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Abstract

Model-guided design has become a standard approach to engineering biomolecular
circuits in current synthetic biology. However, the stochastic nature of biomolecular
reactions is often overlooked in the design process. As a result, cell-cell heterogeneity
causes unexpected deviation of biocircuit behaviors from model predictions and re-
quires additional iterations of design-build-test cycles. To enhance the design process
of stochastic biocircuits, this paper presents a computational framework to system-
atically specify the level of intrinsic noise using well-defined metrics of statistics and
design highly heterogeneous biocircuits based on the specifications. Specifically, we use
descriptive statistics of population distributions as an intuitive specification language
of stochastic biocircuits and develop an optimization based computational tool that
explores parameter configurations satisfying design requirements. Sensitivity analysis
methods are also developed to ensure the robustness of a biocircuit design. These de-
sign tools are formulated using convex optimization programs to enable efficient and
rigorous quantification of the statistics without approximation, and thus, they are
amenable to the synthesis of stochastic biocircuits that require high reliability. We
demonstrate these features by designing a stochastic negative feedback biocircuit that
satisfies multiple statistical constraints. In particular, we use a rigorously quantified
parameter map of feasible design space to perform in-depth study of noise propagation
and regulation in negative feedback pathways.
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Introduction

The last two decades of intense efforts in synthetic biology have greatly expanded our abil-

ity to build synthetic biomolecular circuits by adopting many concepts and techniques from

engineering disciplines. Model-guided design is one of such examples that have been rou-

tinely used to create safe and robust control systems in traditional engineering [1] and have

been adopted in the design process of biocircuits [2]. To date, many biocircuit modules

were engineered with the help of model-based simulations, including logic gates [3, 4, 5],

oscillators [6, 7, 8, 9] and genetic memory [10, 11] to name a few. A current challenge of

biocircuit engineering is to integrate these circuit modules and build systems for complex

operations in the real-world environments, which requires more stringent reliability of each

circuit module. As is the case with any engineering systems, a first key step to the robust

design of such complex systems is to set appropriate and well-defined performance norms

that can specify all the necessary features of systems’ behavior. Mathematical and com-

putational tools then facilitate design space exploration to find parameter configurations

that achieve pre-specified performance requirements. Compared with this ideal, the cur-

rent design process of biocircuits is still far immature in that models are used mostly for

simulations to gain only qualitative insights rather than for quantitatively guaranteeing

the performance of biocircuits by fully benefitting from advanced theory and algorithms.

This motivates us to develop computational frameworks that streamline the design process

by systematically certifying and optimizing the performance levels of biocircuits.

One of the important features that should be carefully considered in the design process

of biocircuits is cellular heterogeneity. In biological cells, the low copy nature of molecules

induces randomness of molecular collision events that fire chemical reactions, resulting in

the large variation of biocircuit states across cell populations even if the cells are genetically

identical and grown in the same condition [12, 13, 14]. In many cases, the signal-to-noise

ratio of biocircuits is much lower than that of mechanically and electronically engineered

systems. Although noise attenuation has been a rule of thumb in engineering, recent stud-

ies demonstrated opposite strategies to take advantage of the highly stochastic nature of

biomolecular reactions and design biocircuits that operate collectively at a population level

[15, 16, 17, 18]. For example, collections of binary outputs from stochastic biocircuits can

form a graded response that enables analog decision making in highly stochastic environ-

ments [18, 19]. These examples illustrate that we can design novel mechanisms that are

different from those in traditional systems to control biocircuits by actively leveraging the
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heterogeneous responses of cell populations.

To enhance the design process of stochastic biocircuits, the first key step is to produce

specifications that can capture all the necessary design features using simple but well-

defined performance metrics. For this purpose, useful criteria would be descriptive statis-

tics such as covariance, correlation, the coefficient of variation (CV) and Fano factor in

addition to the population mean values. In current synthetic biology, the majority of stud-

ies uses Monte Carlo based stimulations of single cell trajectories to approximately evaluate

these statistics of population distributions[20]. To complement the time-consuming nature

of the Monte Carlo approach, other computational tools are available to directly quantify

population distributions [21, 22] and raw moments [23, 24, 25, 26] without running simula-

tions. However, these methods are not designed to directly compute descriptive statistics

of biocircuits, which makes it difficult to further develop systematic design tools that can

handle statistical biocircuit specifications.

In this paper, we present a design-oriented computational framework that directly cal-

culates steady state statistics of stochastic biocircuits and their sensitivity to parameter

perturbations (Fig. 1). Building upon a moment computation approach [26, 27, 28], we

formulate the biocircuit design problems in the form of convex optimization programs

[29], which enable efficient evaluation of the statistics and its sensitivity without running

time-consuming simulations of single-cell trajectories. Our optimization based synthesis

approach is capable of characterizing feasible design space that satisfies multiple and pos-

sibly incompatible performance specifications with mathematical rigor. Thus, it greatly

facilitates rational engineering process of noisy biomolecular reactions. In addition, the

sensitivity analysis ensures robustness against parameter uncertainty by compensating for

errors due to model misidentification and perturbations to the host cell environments.

We use the proposed algorithms to explore the design parameter space of a self-negative

feedback biocircuit, where a repressor protein regulates its own expression. Specifically,

we run the convex optimization programs and obtain a parameter map of the feasible de-

sign space with which the negative feedback biocircuit satisfies pre-specified performance

requirements. Interestingly, the parameter maps indicate the existence of an optimal trans-

lation rate that minimizes the CV of the repressor copy numbers, implying that increasing

the copy number of the protein by strong translation does not necessarily attenuate the

noise due to some effects of negative feedback pathways. To better understand the mecha-

nisms, we perform in-depth study of the propagation of the noise and identify two sources
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Figure 1: Overview of the optimization based synthesis approach. The optimization pro-
gram allows for rigorous characterization of parameter space that satisfies given statistical
specifications.

of noise in a trade-off relation, which produces an optimal configuration that minimizes the

CV of the repressor protein. Informed by these analyses, we determine a design strategy

of the negative feedback biocircuits. Sensitivity analysis is further performed to assess the

robustness of our design against parameter perturbations.

Results and Discussion

Mathematical model of stochastic biocircuits

We start with a general model of stochastic biomolecular reactions and introduce an ordi-

nary differential equation (ODE) model that describes the evolution of stochastic moments

of biocircuits. Suppose a biocircuit consists of n species of molecules that vary in time and

r types of chemical reactions. The copy numbers of the n molecules, or the state of bio-

circuits, fluctuate randomly in time and become heterogeneous between cells due to the

stochastic chemical reactions. To model the stochastic dynamics, we denote the copy num-

ber of the i-th molecule by xi (i = 1, 2, · · · , n) and define the probability that there are

x = [x1, x2, · · · , xn]T molecules in a cell at time t by Px(t). As an illustration example,

we consider a simple transcription-translation process in Fig. 2A. In this example, mRNA

and protein copy numbers are the state variables of the biocircuit (n = 2), and there are

four reactions (r = 4), transcription, translation and degradation of mRNA and protein.

The heterogeneity of a cell population is then captured by the joint distribution of mRNA

and protein copy numbers P[x1,x2]T (t), where x1 and x2 denote the copy numbers of mRNA
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Figure 2: (A) Schematic diagram of a simple transcription-translation biocircuit. (B)
Joint population distribution of mRNA and protein copy numbers at t = 1440 min. (C)
Summary statistics of the population distribution.

and protein, respectively.

In general, the dynamics of the probability distribution Px(t) are modeled by a set of

ODEs called Chemical Master Equation (CME) [30].

dPx(t)

dt
=

r∑
i=1

{wi(x− si)Px−si(t)− wi(x)Px(t)} (x ∈ Nn
0 ), (1)

where wi(·) is a propensity function (reaction rate) associated with the i-th chemical reac-

tion (i = 1, 2, · · · , r), and si is a n-dimensional row vector representing the stoichiometry

of the i-th reaction. We assume that the reactions are elementary, and thus wi(·) is a

polynomial of xi (i = 1, 2, · · · , n) [31]. Specific forms of wi(·) and si for the transcription-

translation process in Fig. 2A are summarized in Supporting Information S.2. It should be

noted that the entries of the vector x in (1) take all combinations of nonnegative numbers,

and thus, the CME is composed of infinitely many coupled equations. Although it is hard

to analytically solve the equation in terms of Px(t), it is possible to simulate many numbers

of single-cell trajectories using a Monte Carlo approach [20] and obtain approximate distri-

butions of Px(t) as illustrated in Fig. 2B. To quantitatively capture the important features

of population distributions, widely used statistics are the mean E[x] and the covariance

E[(x−E[x])(x−E[x])T ] = E[xxT ]−E[x]E[x]T , which are the first two central moments of

the distribution. Other examples of useful descriptive statistics are the coefficient of varia-

tion (CV)
√
E[x2i ]− (E[xi])2/E[xi] and Fano factor (E[x2i ]−(E[xi])2)/E[xi], which quantify

the dispersion of distributions. In particular, Fano factor become exactly one if the distri-
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bution Px(t) is Poisson. Correlation E[xixj ]/
√

(E[x2i ]− (E[xi])2)(E[x2j ]− (E[xj ])2), is also

a useful measure when we are interested in the relation between two molecules.

The design-oriented computational framework presented in this paper complements the

Monte Carlo approach by allowing for rigorous evaluation of descriptive statistics with-

out approximation. For this purpose, we first derive an ODE model that describes the

dynamics of raw moments, or a moment equation for short, based on the CME (1). To

elucidate the following mathematical development, we first consider a specific model for

the transcription-translation process in Fig. 2A. Let m denote a vector of raw moments

m :=
[
E[1], E[x1], E[x2], E[x21], E[x1x2], E[x22]

]
, and consider to derive an ODE model

for m. The basic idea for the derivation is to multiply x′is to both sides of the CME (1) and

take the sum of x′is for all nonnegative numbers (Supporting Information S.2 for details).

Using this approach, we obtain the moment dynamics as

d

dt
m(t) =



0 0 0 0 0 0

k1DT1 −k2 0 0 0 0

0 k3 −k4 0 0 0

k1DT1 2k1DT1 + k2 0 −2k2 0 0

0 0 k1DT1 k3 −k2 − k4 0

0 k3 k4 0 2k3 −2k4


m(t), (2)

where the first entry of m(t) = E[1] represents the sum of the zero-th order moments of x1
and x2, guarantees the sum of the probability Px(t) to be one. Note that no approximation

is used in the derivation. In particular, the equation (2) is a linear ODE, and thus, we can

rigorously calculate the raw moments m by solving (2).

When the reactions reach steady state, the left-hand side of (2), which is the time

derivative of m(t), goes to zero, leading to a set of linear equations. Thus, we solve the

linear equations to obtain the first and second order steady state raw moments of the

protein copy number, x2 as

E[x2] =
k1k3
k2k4

DT1 , (3)

E[x22] =
k1k3
k2k4

DT1

(
1 +

k3
k2 + k4

+
k1k3
k2k4

DT1

)
. (4)
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Using these solutions, we can further compute the variance of the protein copy number as

E[x22]− E[x2]2 =
k1k3
k2k4

DT1

(
1 +

k3
k2 + k4

)
. (5)

Substituting parameter values, we confirm that the analytic solution indeed agrees with

the simulated statistics (Fig. 2C). In the design process of stochastic biocircuits, these

analytic solutions are useful for characterizing the parameter space that satisfies design

requirements and narrowing possible combinations of genetic parts of biocircuits.

Computing descriptive statistics using semi-algebraic optimization

Unfortunately, analytic solutions are not necessarily available when a biocircuit of interest

is slightly more complicated since, in general, a moment is dependent on other (higher

order) moments, and the order of a moment equation is infinite. More formally, we define

raw moments of a distribution Px(t) by

mα(t) := E

 n∏
j=1

x
αj

j

=

∞∑
x1=0

∞∑
x2=0

· · ·
∞∑

xn=0

n∏
j=1

x
αj

j Px(t) (6)

with α := [α1, α2, · · · , αn]
T ∈ Nn

0 and refer to the sum
∑n

i=1 αi as the order of the moment.

A general form of the moment equation is then obtained as

d

dt
m = Am+Bu, (7)

where A and B are constant matrices, m is a vector of raw moments up to the µ-th order,

and u is a vector of the µ+ 1-th or higher order moments u (see Supporting Information

S.3 for details). Note that (2) is a special case of (7) with B = 0. Equation (7) implies that

the µ-th order moments m, which are the moments of our interest, depend on the higher

order moments u. Thus, it is not possible to uniquely determine the solution of the steady

state moment equation Am + Bu = 0 since there are more variables than equations. In

fact, analytic steady state moments are available only in the special case of B = 0, in

which case m is obtained by solving Am = 0 as shown in (3) and (4). In general, B = 0

holds if and only if all reactions are the zero-th or the first order, that is, the reaction rates

wi(x) are affine in x (see Supplementary Information S.3).

To see an example, we consider a negative feedback biocircuit in Fig. 3A, where the ex-
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pression of the repressor protein is self-regulated by the negative feedback. This biocircuit,

despite a slight extension of Fig. 2A, contains a bimolecular reaction, namely the binding

of the repressor to the promoter whose propensity function is given by w(x) = k5x2x3.

As a result, the matrix B in (7) is no longer zero, and there are infinitely many solutions

for the steady state moment equation unless we know additional information that links m

and higher order moments u.

To constrain the solution, a key observation is that the variables m and u must constitute

moments of some probability distribution defined on the positive orthant {[x1, x2, · · · , xn] | xi >
0, i = 1, 2, · · · , n}. An obvious necessary condition is that all entries of m and u must be

positive according to the definition (6). In fact, there are tighter conditions that the vari-

ables m and u must satisfy to be moments of some probability distribution (Proposition

A.1 in Supporting Information)[32, 33]. Incorporating these conditions, we can narrow

possible combinations of raw moments m and u as specified by the following proposition.

Proposition. Consider stochastic chemical reactions modeled by the CME (1). The

steady state moments of the probability distribution satisfy

0 = Am+Bu,

H(γ1)(m,u) ⪰ O, (8)

H
(γ2)
k (m,u) ⪰ O (k = 1, 2, · · · , n),

where the matrices H(γ1)(m,u) and H
(γ2)
k (m,u) represent moment matrices defined in

(A.21) and (A.22) of Supporting Information. The symbol X ⪰ O represents that a

matrix X is positive semidefinite.

This proposition implies that the raw moments m and u lie in the semi-algebraic set

specified by (8). Although it is hard to uniquely determine m and u from these condi-

tions, equations (8) imply that we can computationally search for possible combinations

of m and u based on (8). In particular, we can find the upper and/or lower bounds of

statistical values such as the covariance, CV and Fano factor of molecular copy numbers.

In what follows, we show that the problem of finding the upper and the lower bounds of

these statistics can be recast as a mathematical optimization problem, which we can solve

efficiently using existing algorithms of mathematical programming.

We consider the negative feedback biocircuit in Fig. 3A and define x1, x2 and x3 as the

copy numbers of mRNA, repressor protein and free DNA, respectively. Our goal here is to
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Figure 3: (A) Schematic diagram of a negative feedback biocircuit. (B) Distribution of
the repressor copy number at t = 1440 min. (C) Computed upper and lower bounds of
the mean copy number for different truncation orders µ. (D) Computed upper and lower
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compute the mean and the CV of the repressor copy number x2 without running stochastic

simulations of single-cell trajectories. To this end, we use the semi-algebraic constraint (8)

and formulate a maximization problem of the mean and the CV as

max
m

h(m) subject to (8), (9)

where h(m) is defined by h(m) = m[0,1,0]T := E[x2] for the mean, and h(m) =√
m0,2,0 −m2

0,1,0/m0,1,0 :=
√

E[x22]− E[x2]2/E[x2] for the CV, respectively. Then, the

solution of this problem gives upper bounds of the mean and the CV, respectively. An

advantage of using the optimization approach is that we can leverage efficient algorithms

for mathematical optimization, whose techniques were extensively studied in engineering

science. In particular, the computation of these summary statistics can be recast as semi-

definite programming (SDP) [34, 29], which is a subclass of convex optimization program

with many practically useful properties such that it allows for finding global minimum (or

maximum) with much less computational efforts than other mathematical optimization

(Supplementary Information S.4 for details).

Using the SDP approach, we computed the lower and the upper bounds of the mean

repressor copy number, E[x2] for different values of µ, which is a user-specified parameter

that determines the largest order of moments in the vector m in (8) (Fig. 3B). Note that

the lower bounds are obtained by solving a similar form of optimization that maximizes

−h(m). As we increase µ, the gap between the upper and lower bounds decreases in

general, allowing for better estimation of statistical values at the expense of computational

time (see Supporting Information). For the biocircuit in Fig. 3A, the estimated mean copy

number of the repressor E[x2] converged to 14.7 (Fig. 3B), which agrees with the mean

value of the approximate distribution computed by Monte Carlo simulations [20] (Fig. 3C).

The upper bound of the CV is an important performance norm to quantify the dispersion

of the population distribution. Since the optimization of the CV in (9) is not directly

solvable by SDP, we developed a procedure to recast the optimization problem (9) into a

SDP form by introducing additional variables (see Supplementary Information S.4). Using

this approach, we computed the upper bounds of the CV for different values of µ as

illustrated in Fig. 3D, where the lower bounds were also computed for a reference. We

observe that, similar to the mean value, the lower and the upper bounds of the CV approach

as we increase the order of the moments µ, which implies that the estimation becomes more

accurate.
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Table 1: Summary statistics of stochastic biocircuits computable by semidefinite program-
ming
Statistics Mathematical representation
Upper and lower bounds of mean E[xi]
Upper bound of variance and covariance E[(xi − E[xi])(xj − E[xj ])]
Upper bound of coefficient of variation

√
E[x2i ]− (E[xi])2/E[xi]

Upper bound of Fano factor (E[x2i ]− (E[xi])2)/E[xi]
Upper bound of the largest confidence ellipsoid

Similar mathematical techniques apply to other descriptive statistics and allow us to

rigorously compute covariance, Fano factor and confidence ellipsoids of the molecular copy

numbers using semidefinite programming (Table 1). Specific forms of these optimizations

and their mathematical proofs are summarized in Supplementary Information S.4. As an

illustrative example, we computed the largest confidence ellipsoid of mRNA and protein

copy numbers of the transcription-translation circuit in Fig. 2A. The two-dimensional

confidence ellipsoid allows for visualizing the correlation between the two molecules (Fig.

S.1). In the design process, the confidence ellipsoids would be useful to investigate how

tightly a target molecule is regulated by an upstream molecule. Other optimizations will

be demonstrated in the following sections along with the design examples of a negative

feedback biocircuit.

Synthesizing biocircuits with statistical design specifications

The process of biocircuit engineering requires many iterations of design-build-test cycles

to achieve prescribed performance requirements. Since the specifications are possibly

incompatible or conflicting, computational design tools are important to efficiently ex-

plore and find the feasible design space of biocircuits. Our optimization approach allows

for rigorous characterization of biocircuit parameter space satisfying multiple design re-

quirements described by statistical constraints (Table 1). Specifically, we use a set of

inequalities to mathematically specify the design requirements of biocircuits. For example,

γ − E[x] ≤ 0 implies that the copy number of a molecule, say x, must be more than γ,

and
√

E[x2]− (E[x])2/E[x] ≤ δ implies that the CV must be less than δ at steady state.

More formally, we denote biocircuit specifications by fi(m) ≤ 0 (i = 1, 2, · · · , s) with raw

moments m. Using the convex optimization presented in the previous section, we can rig-

orously determine whether a given circuit design satisfies these performance specifications.
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Figure 4: (A) Schematic diagram of a negative feedback biocircuit with a downstream
reporter protein. (B) Parameter region satisfying the three design specifications. (C) The
lower bound of the mean copy number of the repressor protein. (D) The upper bound of
the CV of the repressor protein. (E) The upper bound of the CV of the reporter protein.

To demonstrate the optimization based synthesis method, we consider to design a bio-

circuit in Fig. 4A, where a reporter protein is added to the downstream of the negative

feedback circuit in Fig. 3A. As design specifications, we require the biocircuit to satisfy

the following three performance criteria at steady state: (i) the mean copy number of the

repressor molecule is at least 20, (ii) the CV of the repressor protein is less than 0.30, and
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(iii) the CV of the reporter protein is less than 0.90. These specifications are translated as

f1(m) = −E[x2] + 20 ≤ 0,

f2(m) =

√
E[x22]− E[x2]2

E[x2]
− 0.30 ≤ 0, (10)

f3(m) =

√
E[x26]− E[x6]2

E[x6]
− 0.90 ≤ 0,

where x2 and x6 denote the copy number of the repressor and the reporter proteins, re-

spectively.

For illustration purpose, we consider two tuning parameters, the translation rate k3

and the degradation rate k4 of the repressor protein. Note that these parameters can be

tuned, for examlpe, by engineering the ribosome binding site [35] and degradation tags

of the protein, respectively. Using the semidefinite programs presented in the previous

section, we produced a parameter map showing the feasible design space with which the

biocircuit satisfies all of the three statistical design requirements in (10) (Fig. 4B). Figure

4B illustrates that the three design features specified by (10) are in a trade-off relationship

in that moving a parameter to one direction satisfies one constraint but violates another.

Thus, we need to carefully choose parameters in the middle of the parameter space. The

parameter map provides valuable information to narrow the potential combinations of

genetic parts to be tested and reduces the iterations of design-build-test cycles. To verify

the result of the parameter space exploration, we simulated the stochastic biomolecular

reactions of the negative feedback biocircuit using the stochastic simulation algorithm [20],

where the parameters were taken from the feasible design space as illustrated by the red

dot in Fig. 4B. The mean copy number of the repressor protein was 26.2 copy, the CV of

the repressor and the reporter proteins were 0.273 and 0.725, respectively, which all meets

the design specifications.

Noise attenuation requires balanced expression and repression

We further investigated the statistical values of the negative feedback biocircuit in detail to

better understand the underlying mechanisms that limit the feasible design space in Fig. 4B

and clarify design strategies (Fig. 4C–E). Figure 4C shows that increasing the translation

rate of the repressor protein results in the increase of the repressor copy number at steady

state despite the negative feedback. This implies that the translation of mRNA has a more
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Figure 5: (A) Non-monotonic relation between the CV and the copy number of the repres-
sor protein. (B) The mean and the CV of the mRNA copy number. (C) The mean and
the CV of the repressor protein. The mean copy number does not follow Michaelis-Menten
kinetics.

influence on the total copy number of the repressor protein than the negative feedback.

Thus, a design strategy for meeting the specification f1(m) ≤ 0, which is to maintain the

copy number of the repressor at least 20 molecules is to increase the translation rate k3.

On the other hand, Fig. 4D illustrates that the CV of the repressor copy number does not

decrease monotonically with k3, suggesting that the two design features f1(m) ≤ 0 and

f2(m) ≤ 0 are in a trade-off relationship.

It is interesting to observe that there is an optimal strength of translation k3 that mini-

mizes the CV of the repressor copy number (Fig. 4D). Since the intrinsic noise of biocircuits

comes from the low copy nature of molecules, it is counterintuitive that both of the mean

and the CV of the repressor increase at the same time in Fig. 4C, D. We observed that this

trend is generic for a wide range of the repressor-promoter binding rate k5, which directly

controls the strength of the negative feedback (Fig. 5A). We suspect that this is due to a

trade-off relation between the strength of repression and transcription. More specifically,

increasing the translation rate results in the attenuation of noise due to the high copy

numbers of the repressor protein, but at the same time, it also increases the variance of

the mRNA copy number due to the strong repression as illustrated in Fig. 5B. Then, the

highly stochastic mRNA transcription indirectly contributes to increasing the dispersion

of the copy number of the repressor protein. Fig. 5A suggests that the former is dominant

when the translation rate k3 is small, but the latter becomes dominant as the increase of

k3. These analysis results suggest that balancing the repression and the expression is a

key to attenuate the noise in negative feedback biocircuits.
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Expression level of reporter protein is dependent on the structure of
upstream biocircuits

A typical approach to probing protein concentrations, or internal states of biocircuits,

without disrupting cells is to express a fluorescent reporter protein at the downstream of

a target molecule. The internal states are then indirectly quantified based on the fluores-

cence measurements. Characterizing the expression levels of the reporter versus the target

molecule is thus essential for rigorously quantifying the internal states of biocircuits. For

the biocircuit in Fig. 4A, the mean expression level of the reporter protein is given by

(k7k9/k8k10)E[x4] as suggested by (3), where E[x4] represents the mean copy number of

the free DNA that is not bound by the repressor protein. To calculate E[x4], the moment

equation is

d

dt
E[x4] = k6DT2 − k6E[x4]− k5E[x2x4]. (11)

Equation (11) implies that E[x4] depends on the second order moment E[x2x4], and thus,

higher order moments are necessary to fully characterize E[x4]. In other words, the mean

copy number of the reporter E[x6] cannot be determined simply from the mean copy number

of the repressor E[x2] but it requires higher order statistics, which indirectly depends on

moments of the upstream negative feedback pathways via moment matrices H(γ1)(m,u) ≥
O and H

(γ2)(m,u)
k ≥ O in (8). This is in contrast with the deterministic modeling, where

the steady state concentration of the free DNA x4 is expressed by the Mechaelis-Menten

equation

x4 =
K

K + x2
DT2 (12)

with K = k6/k5.

Using the convex optimization program, we characterized the reporter expression level

versus the repressor copy number in Fig. 5C, where the Michaelis-Menten equation (12) is

superimposed. The figure clearly illustrates that the reporter copy number deviates from

the Michaelis-Menten kinetics with the maximum relative error of 6%, suggesting that

the simple Michaelis-Menten kinetics is erroneous especially when the biocircuit is highly

stochastic.
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Sensitivity analysis of descriptive statistics

The ability of model-based biocircuit design is currently limited by the uncertainty of

parameter values in mathematical models. The source of the uncertainty partly lies in

misidentified parameters due to insufficient and noisy measurements, but more inherently,

it lies in extrinsic perturbations to host cell environments such as growth conditions. As a

result, the process of biocircuit engineering often requires ad-hoc tuning of circuit param-

eters to deal with the deviation of circuit performance from model predictions. Sensitivity

analysis allows for quantifying the impact of model uncertainties on the behavior of bio-

circuits and finding sensitive design parameters that need special attention in the build

process.

We developed semidefinite optimization programs to evaluate the sensitivity of the

descriptive statistics in Table 1. Specifically, let k∗ = [k∗1, k
∗
2, · · · , k∗r ]T denote a vec-

tor of nominal parameters with which a biocircuit satisfies performance specifications

fi(m) ≤ 0 (i = 1, 2, · · · , s). We consider a parametric perturbation k∗ ± ∆ki, where

∆ki := [0, 0, · · · , 0,∆ki, 0, · · · , 0]T is a (small) perturbation to the nominal parameter k∗i .

The goal of the sensitivity analysis is to find the range of the statistics under the pertur-

bation |∆ki| ≤ δ, where δ is a given constant. This can be formulated in an optimization

form as

max
∆ki,m

h(m)

subject to 0 = A(∆ki)m+B(∆ki)u,

− δ ≤ ∆ki ≤ δ,

H(m,u) ⪰ O,

Hk(m,u) ⪰ O (k = 1, 2, · · · , n),

where we denote the perturbed coefficient matrices in (7) by A(∆ki) and B(∆ki). We

convert this optimization program into a convex form to enable efficient computation

of the worst-case statistics for all possible parameter combinations satisfying |∆ki| ≤ δ

with mathematical rigor (see Supporting Information S.6 for details). In other words, the

optimization program can strictly guarantee the robustness of biocircuits for all of the

parameters satisfying |∆ki| ≤ δ.

Using this approach, we performed sensitivity analysis of the negative feedback biocircuit
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Figure 6: Sensitivity analysis for parameter perturbation. The red region shows the design
specifications (10). (A) Sensitivity analysis of the mean copy number of the repressor
protein. The blue region shows the worst-case upper and lower bounds for parameter
perturbation. (B) Sensitivity analysis of the CV of the repressor protein. The blue region
shows the worst-case upper bound for parameter perturbation.

in Fig. 4A around a nominal parameter value shown as the red dot in Fig. 4B. Initially, we

computed the worst-case mean and the CV of the repressor protein X when k1, k2, k3 and k4

are perturbed within 5% of the nominal value (Fig. 6). The result shows that the deviation

of the statistics is almost equal between the perturbations, implying that there is no highly

sensitive parameters that significantly affect these statistics. Figure 6 also illustrates that

the mean and the CV do not violate the design constraints f1(m) = −E[x] + 20 ≤ 0 and

f2(m) = (
√
E[x2]− E[x]2)/E[x] − 0.30 ≤ 0, which guarantees that the negative feedback

biocircuit designed in Fig. 4 is robust against these parameter perturbations.

Another important but often overlooked design parameter of biocircuits is the plasmid

copy number, which is controlled by the replication origin of a circuit plasmid. Although

the plasmid copy number is assumed constant in Fig. 4B, variance of the plasmid copy

number in real biological cells affects the behavior of biocircuits. To analyze the effect

of plasmid copy numbers, we applied the same approach to computing the worst-case

performance of the negative feedback biocircuit against 5% deviation of the copy number

of the repressor plasmid from the nominal value DT1. From Fig. 6, we can guarantee

that the designed negative feedback biocircuit can operate within the pre-specified range

of performance norms even under the extrinsic perturbation to the plasmid copy number.
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Discussion

A promising approach toward robust engineering of complex biocircuits is to guarantee the

performance of individual circuit components at high precision. The highly stochastic na-

ture of biomolecular reactions, however, hinders reliable assessment of biocircuit behaviors

in current synthetic biology. To advance a model-guided design approach, it is critical to

develop design-oriented theoretical tools that can rigorously certify robustness of stochastic

chemical reactions.

In this paper, we have presented an optimization based approach to designing stochastic

biocircuits. The presented approach allows for specifying the design features of biocir-

cuits using intuitive and well-defined metrics of descriptive statistics. The mathematical

optimization algorithms enable systematic exploration of the design space to find param-

eter configurations satisfying the specifications. In contrast with approximation based

approaches [25, 36], the presented method provides mathematically rigorous certification

of circuit performance based on user-specified statistical norms. Thus, it is amenable for

robust synthesis of stochastic biocircuits that require high reliability. Moreover, the convex

nature of the optimization programs allows for efficient search of the optimal solutions by

benefitting from existing algorithms of mathematical optimization.

To demonstrate these features, we have explored the design space of the negative feed-

back biocircuit in Fig. 4A and obtained the parameter map of feasible design space with

which the biocircuit satisfies design requirements. In particular, the optimization based

analysis elucidated that there is an optimal translation rate of the repressor protein that

best attenuates intrinsic noise and that it is caused by the tradeoff relation between re-

pression and expression. It is worth noting that a similar tradeoff relation was previously

predicted for a metabolic pathway [37] and the repressilator [38] based on approximated

model-based analyses. A similar U-shaped trend to Fig. 5A was also observed by experi-

ments [39]. These examples suggest that even simple biocircuits can exhibit complex noise

characteristics, which emphasizes the importance of advanced mathematical and compu-

tational frameworks for analyzing stochastic biocircuits.

Although not discussed, multi-modality of population distributions is one of the impor-

tant design features that would likely to be included in the specifications of stochastic

biocircuits. In synthetic biology, multimodal population distribution is often associated

with multi-stability of the governing dynamics of biocircuits and is used to build switch-

like systems as represented by the celebrated genetic toggle switch [15]. An optimization
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based approach was recently developed to design multimodal biocircuits by directly min-

imizing the deviation of the distribution from a desired shape [40]. As of yet, however,

there has not been a well-defined statistical metric that can quantitatively certify the exis-

tence of multimodal distributions, though a recent study indicated that most information

of bimodal distributions is encoded in a small number of low order moments [41]. Future

work will aim to establish statistical criteria for more advanced design features to enhance

rational engineering process of complex stochastic biocircuits.

Method

Stochastic simulations

The stochastic simulation algorithm [20] was used to simulate time trajectories of molecular

copy counts. 10, 000 cells were simulated to draw a snapshot of the population distribution

at 1440 minute in Fig. 2B, Fig. 3C. The following parameter values were used for the

simulations. k1 = 0.2 min−1, k2 = ln(2)/5 min−1, k3 = 0.5 min−1, k4 = ln(2)/20 min−1

k5 = 5 copy−1 ·min−1, k6 = 1 min−1, k7 = 0.2 min−1, k8 = ln(2)/5 min−1, k9 = 0.5 min−1,

k10 = ln(2)/20 min−1. DT1 = 20 copy was used for the simulation in Fig. 2B, and

DT1 = DT2 = 50 copy was used for Fig. 3C. The red dot in Fig. 4B corresponds to

k3 = 0.4 and k4 = ln(2)/80. The initial copy numbers were assumed x1 = 0 and x2 = 0

for Fig. 2B, and x1 = 0 copy, x2 = 0 copy and x3 = 0 copy for Fig. 3B. All simulations

were run by MATLAB 2016b.

Optimization based computation of statistics

The semidefinite programs were solved with MATLAB 2016b and Sedumi 1.32 solver [42],

where the following options of the solver were used. pars.eps = 0, pars.alg = 2, pars.theta =

0.01, pars.beta = 0.9, pars.stepdif = 1, pars.free = 1, pars.cg.maxiter = 500, pars.cg.refine =

10, pars.cg.stagtol = 5× 10−20, pars.cg.restol = 5× 10−10, pars.chol.canceltol = 10−20,

pars.chol.maxuden = 4000. The variables m and u were normalized as appropriate by

constants to avoid numerical instability.

The truncation order µ was set µ = 8 to compute the mean and the CV of the repressor

in Fig. 4C, D and, and µ = 6 to compute the CV of the reporter protein in Fig. 4E.

For the analysis of negative feedback biocircuits in Fig. 5, the optimization problems

were solved for different values of k3. The other parameter values were set equal to those
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shown in the “stochastic simulations” section, and the truncation order was set µ = 8. To

vary the mean copy number of the repressor at steady state in Fig. 5A, the translation rate

k3 was scanned between 0.025 and 0.9. For Fig. 5C, k3 = 0.15, 0.25, 0.40, 0.55, 0.70, 0.90

were used. The truncation order µ = 6 was used for the sensitivity analysis in Fig. 6.
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