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Abstract1

The prefrontal cortex is implicated in learning the rules of an environment through2

trial and error. But it is unclear how such learning is related to the prefrontal cortex’s3

role in short-term memory. Here we asked if the encoding of short-term memory in4

prefrontal cortex was used by rats learning decision rules in a Y-maze task. We found5

that neural ensembles in prefrontal cortex selectively recalled the same pattern of ac-6

tivity after reinforcement for a correct decision. This reinforcement-selective recall7

only reliably occurred immediately before the abrupt behavioural transitions indicat-8

ing successful learning of the current rule, and faded quickly thereafter. We could9

simultaneously decode multiple, retrospective task events from the ensemble activity,10

suggesting the recalled ensemble activity had multiplexed encoding of prior events.11

Our results suggest that successful trial-and-error learning is dependent on reinforce-12

ment tagging the relevant features of the environment to maintain in prefrontal cortex13

short-term memory.14

Introduction15

Learning the statistical regularities of an environment requires trial and error. But how16

do we know what is relevant in the environment in order to learn its statistics? In other17

words: how do we know what to remember? It seems likely that medial prefrontal cortex18

plays a role here (Euston et al., 2012): it is needed for trial and error learning of correct19

behavioural strategies (Ragozzino et al., 1999; Ragozzino, 2007; Rich and Shapiro, 2007),20

neuron and ensemble activity represents abstract and context-dependent information re-21

lated to the current strategies (Jung et al., 1998; Rich and Shapiro, 2009; Hyman et al.,22

2012), and changes to ensemble activity tightly correlate with shifts in behavioural strat-23

egy (Durstewitz et al., 2010; Karlsson et al., 2012; Powell and Redish, 2016). Moreover,24

medial prefrontal cortex receives a direct projection from the CA1 field of the hippocam-25

pus that may allow the integration of spatial information about the environment (Jones26

and Wilson, 2005; Hoover and Vertes, 2007; Burton et al., 2009; Benchenane et al., 2010;27

Spellman et al., 2015). But medial prefrontal cortex also plays a role in short-term and28

working memory for objects, sequences, and other task features (Miller, 2000; Miller and29

Cohen, 2001; Baeg et al., 2003; Averbeck et al., 2006; Averbeck and Lee, 2007; Fujisawa30

et al., 2008; Jun et al., 2010; Machens et al., 2010; Spellman et al., 2015), upon which31
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successful learning of statistical regularities may depend. It is unknown how relevant32

information about the statistics of the environment is tagged for memory in the medial33

prefrontal cortex.34

An hypothesis we consider here is that reinforcement tags relevant choices and features35

to remember in order to learn the rules of the environment. If so, then the reliable36

appearance of reinforcement-driven short-term memory activity in medial prefrontal cortex37

would be predicted during successful learning. As medial prefrontal cortex appears to38

encode environmental features and task-related behaviour by ensemble activity (Baeg39

et al., 2003; Averbeck and Lee, 2007; Baeg et al., 2007; Sul et al., 2010), any short-term40

memory for tagged features would likely be revealed by ensemble activity that was similar41

across trials. We thus sought to test the hypothesis that medial prefrontal cortex ensembles42

represent a short-term memory of task features and choices that are potentially necessary43

for learning from reinforcement.44

To test this hypothesis, we analysed neural and behavioural data from rats learning45

new rules on a Y-maze. We took advantage of a task design in which there was a self-paced46

return to the start position of the maze immediately after the delivery or absence of rein-47

forcement, yet no explicit working memory component to any of the rules. Consequently48

we could examine ensemble activity in medial prefrontal cortex during this self-paced re-49

turn and ask whether or not a short-term memory encoding of reinforcement-tagged task50

features existed in the absence of overt working memory demands.51

Here we show that medial prefrontal cortex contains an ensemble code that links prior52

events to reinforcement. We show that a neural ensemble activity pattern was specifi-53

cally recalled after reinforcement and not after errors. This recall only reliably occurred54

in sessions with abrupt shifts in behavioural strategy indicating successful learning, and55

not during external shifts in reinforcement contingency, or in other task sessions. From56

the activity of the recalled ensemble, we could simultaneously decode retrospective task57

parameters and choices in a position-dependent manner. Together, these results show that58

learning was preceded by reinforcement-triggered activity of an ensemble that retrospec-59

tively and multiply encoded task parameters. They provide a link between the roles of60

medial prefrontal cortex in working memory and in rule learning, and suggest that rein-61

forcement tags prefrontal cortex-based representations of choices and environment features62

that are relevant to trial and error learning of statistical regularities in the world.63

Results64

In order to address whether and how medial prefrontal cortex neural activity encodes short-65

term memory during reinforcement learning, we used medial prefrontal cortex population66

recording data previously obtained from a maze-based rule-learning task (Peyrache et al.,67

2009). Four rats learnt rules for the direction of the rewarded arm in a Y-shaped maze,68

comprising a departure arm and two goal arms with light cues placed next to the reward69

ports (Figure 1A). Each session was a single day with approximately 30 minutes of training,70

and 30 minutes of pre- and post-training sleep. During training, the rat initiated each trial71

from the start of the departure arm; the trial ended when the rat arrived at the reward72

point in the goal arm. During the following inter-trial interval the rat made a self-paced73

return to the start position after consuming the reward, taking on average 70 s (67.8±5.474

s, mean ± SEM) to complete the return trip. Tetrode recordings from medial prefrontal75

cortex were obtained from the very first session in which each rat was exposed to the76

maze (Figure 1B). Thus, the combination of a self-paced post-decision period – without77

experimenter interference – and neural activity recordings from a naive state allowed us to78
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test for medial prefrontal cortex population activity correlating with short-term memory79

during rule learning.80

After achieving stable performance of the current rule, indicated by 10 contiguous81

correct choices, the rule was changed, unsignalled, in sequence: go right; go to the cued82

arm; go left; go to the uncued arm. Notably, none explicitly required a working memory83

component (such as an alternation rule). In the original study (Peyrache et al., 2009), the84

session in which initial learning of each rule occurred was identified posthoc as the first85

with three consecutive correct choices followed by 80% performance until the end of the86

session; the first of the initial three choices was identified as the learning trial. Ten sessions87

met these criteria, and are dubbed here the “learning” sessions. We first confirmed that88

these ten learning sessions showed an abrupt transition in behavioural performance (Figure89

1C), indicating the step-like change in behaviour commonly seen in successful learning of90

contingencies (Gallistel et al., 2004; Aziz-Zadeh et al., 2009; Durstewitz et al., 2010). In91

total, we examined 50 sessions, comprising 10 learning sessions, 8 rule change sessions,92

and 32 other training sessions (labelled “others” throughout).93

Reinforcement-driven recall of ensemble activity during learning94

We sought to track reinforcement-driven population activity across the inter-trial inter-95

vals within each session, in order to identify signatures of short-term memory encoding.96

One signature of similar memory encoding between inter-trial intervals would be the con-97

sistent presence of one or more ensembles of neurons with correlated activity. To allow98

comparisons between intervals, we thus first identified the core population of neurons in99

each session by selecting the neurons that were active in every inter-trial interval. The100

proportion of recorded neurons retained in the core population was on average 74 ± 2101

% (SEM) across sessions (Figure 2 - figure supplement 1, panel A). No clear difference102

in the size of this core population were observed between learning and any other session103

type (Figure 2 - figure supplement 1, panel A), suggesting that any potential short-term104

memory encoding specific to learning was not then simply a change in the proportion of105

active neurons. Rather, any effect of reinforcement on subsequent short-term memory106

would have to be encoded in the specific pattern of correlations between the activity of107

neurons in the core population.108

We characterised the pattern of correlations for each inter-trial interval by computing109

the pairwise similarity between the Gaussian-convolved spike-trains of neurons in the core110

population (we use a Gaussian width of σ = 100 ms here, as in the example of Figure 1B;111

the effects of varying σ are detailed below). To test if there was one or more reinforcement-112

driven ensembles of correlated neurons, we then correlated the core population’s similarity113

matrix S between all inter-trial intervals of a session. The resulting Recall matrix R showed114

where similar patterns of ensemble activity were recalled on different inter-trial intervals115

(Figure 2A).116

We found that patterns of ensemble activity were more similar after correct trials than117

after error trials (Figure 2A,B). We observed this preferential post-reinforcement recall118

of ensemble activity in the majority of sessions (47/50 sessions; 37/50 had p < 0.05 for119

a Kolmogorov-Smirnov test between the distributions of recall values after correct and120

after error trials). This result would suggest that reward triggered a specific pattern121

of correlated activity during the inter-trial interval. However, we were mindful that the122

inter-trial intervals following a correct trial were generally much longer than those following123

error trials (correct inter-trial intervals: 79.1± 6.4 s; error inter-trial intervals: 48.4± 3.7124

s), because the animal lingered at the reward location (Figure 2 - figure supplement 1).125

This difference in duration could systematically bias estimates of firing correlation, simply126
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Figure 1: Task and learning sessions.
(A) Schematic representation of the Y maze. The trial starts with the animal at the start of the
departure arm, and ends when it reaches the end of the chosen arm. The inter-trial interval (ITI)
is a self-paced return back to the start position.
(B) Example medial prefrontal cortex population activity during a trip out and back to the start
position. The heatmap shows the spike-trains for all recorded neurons, convolved with a Gaussian
of width σ = 100 ms. The dashed line separates the trial and inter-trial interval periods. The
firing rate of each neuron is a proportion of its peak rate, and neurons are sorted by the time of
their peak firing rate.
(C) Learning sessions contain abrupt transitions in performance. Left panel: Learning curve for
one example learning session. The cumulative number of correct trials shows a steep increase after
the learning trial (black dashed line), indicating the rat had learnt the correct rule. Inset: fitted
linear regressions for the cumulative reward before (dotted) and after (dashed) the learning trial,
quantifying the large increase in the rate of reward accumulation after the learning trial. Right
panel: the rate of reward accumulation before and after the learning trial for every learning session
(one pair of symbols per learning session; one session’s pair of symbols are obscured). The rate is
given by the slopes of the fitted regression lines.

because many more spikes would be emitted during post-correct than post-error intervals.127

Thus, greater similarity between ensemble activity patterns for post-correct intervals could128

simply be due to more reliable estimates of the interval-by-interval correlation matrix. To129

control for this, we used shuffled spike-trains to compute the expected matrix of pairwise130

similarity due to just the duration of each interval, and from these shuffled-data matrices131

we computed the expected recall matrix (Figure 2 - figure supplement 2). Consequently,132

by subtracting this expected matrix from the data-derived recall matrix, we obtained a133

“residual” recall matrix describing just the similarity between ensemble activity patterns134

above those driven by common duration (Figure 2A). We used this residual recall matrix135

for all further analyses. With this correction, we still found that patterns of ensemble136

activity were more similar after correct trials than after error trials in the majority of137

sessions (34/50 sessions; 26/50 had p < 0.05 for a Kolmogorov-Smirnov test between the138
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Figure 2: Outcome-selective recall of an ensemble activity pattern is learning-related.
(A) Left: the Recall matrix R for one example session. The Recall matrix is ordered by the outcome
of the trial preceding the inter-trial interval (ITI). Each entry Rij is the recall value: the similarity
between the core population’s similarity matrix in intervals i and j, a measure of how closely the
same ensemble activity pattern was recalled in that pair of intervals. Below we plot the probability
density functions for the distribution of recall values, separately for the post-error (red) pairs of
intervals (bottom-left block diagonal in the Recall matrix) and for the post-correct (black) pairs of
intervals (top right block diagonal in the Recall matrix). Right: the Residual Recall matrix Rresid

for the same session, after correction for the effects of interval duration.
(B) The average recall values for post-error and post-correct intervals of the two matrices in panel
A. The distribution of recall in the post-correct intervals was higher than in the post-error intervals
(K-S test; Recall: P < 0.005; Residual recall: P < 0.005 ; N(correct) = 24× 24 = 576; N(error) =
17× 17 = 238.)
(C) The difference in average recall (∆ recall) between the post-correct and post-error intervals,
sorted by session type. Each dot is one session. Filled circles indicate a positive difference at
p < 0.05 between the distributions of recall values in the post-error and post-correct intervals
(Kolmogorov-Smirnov test).

distributions of residual recall values after correct and after error trials).139

We then examined how this reinforcement-driven recall of an ensemble activity pattern140

corresponded to the rats’ behaviour (Figure 2C). We found that only learning sessions had141

a systematically stronger recall of the same ensemble activity pattern after reinforcement142

(mean ∆ recall: 0.072). Sessions in which the rule changed did not show a systematic recall143

after reinforcement (mean ∆ recall = 0.042), ruling out external changes to contingency as144

the driver of the recall effect. Similarly, there was no systematic reinforcement-driven re-145

call in the other sessions (mean ∆ recall = 0.03), ruling out a general reinforcement-driven146

effect. When we further grouped these other sessions into those with evidence of incremen-147

tal learning and those without, we still did not observe a systematic reinforcement-driven148

recall effect in either group (Figure 2 - figure supplement 2). Finally, we tested the likeli-149
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hood of obtaining ten systematically positive recall sessions by chance if we assumed recall150

was randomly distributed across the sessions. We repeatedly chose ten sessions at random151

from the 50; repeated 10,000 times, we found a probability of less than 0.003 of randomly152

obtaining 10 sessions which each had positive recall. Together, these data show that a sim-153

ilar pattern of ensemble activity was only reliably recalled following reinforcement during154

the self-driven step-change in behaviour indicative of learning a rule.155

We asked how the recall of a pattern of ensemble activity was dependent on the tem-156

poral precision at which the correlations between neurons were computed. Here, this157

precision was determined by the width of the Gaussian convolved with the spike-trains.158

We found that the reinforcement-driven recall of an ensemble in learning sessions was159

consistent across a wide range of Gaussian widths from 20 ms up to around 140 ms (Fig-160

ure 2 - figure supplement 3). Moreover, across the same range of Gaussian widths, we161

also consistently found that the recall effect for the learning sessions was greater than for162

rule-change or other sessions (Figure 2 - figure supplement 3). The reliable recall down to163

20 ms, and the absence of a systematic recall effect for Gaussian widths around 200 ms,164

suggests the ensemble was formed by relatively precise correlations between spikes from165

different neurons, rather than just rate co-variation.166

Recall of ensemble activity patterns is specific to retrospective reinforce-167

ment168

These results pointed to the hypothesis that, during successful learning of contingency,169

the reliable recall of a pattern of ensemble activity is triggered by prior reinforcement.170

To test this hypothesis, we asked whether the recalled ensemble was specifically triggered171

by reinforcement, and whether it was specific to retrospective rather than prospective172

reinforcement.173

To test if the recall was specifically triggered by reinforcement, we reorganised the174

residual recall matrix of each session by either the chosen direction (left/right) or the cue175

position (left/right) on the previous trial. We found there was no systematic recall of176

ensemble activity patterns evoked by one direction over the other for either the chosen177

direction or the cue position (Figure 3A,B). The systematic recall effect during learning178

thus appeared to be specific to reinforcement.179

Modulation of medial prefrontal cortex activity by expected outcome or anticipation180

of reinforcement has been repeatedly observed (Daw et al., 2006; Fellows, 2007; Sul et al.,181

2010; Kaplan et al., 2017), suggesting the recalled ensemble pattern could instead be a182

representation of the expected outcome on the next trial. To test if the recall effect was183

specific to retrospective reinforcement, we reordered the residual recall matrices accord-184

ing to the reinforcement received in the trial after the inter-trial interval. We found no185

systematic recall of an ensemble activity pattern preceding correct trials in any session186

type (Figure 3C). In particular, for the learning sessions the systematic recall we observed187

for retrospective outcomes was not observed for prospective outcomes (compare Figure188

2C), and the magnitude of recall was larger for retrospective than prospective outcomes189

across all tested temporal precisions of correlation between spike-trains (Figure 2 - figure190

supplement 3, panel D).191

We were surprised that we could observe such a consistent difference between the ret-192

rospective and prospective recall in the learning sessions. By their nature, the learning193

sessions tend to be split into a sequence of error trials followed by a sequence of correct194

trials (cf Figure 1C), so each trial outcome is frequently preceded and followed by the same195

type of outcome. Consequently, whether we split intervals into groups by their following196

correct trials or by their preceding correct trials we create similar groups of intervals (and197
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A
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C

Figure 3: Recalled ensemble activity patterns are outcome-specific and encode retrospective out-
come not future choice.
(A) The difference in average recall between intervals after choosing the left respect to the right
arm, sorted by session type. Filled circles here and in other panels indicate a significant difference
between the distributions of recall values in the two sets of intervals (Kolmogorov-Smirnov test,
p < 0.05).
(B) As for panel A, but comparing intervals after the light cue appeared at the end of the left or
right arm.
(C) The difference in average recall between intervals before error or correct trials, testing for
prospective encoding of upcoming choice.

similarly for splitting based on error trials). Nonetheless, the systematically stronger ret-198

rospective recall across a wide range of timescales, despite the few error trials interspersed199

with correct trials, suggests that the recall of ensemble activity is dependent on prior, not200

future, reinforcement. (And as we show below, this conclusion is consistent with the com-201

plete absence of prospective coding of task elements by the ensemble’s activity). Together,202

these results support the hypothesis that a specific pattern of ensemble activity triggered203

by just-received reinforcement appeared during successful learning of contingency.204

Appearance of the recalled ensemble activity anticipates the behavioural205

transition206

This leaves opens the question of whether the appearance of this recalled ensemble pat-207

tern is a pre-condition of successful learning, or a read-out of already learnt information.208

If a pre-condition, then the recalled ensemble pattern should have appeared before the209

transition in behaviour indicating rule acquisition.210

We thus sought to identify when the recalled ensemble activity pattern first appeared211

in each learning session. To do so, we put the recall matrix of each learning session in212

trial order (Figure 4A). For each inter-trial interval, we then compared the strength of213

recall in the inter-trial intervals before and after that interval (Figure 4B). We used the214

inter-trial interval corresponding to the largest difference in recall to identify when the215

ensemble activity pattern appeared, as this indicated a step-increase in the similarity of216
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Figure 4: The recalled ensemble activity pattern anticipates behavioural learning.
(A) A residual recall matrix in its temporal order for one example learning session. Columns are
ordered from left to right as the first to last inter-trial interval (rows ordered bottom to top). For
each inter-trial interval, the distributions of the recall values before and after the selected inter-
trial interval were compared (Kolmogorov-Smirnov statistic: see Methods and materials). Each
greyscale line corresponds to a selected dividing inter-trial interval plotted in panel B.
(B) For each greyscale line in panel A, the corresponding average recall value before and after the
dividing inter-trial interval. The asterisk indicates the inter-trial interval with the largest increase
in recall after it, signalling the abrupt appearance of the recalled ensemble pattern.
(C) Comparison of the learning trial identified by the original behavioural criterion and by the
abrupt appearance of the recalled ensemble (’Network’).
(D) As panel C, but with the behavioural learning trial identified as the trial with the steepest
change in the cumulative reward (see Materials and methods).
(E) Testing for decay of the ensemble activity pattern. Left panel: example residual recall matrix
in trial order for one learning session. The black solid line is the learning trial, while the dashed
line is the identified offset of the recalled ensemble activity pattern. Right panel: For each learning
session the learning trial (original criterion) is compared to the identified offset of the ensemble
recall, and to the last trial of the session.

activity patterns between inter-trial intervals.217

We found that the recalled ensemble pattern appeared before or approximately si-218

multaneous with the behavioural transition in all sessions (Figure 4C,D). This was true219

whether we used the original behavioural criterion from Peyrache et al. (2009), or our220

more stringent definition of “abrupt” change in the cumulative reward curve (the trial221

corresponding to the greatest change in slope of the reward accumulation curve; see Meth-222

ods). The timing of the appearance of the recalled ensemble pattern was thus consistent223

with it being necessary for successful rule learning.224

As the change to the ensemble activity was often abrupt and so close to the behavioural225

change, this raised the question of what change to the underlying neural circuit drove this226

change in activity. One possibility would be a physical alteration of connectivity, forming a227

true “structural” cell assembly (Harris, 2005). Alternatively, it could be a temporary effect,228

as might arise from a sustained change in neuromodulation (Durstewitz and Seamans,229
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2002; Benchenane et al., 2011), forming a transient “functional” cell assembly.230

To decide between these alternatives, we tested for the presence of a long-lasting physi-231

cal change by assessing the longevity of the recalled ensemble activity pattern. Specifically,232

we tested whether the recall of the ensemble was sustained until the end of the learning233

session by performing the onset analysis in reverse (Figure 4E): for each inter-trial interval,234

we checked whether the recall after that interval was significantly smaller than before it235

(Kolmogorov-Smirnov test; see Materials and methods). We indeed found a statistically236

robust fall in the recall of the ensemble activity pattern in every learning session. A strict237

ordering was always present: the decay of the recalled ensemble was after the identified238

onset of recall, but before the end of the session (Figure 4E), even though we did not239

constrain our analysis to this ordering. For the original set of identified learning trials,240

the decay trial was always after the learning trial (Figure 4E). (If we used our alternative241

learning-trial definition – the trial with the greatest change in reward accumulation – then242

7 of the 10 sessions had decay after the learning trial, with 3 sessions showing decay be-243

fore it). This analysis indicates the recalled ensemble activity pattern formed transiently244

during learning, and decayed quickly after learning was established.245

Medial prefrontal cortex ensembles had mixed, position-dependent, and246

retrospective encoding of task information247

What did the recalled activity pattern encode? Its transient appearance, immediately248

before behavioural change but fading before the end of a session, suggests a temporary249

representation, akin to short-term memory. That the recalled pattern was triggered only250

by prior reinforcement suggests the hypothesis that the recalled ensemble was a working251

memory encoding of task features that were potentially relevant for learning. If it was a252

working memory for task features, then we should be able to decode prior task information253

from ensemble activity.254

To address this, we assessed our ability to decode prior outcome, choice of direction,255

and light cue position from the core population’s activity. As prefrontal cortex activity256

encoding often shows broad position dependence (Baeg et al., 2003; Hok et al., 2005;257

Spellman et al., 2015), we divided the linearised maze into five equally-spaced sections258

(Figure 5A), and represented the core population’s activity in each as the vector of its259

neurons’ firing rates in that section. We used these firing rate vectors as inputs to a260

cross-validated linear decoder (Figure 5B), and compared their predictive performance to261

shuffled data (Materials and methods).262

We could decode prior outcome, choice of direction and cue position well above chance263

performance, and often in multiple contiguous maze positions. We plot the absolute264

decoding performance for the “other” sessions in Figure 5C to illustrate that decoding265

at some maze positions was near-perfect, with some sessions decoded at 100% accuracy.266

The learning and rule-change sessions also had maze positions with near-perfect decoding267

across all sessions (Figure 5 - figure supplement 1). Population activity in medial prefrontal268

cortex thus robustly encoded multiple task events from the previous trial.269

We then compared decoding performance between session and rule types. Chance270

decoding performance differed between task features (as the randomised light-cue was271

counter-balanced across trials, but each rat’s choice and hence outcomes were not), and272

between session types and rule types (as rat performance differed between them). Thus273

we normalised each decoder’s performance to its own control, and compared this relative274

decoding accuracy across sessions and rules (Figure 5D).275

These comparisons revealed we could decode the prior choice of direction (left or right)276

in all types of session and regardless of whether the rule was direction- or cue-based (Figure277
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Figure 5: Position-dependent encoding of recent task relevant information.
(A) Graphical representation of the five equally size section of the maze. Position 1 is the goal
arm end, with the reward delivery port. Position 3 is the choice point during the trial.
(B) Schematic of decoding task events from the core population’s firing rate vector. For each inter-
trial interval, and for each of five positions in the maze, the population’s firing rate vector is given
as input to a linear decoder. The decoder attempts to classify the population vector as belonging
to one of two possible labels (error or correct, for prior outcome; left or right, for prior direction
choice and prior cue position), given a threshold (red dashed line) on the decoder’s output. The
accuracy of the decoder is given as the proportion of correctly predicted labels. For robustness,
we use cross-validation to create the predictive model for each inter-trial interval; and we compare
predictive performance to that of a randomised control: cross-validated classifiers applied to data
with permuted labels.
(C) Example decoder accuracy as a function of maze position for the “other” sessions. For these
sessions, we show here the absolute decoder performance for each of the three classified features
(prior outcome, prior direction choice, and prior light positions), separated by the rule type (direc-
tion or light cue-based rules). Each data point is the mean ± SEM accuracy at that maze position.
Chance levels of performance are plotted in grey, and were defined separately for each session type
and each rule type (see Materials and methods). We plot here and in panel D the results for a
logistic regression decoder; other decoders are plotted in Figure 5 - figure supplement 2.
(D) Relative decoder accuracy over all session types and rule types. Each data point is the mean
± SEM accuracy in excess of chance (0; dashed line) over the indicated combination of session
(learning, rule-change, other) and decoded feature. Each panel separately plots the decoding for
cued-rules (open symbols) and direction-rules (filled symbols). Highlighted groups of positions
indicate consistent departures from chance performance in at least one session type. We replot
these results grouped by rule-type in Figure 5 - figure supplement 1.
(E) Decoding of task features at the start of learning. Similar to panel D, each data point is the
mean ± SEM accuracy in excess of chance. In each panel, the grey line gives the accuracy over the
first session of each animal, the black line the accuracy over all the sessions before the first rule
change, and the red line gives the accuracy over the first light cue session for each animal.
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5D). Decoding of direction choice was robustly above chance while the rats moved from278

the end of the goal arm back to the maze’s choice point (highlighted yellow); on cued-279

rule sessions, this decoding extended almost all the way back to the start position of the280

departure arm. Accurate decoding of direction choice could be observed from the very first281

session of each rat, and consistently across sessions before the first rule change (Figure282

5E). These results indicated that medial prefrontal cortex always maintained a memory283

of prior choice, and did not need to learn to encode this task feature.284

Similarly, we could decode the prior outcome (correct or error) in all types of session285

and regardless of whether the rule was direction- or cue-based (Figure 5D). Decoding of286

outcome was notably stronger at the end of the goal arm, where the reward was delivered,287

but could also be decoded above chance while the rats traversed the maze back to the start288

position (highlighted yellow). Nonetheless, decoding of outcome was again present from289

the very first session (Figure 5E). These results indicated that medial prefrontal cortex290

always encoded the trial’s outcome, and did not need to learn to encode this task feature.291

By contrast to the encoding of prior direction and outcome, we could only reliably292

decode the prior cue position in two specific locations (Figure 5D). The prior cue position293

was consistently encoded at the end of the goal arm for both cue and direction rules,294

likely corresponding to whether or not the light was on at the rat’s position. But the295

only sustained encoding of prior cue position while the rat traversed the maze was during296

learning sessions for cue-based rules (yellow highlighted position and red open circles in297

Figure 5D). There was no sustained encoding during learning sessions of direction rules298

(red filled circles in Figure 5D). And this sustained encoding did not appear in the first299

session, nor in any session before the first change to the cue-based rule (Figure 5E).300

Consequently, these results suggest that only in learning sessions did the core population301

encode the memory of the prior cue position, and only when relevant to the learnt rule.302

Strikingly, we found that decoding of prospective choice or outcome on the next trial303

was at chance levels throughout the inter-trial interval (Figure 6). These results were304

consistent with our finding that the ensemble activity pattern preceding correct trials305

was not systematically recalled (Figure 3C). They also show that the decoding of prior306

task features from the core populations’ activity was non-trivial. The only above-chance307

decoding of prospective information was observed for direction-based rules, where we found308

that decoding of future choice and outcome was above chance level only for learning309

sessions and only at position 5, where the animal make a U-turn before starting the new310

trial. This suggests that medial prefrontal cortex activity around the start of the trial311

could also be related to the upcoming decision when the task rule is successfully learnt;312

future work will explore this idea.313

Collectively, the decoder analysis showed we could decode multiple task features from314

the immediate past from population activity in the medial prefrontal cortex – in some315

cases, perfectly (Figure 5C, and Figure 5 - figure supplement 1) – but not the immediate316

future. Moreover, our ability to decode these prior task features was consistent across a317

range of tested decoders, as was the sustained encoding of prior cue position only during318

the learning of cue-based rules (Figure 5 - figure supplement 2). Thus, we suggest that the319

specific pattern of recalled ensemble activity triggered by reinforcement is the repeated320

synchronisation of the multiplexed encoding of prior choice, outcome, and cue position321

relevant to learning the current rule.322
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Figure 6: Prospective encoding of outcome and choice for predictable rule. We plot here the relative
decoder accuracy over all session types and rule types for features on the immediately following
trial. Compare to Figure 5D. Each data point is the mean ± SEM accuracy in excess of chance
(dashed line) over the indicated combination of session (learning, rule-change, other) and decoded
feature. Each panel separately plots the decoding for cued-rules (open symbols) and direction-rules
(filled symbols). As a sanity check that our cross-validation of the decoder and shuffled controls
were working, we also decoded the prospective light position: as this was randomised, the ensemble
activity could not predict its position and so should only have been decoded at chance levels –
which it was. We replot these results grouped by rule-type in Figure 5 - figure supplement 1.

Discussion323

We sought to understand how short-term memory in medial prefrontal cortex may support324

the trial-and-error learning of rules from a naive state. To do so, we analysed population325

activity in medial prefrontal cortex from rats learning rules on a maze, and asked if the326

activity during the inter-trial interval carried signatures of short-term memory for rule-327

relevant features of the task. We found that a specific pattern of ensemble activity was328

recalled only after reinforced trials, and only reliably during sessions in which the rats329

learnt the current rule for the first time. This dependence on prior outcome, and the330

transient appearance of the ensemble activity pattern, was consistent with a short-term331

memory encoding, rather than a persistent change to the underlying neural circuit.332

We could robustly decode prior outcome and direction choice from ensemble activity333

across all sessions, but found that encoding of the prior cue position was specific to learning334

sessions for the cue-based rules. This suggests that the recalled ensemble is a repeated335

synchronisation of multiple encodings across the neural population, with rule-appropriate336

suppression or enhancement of cue encoding. We thus propose that reinforcement tags337

features to sustain in medial prefrontal cortex working memory, and does this by reliably338

triggering a specific pattern of ensemble activity that jointly encodes relevant task features.339

Ensemble recall precedes behavioural learning340

We only reliably observed the recall of the same pattern of correlation between neurons341

following correct trials during learning. This pattern of correlation reliably appeared before342

or simultaneously with the step-like change in behaviour indicating rule acquisition. The343

timing thus suggests a causal link between the appearance of the recalled ensemble activity344

pattern and successful learning of the correct strategy for the current rule.345
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Our results support recent studies of prefrontal cortex population activity that re-346

ported how the pattern of population activity in rodent prefrontal cortex changes with or347

immediately prior to an internally-driven shift in behavioural strategy (Durstewitz et al.,348

2010; Powell and Redish, 2016). We extend these prior results in three ways. First, prior349

work has studied the scenarios where animals well-trained on one contingency experienced350

a change in that contingency. Here, we have shown that such abrupt shifts in population351

activity patterns can occur from the naive state. Consequently, they encode initial acqui-352

sition as well as uncertainty (Karlsson et al., 2012). Second we have shown that such an353

abrupt shift in population activity happens for a putative working memory representa-354

tion. Third, we have shown that this shift is selectively triggered by prior reinforcement.355

Nonetheless, our results add to the growing evidence that an abrupt shift in prefrontal356

cortex population activity is a necessary condition for the successful acquisition of a new357

behavioural strategy.358

Functional cell assemblies are potentially necessary for learning but not359

performance360

That the recalled ensembles only appeared around clear episodes of behavioural learning361

means they are thus candidate cell assemblies (Harris, 2005): an ensemble that appeared362

during the course of learning. We distinguished here between structural and functional363

cell assemblies. In a structural assembly, the ensemble’s activity pattern is formed by364

some underlying physical change, such as synaptic plasticity of the connections between365

and into the neurons of the ensemble (Harris, 2005; Holtmaat and Caroni, 2016), and is366

thus a permanent change. In a functional assembly, the ensemble’s activity pattern is367

formed by some temporary modulation of existing connections - e.g. by new input or368

neuromodulation (Benchenane et al., 2011), and is thus a temporary change. Our analysis369

suggested that the recalled ensembles were a functional assembly, as they decayed before370

the end of the session in which they appeared, often decaying soon after the learning371

trial itself. We thus propose that this short-term memory ensemble is necessary only for372

the successful trial-and-error learning of a new rule, and not for the ongoing successful373

performance of that rule.374

Encoding in prefrontal cortex from the naive state375

Consistent with prior reports of mixed selectivity in prefrontal cortex (Jung et al., 1998;376

Jun et al., 2010; Rigotti et al., 2013), we could decode multiple task features from the377

joint activity of a small population of neurons. Extending these reports, we showed here378

that these encodings were position dependent, and that this encoding was exclusively ret-379

rospective during the inter-trial interval - despite there being no explicit working memory380

component to the rules. Our data thus show a short-term memory for multiplexed task381

features even in the absence of overt working memory demands.382

One of our more unexpected findings was that we could reliably decode both the383

prior choice of direction and the prior trial’s outcome across all sessions, regardless of384

whether they contained clear learning, externally-imposed rule changes, or neither these385

events. Our decoder used the vector of firing rates at a given maze position as input.386

Consequently, our ability to decode binary labels of prior events (correct/error trials or387

left/right locations) implies that there were well separated firing rate vectors for each of388

these labels. But this does not mean the neurons’ firing rates were consistently related389

for a given label (such as a prior choice of the left arm of the maze). Indeed, it could390

imply anything from the two labels being encoded by the only two vectors of firing rates391
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that ever appeared, to the two labels being encoded by two distinct groups of neurons392

whose firing rates within each group were never correlated. The reliable appearance of the393

same pattern of pairwise correlations only during learning thus implies that only during394

these sessions was the firing rate vector reliably correlated. This suggests that learning to395

synchronise the encoded features, and not the learning of the encoding itself, is necessary396

for acquiring of a new rule.397

An interesting detail with potentially broad implications is that we could decode both398

the choice of prior direction and prior outcome from the very first session that each rat399

experienced the Y-maze. Either this implies that medial prefrontal cortex learnt rep-400

resentations of direction and outcome so fast that they were able to make a significant401

contribution to decoding by population activity within the very first session. Or it im-402

plies that medial prefrontal cortex does not need to learn representations of direction and403

outcome, meaning that such encoding is always present. Future work is needed to distin-404

guish which of the broad spectrum of features encoded by the prefrontal cortex are either405

consistently present or learnt according to task demands. Demarcating the classes of fea-406

tures that the prefrontal cortex innately or learns to remember would further advance our407

understanding of its contribution to adaptive behaviour.408
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Materials and methods414

Task description and electrophysiological data415

For full details on training, spike-sorting, and histology see (Peyrache et al., 2009). Four416

Long-Evans male rats with implanted tetrodes in prelimbic cortex were trained on a Y-417

maze task (Figure 1A). Each recording session consisted of a 20-30 minute sleep or rest418

epoch, in which the rat remained undisturbed in a padded flowerpot placed on the central419

platform of the maze, followed by a training epoch, in which the rat performed for 20-40420

minutes, and then by a second 20-30 minute sleep or rest epoch. Periods of slow-wave421

sleep were detected offline automatically from local field potential recordings (details in422

Peyrache et al., 2009).423

During training, every trial started when the rat left the beginning of the start arm424

and finished when the rat reached the end of one of the choice arms. A correct choice of425

arm was rewarded with drops of flavoured milk. Each inter-trial interval lasted from the426

end-point of the trial until the rat made its self-paced return to the beginning of the start427

arm.428

Each rat had to learn the current rule by trial-and-error. The rules were sequenced to429

ensure cross-modal shifts: go to the right arm; go to the cued arm; go to the left arm; go430

to the uncued arm. To maintain consistent context across all sessions, the light cues were431

lit in a pseudo-random sequence across trials, whether they were relevant to the rule or432

not.433

The data analysed here were from a total set of 53 experimental sessions taken from434

the study of Peyrache et al. (2009), representing a set of training sessions from naive until435
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either the final training session, or until choice became habitual across multiple consecutive436

sessions (consistent selection of one arm that was not the correct arm). In this data-set,437

each rat learnt at least two rules, and the four rats respectively contributed 14, 14, 11, and438

14 sessions. We used 50 sessions here, omitting one session for missing position data, one in439

which the rat always chose the right arm (in a dark arm rule) preventing further decoding440

analyses (see below), and one for missing spike data in a few trials. Tetrode recordings441

were obtained from the first session for each rat. They were spike-sorted only within each442

recording session for conservative identification of stable single units. In the sessions we443

analyse here, the populations ranged in size from 15-55 units. Spikes were recorded with444

a resolution of 0.1 ms. Simultaneous tracking of the rat’s position was recorded at 30 Hz.445

In order to identify ensembles and track them over each session, we first selected the446

N neurons that were active in all the inter-trial intervals. The N spike-trains of this447

core population were convolved with a Gaussian (σ = 100 ms) to obtain a spike-density448

function fk for the kth spike-train. All the recall analysis was repeated for different449

Gaussian widths ranging from 20 ms to 240 ms (Figure 2 - figure supplement 3). Each450

spike-train was then Z-scored to obtain a normalised spike-density function f∗ of unit451

variance: f∗k = (fk−〈fk〉)/σk, where 〈fk〉 is the mean of fk, and σk its standard deviation.452

Testing for reinforcement-driven ensembles453

To compare the core population’s pattern of activity across the session, for each inter-454

trial interval i we first computed a pairwise similarity matrix Si between the spike-density455

functions for all N neurons. Similarity here was the rectified correlation coefficient, re-456

taining all positive values, and setting all negative values to zero. We did this because,457

as detailed below, we needed to decompose the pairwise measurements into two additive458

contributions: we thus restricted pairwise measurements to the positive regime so that the459

difference in contributions lay on the interval [-1,1], and so that two negative contributions460

could not sum to a positive contribution.461

We then compared the core population’s correlation patterns between inter-trial inter-462

vals i and j by computing the pairwise similarity between Si and Sj . By comparing all463

pairs of inter-trial intervals, we thus formed the Recall matrix R, capturing the similarity464

of activity patterns between all inter-trial intervals.465

We grouped the entries of R into two groups according to the same type of inter-466

trial interval - predominantly whether they were intervals following correct or following467

error trials. These created the block diagonals R1 and R2 (such as Rerror and Rcorrect,468

as illustrated in Figure 2A). We summarised the recall between groups by computing the469

mean of each block. We detected statistically meaningful differences by computing the470

Kolmogorov-Smirnov test for a difference between the distributions of values in the two471

blocks.472

In the main text, we report that there is higher average similarity in Rcorrect than473

Rerror in many sessions. However, there was a strong tendency for inter-trial intervals474

following correct trials to be longer in duration than inter-trial intervals following error475

trials (Figure 2 - figure supplement 1), and so the estimates of pairwise similarity may476

be biased. In order to dissect the contribution of the different durations we defined a477

null model. For each session we defined a shuffled Recall matrix R̂ obtained from the478

average of 1000 Recall matrices computed on shuffled spike trains, with each shuffled479

spike-train keeping its inter-spike interval distribution fixed. In this way we destroyed480

any task-specific temporal pattern of the spike train and we quantify the contribution to481

pairwise similarity due solely to the length of the inter-trial interval. Our final residual482

Recall matrix R̃ = R− R̂ is obtained as the difference between the Recall matrix and the483

15

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2017. ; https://doi.org/10.1101/187948doi: bioRxiv preprint 

https://doi.org/10.1101/187948
http://creativecommons.org/licenses/by-nc/4.0/


average shuffled Recall matrix (Figure 2A; Figure 2 - figure supplement 1).484

For the Residual Recall matrix, we summarised and tested the differences between the485

two groups (such as post-error and post-correct inter-trial intervals) in the same way as486

detailed above, given the new block diagonals R̃1 and R̃2. When grouping by session type,487

we plotted the difference between the block diagonals’ means as Delta Recall = mean(R̃1)488

- mean(R̃2).489

Behavioural analysis490

A learning trial was defined following the criteria of the original study (Peyrache et al.,491

2009) as the first of three correct trials after which the performance was at least 80%492

correct for the remainder of a session. Only ten sessions contained a trial which met493

these criteria, and so were labelled “learning” sessions. We checked that these identified494

trials corresponded to an abrupt change in behaviour by computing the cumulative reward495

curve, then fitting a piecewise linear regression model: a robust regression line fitted to496

the curve before the learning trial, and another fitted to the curve after the learning trial.497

The slopes of the two lines thus gave us the rate of reward accumulation before (rbefore)498

and after (rafter) the learning trial.499

To identify other possible learning trials within the learning session, we fitted this500

piecewise linear regression model to each trial in turn (allowing a minimum of 5 trials501

before and after each tested trial). We then found the trial at which the increase in502

slope (rafter − rbefore) was maximised, indicating the point of steepest inflection in the503

cumulative reward curve. The two sets of learning trials largely agreed: we checked our504

results using this set too.505

Amongst the other sessions, we searched for signs of incremental learning by again506

fitting the piecewise linear regression model to each trial in turn, and looking for any trial507

for which (rafter − rbefore) was positive. We found 22 sessions falling in this category in508

addition to the 10 learning sessions. We called those new sessions Minor-learning (Figure509

2 - Supplement figure 2).510

Testing the onset and offset of recall511

In order to identify when the recalled ensemble activity pattern first appeared in a learning512

session, we arranged its Residual Recall matrix in trial order. For each trial in turn (with a513

minimum of 3 trials before and 5 after), we formed the block diagonals Rbefore and Rafter514

(see Figure 4A), respectively giving all pairwise recall scores between inter-trial intervals515

before and after that trial. The distance between recall before and after was measured516

using the Kolmogorov-Smirnov statistic: the maximum distance between the empirical517

cumulative distributions of Rbefore and Rafter. The trial that had the maximum positive518

distance (an increase in recall from Rbefore to Rafter) and had P < 0.05 was identified as519

the onset of the recalled activity pattern. Similarly, the trial with the maximum negative520

distance that corresponded to a decrease in recall from Rbefore to Rafter and had P < 0.05521

was identified as the offset of the recalled activity pattern. In all learning sessions we522

observed a strict ordering of onset occurring before offset, and both occurring before the523

final tested trial of the session.524

Decoder analysis525

To test whether it was possible to predict task-relevant information in a position-dependent526

manner from the core population’s activity we trained and tested a range of linear decoders527
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(Hastie et al., 2009). In the main text we report the results obtained using a logistic528

regression classifier, as this is perhaps the easiest classifier to interpret.529

We first linearised the maze in five equally-sized sections, with the central section530

covering the choice point of the maze. During each inter-trial interval, we computed531

the N -length firing rate vector Rp, whose each element rpj is the firing rate of the jth532

core population neuron at position p. For each session of T inter-trial intervals and each533

section of the maze p, the set of population firing rate vectors Rp(1), . . . , Rp(T ) was then534

used to train a linear decoder to classify the relevant binary task information, either: the535

previous trial’s outcome (labels: 0,1), the previously chosen arm (labels: left,right), or the536

previous position of the light cue (labels: left,right). (We also trained all decoders on the537

next outcome, arm choice, and light position to test for prospective encoding). To avoid538

overfitting, we used leave-one-out cross-validation, where each inter-trial interval was held539

out in turn as the test target and the decoder was trained on the T − 1 remaining inter-540

trial intervals. The accuracy of the decoder for position p in a given session was thus the541

proportion of correctly predicted labels over the T held out test inter-trial intervals.542

Because the frequency of outcomes and arm choices were due to the rat’s behaviour,543

chance proportions of correctly decoding labels was not 50%. To establish chance perfor-544

mance for each decoding, we fitted the same cross-validated classifier on the same set of545

firing rate vectors at each position, but using shuffled labels across the inter-trial intervals546

(for example, we shuffled the outcomes of the previous trial randomly). We repeated the547

shuffling and fitting 50 times. For displaying the results in Figure 5, we subtracted the548

mean of the shuffled results from the true decoding performance. Separate results for the549

true and shuffled decoders are plotted in Figure 5 - figure supplement 1, panel A.550

We report in the main text the results of using a logistic regression classifier. To551

check the robustness of our results, we also tested three further linear decoders: linear552

discriminant analysis; (linear) support vector machines; and a nearest neighbours classifier.553

Each of these showed similar decoding performance to the logistic regression classifier554

(Figure 5 - figure supplement 2).555
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Figure 2 - figure supplement 1.
Statistics of neural populations and time periods during the inter-trial intervals for the 50 retained
sessions.
(A) Proportion of neurons retained in the core ensemble were those that fired in every inter-trial
interval. The black vertical dashed lines separate the sessions for each of the four rats.
(B) Durations of the inter-trial intervals within each session, given as the mean ± SEM duration
in seconds, separated into post-correct (filled symbols) and post-error (open symbols) inter-trial
intervals. Red symbols are the learning sessions.
(C) Time spent along the maze during the inter-trial intervals, given as the mean ± SEM seconds
spent across all the animal and all the sessions for post-correct (black) and post-error (gray) inter-
trial intervals. The maze has been linearised and divided in 5 equal sized sections, with position
1 being the reward location, position 3 the choice point of the Y-maze, and position 5 the end of
the start arm – see Figure 5 (main text) for a schematic.
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Figure 2 - figure supplement 2.
Recall of neural ensembles is learning-specific.
(A) Example correction of the recall matrix to remove the confounding effect of different durations
of the post-correct and post-error inter-trial intervals. The residual recall matrix was obtained
as the difference between the recall matrix and the mean matrix obtained from the shuffled inter-
spike intervals (upper panels). For this example, the average recall values between error and correct
intervals showed higher correlation among correct intervals in the shuffled model; this reversed the
difference in recall between error and correct intervals (bottom panels) - in this case, ruling out a
potentially higher recall during correct trials.
(B) Comparison of the difference between average correct recall and error recall (Delta recall)
before and after correction by the shuffled control data. Red symbols are the learning sessions.
(C) To check whether the recall effect was specific to sessions showing abrupt learning (top panel;
Figure 2, main text), we identified a subset of the other sessions with potential incremental or
“minor” learning. These minor-learning sessions were any in which the curve of cumulative rewards
contained a detectable upward inflection, as shown by the existence of any trial with a greater slope
in a regression line after that trial than before it (insets, red lines). The vertical black dashed line
is the identified learning trial.
(D) The difference between average correct recall and error recall (Delta recall) for the minor-
learning and remaining other sessions. No systematic recall effect was observed for the minor-
learning sessions, suggesting the recall effect was specific to abrupt transitions in behaviour.
(E) Relationship between behavioural change and the strength of recall. The difference between
average correct recall and error recall (Delta recall) is plotted as a function of the difference between
the slopes of the fitted lines before and after the learning trial (Delta slope). Sessions: learning
(red), rule change (green), and minor-learning (blue). Delta slope for each rule change session was
computed with respect to the rule change trial.
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Figure 2 - figure supplement 3. Time-scale dependence of recall.
(A) Dependence of the recall of ensemble activity on the temporal precision of spike-train corre-
lation. Here we plot the distribution of Delta recall across sessions as a function of the Gaussian
width used to convolve the spike-trains. Retrospective recall, the difference in recall between in-
tervals after correct and after error trials. Delta recall greater than zero indicates the interval
similarity matrices were more correlated for correct than error intervals. Each symbol is one ses-
sion. Filled circles indicate a difference at p < 0.05 between the distributions of recall values in
the error and correct intervals (Kolmogorov-Smirnov test).
(B) Comparison of Delta recall across learning, rule change, and other sessions after spike-train
convolution with a Gaussian 50 ms wide.
(C) As for panel B, but for a Gaussian 200 ms wide.
(D) Dependence of the prospective recall of ensemble activity on the temporal precision of spike-
train correlation. As for panel A, but here we plot the prospective Delta recall, the difference in
recall between intervals before correct and before error trials. We only see a systematic recall at the
smaller tested Gaussian widths (≤ 40 ms), which is likely a reflection of the stronger retrospective
recall effect at these widths.
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Figure 5 - figure supplement 1.
Further decoding analysis.
(A) Decoding can be near perfect. Here we replot the breakdown of the decoding results in Figure
5D as the absolute accuracy of the decoders (where 1 is maximum, indicating correct prediction
of every held-out inter-trial interval). Each data point is the mean ± SEM accuracy at that maze
position The control results on shuffled inter-trial interval labels are shown as grey lines. The
“other” sessions were plotted in Figure 5C.
(B) Comparison of above-chance decoding performance between the same rule types. Each data
point is the mean ± SEM accuracy in excess of chance (dashed line) over the indicated combination
of session type and rule type.
(C) Comparison of prospective decoding performance between the same rule types, confirming
the absence of the prospective encoding of task-relevant information. Similar to panel B, here we
plot the mean ± SEM above-chance accuracy of decoding prospective outcome, direction, or cue
position, separately for sessions with direction or light rules. As in panel B, decoding accuracy
is normalised by the corresponding shuffled control decoding performance (where 0 is identical to
shuffled controls). 23
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Figure 5 - figure supplement 2.
Robustness of the retrospective encoding of task-relevant information. Using the same layout as
Figure 5D, here we summarise the decoding performance of three further classifiers we tested on
the data to check the robustness of the decoding results. Top: Nearest Neighbors; middle: linear
Support Vector Machine; bottom: Linear Discriminant Analysis.24

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2017. ; https://doi.org/10.1101/187948doi: bioRxiv preprint 

https://doi.org/10.1101/187948
http://creativecommons.org/licenses/by-nc/4.0/

