
f1(10) =4 fi(01) =3
f1(00) =2

The resulting path length T, will be given by the recurrence equation: T,41 = 2T, 4+ 2 with 71 = 2. This recurrence is
solved by T;, = 2"+! — 2.
O
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Call the landscapes constructed as in the above proof, a winding landscapes. A visual example of the winding landscape
construction on 6 loci (n = 3 in Theorem is given in Figure [3| The winding landscapes construction is similar to Horn
et al. [33]’s Root2path construction, except their approach introduced reciprocal sign epistasis despite having a single peak.

Of course, this is an arbitrary initial fitness landscape and any semi-smooth landscape can be used as a starting point;
the walk would still scale exponentially, but there would be a different initial condition. Further, this winding product
construction I showed above is just one example for building families. Many more could be considered.

In particular, if we are interested in larger mutation operators like k-point mutations instead of just 1-point mutations
then it is relatively straightforward to modify the winding landscape construction. As written, equation [3] uses a buffer of
2 bits in f'(xab) to transition from f(z) to its reflection f(z @ z*). In the more general setting, we'd pad the buffer to be
k + 1 bits: define f'(zy) where |y| = k + 1 with a smooth landscape on the y portion of the input taking us from f(z) to its
reflection. Which leaves most of the above arguments unchanged, only modifying Theorem to have the landscape to be
on kn loci and the recurrence relation at the end of the proof to be T, 11 = 2T, + k + 1.

C.3 Hard landscapes from random start

Unfortunately, one might not be impressed by a result that requires starting from a specific genotype like 0™ and ask for
the expected length of the walk starting from a random vertex. Of course, if a genotype on this long walk is chosen as a
starting point then the walk will still be long in most cases. However, there are only 27! — 2 vertexes in the walk, among
227 vertexes total, so the probability of landing on the walk is exponentially small. Instead, I will rely on direct sums of
landscapes and Proposition [[4] to get long expected walks.

Proposition 19. With probability 1/4, a winding landscape on 2n loci will take 2" or more fittest mutant steps to reach the
fitness peak from a starting genotype sampled uniformly at random.

Proof. With probability 1/4, the randomly sampled starting vertex has the form z00 (i.e. its last two bits are 0s). By prop.
the walk can’t leave the {0, 1}2(”71)00 landscape until reaching its peak at 0%("=21100. This might happen quickly, or it
might even already be at that peak. But after, it has to follow the two steps to 0%2("=2)1111 and then due to prop. it will
have to follow the normal long path, taking 2" — 2 more steps. O

Because of the constant probability of an exponentially long walk, we can get a big lower bound on the expected walk
time:

Corollary 20. Fittest mutant dynamics starting from a uniformly random genotype will have an expected walk length greater
than 2"~2 on a 2n-loci winding landscape.

Proof. With probability 1/4, the the walk takes 2™ or more steps, and with probability 3/4 it takes 0 or more steps. Thus
the expected walk length is greater than or equal to (1/4) % 2™ + (3/4) ¥ 0 = 2"~ 2, O

However, 75% of the time, we can’t make a guarantee of long dynamics. We can overcome this limitation by taking direct
sums of landscapes.

Definition 21. Given two fitness landscapes, one with fitness f1 on {0,1}"! and the other with fitness f2 on {0,1}"2, the
direct sum (f1 @ f2) is a landscape with fitness f on {0, 1}"17"2 where f(zy) = fi(z) + f2(y).
log %

Now, for any probability of failure 0 < § <1, let ms = [5—25] (where log is base 2).

Theorem 22. There exist semi-smooth fitness landscapes on 2nms loci that with probability 1 — &, take 2" or more fittest
mutant steps to reach their fitness peak from a starting genotype sampled uniformly at random.

Proof. Consider a landscape that is the direct sum of ms separate 2n-loci winding landscapes. Since each constituent is
semi-smooth and since sums don’t introduce epistasis, the resulting ‘tensor sum’ landscape is also semi-smooth. Further, to
reach its single peak, the walk has to reach the peak of each of the ms independent winding sublandscapes. But as long as
at least one sublandscape has a long walk, we are happy. By prop. we know that for each sublandscape, we will have a
short-walk starting genotype with probability less than 3/4. The probability that none of them get a long walk then is less
than (3/4)™s < 6. O

D NK model with K > 2 is PLS-complete

Definition 23 ([15,]16,[34]). The NK model is a fitness landscape on {0, 1}". The n loci are arranged in a gene-interaction
network where each locus z; is linked to K other loci zi,...,z% and has an associated.ﬁtness contribution function f; :
{0,135t — Ry Given a vertex v € {0,1}", we define the fitness f(z) = Y1, fi(zizh...v%).
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By varying K we can control the amount of epistasis in the landscape. The model also provides an upper bound of n(
on the number of gene pairs that have epistatic interactions.

Weinberger [35] showed that checking if the global optimum in an N K model is greater than some input value V' is N P-
complete for K > 3. Although this implies that finding a global optimum is difficult, it says nothing about local optima. As
such, it has generated little interest among biologists, although it spurred interest as a model in the evolutionary algorithms
literature, leading to a refined proof of N P-completeness for K > 2 [36].

To understand the difficulty of finding items with some local property like being an equilibrium, Johnson, Papadimitrio &
Yannakakis [22] defined the complexity class of polynomial local search (PLS). A problem is in PLS if it can be specified by
three polynomial time algorithms [23]:

)

1. An algorithm I that accepts an instance (like a description of a fitness landscape) and outputs a first candidate to
consider (the initial genotype).

2. An algorithm F' that accepts an instance and a candidate and returns a objective function value (i.e. computes the
fitness).

3. An algorithm M that accepts an instance and a candidate and returns an output with a strictly higher objective function
value, or says that the candidate is a local maximum.

We consider a PLS problem solved if an algorithm can output a locally optimal solution for every instance. This algorithm
does not necessarily have to use I, I', or M or follow adaptive paths. For instance, it can try to uncover hidden structure
from the description of the landscape. A classical example would be the ellipsoid method for linear programming. The
hardest problems in PLS —i.e. ones for which a polynomial time solution could be converted to a solution for any other PLS
problem — are called PLS-complete. It is believed that PLS-complete problems are not solvable in polynomial time, but —
much like the famous P # NP question — this conjecture remains open. Note that finding local optima on fitness landscapes
is an example of a PLS problem, where I is your method for choosing the initial genotype, F' is the fitness function, and M
computes an individual adaptive step.

Definition 24 (Weighted 2SAT). Consider n variables x = z1...z» € {0,1}" and m clauses C1, ..., C», and associated positive
integer weights c1, ...c,,. Each clause Cj contains two literals (a literal is a variable z; or its negation &;), and contributes cx
to the fitness if at least one of the literals is satisfied, and nothing if neither literal is satisfied. The total fitness c¢(x) is the
sum of the individual contributions of the m clauses. Two assignments x and z’ are adjacent if there is exactly one index 4
such that z; # x;. We want to maximize fitness.

The Weighted 2SAT problem is PLS-complete [37]. To show that the NK model is also PLS-complete, I will show how to
reduce any instance of Weighted 2SAT to an instance of the NK model.

Theorem 25. Finding a local optimum in the NK fitness landscape with K > 2 is PLS-complete.

Proof. Consider an instance of Weighted 2SAT with variables z1, ..., xn, clauses C1, ..., Cy, and positive integer costs c1, ..., Cm.-
We will build a landscape with m + n loci, with the first m labeled b1, ..., b,, and the next n labeled x1, ..., z,. Each by will
correspond to a clause Cj, that uses the variables x; and z; (i.e., the first literal is either x; or &; and the second is x; or @j;
set ¢ < j to avoid ambiguity). Define the corresponding fitness effect of the locus as:

c, if Cy is satisfied

0 otherwise

Ji(0zm5) = { 9)

Jr(lzixs) = fe(0ziz;) + 1 (10)

Link the x; arbitrarily (say to (; mod n)+1 a0d Z(;i+1 mod n)+1, OF to nothing at all) with a fitness effect of zero, regardless
of the values.

In any local maximum bz, we have b = 11..1 and f(z) = m + ¢(z). On the subcube with b = 11..1 Weighted 2SAT and
this NK model have the same exact fitness graph structure, and so there is a bijection between their local maxima. O

Assuming — as most computer scientists do — that there exists some problem in PLS not solvable in polynomial time, then
Theorem |25 implies that no matter what mechanistic rule evolution follows (even ones we have not discovered, yet), be it as
simple as SSWM or as complicated as any polynomial time algorithm, there will be NK landscapes with K = 2 such that
evolution will not be able to find a fitness peak efficiently. But if we focus only on rules that follow adaptive paths then we
can strengthen the result:

Corollary 26. There is a constant ¢ > 0 such that, for infinitely many n, there are instances of NK models (with K > 2)
on {0,1}" and initial genotype v such that any adaptive path from v will have to take at least 2°" steps before finding a fitness
peak.
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Proof. If the initial vertex has s = 11...1 then there is a bijection between adaptive paths in the fitness landscape and
any weight-increasing path for optimizing the weighted 2SAT problem. Thus, Schaffer & Yannakakis [37]’s Theorem 5.15
applies. O

This result holds independent of any complexity theoretic assumptions about the relationship between polynomial-time
and PLS. Hence, there are some landscapes and initial genotypes, such that any rule we use for adaptation that only considers
fitter single-gene mutants will take an exponential number of steps to find the local optimum.

If we turn to larger mutational neighbourhoods than singe-gene mutants then — due to the large class of possible adaptive
dynamics — a variant of Corollary [26| will have to be reproved (often using a buffer padding argument similar to the end of
section but Theorem 25| is unaffected:

Corollary 27. For any definition of local equilibrium with respect to a mutation neighbourhood that contains point-mutations
as a subset (i.e. if Vo {y | |ly — z||1 = 1} C N(z)), the NK model with K > 2 is PLS-hard.

Proof. Any mutation operator that is a superset of point-mutations will only decrease the number of evolutionary equilibria
without introducing new ones. Thus, it will only make the task of finding that equilibrium (just as, or) more difficult.
However, since the algorithms studied by PLS do not have to use the mutation operator during their execution, changing it
does not give them any more computational resources. O

Finally, it is important to see the NK-model as an example model, albeit a simple and natural one. If we consider more
complex models of fitness landscapes — say dynamic fitness landscapes — it is often the case that there is some parameter or
limit that produces the special case of a static fitness landscape like the NK-model. In particular, static landscapes are often
a sub-model of dynamic fitness landscapes and thus solving dynamic fitness landscapes can only be more difficult that static
ones.

D.1 Easy instances of NK-model and random fitness landscapes

Note that this doesn’t mean that all instances of the NK-model are hard. In fact, there are natural sub-families of the
NK-model that are easy.

The simplest easy family is K = 0. In that case, the genes are non-interacting and we have a smooth fitness landscapes.
And all smooth landscapes are easy. For K = 1, Wright et al. [36] presented a dynamic programming approach that can
find the global fitness peak in polynomial time. Since we could use this as our algorithm [ to pick the initial genotype, this
means the model cannot be PLS-complete for K < 1 (unless PLS = P, in which case all local search problems are easy).
This means that Theorem [25]is as tight as possible in terms of K.

Alternatively, instead of restricting K, we can restrict how the gene-interaction network is connected. It will come in
useful to visualize these gene-interaction networks by drawing an edge directed from a focal locus to the K loci that affect its
fitness contribution. For example, if the genes can be arranged in a circle and a focal gene can interact with only the next K
genes in the circle then there is a polynomial time dynamic programming algorithm to find an evolutionary equilibrium [36].
Thus, this restricted model cannot be PLS complete for any constant K.

It is an open question if SSWM dynamics — or some other reasonable evolutionary dynamics — is sufficient in the cases of
K =1 and circular arrangements. I conjecture that adaptive dynamics are sufficient in these cases, but proof of this is left
for future work.

The NK model is frequently studied through simulation, or statistical mechanics approaches. In a typical biological
treatment, the gene-interaction network is assumed to be something simple like a generalized cycle (where z; is linked to
Zit1,.--Titk ) or a random K-regular graph. The fitness contributions f; are usually sampled from some choice of distribution.
As such, we can think of biologists as doing average case analysis of these fitness landscapes. Given that randomly sampling
landscapes can introduce structure like short paths [38|, the structure of this simple sampling led prior research to miss
the possibility of exponentially long walks. There has been a disconnect between theory and data [9| 39]. Since there is no
empirical or theoretically sound justification for the choice of distributions, I avoid relying on a simple generating distribution
and instead reason from only the logical description of the model. That way we know that our results are features of the
logic that characterizes a particular family of fitness landscapes and not artifacts of a simple sampling distribution.

If a single sampling distribution is required despite very little or no data on the distribution of fitness landscapes in nature
then it is tempting to turn to Occam’s razor and consider simpler landscapes as more likely. This can be done by sampling
landscapes with negative log probability proportional to their minimum description length, i.e. according to the Kolmogorov
universal distribution. If landscapes are sampled in this way then all the orders of magnitude for hardness results established
herein are expected to hold [40].
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D.2 Approximate equilibria

Finally, let us also consider relaxations of equilibrium, and being “close” to a peak instead of exactly at one. For this, we
need to use the whole numeric structure of the fitness function f and not just the rank-ordering that was sufficient until this
point. The following definitions and proofs are based on combinatorial optimization results by Orlin et al. [19].

Definition 28. A genotype x is at an s-approximate equilibrium if Yy € N(z) f(y) < (1 + s)f(z).

The question becomes how big does s have to be for evolution to find an s-approximate equilibrium. But since there is no
absolute units of fitness, we will need to define fs = min, mingen(a) s.t. fy)>s@) (f(¥) — f(@)) and fmax = max, f(z).
First, it is important to note that all landscapes where fs isn’t small compared to fmax are easy.

Proposition 29. If fiu/fs € O(n*) for some constant k then an exact equilibrium can be found in a polynomial in n
number of mutations by any adaptive dynamic.

Proof. Since each adaptive step increases fitness by at least f5 then after ¢t adaptive steps, we have f(z:) > fst. Combine
this with f(ZL‘t) < fmax to get that ¢ < fmax/fé' -

So, we need to focus on bigger gaps between f5 and fmax. If the gap is exponential then we can find approximate equilibrium
for moderate sized s on any landscape.

Theorem 30. If 1og(fma/f5) € O(n*) then fittest mutant SSWN dynamics can find a local s-approzimate equilibrium in
time polynomial in n and é

Proof. Let zo be the initial genotype, if it is an exact equilibrium then we are done. Otherwise, let 1 be the next adaptive
step, by definition of fs, we have that f(z1) > f(xo)+fs > fs. Now, consider an adaptive path z1...z+ that hasn’t encountered
an s-approximate equilibrium; i.e. a mutation was always available such that f(z;+1) > (1 + s)f(z;). Thus, we have that
(1) < fmax and that f(z;) > (1+5)"f1 > (1 + s)" fs. Putting these two together:

(145)" f5 < frnax (11)
tln(l+s) <lIn fimax (12)

5
¢ < (In f’}‘ax)/ln(l +s) (13)

5
< (141/s)In Lm (14)

fs

Where I used In(1 + s) > 145 in the last step. Combining with the conditions on log fmax/fs, we get: t € O(%) O

But for very small s, finding approximate equilibrium is as hard as finding an exact equilibrium.

Proposition 31. If s < f5/fma then any s-approzimate equilibrium is a (ezact) local equilibrium.

Proof. If an s-approximate equilibrium at z is not an exact equilibrium then there exists a y € N(x) such that f(y)—f(z) > fs
but f(y) < (1 + s)f(z). Combining this with f(x) < fmax, we get that s > f5/ fmax. O

Thus, it isn’t possible to find an s-approximate equilibrium for very small s on hard fitness landscapes:

Corollary 32. If PLS # P and 10g(fmaz/fs5) € O(n*) then (for NK-model with K > 2) a local s-approzimate equilibrium

cannot be found in time polynomial in n and log <.

Proof. If such an algorithm existed then we’d run it with s = f5/ fmax and — by Propositionf the approximate equilibrium
it finds would be exact. Further, in this case log 2 = log(fmax/fs) € O(n*) and thus the runtime would be polynomial in n.
This is not possible for the NK-model with K > 2 by Theorem 25| (unless PLS = P). O

This also means that the selective coefficient of the fittest mutant s(t) = maxyen(z,)ufz,} (f(¥) — f(x¢))/f(x:) cannot
decay exponentially quickly.

Corollary 33. If PLS # P then there are no evolutionary dynamics such that s(t) < e™™" for all instances of the NK-model
with K > 2.
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