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Abstract1

Ecosystems can undergo abrupt transitions from one state to an alternative stable state2

when the driver crosses a threshold or a critical point. Dynamical systems theory suggests3

that systems take long to recover from perturbations near such transitions. This leads to4

characteristic changes in the dynamics of the system, which can be used as early warning5

signals of imminent transitions. However, these signals are qualitative and cannot quantify6

the critical points. Here, we propose a method to estimate critical points quantitatively7

from spatial data. We employ a spatial model of vegetation that shows a transition from8

vegetated to bare state. We show that the critical point can be estimated as the ecosystem9

state and the driver values at which spatial variance and autocorrelation are maximum.10

We demonstrate the validity of this method by analysing spatial data from regions of11

Africa and Australia that exhibit alternative vegetation biomes.12

∗Corresponding author. Email: sabiha@physics.iisc.ernet.in, Tel: +918023605797
†priya.tamma@gmail.com
‡sriram@physics.iisc.ernet.in
§guttal@ces.iisc.ernet.in

1

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2017. ; https://doi.org/10.1101/187799doi: bioRxiv preprint 

https://doi.org/10.1101/187799
http://creativecommons.org/licenses/by-nd/4.0/


1 Introduction13

Many ecosystems, ranging from tropical forests to coral reefs, are stable across a range of14

environmental conditions. However, when a control parameter or driver in the environment15

crosses a threshold value, ecosystems may undergo abrupt shifts from their current state to an16

alternative state (Noy-Meir 1975; Scheffer et al. 2001; Hughes 1994; van de Koppel et al. 1997;17

Steele 1998). This threshold is called a critical point or, in the dynamical systems literature,18

a bifurcation. These drastic changes of state, termed critical transitions, may result in loss19

of biodiversity and ecosystem services. Therefore, estimating critical points and locating20

ecosystems’ current parameters relative to such critical values are matters of importance.21

Estimating critical points of real ecosystems can be notoriously difficult. One novel ap-22

proach relies on the analysis of dynamics of state variables following large perturbations (D’Souza23

et al. 2015); however, experimentally induced large perturbations can push the system to a24

transition. Critical points can also be estimated from long-term data of ecosystems that have25

previously undergone transitions (Ratajczak et al. 2014). Alternatively, one could construct26

a complete characterization of ecosystem states as a function of drivers (Hirota et al. 2011;27

Staver et al. 2011; Staal et al. 2016), and estimate critical points. However, these methods28

are limited to a few ecosystems where data are available in steady-state conditions and over29

large enough spatial or temporal scales, thus limiting their applicability. Therefore, most re-30

cent studies have focused on obtaining qualitative ‘early warning signals’ (EWS) of critical31

transitions which are based on theories of dynamical systems and phase transitions (Wissel32

1984; Scheffer et al. 2009; Carpenter & Brock 2006; Guttal & Jayaprakash 2008; Van Nes &33

Scheffer 2007).34

These EWS have been empirically tested in aquatic, savanna and climatic systems (Carpen-35

ter et al. 2011; Eby et al. 2017; Dakos et al. 2008). Various studies have also highlighted their36

limitations (Boettiger & Hastings 2013), for example, due to insufficient sampling, stochastic-37

ity or short length of ecological datasets (Perretti & Munch 2012; Guttal et al. 2016; Burthe38

et al. 2016). Even reliable measurements of these signals do not provide quantitative estimates39

of how far the system parameters are from the critical point.40

The goal of our manuscript is to develop a method that offers quantitative estimates of crit-41

ical points. We hypothesise that values of drivers and state variables in regions with maximum42

spatial variance and autocorrelation of ecosystem states offer estimates of critical point (Box43

1). We argue that this method is applicable even if data are not in steady-state conditions and44

are available only at relatively small scales than those required for a complete characterisation45
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of ecosystem states. We justify our claim based on analyses of models and remotely-sensed46

vegetation data from Africa and Australia. Therefore, one can employ transects that span47

alternative stable states of ecosystems. The parameters of biomass density, grazing or rainfall48

values at which maxima of spatial metrics occur offer approximations of the critical points.49

2 Box 1: Maxima of spatial variance and autocorrelation occur50

at the critical point51

To see why spatial variance and autocorrelation are maximum at the critical point, we consider52

a generic model of abrupt transition given by53

∂B(x, t)

∂t
= f(B) +D∇2B(x, t) + ση(x, t) (1)

where f(B) represents local growth rate of population density B, the second term (diffusion)54

represents spatial interactions and the third term represents Gaussian fluctuations, uncorre-55

lated in space (x) and time (t), with a strength σ. We assume f(B) such that the nonspatial56

and deterministic version of Eq (1) exhibits multiple stable states and a saddle-node bifurca-57

tion. We investigate the dynamics for the spatially-extended case in a simplified analytical58

approach, working in one space dimension and linearising the system in the vicinity of a stable59

state, to obtain60

∂b(x, t)

∂t
= −αb(x, t) +D∇2b(x, t) + ση(x, t) (2)

where b(x, t) = B(x, t)−B∗1 and α measures the distance from the critical point. The spatial61

variance (σ2s) and autocorrelation (ACF ) of this system variable (b) are easily found to be:62

σ2s =
σ2

4
√
Dα

ACF (r) = e−r
√

α
D (3)

Thus, approaching the critical point (α → 0) gives rise to enhanced fluctuations of the63

ecosystem state and extended correlations in space (Guttal 2008; Guttal & Jayaprakash 2009;64

Dakos et al. 2010). At the critical point (α = 0), within our approximation, σ2s is infinite65

and ACF(r) becomes unity for all r (Scheffer et al. 2009). These extreme results arise can66

be traced to the linearised approximation which is well known (Chaikin & Lubensky (2000),67

chapter 5) to exaggerate fluctuation magnitudes for one- or two-dimensional systems. An exact68

calculation based on the theory of critical phenomena (Chaikin & Lubensky 2000) shows that69

σ2s remains finite, ACF decays with r, but both attain a maximum at the critical point.70
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Based on these observations, we hypothesise that maxima in both spatial variance and71

spatial autocorrelation of the state indicates that the system is at the critical point of a72

transition.73

3 Material and methods74

3.1 Analyses of spatially-explicit models to identify critical points75

Spatially-explicit model showing critical transitions76

In our model, the landscape contains N×N cells, with each cell in a state of being empty (0) or77

occupied by a plant (1). In the simplest version of this model, known as contact process (Dur-78

rett & Neuhauser 1991), a focal plant germinates a nearby empty cell with probability p, or79

dies with a probability 1 − p. This model exhibits a transition from a bare state (p < pc)80

to vegetated state (p ≥ pc) with the critical point pc ≈ 0.62. This transition is, however,81

continuous. We therefore consider an extended version of the model (Lübeck 2006). Here, the82

baseline birth (p) and death (1 − p) probabilities are modified via a local positive feedback83

(denoted by q), as an increase in birth probability and a decrease in death probability for84

plants which are surrounded by other plants. We assume that parameters p and q do not vary85

across cells and hence call this a ‘homogeneous-driver model’. This model with large q exhibits86

a discontinuous transition from a vegetated state (ρc = 0.32) to bare state at a critical value87

of the driver (pc = 0.2852; see Fig. S2 in Appendix S2 in Supporting information).88

Model with a gradient of driver along space89

To reflect real-world situations where drivers such as rainfall, grazing or fire are spatially90

heterogeneous, we consider a simple case where the driver changes from low to high values91

along one dimension of a two dimensional landscape; for instance, this may represent rainfall92

gradients observed in tropical forest biomes or savanna ecosystems (Favier et al. 2012; Eby93

et al. 2017). Hence, we model the landscape as a rectangular matrix of width N and length94

N × l with a homogeneous positive feedback (q). However, the baseline birth probability (p)95

increases from pl to ph along the length of the matrix such that the system in its steady state96

exhibits a transition in this range of p (Fig. S4 in Appendix S2). We call this a ‘gradient-driver97

model’ . Since real-world ecosystems are rarely in steady state, we stopped the simulation98

at 1500 time steps; this is in contrast to steady-state simulations that require 1 million time99

steps near critical points.100
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Null model101

We use a null model from (Kéfi et al. 2011) where both birth (p) and death (d) probabilities are102

independent of the state of the neighbouring cells. Here, vegetation density reduces gradually103

as a function of reducing p, with no critical points.104

Computing spatial metrics105

We compute spatial variance and spatial autocorrelation at lag-1 using methods from Kéfi106

et al. (2014); Sankaran et al. (2017). Studies show that spatial variance in binary-state spatial107

data (e.g. occupied (1) or empty (0) at each location) depends only on mean cover and does108

not capture spatial structure of the data (Eby et al. 2017; Sankaran et al. 2017). One must109

average spatial data over local spatial scales, known as ‘coarse-graining’ (Sethna 2006), before110

computing spatial metrics. To restate our hypothesis in the context of this method, we expect111

spatial variance (referred to as variance method) and spatial ACF-1 (autocorrelation at lag112

1, referred to as ACF method) to be maximum at critical points if the data are optimally113

coarse-grained. See Appendix S1 for formula for spatial metrics, details on coarse-graining114

spatial data by a scale lcg and a method to obtain an ‘optimal coarse-graining length (l̂cg)’ at115

which critical points can be estimated.116

3.2 Validation of the method using real data117

To demonstrate the empirical validity of our method, we used vegetation data from three118

regions as shown in Fig. 2. We first estimate critical points from our method at the relatively119

small spatial scale of transects (8 km × 90 km) that span alternative stable states of vegetation.120

We then compare these estimated values to those from an independent method at a larger121

landscape scale from these regions (∼ 200 km × 250 km).122

Study sites123

We use results from Staver et al. (2011) to find regions (∼200 km × 250 km) that show bistable124

states of forests and grasslands (Appendix S3). We choose two regions, one in Australia (Box-A125

shown in Fig. 2) and one at the Congo-Gabon border in Africa (Box-B), where the vegetation126

cover varies from high (∼ 70%) to low (∼ 20%). We also select a region including Serengeti127

National Park (Box-C), which shows low vegetation cover (< 35%).128
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Vegetation and Rainfall Data129

Remotely-sensed vegetation indices, such as Normalized Difference Vegetation Index (NDVI)130

and Enhanced Vegetation Index (EVI), are related to the amount of photosynthetic activity.131

We employ EVI as a proxy for vegetation cover since, unlike NDVI, it does not saturate at high132

values of photosynthetic activity and thus is a better proxy for both low and high vegetation133

covers (Glenn et al. 2008). We obtain EVI data from the Moderate Resolution Imaging134

Spectroradiometer (MODIS; using Google Earth Engine platform (Google Earth Engine Team135

2015) for 2010 at 250 m resolution (Huete et al. 2002). We choose the dry months (June -136

August) to minimise cloud cover. We analyse the relation between rainfall (WorldClim , 1 km137

resolution) (Hijmans et al. 2005)) and vegetation cover as rainfall is an important driver of138

vegetation (Sankaran et al. 2008; Hirota et al. 2011; Staver et al. 2011).139

Estimating critical points from transects140

We construct 8 km × 90 km transects, which are ∼ 1.5% of area of Boxes, within each141

landscape such that they capture the gradient in EVI (Fig. 2). Transect-3 in Box-A is limited142

to 70km to avoid regions of high human activity, and Transect-1 in Box-C to 60km to avoid143

steep changes in altitude.144

For each transect, we employ a moving window of size 8 km × 8 km, with a moving distance145

of 2km along its length. We calculate spatial variance and ACF-1 of coarse-grained EVI data146

along the moving window. We smooth the spatial-metrics data using ‘smooth.spline’ in R (v147

3.3.1) and identify peaks as local maxima of the smoothed function. If the peaks in spatial148

variance and spatial ACF-1 occur within a distance of 4 km, we define them as coinciding149

peaks. To test if the coincidence of the peaks can occur by chance, we compute the spatial150

metrics on null transect data, which is obtained by shuffling EVI data for each moving window151

of the transect. We also test if the peaks are likely to be caused by landscape heterogeneity (see152

below). We hypothesise that coinciding peaks in spatial variance and ACF-1 in the absence153

of such confounding effects correspond to the critical points. See Appendix S5 for a detailed154

step-by-step procedure.155

Confounding factors: Human influence and landscape heterogeneity156

We only choose regions with minimal human influence (using the 2009 GlobCover maps (Bon-157

temps et al. 2011)). The observed patterns of spatial metrics in vegetation transects may also158

arise from landscape heterogeneity, such as elevation, aspect, slope and soil variations (Reed159
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et al. 2009), rather than as a consequence of the underlying dynamics. We compute land-160

scape heterogeneity (calculated as spatial variance in elevation, slope, aspect, and soil-type161

richness) along each transect and identify its peaks, referred as heterogeneity peaks, based on162

the smoothing procedure described previously. We then reject peaks in spatial variance and163

ACF-1 if they occur within 4 km of any of the heterogeneity peaks.164

165

Multimodality in vegetation cover and estimation of critical points from landscape166

analyses167

We divide rainfall into 100 mm bins (Hirota et al. 2011). For each bin, we smooth the frequency168

distribution of EVI using the function ‘density’ in R (v 3.3.1) and identify modes as local169

maxima of the density functions (Appendix S4). We test whether the observed multimodality170

in EVI is associated with multimodality in rainfall, and reject such modes because they are171

unlikely to reflect alternative stable states in EVI. Now, from the location of remaining modes,172

we obtain an independent estimate of critical points, defined as the rainfall levels at which173

EVI distributions change from bimodal to unimodal. We refer to the resulting plots of modes174

vs rainfall as ‘state diagrams’.175

4 Results176

4.1 Estimating critical points in models177

Spatial variance and autocorrelation can estimate critical points in the models178

We apply our method to three scenarios of the gradient-driver model (Fig. 1). In steady-179

state conditions, they correspond to qualitatively different behaviours, i.e. no transition, a180

continuous transition and a discontinuous transition, respectively (Fig. S4 in Appendix S2).181

In nonsteady-state conditions, however, the analysis of driver-state relationships alone (Fig. 1182

A, B or C), may not be sufficient to yield critical points. This is because vegetation cover183

changes gradually from large values to the bare state in all three cases. As we describe below,184

our methods provide estimates that are reasonably close to the steady-state critical points185

even when applied to nonsteady-state data.186

Spatial variance for raw data (i.e. without coarse-graining, lcg = 1) shows a maximum187

value for the snapshot with 50% cover (Fig. 1 A1, B1, C1), which is not the critical value188

of cover in our models . This is expected, as argued previously (Eby et al. 2017; Sankaran189
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et al. 2017), in binary-valued spatial data. In the null model, the peak of variance does not190

change with lcg (Fig. 1 A1, A2). In contrast, for both continuous and discontinuous transition191

models, after coarse-graining, the values of cover and driver with maximum spatial variance,192

denoted as ρm and pm respectively, change with increasing lcg, converging to the steady-state193

critical-point values ρc and pc (Fig. 1 B1, B2, C1, C2). Likewise, patterns of spatial ACF-1194

differ between the null model and the other two models with transitions, with the null model195

showing no peak as a function of density.196

Due to the lack of match in the patterns of peaks of spatial variance and ACF-1, we197

conclude that the null model, as expected, has no critical points. In contrast, for the continuous198

transition scenario, the variance and the ACF methods yield critical points of (ρ, p)=(0, 0.63)199

and (0, 0.623) respectively. These values are close to the steady-state critical point (ρc, pc)=(0,200

0.623). Likewise, for the discontinuous transition scenario, the variance and the ACF methods201

yield estimates of (ρ, p)=(0.30, 0.2838) and (0.28, 0.2835) which are reassuringly close to the202

actual critical point in steady state (ρc,pc)= (0.32, 0.2851).203

Our method can also estimate critical points in models of semi-arid vegetation that incor-204

porate complex and detailed ecological processes (Kéfi et al. 2007; Schneider & Kéfi 2015)205

(Fig. S5 in Appendix S2). These findings provide a proof of principle, encouraging us to apply206

this method to real world data.207

4.2 Application to find critical points in real ecosystems208

Estimation of critical points from transects209

We show the results of one representative transect from each box in Fig. 3 and others are210

shown in Fig. S13, S14, S15 in Appendix S5. For all transects, EVI typically increases with211

rainfall (Fig. 3 A1-C1). We find multiple peaks of spatial variance and ACF-1 in EVI for212

these transects. We reject peaks that occur in the vicinity of the landscape heterogeneity213

peaks (grey bands). Rainfall values corresponding to coinciding peaks of spatial variance and214

ACF-1, 1108 - 1334 mm/year for Box-A and 1281 - 1306 mm/year for Box-B (Table 1), are215

estimated as critical points of the transition. For Box-C, after accounting for heterogeneity,216

we found no coinciding peaks, and hence no critical point estimations, in any of the transects.217

We compute the same metrics for the null transect data and show that the peaks of spatial218

variance and ACF-1 for Box-A and Box-B do not coincide by chance (Fig. S16 in Appendix219

S6). We also show that our estimations are robust to the choice of smoothing parameter (Fig.220

S17 in Appendix S6) and the width of the region (from 4 km to 16 km) eliminated because of221
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landscape heterogeneity . The only exception is in Box-B for the width of heterogeneity region222

12 km (or 16 km); we find that one (or both) of the critical point estimations are confounded.223

Estimated critical points from transects in Box-A and Box-B lie close to critical224

points of the state diagram225

The state diagrams of Box-A and Box-B show bimodality with high and low EVI values at226

intermediate rainfall values (Fig. 4 A,B); the occurrence of bimodality in EVI is not associ-227

ated with bimodality in rainfall (Fig S6, S7 in Appendix S4).This suggests the existence of228

alternative stable states in these regions. Recall that critical points can be independently229

estimated as the threshold for the onset or disappearance of bimodality in a state diagram.230

For Box-A, we obtain an estimate of the critical value to be around 1000-1100 mm mm/year231

for the transition from high to low EVI state (Fig. 4 A); from transects, the estimated critical232

rainfall values range from 1108 to 1334 mm/year (Table 1). Likewise, in Box-B (Africa), the233

estimated critical points from the state diagram (1300-1400 mm) are close to estimates from234

analyses of transects (1281, 1306 mm; Table 1). We do not get any estimates from transects in235

the control Box-C, which is consistent with the state diagram as there is only one EVI mode236

at a given rainfall value (Fig. 4 C).237

5 Discussion238

Our analyses of spatial models showed that the ecological state and driver values correspond-239

ing to regions with simultaneous maxima of spatial variability and autocorrelations offer a240

quantitative estimation of critical points. We demonstrated the validity of the method using241

remotely-sensed vegetation data from regions in Africa and Australia. Our findings show that242

it is possible to estimate critical points and to identify critical regions prone to regime shifts243

in the future from spatial data of ecological systems.244

Our method can be applied on spatial snapshots spanning alternative stable states of245

ecosystems even when they are in nonsteady-state conditions. A gradient of states is often246

maintained by an underlying gradient of a driver. Using such data, one can obtain a relation247

between the state of the ecosystem and the driver. Since real world data is rarely in steady248

state, this relationship may not show a threshold behaviour even if the underlying dynamics249

exhibits a critical point. We tested the applicability of our method in non-steady state condi-250

tions by simulating three scenarios: (a) a null model that exhibits no transition (Fig. 1 A), (b)251

a model that shows continuous transition (Fig. 1 B) and (c) a strong positive feedback model252
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that exhibits abrupt critical transition (Fig. 1 C). Even under such circumstances masking the253

underlying character of the transitions, our method offers reasonable estimates of the critical254

points, thus showing promise for real world applications.255

Our method allows estimation of critical points even with relatively small spatial datasets.256

We found that critical-point estimates (Table 1) from transects (8 km × 90 km) are compa-257

rable to those from an independent method that used data at regional scales (200 km × 250258

km, about two orders of magnitude larger than transects). We compared our results with a259

previous study at a continental scale that used a different dataset (MODIS woody cover from260

Africa) (Staal et al. 2016). From Fig. 3 of Staal et al. (2016), we identified the critical points261

of transition from high to low cover to be 1300-1400 mm mean annual rainfall, comparable262

to our estimates. Consistency of results across scales lends credence to our claim that crit-263

ical points can be quantified even with relatively small spatial datasets, offering promise of264

applications to ecosystems.265

Is our method prone to false or failed positives? In our study, we did not find any false266

positives. Specifically, we chose a control region with no critical points (Box-C); none of267

the transects in this region provide estimations of critical points. On the other hand, our268

method has a failure rate. For example, one of three transects in both Box-A and Box-B269

(transect-2 in Box-A and transect-1 in Box-B) failed to provide any estimations of critical270

points. Nevertheless, even in these failed transects, both spatial variance and ACF-1 peak271

at the critical rainfall values expected from the state diagrams. However, those regions also272

occur in the vicinity of landscape heterogeneity peaks. It is difficult to disentangle whether273

the peak is because of the internal dynamics or the external heterogeneity and therefore, we274

did not consider estimates from these transects.275

Ecosystems also exhibit regular or Turing-like patterned states, such as gaps, labyrinths or276

spots (Rietkerk & Van de Koppel 2008), with a characteristic length-scale of spatial variation.277

Such regular patterns, not considered in our study, may arise from scale-dependent processes278

such as short-scale positive feedback with a large-scale negative feedback (Borgogno et al.279

2009; Meron 2012). Even in these systems, approach to critical points can be preceded by280

critical slowing down, simplest measures of spatial (Dakos et al. 2011; Kéfi et al. 2014). It281

is worth exploring, both theoretically and empirically, whether our proposed method can be282

applied to such pattern forming systems. This may require probing fluctuations around the283

characteristic scale of the pattern.284

Tropical vegetation biomes show multimodality as a function of rainfall (Hirota et al. 2011).285
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If we apply our method to spatial gradients that span such multiple stable states, we expect286

the maxima of variance and autocorrelation to occur at multiple locations, each corresponding287

to transition point between alternative states. Occurrence of such maxima can be confounded288

when the driver gradient is steep; for example, when the driver gradient exceeds a threshold289

value, a new type of transition, known as rate-induced tipping, can arise in dynamical systems290

(Ashwin et al. 2012; Siteur et al. 2016). Given that our driver gradients are modest (Fig 3291

A1-C1), our inferences are possibly free of such complications.292

Given the generality of the principles that underlie our method, it can be applied to a293

variety of ecosystems that exhibit alternative stable states. Therefore, our method enables294

ecosystem managers to obtain estimates of threshold or critical values of ecosystem drivers.295

Unlike previous qualitative early-warning indicators, our method allows for the quantitative296

estimation of critical points. Future research could focus on extending our methods to exploit297

not only spatial snapshots but also how those patterns change over time (Verbesselt et al.298

2016; Weissmann & Shnerb 2016).299
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Transect no.
Box-A Box-B Box-C

CP estimated by CP estimated by CP estimated by

Variance method ACF method Variance method ACF method Variance ACF

1 1334 mm 1283mm - - - -

2 - - 1306 mm 1306 mm - -

3 1108 mm 1108 mm 1281 mm 1281 mm - -

Table 1: Estimates of the critical values of mean annual rainfall in Box-A, Box-B and Box-C

from the transects using variance and ACF methods. Dash represents the transects which do

not provide any estimates.
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Figure 1: Simulations of spatially-explicit ecological models show that even for data arising

from nonsteady state and gradient-driver conditions, estimated critical points (blue squares

and green triangles in B and C) are reasonably close to the critical point in steady states

(black star). In the null model with no critical points (A), as theoretically expected, the peak

of spatial variance occurs around density of 0.5 for all coarse-graining lengths (A1, A2), but

there is no peak for spatial ACF-1 (see Fig. S2, S3 in Appendix S2). Thus, we infer there is

no critical point for the null model. In the continuous transition model (B), peaks of spatial

variance and ACF-1 (B1, B2) converge close to the steady state critical points. In (C, C1 and

C2), we find qualitatively similar results for the discontinuous transition model.
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Figure 2: Location of study sites and the transects. (A, B and C) show the spatial distri-

bution of EVI in Box-A (Australia), Box-B (Congo-Gabon in Africa) and Box-C (Serengeti

in Africa) respectively. (A1-A4 and B1-B4) show that EVI changes from a unimodal to a

bimodal frequency distribution as a function of mean annual rainfall within Box A and B.

(C1-C4) show that EVI distributions remain unimodal for all the rainfall ranges in Box-C.
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Figure 3: Estimation of critical points (blue stars in A2, B2, A3, B3) from the analyses

of transects after eliminating confounding factors arising from landscape heterogeneity (grey

bands). First row: EVI and mean annual rainfall both change along transect length. Second

and third rows show spatial variance and spatial ACF-1 in EVI, respectively, along transects.

We discarded regions of transects (grey bands) dominated by local heterogeneity in soil, slope,

aspect or elevation (also see Fig. S13, S14, S15 in Appendix S5). In the remaining region, we

identified peaks in both spatial metrics that occur within 4 km of each other as coinciding peaks

(blue stars in A2, A3, B2 and B3). We estimated the associated rainfall value as the critical

points (Table 1). The control Box C, which did not show bimodality, offered no estimates,

consistent with the theory. Scatter data represent measurements on a moving window of 8

km × 8 km with a moving distance of 2 km; connecting solid line is obtained by a smoothing

function with the smoothing parameter (spar) = 0.6.
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Figure 4: State diagrams for the three boxes. (A and B) show that Box-A and Box-B have

two EVI modes occurring at comparable values of mean annual rainfall (between 1000 mm to

1300 mm in Box-A and above 1300 mm in Box-B). For each rainfall bin, rainfall does not show

bimodality (see Appendix S4). These suggest evidence for alternative stable states in EVI.

For each rainfall bin, black dots show the location of modes of EVI density whereas colour

maps, plotted using image.plot in R, show the density of EVI. If the ratio of the density at

two modes is less than 0.25, it is plotted as a grey dot. (C) does not show bimodality.
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