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Abstract 

With the increase in the availability of genomic data, sequences from different loci are usually 

concatenated in a supermatrix for phylogenetic inference. However, as an alternative to the 

supermatrix approach, several implementations of the multispecies coalescent (MSC) have 

been increasingly used in phylogenomic analyses due to their advantages in accommodating 

gene tree topological heterogeneity by taking account population-level processes. Moreover, 

the development of faster algorithms under the MSC is enabling the analysis of thousands of 

loci/taxa. Here, we explored the MSC approach for a phylogenomic dataset of Insecta. Even 

with the challenges posed by insects, due to large effective population sizes coupled with 

short deep internal branches, our MSC analysis could recover several orders and 

evolutionary relationships in agreement with current insect systematics. However, some 

phylogenetic relationships were not recovered by MSC methods. Most noticeable, a remiped 

crustacean was positioned within the Insecta.  Additionally, the interordinal relationships 

within Polyneoptera and Neuropteroidea contradicted recent works, by suggesting the non-

monophyly of Neuroptera. We notice, however, that these phylogenetic arrangements were 

also poorly supported by previous analyses and that they were sensitive to gene sampling. 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 12, 2017. ; https://doi.org/10.1101/187997doi: bioRxiv preprint 

https://doi.org/10.1101/187997


 3 

Introduction 

Biological sciences have been experiencing a boom in the availability of genomic data, so 

that the number of loci employed to reconstruct phylogenies has increased significantly in the 

last decade.  When dealing with multiple genomic regions, the most usual approach 

employed by authors consists in the concatenation of such aligned sequences into a 

supermatrix to build the phylogeny. 

Thus far, the main microevolutionary phenomenon accounted for at species tree estimation 

methods is incomplete lineage sorting (ILS), which is mathematically treated as modeled by 

the multispecies coalescent (MSC) (Degnan and Rosenberg, 2009). MSC is a derivation of 

the coalescent theory (Kingman, 1982) that allows the coalescent process to occur 

independently along branches of the phylogeny. It models gene tree topology heterogeneity, 

as different loci are treated as independent trials of the coalescent processes within the 

phylogeny. The fact of taking into account the discordant information derived from a sample 

of gene trees is the principal advantage of MSC over supermatrix methods, which assume 

the same history for all genes (Edwards, 2009). 

Recent studies applied the MSC to infer the relationships of several animal groups (Cannon 

et al., 2016; Jarvis et al., 2014; Lanier and Knowles, 2015; Song et al., 2012; Xi et al., 2014). 

However, due to the computational limitation of MSC algorithms, the datasets employed 

were limited to dozens of species and few hundreds of loci (Zimmermann et al., 2014). In this 

sense, the advent of faster MSC methods, such as ASTRAL (Mirarab et al., 2014), enables 

MSC-based phylogeny estimation using thousands of species/loci. Importantly, it allows the 

use of genomic data available for model and non-model organisms to estimate species trees, 

which is revolutionizing the field of molecular phylogenetics (Edwards, 2009). 

Recently, a phylogenomic dataset of the class Insecta was generated to estimate the  

phylogeny and divergence times for the major orders of this lineage (Misof et al., 2014).  

However, gene tree heterogeneity was not considered when reconstructing the phylogenetic 
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relationships. Compared to other biological groups, the Insecta poses a major challenge to 

MSC-based inference. This is mainly assigned to the large effective population sizes 

(Romiguier et al., 2014) associated with short speciation intervals, which leads to high 

degrees of ILS (Maddison and Knowles, 2006; Pamilo and Nei, 1988). Further, this class still 

has several controversial relationships, e.g., the Strepsiptera position within Neuropteroidea 

(Boussau et al., 2014; Huelsenbeck and Biology, 2007; Whiting et al., 1997), the position of 

Paraneoptera (Kjer, 2004; Kjer et al., 2006), the interordinal relationships within Polyneoptera 

(Whitfield and Kjer, 2008), and the sister-group of Insecta (Regier et al., 2010; Trautwein et 

al., 2012). 

Once the MSC approach was already successfully applied to resolve deep phylogenies 

(Song et al., 2012; Xi et al., 2014), we were prompted to test how this methodology would 

impact the interordinal relationships of Insecta. Since large ancestral population sizes 

coupled with consecutive speciation events may cause high discordance between gene and 

species trees, the species tree inferred by MSC should better reflect lineage history. 

Therefore, we expect that interordinal branching, which are deeper located in the phylogeny, 

would present a distinct pattern when compared with the supermatrix based approach. To 

test this, we estimated the phylogenetic relationships of Hexapoda using the MSC approach 

and a genomic dataset, focusing on the interordinal relationships within this subphylum. We 

found three main differences compared with the supermatrix approach: the non-monophyly 

of Hexapoda and the interordinal relationships within Polyneoptera and Neuropteroidea, 

including the non-monophyly of Neuroptera, which indicates that more studies are urged to 

better elucidate the evolutionary patterns of this lineage. 
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Material and methods 

We downloaded all amino acid alignments (1,478 genes) used to reconstruct the 

phylogenetic relationships of Hexapoda, as well as the concatenated supermatrix C from the 

dataset of (Misof et al., 2014), available from the Dryad repository 

(http://dx.doi.org/10.5061/dryad.3c0f1). Then we used RAxML v. 8.2.6 (Stamatakis, 2014) to 

estimate the ML (maximum likelihood) gene trees with the LG+G(4) model of amino acid 

substitution (Le and Gascuel, 2008; Yang, 1993). For each of the 1,478 genes, 100 bootstrap 

replicates were inferred using CIPRES REST API (Miller et al., 2015). (S1 file). 

After gene tree estimation, ASTRAL-II v. 4.10.2 (Sayyari and Mirarab, 2016) was used to 

independently reconstruct two species trees.  Firstly, the complete dataset with 1,478 gene 

trees was used to estimate the Hexapoda phylogeny. To investigate the effects of gene  

sampling, the species tree was estimated using 377 gene trees inferred from alignments 

containing more than 500 amino acids. This dataset with longer genes was composed to 

minimize the effects of sampling errors in gene tree topology estimation, which arguably lead 

to a higher probability of inferring the correct species tree (Song et al., 2012). In ASTRAL, 

100 bootstrap replicates were estimated to obtain branch supports. 

To evaluate the robustness of bootstrap values of the species tree, we used the ape package 

v. 3.5 (Paradis et al., 2004) of R language v. 3.2.0 (R Core Team, 2016) to draw a correlation 

between the bootstrap support value and the number of genes and sites in the alignments. 

Thus, we investigated whether nodes with low bootstrap support were the ones that included 

species with lower number of genes/sites. Additionally, Robinson-Foulds distances were 

computed comparing the inferred gene trees to Mifof’s phylogeny and to both species trees 

that we inferred in ASTRAL (with all genes and with genes that were longer than 500 amino 

acids). 
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Results and Discussion 

Our inferred species tree from the full dataset failed to support the monophyly of Hexapoda, 

as recovered by Misof et al. (Misof et al., 2014), due the placement of a crustacean species, 

the remipede Speleonectes tulumensis, as the sister-group of Insecta (Figure 1). This result 

was also recovered in the dataset containing gene alignments longer than 500 bp (Figure 

S1). The only interordinal difference within Hexapoda between both inferred species trees 

was that the Megaloptera was recovered as monophyletic only when all genes were used. 

Also, in both datasets, MSC failed to infer the monophyly of Neuroptera. Conwentzia 

psociformis was placed as sister group to the remaining Neuropterida (Raphidioptera + 

Megaloptera + Neuroptera) in the complete dataset and as sister-group to the Neuropterida 

(with exception of Sialis) in the dataset with longer alignments. 

In Insecta, all orders except Megaloptera, Neuroptera and Blattodea were inferred as 

monophyletic by both data sets. Moreover, several major supra orginal groups were also 

recovered as monophyletic, e.g., Holometabola, Condylognatha, Polyneoptera and 

Palaeoptera. The phylogenetic relationships within Hexopoda orders were stable between 

data sets, with the exception of Coleoptera. In the complete dataset, Priacma was inferred as 

sister-clade of a group formed by Carabus and Gyrinus; this three-species clade was the 

sister-group of the remaining Coleoptera. When larger alignments were analyzed, Priacma 

was the sister-group of the remaining Coleoptera. 

Non-monophyly of Hexapoda 

As (Misof et al., 2014), Our phylogenetic tree also recovered a clade formed by Protura and 

Collembola, which is the sister-group of all the remaining Hexapoda (Diplura, Insecta) in this 

same work. Our species tree did not recover Misof et al.’s hexapod arrangement, ((Protura, 

Collembola), (Diplura, Insecta)), because the Remipedia crustacean Speleonectes 

tulumensis was inferred as the sister-group of Insecta, whereas Diplura was the sister-group 

of S. tulumensis + Insecta. Von Reumont et al. (Von Reumont et al., 2012), using 
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phylogenomic data, also found a clade composed of Protura and Collembola, in their 

analysis, however, Diplura was the sister-group of Protura and Collembola, whereas Insecta 

was the sister-group of these three clades. 

The majority of recent molecular phylogenetic surveys of Hexapoda proposed the 

arrangement (((Diplura, Protura), Collembola), Insecta) (Kjer et al., 2006; Meusemann et al., 

2010; Rainford et al., 2016; Trautwein et al., 2012), although only Meusemann et al. 

(Meusemann et al., 2010) used a phylogenomic dataset to infer the phylogeny. An alternative 

higher order evolutionary relationship of hexapods was propoded by Sasaki et al. (Sasaki et 

al., 2013), who estimated the topology (((Collembola, Diplura), Insecta), Protura). When 

compared to Misof et al.’s (Misof et al., 2014) tree, our species tree presented few 

interordinal differences within Insecta, mainly associated with the Neuropteroidea and 

Polyneoptera supergroups.  

Weak support for Neuropteroidea 

In the consensus phylogeny of Neuropteroidea, this lineage is composed by Neuropterida – 

((Megaloptera, Neuroptera), Raphidioptera), which is sister to the (Coleoptera, Strepsiptera) 

clade (Mckenna et al., 2015; Misof et al., 2014; Peters et al., 2014; Wiegmann et al., 2009). 

In our analysis, relationships within Neuropterida differed. While recent studies supported 

either the previous topology (Cameron et al., 2009; Mckenna et al., 2015; Misof et al., 2014; 

Peters et al., 2014; Wang et al., 2012; Wiegmann et al., 2009; Yan et al., 2014; Zhao et al., 

2013), or the remaining two topological alternatives (Aspöck et al., 2012; Ishiwata et al., 

2011; McKenna and Farrell, 2010), our results supported the non-monophyly of Neuroptera 

for the first time using molecular data, placing Conwentzia psociformis as sister-group to the 

remaining Neuropterida.  

It is worth mentioning that in previous studies using morphology or molecules the monophyly 

of Neuroptera was undisputed (Aspöck et al., 2012). Most studies, however, used only one to 

three Neuroptera species, and a few genes that were concatenated into a single supermatrix 
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for phylogeny inference. Thus, poor taxonomic sampling – the highest number of Neuroptera 

species included in a single analysis was 10 (Yan et al., 2014), associated with low number 

of sampled genes and the handling of data likely led to differences regarding Neuroptera 

relationships. The bootstrap support value for the Neuropterida clade excluding Conwentzia 

psociformis was very low (31). Such a low support indicates that additional genomic data 

from other species of these groups are needed to better resolve this node (Lambert et al., 

2015).  

The second issue within Neuropteroidea was the position of the Strepsiptera order, which 

has been debated for a long time (Beutel and Pohl, 2006; Whiting et al., 1997). The 

consensus based on recent works put this order together with Coleoptera (Boussau et al., 

2014; Cameron et al., 2009; Mckenna et al., 2015; Misof et al., 2014; Peters et al., 2014; 

Wang et al., 2012; Wiegmann et al., 2009; Yan et al., 2014; Zhao et al., 2013), however our 

results do not corroborate to this general view, since Strepsiptera was placed as sister-group 

to all others Neuropteroidea with high support (100). This way, our findings indicate that 

Strepsiptera problem is still open, bringing up more discussion on this relationship. 

Polyneoptera interordinal relationships 

Within the Polyneoptera superorder, differences between Misof et al.’s (Misof et al., 2014) 

and the species trees estimated in the present work were more relevant. In our species tree, 

Orthoptera was the sister-group of a clade formed by Mantophasmatodea, Grylloblattodea, 

Mantodea, Blattodea and Isoptera with bootstrap support value of 55. This six-order clade 

clustered with a group composed of Empioptera and Phasmatodea (100). In Misof et al.’s 

tree, the Orthoptera was placed in basal position within this lineage, with Mantophasmatodea 

and Grylloblattodea clustering with Embioptera and Phasmatodea. This four-order clade was 

clustered with Dictyoptera (Mantodea, Blattodea and Isoptera), which was also recovered in 

our species tree. The remaining differences within the Polyneoptera was the placement of 

Zoraptera and Demaptera. In Misof et al.’s tree these two orders were clustered together and 
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they were the sister-group of the rest of Polyneoptera, while in our species tree Demaptera 

was the sister to the remaining Polyneoptera. 

A general comparison with previous works is complicated by the fact that the number of 

orders used varied significantly among studies, making a one-to-one evaluation of the 

phylogenetic placement of Polyneoptera orders difficult. Although previous studies employed 

a varied combination of taxon and genes, they estimated some of the clades found here; for 

instance, the Dictyoptera (Ishiwata et al., 2011; Ma et al., 2014; Misof et al., 2014; Sasaki et 

al., 2013; Tomita et al., 2012; Wan et al., 2012; Wu et al., 2014), the Embioptera + 

Phasmatodea (Ishiwata et al., 2011; Misof et al., 2014; Sasaki et al., 2013; Wu et al., 2014) 

and the Mantophasmatodea + Grylloblatodea (Ma et al., 2014; Misof et al., 2014; Sasaki et 

al., 2013). 

Support values of controversial relationships 

 It is worth noting that most nodes with poor support lied within Neuropteroidea and 

Polyneoptera groups. As shown by Lambert et al. (Lambert et al., 2015), topologies 

estimated by MSC methods and concatenation will tend to disagree when short branches 

and low support values are present in the concatenated tree. Differences between our 

species tree and Misof et al.’s concatenated tree possibly recapitulated this pattern. In Misof 

et al.’s concatenated tree, there were 7 support values below 50, with 3 located at 

interordinal ancestral nodes. These three nodes resulted in interordinal discordances 

between Misof et al.’s (Misof et al., 2014) and our MSC trees, namely, (i) the support of 

(Protura, Collembola) as sister-group of (Diplura, Insecta) in Misof et al’.s tree was 14, 

whereas our support for Speleonectes as sister-group of Insecta was 80; (ii) the support for 

Dictyoptera as sister-group to the ((Mantophasmatodea, Grylloblattodea), (Embioptera, 

Phasmatodea)) clade in Misof et al.’s (Misof et al., 2014) tree was 34 and we inferred 

Dictyoptera as sister-group of (Mantophasmatodea, Grylloblattodea) with bootstrap support 

value of 45; (iii) the bootstrap support of for the relationship of Neuroptera and Megaloptera 
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as sister-groups was 15 in Misof et al.’s tree, whereas we recovered Neuroptera as non-

monophyletic clade with bootstrap value of 31.  

Additionally, we investigated whether a correlation existed between the number of genes (or 

sites) (S1 Table) and the bootstrap support values of the species tree, but no significant 

correlation was found for either the number of genes or sites. Because no correlation was 

found between the number of sites and the bootstrap support, it is unlikely that sequencing 

more genes alone will solve the remaining controversies on insect phylogeny. Instead, it may 

be possible that increasing the number of sampled species for the orders near poorly-

supported clades would improve topological support. The addition of taxa to clarify the 

discordances was already recommended in other works as well. 

Given the discordances between our MSC tree and Misof at al.'s tree, we were prompted to 

investigate which of the two topologies lied closer to the forest of inferred gene trees. To this 

end, we calculated the distribution of topological distances between Misof et al.’s and the 

MSC tree and the gene tree forest. The distribution of RF distances failed to indicate any 

departure between both topologies tested, implying that distance from the forest of gene 

trees does not favor any topological hypothesis (Figure 2). 

Species tree 

Despite some criticism on the MSC method (Springer and Gatesy, 2016), it has clear 

advantages over concatenated methods, e. g. better performance in the presence of high 

degrees of ILS and short branches and the incorporation of gene tree heterogeneity 

(Edwards et al., 2016; Liu et al., 2015). Then, using a huge data (144 species and 595,033 

amino acid sites) we could infer a deep-level phylogenetic tree under the MSC approach. 

The comparison of the recovered species tree with phylogenetic hypotheses based solely on 

concatenated methods showed three main disagreements: the non-monophyly of Hexapoda, 

which also revealed an incongruence at the root of Insecta, and the interordinal relationships 

within Polyneoptera and Neuroptera. 
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Even with the challenges caused by the great size of the effective population size associated 

with short branches in Insecta, our MSC analysis was able to recover several orders and 

relationships according to the literature of Insecta systematics. Further, the results and 

discussion presented here clearly show the most incongruent nodes are in the Insecta tree of 

life, for which more studies are necessary to achieve a better historical hypothesis for the 

group. 
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Figure legends 

Figure 1: Insect species tree inferred from the full dataset. Support values on nodes were 

obtained from a hundred bootstrap replicates. Distinct colors indicate ordinal clades. Gray 

boxes indicate the different interordinal relationships when compared to Misof et al. (2014)’s 

results. 

Figure 2: Robinson-Foulds distance values computed between each gene tree and Misof et 

al. (2014) topology and Astral topology. The dashed blue line indicates the one to one 

relationship. 
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Figure 2 
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Supplementary information 

 

Figure S1. Phylogenetic tree inferred using 377 genes with more than 500 amino acids
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