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Experiments show that evolutionary fitness landscapes can have a rich combinatorial structure due to
epistasis. For some landscapes, this structure can produce a computational constraint that prevents
evolution from finding local fitness optima – thus overturning the traditional assumption that local
fitness peaks can always be reached quickly if no other evolutionary forces challenge natural selection.
Here, I introduce a distinction between easy landscapes of traditional theory where local fitness
peaks can be found in a moderate number of steps and hard landscapes where finding local optima
requires an infeasible amount of time. Hard examples exist even among landscapes with no reciprocal
sign epistasis; on these semi-smooth fitness landscapes, strong selection weak mutation dynamics
cannot find the unique peak in polynomial time. More generally, on hard rugged fitness landscapes
that include reciprocal sign epistasis, no evolutionary dynamics – even ones that do not follow
adaptive paths – can find a local fitness optimum quickly. Moreover, on hard landscapes, the fitness
advantage of nearby mutants cannot drop off exponentially fast but has to follow a power-law that
long term evolution experiments have associated with unbounded growth in fitness. Unlike prior
examples of evolutionary constraints, this constraint arises solely from natural selection and cannot
be overpowered by other evolutionary forces. Knowing this constraint allows us to use the tools of
theoretical computer science and combinatorial optimization to characterize the fitness landscapes
that we expect to see in nature. I present candidates for hard landscapes at scales from singles genes,
to microbes, to complex organisms with costly learning (Baldwin effect) or maintained cooperation
(Hankshaw effect).

Fitness landscapes combine numeric fitnesses and a
mutation-graph into a combinatorially structured space

where each vertex is a possible genotype (or phenotype). The
numeric structure is given by a function that maps each geno-
type to a fitness; typically represented as a non-negative real
number and having different physical operationalizations in
different experimental systems. The mutation-graph specifies
which genotypes are similar, typically as edges between any
two genotypes that differ in a single mutation. This provides
the combinatorial structure.

We usually imagine fitness landscapes as hills or mountain
ranges, and continue to assume – as Wright [1] originally did
– that on an arbitrary landscape “selection will easily carry
the species to the nearest peak”. For those that view evolu-
tion as a sum of forces, with natural selection being only one
of them, it is possible for other forces to overpower natural
selection and keep the population away from a local fitness
peak. Such cases of maladaptation [2] are usually attributed
to mechanisms like mutation meltdown, mutation bias, re-
combination, genetic constraints due to lack of variation, or
explicit physical or developmental constraints of a particular
physiology. I will refer to such situations, where non-selection
forces (and/or aspects internal to the population) keep the
population from reaching a local fitness peak, as proximal
constraints on evolution. In contrast, a constraint is ultimate
if it is due exclusively to features of the fitness landscape and
is present in the absence of other forces or even holds regard-
less of the strength of other forces. I introduce this distinc-

tion between proximal and ultimate constraints by analogy to
Mayr’s distinction between proximal and ultimate causes in
biology [3]. Mayr considered as ultimate only those evolution-
ary causes that are due exclusively to the historic process of
natural selection [4], so I consider as ultimate only those evo-
lutionary constraints that are due exclusively to the structure
of natural selection.

One candidate for an ultimate constraint on evolution –
historicity or path-dependence – is already widely recognized.
A local peak might not be the tallest in the mountain range,
so reaching it can prevent us from walking uphill to the tallest
peak. This constraint has directed much of the work on fitness
landscapes toward how to avoid sub-optimal peaks or how
a population might move from one peak to another [1, 5].
Usually, these two questions are answered with appeals to the
strength of other evolutionary forces. But both of these types
of questions implicitly assume that local peaks are the norm
for natural selection and easy to reach. We seldom consider
that even reaching a local peak might be impossible in any
reasonable amount of time.

Here I show that computational complexity is an ultimate
constraint on evolution. A careful analysis – formal math-
ematical proofs for all statements are available in the sup-
plementary appendix (SA) and referenced throughout the
text – shows that the combinatorial structure of fitness land-
scapes can prevent populations from even reaching local fit-
ness peaks. This suggests an alternative metaphor for fitness
landscapes: fitness landscapes as mazes with the local fitness
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Figure 1: Three different kinds of epistasis possible in fitness graphs. Arrows are directed from lower fitness genotypes
towards mutationally adjacent higher fitness genotypes. Genes a,A and b,B are labeled such that fitness w(AB) > w(ab).
In the center of each graph is a marker for the type of epistasis, the marker’s various rotations & reflections cover the cases
where AB does not have the highest fitness. For this more exhaustive classification and discussion see SA Figure 4 & SA A.1

optima as exits. Natural selection cannot see far in the maze
and must rely only on local information. In hard mazes, we
can end up following exponentially long winding paths to the
exit because we cannot spot the shortcuts. In such cases, even
if natural selection is the only force acting on the population,
a fitness optimum cannot be found. Worse yet, the hardest
mazes might not have any shortcuts and even the most clever
and farsighted navigator will not know how to reach the exit
in a feasible amount of time. In other words, even if the other
evolutionary forces ‘conspire to help’ natural selection, a local
fitness optimum cannot be found.

Epistasis & semi-smooth landscapes

What makes some fitness landscapes difficult to navigate is
that the effects of mutations at different loci interact with
each other. Epistasis is a measure of the kind and amount
of inter-loci interactions. If the fitness effect of a mutation
a → A can have a different sign depending on the genetic
background b or B of another locus then these two loci are
said to have sign epistasis (Figure 1b and SA Definition 4).
If both mutations have one sign on their own, but the op-
posite sign together – either bad + bad = good or good +
good = bad – then the landscape has reciprocal sign epistasis
([6, 7]; Figure 1c and SA Definiton 5). A classic example of
reciprocal sign epistasis is a lock-and-key, changing just one
of the lock or the key breaks the mechanism, but changing
both can be beneficial. Finally, magnitude epistasis (positive
and negative; SA Definition 3) are inter-loci interactions that
deviate from additivity, but do not change the sign of fitness
effects. This type of epistasis does not change the combinato-
rial structure of the landscape or the computational difficulty
of finding fitness optima. As such, I treat it simply as a lack
of sign-epistasis.

A landscape without sign epistasis – like the Escherichia
coli β-lactamase fitness landscape measured by Chou, Chiu,
Delaney, Segre, and Marx [8] in figure 2a – is called smooth
([7, 9] and SA B), so let’s call a fitness landscape semi-smooth
if it has no reciprocal sign epistasis. The fitness graphs ([7]
and SA A) of semi-smooth fitness landscapes are equivalent
to acyclic unique sink orientations previously defined in a dif-
ferent context by Szabó and Welzl [10] for the analysis of sim-
plex algorithms (SA Definition 11 and Proposition 12). Since

reciprocal sign epistasis is a necessary condition for multiple
peaks (SA Corollary 10 and Poelwijk, Sorin, Kiviet, and Tans
[6]), both smooth and semi-smooth fitness landscapes have a
single peak x∗. Further, there are short adaptive paths in
both: from any genotype x there always exists some adaptive
path to x∗ of length equal to the number of loci on which x
and x∗ differ (SA Theorem 13). This means that an omni-
scient navigator that always picks the ‘right’ adaptive point-
mutation can be guaranteed to find a short adaptive path to
the peak. But unlike smooth landscapes, in a semi-smooth
landscape not every shortest path is adaptive and not every
adaptive path is short. And since evolution does not have the
foresight of an omniscient navigator, it is important to check
which adaptive path myopic evolutionary dynamics will fol-
low.

When selection is strong and mutation is weak (SSWM dy-
namics; introduced by Gillespie [11]), the population can be
represented as a single point on the fitness graph with an evo-
lutionary step corresponding to a selective sweep that moves
the population to a neighbouring genotype with higher fit-
ness. A number of rules have been suggested for which fitter
neighbour will take over the population [12]; the two most
common rules are to select a fitter mutant uniformly at ran-
dom, or to select the fittest mutant. These rules capture the
intuition of evolution proceeding solely by natural selection
with other forces absent or negligible. All SSWM rules will
quickly find the fitness optimum in a smooth fitness land-
scape. But there exist semi-smooth fitness landscapes such
that when starting from a random initial genotype, an ex-
ponential number of evolutionary steps will be required for
either the random fitter mutant ([13]; SA Theorem 14) or
fittest mutant (SA Theorems 19 and 23) dynamics to find
the unique fitness optimum. For a small example on six loci,
see Figure 3: the black arrows trace the evolutionary path
that a population would follow under fittest mutant SSWM
dynamics. Although two step adaptive paths exist to the
fitness peak (like 000000 → 000001 → 000011), the myopic
navigator cannot notice these shortcuts and ends up on a
long winding path. In other words, even when there is a sin-
gle peak and adaptive paths of minimal length to it, SSWM
dynamics can take exponential time to find that peak.

These results show that the computational complexity of
the combinatorial structure can be enough to stop evolu-
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Figure 2: Two examples of empirical biallelic fitness landscapes on four loci. Arrows are directed from lower fitness
genotypes to higher and fitness optima are circled. Examples of adaptive dynamics are highlighted with thick black arrows.
Figure 2a, based on the E. coli β-lactamase data of Chou, Chiu, Delaney, Segre, and Marx [8], is a smooth landscape with
no sign epistasis. Thus, it contains a single optimum (1111). Figure 2b is based on Lozovsky, Chookajorn, Brown, et al.
[14]’a P. falciparum dihydrofolate reductase growth rate data in the absence of pyrimethamine. It has two peaks (0011 &
1111) and both single sign (an example in yellow; ↑- ) and reciprocal sign epistasis (example in red; |--). Based on Szendro,
Schenk, Franke, Krug, and de Visser [15]’s Figure 1.

tion from reaching a fitness optimum within a reasonable
timescale, even in the absence of suboptimal local peaks.
Computer scientists have found it helpful to distinguish be-
tween processes that require a time that grows polynomially
with the size of the input – generally called tractable – and
those that require a time that increases faster than any poly-
nomial (super-polynomial) – intractable. If the winding fit-
ness landscapes of Figure 3 is generalized to 2n loci instead
of just 6 (SA C.2) then following fittest mutant SSWM dy-
namics to the peak is an intractable process since it scales
exponentially, requiring 2n+1− 2 mutational steps. Although
evolutionary time is long, it is not reasonable to think of it
as exponentially long. For example, the above winding pro-
cess with a genotype on just 120 loci and with new set of
point-mutants and selective sweep at a rate of one every sec-
ond would require more seconds than the time since the Big
Bang.

To capture this infeasibility of super-polynomial scaling in
time, I introduce a distinction between easy and hard families
of fitness landscapes. If we can guarantee for any landscape
in the family that a local fitness peak can be found by natural
selection in a time the scales as a polynomial in the number
of loci – as is the case for smooth fitness landscapes – then I
will call that an easy family of landscapes. I will call a family
of landscapes hard if we can show that the family contains
landscapes where finding a local fitness optimum requires a
super-polynomial amount of time – as I showed above for
semi-smooth fitness landscapes. Given that even for moder-
ately sized genomes such large times are not realizable even
on cosmological timescales, I will use “impossible” as a short-
hand for “requiring an infeasible amount of time”.

Given their exponential size, it is impossible to completely
measure whole fitness landscapes on more than a few nu-
cleotides. But with improvements in high-throughput second-

generation DNA sequencing there is hope to measure local
fitness landscapes of a few mutations away from a wildtype.
Puchta, Cseke, Czaja, Tollervey, Sanguinetti, and Kudla [16]
estimated the fitness of 981 single-step mutations of a 333-
nucleotide small nucleolar RNA (snoRNA) gene in yeast.
They found no neighbours fitter than the wild type gene,
this suggests that this gene is already at a fitness peak, and
hence that the snoRNA gene’s fitness landscape is easy. In
contrast, Li, Qian, Maclean, and Zhang [17] estimated the
fitness of 207 single-step mutants of a 72-nucleotide trans-
fer RNA (tRNA) gene, also in yeast, finding two neighbours
that are significantly fitter than the wildtype and a num-
ber that are fitter but only within experimental noise. Thus,
the wildtype tRNA gene is apparently not at a local fitness
peak, and suggests this system as a candidate for hard fitness
landscapes. Both studies also looked at many 2- and 3-step
mutants, and the landscape of the tRNA gene was measured
to have more than 160 cases of significant sign epistasis [17],
with none in the snoRNA landscape [16], mirroring the differ-
ence between hard semi-smooth fitness landscapes and easy
smooth landscapes that I am prosing here.

Rugged landscapes & approximate peaks

But there exist natural fitness landscapes that are even more
complicated than semi-smooth ones. For example, we know
that some landscapes can contain reciprocal sign epistasis
like the Lozovsky, Chookajorn, Brown, et al. [14] Plasmod-
ium falciparum dihydrofolate reductase fitness landscape in
figure 2b. This is a rugged fitness landscape with two distinct
fitness peaks at 0011 and 1111. Although there is not enough
data to justify postulating probability distributions over large
landscapes (for discussion, see SA D.2), the standard biolog-
ical intuition is that natural landscapes are at least a bit
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Figure 3: Fittest mutant adaptive path in a winding semi-smooth fitness landscape. An example on six loci of
the winding semi-smooth fitness landscapes from SA C.2 on which the length of the path followed by fittest-mutant SSWM
dynamics scales exponentially with the number of loci. Here the black arrows are the fittest available mutation, and the
adaptive path takes 14 steps to reach the fitness peak at 000011. For the generalization of this landscape to 2n-loci, it would
take 2n+1−2 steps for fittest mutant dynamics to reach the fitness peak at (00)n−111 (SA Theorem 19). Inset is the selection

coefficient (s(t) = maxy∈N(xt)∪{xt}
w(y)−w(x)

w(x)
; SA D.3) versus mutation step number (t) for the fittest mutant adaptive path.

rugged and have multiple peaks. The NK-model is a family
of fitness landscapes [18, 19] that was introduced to study this
ruggedness. This model allows tuning the amount of epista-
sis: the fitness contribution of each of the n loci depends not
only on its gene, but also on the genes at up to K other loci
(SA Definition 24).

For K ≥ 2, the NK-model can generate hard fitness land-
scapes where from some initial genotypes, any adaptive walk
to a local peak is exponentially long (SA Corollary 27). On
such landscapes, any adaptive evolutionary dynamic – includ-
ing, but not limited to, all the SSWM dynamics we’ve con-
sidered so far – generally requires an exponential number of
steps to reach a local fitness optimum. Even if an omniscient
navigator could always choose the most clever adaptive sin-
gle mutation to arise, the adaptive path would be unbounded
over polynomial timescales.

To better integrate the numeric structure of fitness, let us
consider a genotype x to be at an s-approximate peak [20]
if each of x’s mutational neighbours y have fitness w(y) ≤
(1 + s)w(x) (SA Definition 29). On the hard rough fitness
landscapes described above, fittest mutant dynamics will en-
counter an s-approximate peak with moderately small s in a
moderate number of mutational steps (polynomial in n and
1/s; SA Theorem 31). However, on hard fitness landscapes,
it is not possible to find an s-approximate peak for very small
s in a feasible amount of time (i.e. not possible in time poly-
nomial in n and ln 1/s; SA Theorem 33).

Given that the quantity s in the definition of an s-
approximate peak is defined in the same way as the selection

coefficient of population genetics [21], the above approxima-
tion results allow us to link the distinction between easy and
hard fitness landscapes to the rich empirical literature on fit-
ness traces and declining fitness gains in microbial evolution
experiments [22]. On the hard rugged fitness landscapes de-
scribed above – and even on the winding semi-smooth land-
scape of Figure 3 and SA C.2 – this selective coefficient drops
off at the slow rate of s(t) ≈ 1/t for fittest mutant dynam-
ics. In general, on any family of landscapes – even the hard-
est ones – s(t) can decay as fast as a power law. On easy
landscapes, it can decay faster. But the power law decay in
selection coefficient is the fastest decay possible on hard fit-
ness landscapes. In particular, the selective coefficient, on
hard landscapes, cannot decrease at the exponential rate (i.e.
s(t) ≈ e−t; SA Corollary 34) that is typical of equilibra-
tion in non-biological systems. This slow decay in selection
coefficient is consistent with the rule of declining adaptabil-
ity observed in various microbial long-term evolution exper-
iments [22–24], suggesting that at least some naturally oc-
curring microbial fitness landscapes might be hard. Thus,
a natural candidate for hard landscapes might be the land-
scapes with unbounded growth in fitness observed in the E.
Coli long-term evolutionary experiment [23]. Whereas when
one sees a power-law in allometry, one expects potential phys-
ical constraints; I propose that when one see a power-law in
selection strength or fitness, one should look for a computa-
tional constraint.

The existence of hard landscapes allows us to explain open-
ended evolution as a consequence of the ultimate constraints
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of computational complexity. This is in stark contrast to cur-
rent theoretical accounts of unbounded growth in fitness that
rely on models where unbounded growth is directly built-in
and the higher-order combinatorial structure of the mutation
graph is ignored – usually by treating mutations as iid random
samples from a distribution that can always generate a higher
fitness variant. Of course, given that I consider large but fi-
nite fitness landscapes – to avoid building in the unbounded
growth in fitness that I am to explain – it is conceivable that
a population will be found at a local fitness peak of a hard
fitness landscape. This is conceivable in the same way as – ac-
cording to the Poincare recurrence theorem – all the oxygen
molecules in a large room will eventually return arbitrarily
close to the corner they were released from. But just as the
Poincare recurrence theorem does not invalidate the second
law of thermodynamics [25], the existience of local peaks in
finite static landscapes does not invalidate open-ended evolu-
tion on hard fitness landscapes.

Arbitrary evolutionary dynamics: learning &
cooperation

As we move from single genes [16, 17], to microbes [22, 23],
and on to large organisms, a richer space of possible evolution-
ary dynamics opens up. To capture this rich space of possibil-
ities, we need to abstract beyond adaptive dynamics by con-
sidering arbitrary mutation operators, demographies, popu-
lation structures and selection functions – even ones that can
cross fitness valleys and distribute the population over many
genotypes. From the perspective of constraints on evolution:
I want to relax the selective constraint that confines popu-
lations to an adaptive path [26]. By allowing non-adaptive
changes, I want to highlight the power of the constraint of
computational complexity, even in the absence of the selec-
tive constraint. From the perspective of evolutionary forces:
we have to allow for strong forces that can potentially over-
power or boost natural selection. To make sure that we have
considered all possibilities, I will model arbitrary evolution-
ary dynamics as all polynomial-time algorithms. This takes
us into the realm of the computational complexity class of
polynomial local search (PLS; Johnson, Papadimitriou, and
Yannakakis [27], Roughgarden [28] and SA D). But even for
these most permissive population-updating procedures, evo-
lution will in general require an infeasible amount of time to
find a local fitness peak in the NK-model with K ≥ 2 (SA
Theorem 26 and Corollary 28), or to find an s-approximate
peak for very small s (SA Theorem 33). Evolution will be
trapped in the mazes of hard fitness landscapes and not reach
anywhere near the ‘exit’ of a local fitness optimum. No prox-
imal cause can overpower the ultimate constraint of compu-
tational complexity.

The strength of this ultimate constraint allows us to reason
rigorously from disequilibrium to establish positive results.
For instance, that costly learning (Baldwin effect [29, 30]) can
remain adaptive, or that hitchhinking can maintain coopera-
tion (Hankshaw effect [31]) effectively forever. In the case of
costly learning, Simpson [30] noted: “[c]haracters individually
acquired by members of a group of organisms may eventually,
under the influence of selection, be reinforced or replaced by

similar hereditary character”. For Simpson [30] this possibil-
ity constituted a paradox: if learning does not enhance indi-
vidual fitness at a local peak and would thus be replaced by
simpler non-learning strategies then why do we observe the
costly mechanism and associated errors of individual learn-
ing? A similar phenomenon is important for the maintenance
of cooperation. Hammarlund, Connelly, Dickinson, and Kerr
[31] consider a metapopulation that is not sufficiently spa-
tially structured to maintain cooperation. They augment the
metapopulation with a number of genes with non-frequency
dependent fitness effects that constitute a static fitness land-
scape. If adaptive mutations are available then cooperators
are more likely to discover them due to the higher carrying
capacity of cooperative clusters. This allows cooperation to
be maintained by hitchhiking on the genes of the static fit-
ness landscape. Hammarlund, Connelly, Dickinson, and Kerr
[31] call this hitchhiking the Hankshaw effect and for them it
constitutes a transient: since cooperation does not enhance
opportunities for adaptive mutations at the fitness peak, then
cooperators will be out-competed by defectors.

Currently, both the Baldwin and Hankshaw puzzles are re-
solved in the same way: just in time environmental change.
Most resolutions of the Baldwin paradox focus on non-static
fitness in rapidly fluctuating environments that are compati-
ble with the speed of learning but not with evolutionary adap-
tation. Similarly, Hammarlund, Connelly, Dickinson, and
Kerr [31] suggest making their transient permanent by fo-
cusing on dynamically changing environments. But, these
just-in-time dynamic changes in the fitness landscape are not
necessary if we acknowledge the existence of hard static fitness
landscapes. Individual costly learning and higher densities of
cooperative clusters leading to more mutational opportunities
are two very different evolutionary mechanisms for increased
adaptability. But they are both just polynomial time algo-
rithms. Regardless of how much these mechanisms speed-up,
slow-down, guide, or hinder natural selection, the population
will still not be able to find a local fitness optimum in hard
fitness landscapes. Without arriving at a fitness optimum,
the paradox of costly learning disolves and the Hankshaw ef-
fect can allow for perpetual cooperation. This suggests that
if we want a family of natural examples of evolution on hard
fitness landscapes among more complex organisms then good
candidates might be populations with costly learning or per-
sistent cooperation. More generally, the non-vanishing supply
of beneficial mutations on hard landscapes can allow selection
to act on various mechanisms for evolvability [26] by letting
the evolvability modifier alleles hitchhike on the favourable
alleles that they produce.

These examples can be seen as instances of a more general
observation on adaptationism. It is standard to frame adapta-
tionism as “the claim that natural selection is the only impor-
tant cause of the evolution of most nonmolecular traits and
that these traits are locally optimal” [32]. Here, I showed that
these are two independent claims. Even if we assume that (1)
natural selection is the dominant cause of evolution then – on
hard fitness landscapes – it does not follow that (2) traits will
be locally optimal. Given the popularity of equilibrium as-
sumptions in evolutionary biology, I expect that a number of
other paradoxes and effects in addition to the Baldwin and
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Hankshaw could be eased by recognizing the independence
of these two claims. In particular, this gives a new account
for maladaptation. Prior accounts rely on forces like deleteri-
ous mutation pressure, lack of genotypic variation, drift and
inbreeding, and gene flow acting opposite natural selection
resulting in a net zero force and thus a maladaptive equilib-
rium away from a fitness peak [2]. The ultimate constraint of
computational complexity allows for perpetual maladaptive
disequilibrium.

Currently, finding a species away from a local fitness peak
is taken as motivation for further questions on what mecha-
nisms or non-selective evolutionary forces cause this discrep-
ancy. In this context, my results provide a general answer:
hard landscapes allow adaptationist accounts for the absence
of evolutionary equilibrium and maladaptation even in ex-
perimental models with static environments – and/or the ab-
scence of strong evolutionary forces working against natural
selection – like the tRNA gene in yeast [17] or the long-term
evolutionary experiment in E. coli [23]. By treating evolution
as an algorithm, we see that time can be a limiting resource
even on evolutionary timescales. These hard landscapes can
be finite and deceptively simple – having only limited local
epistasis or not having reciprocal sign-epistasis – and yet al-
low for unbounded fitness growth.

In contrast, a system found at a local fitness peak – like
the snoRNA gene in yeast [16] – currently merits no further
questions. The results in this report show that establish-
ing evolutionary equilibrium should not be the end of the
story. We need to also explain what features of the relevant
fitness landscapes make them easy: i.e. explain why these
fitness landscapes do not produce a computational constraint
on evolution. For this, the tools of theoretical computer sci-
ence can be used to refine our logical characterization of such
fitness landscapes to guarantee that local peaks can be found
in polynomial time. For example, we could consider limits
on the topology of gene-interaction network (SA D.1), or the
type of interaction possible between genes [33] to separate
easy from hard landscapes. This opens new avenues for both
empirical and theoretical work.

On easy landscapes, it is reasonable to assume that evolu-
tion finds locally-well-adapted genotypes or phenotypes. We
can continue to reason from fitness peaks, debate questions
of crossing fitness valleys, and seek solutions to Wright [1]’s
problem of “a mechanism by which the species may contin-

ually find its way from lower to higher [local] peaks”. But
with hard landscapes, it is better to think of evolution as
open ended and unbounded. We will have to switch to a lan-
guage of “adapting” rather than “adapted”.We will have to
stop reasoning from equilibrium – as I did in the discussion
of maintaining costly learning and cooperation. Finally, we
will have to stop asking about the basins of attraction for lo-
cal peaks and instead seek mechanisms that select which un-
bounded adaptive path evolution will follow. It is tempting to
read this language of disequilibrium and negation of “locally
adapted” as saying that organismal traits are not well honed
to their environment. But we must resist this mistake and
we must not let better be the enemy of good. Finding local
optima in the hardest landscapes is a hard problem for any al-
gorithm, not just biological evolution. In particular, it is also
hard for scientists: on hard landscapes we cannot find opti-
mal solutions either, and so the adapting answers of evolution
can still seem marvelously well honed to us. And although
I have focused on biological evolution, we can also look for
hard landscapes in other fields. For example, these results
translate directly to areas like business operation & innova-
tion theory, where the NK-model is used explicitly [34, 35].
In physics, the correspondence between spin-glasses and the
NK-model can let us look at energy minimization landscapes.
In economics, classes of hard fixed-point problems similar to
PLS are a lens on markets [28]. In all these cases, theoretical
computer science and combinatorial optimization offer us the
tools to make rigorous the distinction between easy and hard
landscapes. They allow us to imagine hard landscapes not
as low-dimensional mountain ranges but as high-dimensional
mazes that we can search for effectively ever.
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Appendices

In the main text, I focused on the biological importance, interpretation, and implication of these results. In these appendices,
I provide the formal proof of the results. Below, I formally define the concepts introduced within the body of the report and
prove the theorems on which the conclusions are based. Some of this was first presented in the Kaznatcheev [36] preprint.
The structure of the appendices is below:

A Formal definitions of fitness functions, fitness landscapes, fitness graphs, and adaptive paths. I focus specific attention
on epistasis (A.1) because it can be used to define broad families of landscapes, such as:

B Smooth fitness landscapes: these are the source of a lot of intuition and early models of fitness landscapes. So, I briefly
remind the reader of important properties of smooth landscapes.

C Semi-smooth fitness landscapes: these share many properties in common with smooth fitness landscapes, and I prove
a characterization Theorem 13 that is structured in a similar way to smooth landscapes. However, computationally,
semi-smooth landscapes, unlike smooth ones, can be hard. In subsection C.1, I use the equivalence of semi-smooth
fitness landscapes and acyclic unique-sink orientations of hyper-cubes to adapt hardness results from the analysis of
simplex algorithms. This provides hard landscapes for fitter mutant SSWM dynamics. In the subsequent subsections, I
show how to construct hard fitness landscapes for fittest mutant SSWM dynamics from specific start position (C.2) and
random start position (C.3).

D NK-model of fitness landscapes: this is a tunable rugged fitness landscape model that – unlike the previous two – can
have many peaks. To analyze this model of landscapes, I review the complexity class PLS, show that the NK-model is
PLS complete for K ≥ 2, and discuss the generality of the results. In subsection D.1, I focus on easy instances of the
NK-model and, in subsection D.2, provide an intuition for why assuming simple distributions on fitness landscapes is
unreasonable and might have made the existence of hard families more difficult to spot.

To recap, I argue that local fitness optima may not be reachable in a reasonable amount of time even when allowing
progressively more general and abstract evolutionary dynamics. For this generality, we pay with increasing complication in
the corresponding fitness landscapes. This progression of results is summarized in Table 1 (which also serves as a guide for
navigating the appendix). If we restrict our evolutionary dynamics to fitter or fittest mutant SSWM, then just sign epistasis
is sufficient to ensure the existence of hard landscapes. If we allow any adaptive evolutionary dynamics, then reciprocal sign
epistasis in the NK model with K ≥ 2 is sufficient for hard landscapes. If we want to show that arbitrary evolutionary
dynamics cannot find local fitness optima then we need K ≥ 2 and the standard conjecture from computational complexity
that FP 6= PLS.

Landscape
type

Max allowed
epistasis type

Hardness of reaching local optima Proved in...

smooth magnitude (↑) Easy for all strong-selection weak-mutation (SSWM) dynamics Section B

semi-
smooth

sign (↑- ,↑-) Hard for SSWM with random fitter mutant
or fittest mutant dynamics

Theorems 14,
19, & 23

rugged reciprocal sign (|--) Hard for all SSWM dynamics: initial genotypes with all adaptive
paths of exponential length

Corollary 27

Hard for all evolutionary dynamics (if FP 6= PLS) Theorem 26
Easy for finding approximate local peaks with moderate optimality
gap: selection coefficients can drop-off as power law

Theorem 31

Hard for approximate local peaks with small optimality gap:
selection coefficient cannot drop-off exponentially

Theorem 33
Corollary 34

Table 1: Summary of main results. Each landscape type (column 1) is characterized by the most complicated permitted
type of epistasis (column 2; see A.1). Based on this, there are families of this landscape type that are easy or hard under
progressively more general dynamics (column 3), which is proved in the corresponding part of the appendix (column 4).

A Fitness landscapes, graphs, and adaptive paths

In 1932, Wright introduced the metaphor of a fitness landscape [1]. The landscape is a genetic space where each vertex is
a possible genotype and an edge exists between two vertices if a single mutation transforms the genotype of one vertex into
the other. In the case of a biallelic system we have n loci (positions), at each of which it is possible to have one of two alleles,
thus our space is the n-bit binary strings {0, 1}n. We could also look at spaces over larger alphabets; for example, 4 letters
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Figure 4: Three different kinds of epistasis possible in fitness graphs: no epistasis (↑), sign epistasis (↑- ,↑-), and reciprocal
sign epistasis (|--). Arrows in the fitness graph are directed from lower fitness genotypes towards mutationally adjacent higher
fitness genotypes. In the middle of each fitness graph is a symbol showing the kind (and orientation) of epistasis. Note that
the bottom left (	) and top right (�) fitness graphs violate transitivity.

for sequence space of DNA, or 20 letters for amino acids; but the biallelic system is sufficiently general for us. A mutation
can flip any loci from one allele to the other, thus two strings x, y ∈ {0, 1}n are adjacent if they differ in exactly one bit.
Thus, the landscape is an n-dimensional hypercube with genotypes as vertexes. The last ingredient, fitness, is given by a
function that maps each string to a non-negative real number. For the purposes of this report, the exact fitness values or
their physical interpretations do not matter. Only their rank-ordering matters.

Individual organisms can be thought of as inhabiting the vertexes of the landscape corresponding to their genotype. And
we imagine evolution as generally trying to ‘climb uphill’ on the landscape by moving to vertexes of higher fitness.

Definition 1. In a fitness landscape with fitness f , a path v1...vt is called adaptive if each vi+1 differs from vi by one bit
and f(vi+1) > f(vi).

For the most general evolutionary dynamics, the paths taken don’t have to be strictly increasing in fitness; i.e. they don’t
have to necessarily be adaptive. If any evolutionary dynamic produces only adaptive paths, though, then it is called an
adaptive dynamic.

Sometimes it is useful to represent a fitness landscape as a fitness graph by replacing the fitness function by a flow: for
adjacent genotypes in the mutation-graph, direct the edges from the lower to the higher fitness genotype. This results
in a characterization of fitness landscapes of a biallelic system as directed acyclic graphs on {0, 1}n. Fitness peaks would
correspond to sinks, and adaptive paths would correspond to paths that follow the edge directions of the DAG. I will consider
a population at evolutionary equilibrium if it finds a local peak in the fitness landscape; i.e. a sink in the fitness graph.
Crona, Greene, and Barlow [7] introduced this representation into theoretical biology, but fitness graphs have been used
implicitly in earlier empirical studies of fitness landscapes [15, 37–39]. Using fitness graphs is particularly useful empirically
because it is difficult to quantitatively compare fitnesses across experiments. However, if pairwise competitions are used to
build an empricial fitness graph, it is important to verify that the graph is transitive (acyclic) [40]. In theoretical work, the
fitness graph approach has made the proofs of some classical theorems relating local structure to global properties easier and
shifts our attention to global algorithmic properties of evolution instead of specific numeric properties.
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A.1 Epistasis

Epistasis is a measure of the kind and amount of inter-loci interactions. Consider two loci with the first having alleles a or
A, and the second b or B. Assume that the upper-case combination is more fit: i.e. f(ab) < f(AB).

Definition 2. Two alleles are non-interacting if the fitness effects are additive and independent of background: f(AB) −
f(aB) = f(Ab)− f(ab), f(AB)− f(Ab) = f(aB)− f(ab).

In magnitude epistasis this additivity is broken, but the signs remain: f(AB) > f(aB) > f(ab) and f(AB) > f(Ab) >
f(ab). The difference between non-interacting alleles and magnitude epistasis is not invariant under rank-order preserving
transformation of the fitness function, thus I will not distinguish between the two types. Throughout the paper, I will use
‘no epistasis’ to mean both non-interacting alleles and magnitude epistasis, as the following definition makes explicit.

Definition 3. If f(AB) > f(aB) > f(ab) and f(AB) > f(Ab) > f(ab) then we will say that there is no epistasis between
those alleles.

A system has sign epistasis if it violates one of the two conditions for magnitude epistasis. For example, if the second locus
is b then the mutation from a to A is not adaptive, but if the second locus is B then the mutation from a to A is adaptive.

Definition 4. Given two loci, if f(AB) > f(aB) > f(ab) > f(Ab) then there is sign epistasis at the first locus.

Finally, a system has reciprocal sign epistasis if both conditions of magnitude epistasis are broken, or if we have sign
epistasis on both loci [41].

Definition 5. Given two loci, if f(AB) ≥ f(ab) but f(ab) > f(Ab) and f(ab) > f(aB) then there is reciprocal sign epistasis
between those two loci.

Figure 4 visualizes all the fitness graphs on two loci and categorizes the type of epistasis present.

B Smooth fitness landscapes

If a fitness landscape has no sign epistasis then it is a smooth landscape and has a single peak x∗ [7, 9]. Every shortest
path from an arbitrary x to x∗ in the mutation-graph is an adaptive path – a flow in the fitness graph – and every adaptive
path in the fitness graph is a shortest path in the mutation graph [7]. Thus, evolution can quickly find the global optimum
in a smooth fitness landscape, with an adaptive path taking at most n steps: that is, all smooth fitness landscapes are
easy landscapes. For an example, see the smooth Escherichia coli β-lactamase fitness landscape measured by Chou, Chiu,
Delaney, Segre, and Marx [8] in Figure 2a.

Proposition 6 ([7, 9]). If there is no sign epistasis in a fitness landscape, then it is called a smooth landscape and has a
single peak x∗. Every shortest path (ignoring edge directions) from an arbitrary genotype x to x∗ is an adaptive path, and
every adaptive path from x to x∗ is a shortest path (ignoring edge directions).

C Semi-smooth fitness landscapes

Since a smooth landscape is always easy, let’s introduce the minimal amount of epistasis: sign epistasis, without any reciprocal
sign epistasis.

Definition 7. A semi-smooth fitness landscape on {0, 1}n with fitness function f is a fitness landscape that has no reciprocal
sign epistasis. Such a fitness function f is also called semi-smooth.

For some of the following proofs, it will be useful to define sublandscapes.

Definition 8. Given a landscape on n bits, a sublandscape spanned by S ⊆ [n] is a landscape on {0, 1}S where the alleles
at the loci (indexes) in S can vary but the indexes in [n]− S are fixed according to some string u ∈ {0, 1}[n]−S .

Note that the whole landscape is a sublandscape of itself (taking S = [n]). For any S ⊂ [n], there are 2n−|S| many
sublandscapes on S corresponding to the possible u ∈ {0, 1}[n]−S . Reciprocal sign epistasis between bits i and j corresponds
to a sublandscape on {i, j} that has two distinct peaks.

Now, I can note a couple of important properties of semi-smooth landscapes:

Proposition 9. If a fitness landscape on {0, 1}n has some sublandscape with more than one distinct peak then it has reciprocal
sign epistasis.

The proof will show that a minimal multi-peak sublandscape must have size 2. I will do this by considering longest walks
in a sublandscape. The proposition is similar to the one proved by Poelwijk, Sorin, Kiviet, and Tans [6], although my proof
is distinct.

a 3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2018. ; https://doi.org/10.1101/187682doi: bioRxiv preprint 

https://doi.org/10.1101/187682
http://creativecommons.org/licenses/by-nc-nd/4.0/


Proof. Let’s consider a minimal sublandscape L that has more than one distinct peak: that means that if this sublandscape
is spanned by S (i.e. {0, 1}S) then no sublandscape spanned by T ⊂ S has multiple peaks.

Since L is minimal, its peaks must differ from each other on each bit in S, for if there was a bit i ∈ S on which two peaks
agreed then that bit could be fixed to that value and eliminated from S to make a smaller sublandscape spanned by S −{i}
with two peaks. Thus, the minimal multipeak sublandscape has precisely two peaks. Call these peaks x∗ and y∗.

Claim: In a minimal multipeak sublandscape, from each non-peak vertex, there must be a path to each peak.

Let’s prove the claim by contradiction: Consider an arbitrary non-peak vertex x, and suppose it has no path to the x∗

peak. Since any path from x in L must terminate at some peak, take the longest path from x to the peak y∗ that it reaches,
and let y be the last step in that path before the peak. Notice that y must only have one beneficial mutation (on bit i), the
one to the peak. For if it had more than one beneficial mutation, it could take the non-peak step to y′ and then proceed
from y′ to y∗ (x∗ is not an option by assumption, and there are only two peaks in L) and thus provide a longer path to the
peak. Now consider the landscape on S − {i}, with the ith bit fixed to yi. Since yi is the same as x∗i (both are opposite of
y∗i ), x∗ is still a peak over S − {i}, but so is y (since it’s only beneficial mutation was eliminated by fixing i to yi). But this
contradicts minimality, so no such x exists.

Now that we know that we can reach each peak from any vertex x, let us again consider the longest path from x to y∗

with y as the last step in that path before the peak, and i as the position of the last beneficial mutation. Since all non-peak
vertexes must reach both peaks, there must be some other beneficial mutation j from y to x′ that eventually leads to x∗.
But if x′ is not a peak then it must also have a way to reach y∗, but then we could make a longer path, contradicting the
construction of y. Thus x′ must be the peak x∗.

This means that x∗ and y∗ differ in only the two bits i and j. But in a minimal multipeaked sublandscape they must differ
in all bits, so S = {i, j}; i.e. this sublandscape is an example of reciprocal sign epistasis.

Corollary 10. A fitness landscape without reciprocal sign epistasis has a unique single peak.

Proof. This follows from the contrapositive of Proposition 9, since the whole landscape is a sublandscape of itself.

The above results can also be restated in the terminology used to analyze simplex algorithms.[10, 13]

Definition 11. A directed acyclic orientation of a hypercube {0, 1}n is called an acyclic unique sink orientation (AUSO) if
every subcube (face; including the whole cube) has a unique sink.

This makes the contrapositive of Proposition 9 into the following proposition:

Proposition 12. A semi-smooth fitness landscape is an AUSO

Theorem 13. A semi-smooth fitness landscape has a unique fitness peak x∗ and for any vertex x in the landscape, there
exists a path of length ||x∗ ⊕ x||1 (Hamming distance to peak) from x to the peak.

Proof. The unique peak x∗ is just a restatement of Corollary 10. To show that there is always a path of Hamming distance
to the peak, I will show that given an arbitrary x, we can always pick a mutation k that decreases the Hamming distance to
x∗ by 1.

Let S be the set of indexes that x and x∗ disagree on, |S| = ||x∗ ⊕ x||1. Consider the sub-landscape on S with the other
bits fixed to what x and x∗ agree on. In this sublandscape x∗ is a peak, thus by Proposition 9 x isn’t a peak and must have
some beneficial mutation k ∈ S. This is the k we were looking for.

Note that this proof specifies an algorithm for constructing a short adaptive walk to the fitness peak x∗. However, this
algorithm requires knowing x∗ ahead of time – i.e. seeing the peak in the distance. But evolution does not know ahead
of time where peaks are, and so cannot carry out this algorithm. Even though a short path to the peak always exists,
evolutionary dynamics might not follow it.

C.1 Hard landscapes for random fitter SSWM

The simplest evolutionary rule to consider is picking a mutation uniformly at random among ones that increase fitness. This
can be restated as picking and following one of the out-edges in the fitness graph at random; i.e. this is equivalent to the
random-edge simplex pivot rule [13]. Proposition 12 allows me to use the hard AUSOs constructed by Matousek and Szabo
[13] as a family of hard semi-smooth landscapes.

Theorem 14 ([13] in biological terminology). There exist semi-smooth fitness landscapes on {0, 1}n such that SSWM

dynamics starting from a random vertex, with probability at least 1 − e−Ω(n1/3) follows an adaptive path of at least eΩ(n1/3)

steps to evolutionary equilibrium.
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In other words, multiple peaks – or even reciprocal sign-epistasis – are not required to make a complex fitness landscape.
In fact, AUSOs were developed to capture the idea of a linear function on a polytope (although AUSOs are a slightly bigger
class). It is not surprising to find the simplex algorithm in the context of semi-smooth landscapes, since we can regard it
as a local search algorithm for linear programming where local optimality coincides with global optimality. Linear fitness
functions are usually considered to be some of the simplest landscapes by theoretical biologists; showing that adaptation is
hard on these landscapes (or ones like them) is a surprising result.

C.2 Construction of hard semi-smooth landscapes for fittest SSWM

One might object to taking random fitter mutants because sometimes the selected mutations are only marginally fitter than
the wildtype. It might seem natural to speed-up evolution by always selecting the fittest possible mutant. Here I show that,
in general, this does not help.

Consider a fitness landscape on {0, 1}m with semi-smooth fitness function f that if started at 0m will take k steps to reach
its evolutionary equilibrium at x∗. I will show how to grow this into a fitness landscape on {0, 1}m+2 with semi-smooth
fitness function f ′ that if started at 0m+2 will take 2(k + 1) steps to reach its evolutionary equilibrium at 0m11.

For simplicitly of analysis, let us define the following functions and variables for all points in {0, 1}m that aren’t an
evolutionary equilibrium under f ; i.e. all except x∗. Let

s+(x) = max
y∈N(x) s.t. f(y)>f(x)

f(y)− f(x) (1)

and

s−(x) = min
y∈N(x) s.t. f(x)+s+(x)>f(y)>f(x)

f(y)− f(x) (2)

where N(x) are the neighbours of x in the mutation graphs; i.e. genotypes that differ from x in one bit.

Now overload these into constants, as follows: define s+ = minx s
+(x) and s− = minx s

−(x). Suppose that f is such that
s− < s+; otherwise set s− = s+/2 (do this also, if N(x) s.t. f(x) + s+(x) > f(y) > f(x) is empty for some non-equilibrium
x).

Let x⊕ y mean the XOR between x and y. Consider the ‘reflected’ function f(x⊕ x∗). Note that if f(x) is semi-smooth
then so is f(x⊕x∗), since it just relabels the directions of some dimensions. The reflected function preserves all the important
structure. In particular, if under f(x) it took k steps to go from 0m to x∗ then under f(x⊕ x∗) it will take k steps to from
from x∗ to 0m.

Now define f ′ : {0, 1}m+2 → R as:

f ′(xab) =



f(x) if a = b = 0

f(x) + s− if a 6= b and x 6= x∗

f(x∗) + s− if a = 0, b = 1 and x = x∗

f(x∗) + s+ if a = 1, b = 0 and x = x∗

f(x⊕ x∗) + f(x∗) + 2s+ if a = b = 1

(3)

Basically the x00 subcube is the original landscape, the x10 and x01 subcubes serve as ‘buffers’ to make sure that the walk
doesn’t leave the first subcube before reaching x∗00, and the x11 is the original landscape reflected around x∗ that takes us
from x∗11 to 0m11.

Notice, that f ′ has the same s+ and s− as f .

Now we just need to establish some properties:

Proposition 15. Fittest mutant SSWM dynamics will not leave the {0, 1}m00 subcube until reaching x∗00.

Proof. By definition, the fittest mutant (i.e. neighbour over {0, 1}m) from each genotype x ∈ {0, 1}m that isn’t x∗ in f , has
a fitness advantage of s+ or higher. Hence adding two extra edges from x00 to x10 and x01, each with fitness advantage
s− < s+ will not change the edge that fittest-mutant SSWM picks.

Proposition 16. SSWM dynamics will not leave the {0, 1}m11 subcube after entering it.

Proof. This is because f ′ has strictly greater fitness on the {0, 1}m11 subcube than on the other three subcubes. Confirming
this, note that for every x ∈ {0, 1}m:
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f(x⊕ x∗) + f(x∗) + 2s+ ≥ f(x∗) + 2s+ since f is non-negative (4)

≥ f(x∗) + s+ since s+ > 0 (5)

≥ f(x∗) + s− since s+ > s− (6)

≥ f(x) + s− since x∗ is fitness peak of f (7)

≥ f(x) since s− > 0 (8)

Proposition 17. If f on {0, 1}m has no reciprocal sign-epistasis then f ′ on {0, 1}m+2 has no reciprocal sign-epistasis.

Proof. Consider any pair of genes i, j ∈ [m]. Among these first m genes, depending the last two bits, we are looking
at landscapes on {0, 1}m00, {0, 1}m01, {0, 1}m10, or {0, 1}m11, with the fitness given by f(x),f(x) + s−,f(x) + s−, or
f(x⊕x∗) + f(x∗) + 2s+ (respectively). All these landscapes have isomorphic combinatorial structure to f and thus the same
kinds of epistasis. Since f has no reciprocal sign-epistasis, all these subcubes lack it, too.

Now, let’s look at the case of where the gene pair goes outside the first m genes. Consider an arbitrary gene i ∈ [m], let
u ∈ {0, 1}i−1, v ∈ {0, 1}m−i be arbitrary. Label a,A ∈ {0, 1} such that f(uav) < f(uAv). look at the subcube u{0, 1}v{0, 1}2:

a00

A00

a10

A10

A01

a01 a11

A11

The solid black edges have their directions from the definition of a and A. The red edges have their direction because
s+ > s− > 0. The green edges have their direction because of Prop. 16. The direction of the dotted black edge will depend
on if x∗ contains 0 (point up) or 1 (point down) at position i, but regardless of the direction, no reciprocal sign epistasis is
introduced.

Corollary 18. Given f ′ on {0, 1}m+2, the fittest mutant SSWM dynamics starting at 0m+2 will take 2(k+ 1) steps to reach
its unique fitness peak at 0m11.

Proof. By Prop. 15, the walk will first proceed to x∗00 taking k steps. From x∗00, there are only two adaptive mutations
x∗10 or x∗01, and the first is fitter. From x∗10 there is only a single adaptive mutation (to x∗11), taking us to k + 2 steps.
From x∗11, by Prop. 16, it will take us k more steps to reach 0m11; totaling 2(k + 1) steps.

Theorem 19. There exist semi-smooth fitness landscapes on 2n loci that take 2n+1 − 2 fittest mutant steps to reach their
unique fitness peak at 02(n−1)11 when starting from 02n.

Proof. We will build the family of landscapes inductively using our construction, starting from an initial landscape:
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f1(00) = 2

f1(10) = 4 f1(01) = 3

f1(11) = 6

The resulting path length Tn will be given by the recurrence equation: Tn+1 = 2Tn + 2 with T1 = 2. This recurrence is
solved by Tn = 2n+1 − 2.

Call the landscapes constructed as in the above proof, a winding landscapes. A visual example of the winding landscape
construction on 6 loci (n = 3 in Theorem 19) is given in Figure 3. The winding landscapes construction is similar to Horn,
Goldberg, and Deb [42]’s Root2path construction, except their approach introduced reciprocal sign epistasis despite having
a single peak.

Of course, this is an arbitrary initial fitness landscape and any semi-smooth landscape can be used as a starting point;
the walk would still scale exponentially, but there would be a different initial condition. Further, this winding product
construction I showed above is just one example for building families. Many more could be considered.

In particular, if we are interested in larger mutation operators like k-point mutations instead of just 1-point mutations
then it is relatively straightforward to modify the winding landscape construction. As written, equation 3 uses a buffer of
2 bits in f ′(xab) to transition from f(x) to its reflection f(x ⊕ x∗). In the more general setting, we’d pad the buffer to be
k+ 1 bits: define f ′(xy) where |y| = k+ 1 with a smooth landscape on the y portion of the input taking us from f(x) to its
reflection. Which leaves most of the above arguments unchanged, only modifying Theorem 19 to have the landscape to be
on kn loci and the recurrence relation at the end of the proof to be Tn+1 = 2Tn + k + 1.

C.3 Hard landscapes from random start

Unfortunately, one might not be impressed by a result that requires starting from a specific genotype like 0m and ask for
the expected length of the walk starting from a random vertex. Of course, if a genotype on this long walk is chosen as a
starting point then the walk will still be long in most cases. However, there are only 2n+1 − 2 vertexes in the walk, among
22n vertexes total, so the probability of landing on the walk is exponentially small. Instead, I will rely on direct sums of
landscapes and Proposition 15 to get long expected walks.

Proposition 20. With probability 1/4, a winding landscape on 2n loci will take 2n or more fittest mutant steps to reach the
fitness peak from a starting genotype sampled uniformly at random.

Proof. With probability 1/4, the randomly sampled starting vertex has the form x00 (i.e. its last two bits are 0s). By prop. 15,
the walk can’t leave the {0, 1}2(n−1)00 landscape until reaching its peak at 02(n−2)1100. This might happen quickly, or it
might even already be at that peak. But after, it has to follow the two steps to 02(n−2)1111 and then due to prop. 16 it will
have to follow the normal long path, taking 2n − 2 more steps.

Because of the constant probability of an exponentially long walk, we can get a big lower bound on the expected walk
time:

Corollary 21. Fittest mutant dynamics starting from a uniformly random genotype will have an expected walk length greater
than 2n−2 on a 2n-loci winding landscape.

Proof. With probability 1/4, the the walk takes 2n or more steps, and with probability 3/4 it takes 0 or more steps. Thus
the expected walk length is greater than or equal to (1/4) ∗ 2n + (3/4) ∗ 0 = 2n−2.

However, 75% of the time, we can’t make a guarantee of long dynamics. We can overcome this limitation by taking direct
sums of landscapes.

Definition 22. Given two fitness landscapes, one with fitness f1 on {0, 1}n1 and the other with fitness f2 on {0, 1}n2 , the
direct sum (f1 ⊕ f2) is a landscape with fitness f on {0, 1}n1+n2 where f(xy) = f1(x) + f2(y).
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Now, for any probability of failure 0 < δ < 1, let mδ = d log 1
δ

2−log 3
e (where log is base 2).

Theorem 23. There exist semi-smooth fitness landscapes on 2nmδ loci that with probability 1 − δ, take 2n or more fittest
mutant steps to reach their fitness peak from a starting genotype sampled uniformly at random.

Proof. Consider a landscape that is the direct sum of mδ separate 2n-loci winding landscapes. Since each constituent is
semi-smooth and since sums don’t introduce epistasis, the resulting ‘tensor sum’ landscape is also semi-smooth. Further, to
reach its single peak, the walk has to reach the peak of each of the mδ independent winding sublandscapes. But as long as
at least one sublandscape has a long walk, we are happy. By prop. 20, we know that for each sublandscape, we will have a
short-walk starting genotype with probability less than 3/4. The probability that none of them get a long walk then is less
than (3/4)mδ ≤ δ.

D NK model with K ≥ 2 is PLS-complete

Definition 24 ([18, 19, 43]). The NK model is a fitness landscape on {0, 1}n. The n loci are arranged in a gene-interaction
network where each locus xi is linked to K other loci xi1, ..., x

i
K and has an associated fitness contribution function fi :

{0, 1}K+1 → R+ Given a vertex v ∈ {0, 1}n, we define the fitness f(x) =
∑n
i=1 fi(xix

i
1...x

i
K).

By varying K we can control the amount of epistasis in the landscape. The model also provides an upper bound of n
(
K+1

2

)
on the number of gene pairs that have epistatic interactions.

Weinberger [44] showed that checking if the global optimum in an NK model is greater than some input value V is NP -
complete for K ≥ 3. Although this implies that finding a global optimum is difficult, it says nothing about local optima. As
such, it has generated little interest among biologists, although it spurred interest as a model in the evolutionary algorithms
literature, leading to a refined proof of NP -completeness for K ≥ 2 [45].

To understand the difficulty of finding items with some local property like being an equilibrium, Johnson, Papadimitrio &
Yannakakis [27] defined the complexity class of polynomial local search (PLS). A problem is in PLS if it can be specified by
three polynomial time algorithms [28]:

1. An algorithm I that accepts an instance (like a description of a fitness landscape) and outputs a first candidate to
consider (the initial genotype).

2. An algorithm F that accepts an instance and a candidate and returns a objective function value (i.e. computes the
fitness).

3. An algorithm M that accepts an instance and a candidate and returns an output with a strictly higher objective function
value, or says that the candidate is a local maximum.

We consider a PLS problem solved if an algorithm can output a locally optimal solution for every instance. This algorithm
does not necessarily have to use I, F , or M or follow adaptive paths. For instance, it can try to uncover hidden structure
from the description of the landscape. A classical example would be the ellipsoid method for linear programming. The
hardest problems in PLS – i.e. ones for which a polynomial time solution could be converted to a solution for any other
PLS problem – are called PLS-complete. It is believed that PLS-complete problems are not solvable in polynomial time (i.e.
FP 6= PLS), but – much like the famous P 6= NP question – this conjecture remains open. Note that finding local optima on
fitness landscapes is an example of a PLS problem, where I is your method for choosing the initial genotype, F is the fitness
function, and M computes an individual adaptive step.

Definition 25 (Weighted 2SAT). Consider n variables x = x1...xn ∈ {0, 1}n and m clauses C1, ..., Cm and associated positive
integer weights c1, ...cm. Each clause Ck contains two literals (a literal is a variable xi or its negation x̄i), and contributes ck
to the fitness if at least one of the literals is satisfied, and nothing if neither literal is satisfied. The total fitness c(x) is the
sum of the individual contributions of the m clauses. Two assignments x and x′ are adjacent if there is exactly one index i
such that xi 6= x′i. We want to maximize fitness.

The Weighted 2SAT problem is PLS-complete [46]. To show that the NK model is also PLS-complete, I will show how to
reduce any instance of Weighted 2SAT to an instance of the NK model.

Theorem 26. Finding a local optimum in the NK fitness landscape with K ≥ 2 is PLS-complete.

Proof. Consider an instance of Weighted 2SAT with variables x1, ..., xn, clauses C1, ..., Cm and positive integer costs c1, ..., cm.
We will build a landscape with m+ n loci, with the first m labeled b1, ..., bm and the next n labeled x1, ..., xn. Each bk will
correspond to a clause Ck that uses the variables xi and xj (i.e., the first literal is either xi or x̄i and the second is xj or x̄j ;
set i < j to avoid ambiguity). Define the corresponding fitness effect of the locus as:
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fk(0xixj) =

{
ck if Ck is satisfied

0 otherwise
(9)

fk(1xixj) = fk(0xixj) + 1 (10)

Link the xi arbitrarily (say to x(i mod n)+1 and x(i+1 mod n)+1, or to nothing at all) with a fitness effect of zero, regardless
of the values.

In any local maximum bx, we have b = 11..1 and f(x) = m + c(x). On the subcube with b = 11..1 Weighted 2SAT and
this NK model have the same exact fitness graph structure, and so there is a bijection between their local maxima.

Assuming – as most computer scientists do – that there exists some problem in PLS not solvable in polynomial time
(i.e. FP 6= PLS), then Theorem 26 implies that no matter what mechanistic rule evolution follows (even ones we have not
discovered, yet), be it as simple as SSWM or as complicated as any polynomial time algorithm, there will be NK landscapes
with K = 2 such that evolution will not be able to find a fitness peak efficiently. But if we focus only on rules that follow
adaptive paths then we can strengthen the result:

Corollary 27. There is a constant c > 0 such that, for infinitely many n, there are instances of NK models (with K ≥ 2)
on {0, 1}n and initial genotype v such that any adaptive path from v will have to take at least 2cn steps before finding a fitness
peak.

Proof. If the initial vertex has s = 11...1 then there is a bijection between adaptive paths in the fitness landscape and
any weight-increasing path for optimizing the weighted 2SAT problem. Thus, Schaffer and Yannakakis [46]’s Theorem 5.15
applies.

This result holds independent of any complexity theoretic assumptions about the relationship between polynomial-time
and PLS. Hence, there are some landscapes and initial genotypes, such that any rule we use for adaptation that only considers
fitter single-gene mutants will take an exponential number of steps to find the local optimum.

If we turn to larger mutational neighbourhoods than singe-gene mutants then – due to the large class of possible adaptive
dynamics – a variant of Corollary 27 will have to be reproved (often using a buffer padding argument similar to the end of
section C.2) but Theorem 26 is unaffected:

Corollary 28. For any definition of local equilibrium with respect to a mutation neighbourhood that contains point-mutations
as a subset (i.e. if ∀x {y | ||y − x||1 = 1} ⊆ N(x)), the NK model with K ≥ 2 is PLS-hard.

Proof. Any mutation operator that is a superset of point-mutations will only decrease the number of evolutionary equilibria
without introducing new ones. Thus, it will only make the task of finding that equilibrium (just as, or) more difficult.
However, since the algorithms studied by PLS do not have to use the mutation operator during their execution, changing it
does not give them any more computational resources.

Finally, it is important to see the NK-model as an example model, albeit a simple and natural one. If we consider more
complex models of fitness landscapes – say dynamic fitness landscapes – it is often the case that there is some parameter or
limit that produces the special case of a static fitness landscape like the NK-model. In particular, static landscapes are often
a sub-model of dynamic fitness landscapes and thus solving dynamic fitness landscapes can only be more difficult that static
ones.

D.1 Easy instances of NK-model

Note that this doesn’t mean that all instances of the NK-model are hard. In fact, there are natural sub-families of the
NK-model that are easy.

The simplest easy family is K = 0. In that case, the genes are non-interacting and we have a smooth fitness landscapes.
And all smooth landscapes are easy. For K = 1, Wright, Thompson, and Zhang [45] presented a dynamic programming
approach that can find the global fitness peak in polynomial time. Since we could use this as our algorithm I to pick the
initial genotype, this means the model cannot be PLS-complete for K ≤ 1 (unless PLS = P, in which case all local search
problems are easy). This means that Theorem 26 is as tight as possible in terms of K.

Alternatively, instead of restricting K, we can restrict how the gene-interaction network is connected. It will come in
useful to visualize these gene-interaction networks by drawing an edge directed from a focal locus to the K loci that affect its
fitness contribution. For example, if the genes can be arranged in a circle and a focal gene can interact with only the next K
genes in the circle then there is a polynomial time dynamic programming algorithm to find an evolutionary equilibrium [45].
Thus, this restricted model cannot be PLS complete for any constant K.

It is an open question if SSWM dynamics – or some other reasonable evolutionary dynamics – is sufficient in the cases of
K = 1 and circular arrangements. I conjecture that adaptive dynamics are sufficient in these cases, but proof of this is left
for future work.
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D.2 Distributions and random fitness landscapes

The NK model is frequently studied through simulation, or statistical mechanics approaches. In a typical biological treat-
ment, the gene-interaction network is assumed to be something simple like a generalized cycle (where xi is linked to
xi+1, ...xi+K) or a random K-regular graph. The fitness contributions fi are usually sampled from some choice of dis-
tribution. As such, we can think of biologists as doing average case analysis of these fitness landscapes. Given that randomly
sampling landscapes can introduce structure like short paths [47], the structure of this simple sampling led prior research
to miss the possibility of exponentially long walks. There has been a disconnect between theory and data [12, 48]. Since
there is no empirical or theoretically sound justification for the choice of distributions, I avoid relying on a simple generating
distribution and instead reason from only the logical description of the model. That way we know that our results are features
of the logic that characterizes a particular family of fitness landscapes and not artifacts of a simple sampling distribution.

If a single sampling distribution is required despite very little or no data on the distribution of fitness landscapes in nature
then it is tempting to turn to Occam’s razor and consider simpler landscapes as more likely. This can be done by sampling
landscapes with negative log probability proportional to their minimum description length, i.e. according to the Kolmogorov
universal distribution. If landscapes are sampled in this way then all the orders of magnitude for hardness results established
herein are expected to hold [49].

D.3 Approximate peaks

Finally, let us also consider relaxations of equilibrium, and being “close” to a peak instead of exactly at one. For this, we
need to use the whole numeric structure of the fitness function f and not just the rank-ordering that was sufficient until this
point. The following definitions and proofs are based on combinatorial optimization results by Orlin, Punnen, and Schulz
[20].

Definition 29. A genotype x is at an s-approximate peak if ∀y ∈ N(x) f(y) ≤ (1 + s)f(x).

The question becomes how big does s have to be for evolution to find an s-approximate peak. But since there is no absolute
units of fitness, we will need to define fδ = minx miny∈N(x) s.t. f(y)>f(x)(f(y)− f(x)) and fmax = maxx f(x).

First, it is important to note that all landscapes where fδ isn’t small compared to fmax are easy.

Proposition 30. If fmax/fδ ∈ O(nk) for some constant k then an exact peak can be found in a polynomial in n number of
mutations by any adaptive dynamic.

Proof. Since each adaptive step increases fitness by at least fδ then after t adaptive steps, we have f(xt) ≥ fδt. Combine
this with f(xt) ≤ fmax to get that t ≤ fmax/fδ.

So, we need to focus on bigger gaps between fδ and fmax. If the gap is exponential then we can find approximate peak for
moderate sized s on any landscape.

Theorem 31. If log(fmax/fδ) ∈ O(nk) then fittest mutant SSWM dynamics can find a local s-approximate peak in time
polynomial in n and 1

s
.

Proof. Let x0 be the initial genotype, if it is an exact peak then we are done. Otherwise, let x1 be the next adaptive step, by
definition of fδ, we have that f(x1) ≥ f(x0) + fδ ≥ fδ. Now, consider an adaptive path x1...xt that hasn’t encountered an
s-approximate peak; i.e. a mutation was always available such that f(xi+1) > (1 + s)f(xi). Thus, we have that f(xt) ≤ fmax

and that f(xt) ≥ (1 + s)tf1 ≥ (1 + s)tfδ. Putting these two together:

(1 + s)tfδ ≤ fmax (11)

t ln(1 + s) ≤ ln
fmax

fδ
(12)

t ≤ (ln
fmax

fδ
)/ ln(1 + s) (13)

≤ (1 + 1/s) ln
fmax

fδ
(14)

Where I used ln(1 + s) ≥ s
1+s

in the last step. Combining with the conditions on log fmax/fδ, we get: t ∈ O(n
k

s
).

But for very small s, finding an approximate peak is as hard as finding an exact peak.

Proposition 32. If s ≤ fδ/fmax then any s-approximate peak is a (exact) local peak.

Proof. If an s-approximate peak at x is not an exact peak then there exists a y ∈ N(x) such that f(y) − f(x) ≥ fδ but
f(y) < (1 + s)f(x). Combining this with f(x) ≤ fmax, we get that s > fδ/fmax.
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Thus, it isn’t possible to find an s-approximate peak for very small s on hard fitness landscapes:

Theorem 33. If PLS 6= P and log(fmax/fδ) ∈ O(nk) then (for NK-model with K ≥ 2) a local s-approximate peak cannot be
found in time polynomial in n and log 1

s
.

Proof. If such an algorithm existed then we’d run it with s = fδ/fmax and – by Proposition 32 – the approximate peak it
finds would be exact. Further, in this case log 1

s
= log(fmax/fδ) ∈ O(nk) and thus the runtime would be polynomial in n.

This is not possible for the NK-model with K ≥ 2 by Theorem 26 (unless PLS = P).

This also means that the selective coefficient of the fittest mutant s(t) = maxy∈N(xt)∪{xt}(f(y) − f(xt))/f(xt) cannot
decay exponentially quickly.

Corollary 34. If PLS 6= P then there are no evolutionary dynamics such that s(t) ≤ e−mt for all instances of the NK-model
with K ≥ 2.

Contrast this with the always achievable power-law decrease in s(t).
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