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Abstract

Understanding the role of rare variants is important in elucidating the genetic basis of

human diseases and complex traits. It is widely believed that negative selection can cause

rare variants to have larger per-allele effect sizes than common variants. Here, we develop

a method to estimate the minor allele frequency (MAF) dependence of SNP effect sizes.

We use a model in which per-allele effect sizes have variance proportional to [p(1− p)]α,

where p is the MAF and negative values of α imply larger effect sizes for rare variants. We

estimate α by maximizing its profile likelihood in a linear mixed model framework using
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imputed genotypes, including rare variants (MAF > 0.07%). We applied this method to

25 UK Biobank diseases and complex traits (N=113,851). All traits produced negative

α estimates with 20 significantly negative, implying larger rare variant effect sizes. The

inferred best-fit distribution of true α values across traits had mean −0.38 (s.e. 0.02)

and standard deviation 0.08 (s.e. 0.03), with statistically significant heterogeneity across

traits (P=0.0014). Despite larger rare variant effect sizes, we show that for most traits

analyzed, rare variants (MAF < 1%) explain less than 10% of total SNP-heritability.

Using evolutionary modeling and forward simulations, we validated the α model of MAF-

dependent trait effects and estimated the level of coupling between fitness effects and trait

effects. Based on this analysis an average genome-wide negative selection coefficient on

the order of 10−4 or stronger is necessary to explain the α values that we inferred.

Introduction

The contribution of rare variants to the genetic architecture of human diseases and com-

plex traits is a question of fundamental interest, which can inform the design of genetic

association studies and shed light on the action of negative selection1;2. Recently, several

studies have investigated the relationship between minor allele frequency (MAF) and trait

effects3;4;5;6. However, these studies have analyzed a small number of traits and have not

evaluated the genome-wide contribution of rare variants (MAF < 1%), which remains

unknown7.

Here we develop a profile likelihood-based mixed model method to infer MAF-dependent

architectures from genotype and phenotype data. We apply our method to 25 complex

traits and diseases from the UK Biobank data set, analyzing data from 113,851 individuals

and 11,062,620 SNPs, including rare variants (MAF > 0.07%). Our analysis shows that

rare variants have significantly increased per-allele effect sizes for most traits, with signif-

icant heterogeneity across traits. For each of these traits we also estimate the phenotypic

variance explained by variants in different frequency ranges, including rare variants.

It is widely believed that frequency-dependence of SNP effect sizes is due to increased

negative selection on variants that affect complex traits1;2;8;9;10;11. Specifically, if SNPs

that affect a trait are more likely to be under negative selection, they will be enriched in the

lower-frequency spectrum, so that lower-frequency SNPs will on average have larger trait

effects. Thus, MAF-dependent architectures estimated from genotype and phenotype data

can shed light on evolutionary parameters. Previous studies have used MAF-dependent

architectures or related information to estimate a coupling parameter9 between fitness
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effects and their trait effects for prostate cancer6 and type 2 diabetes12;13. In this work,

we use evolutionary modeling and forward simulations to investigate whether our param-

eterization of MAF-dependent effects (α model; see below) is consistent with evolutionary

models, estimate the coupling between fitness effects and trait effects, and draw inferences

about the average genome-wide strength of negative selection.

Results

Overview of methods

We assume a previously proposed random-effect model14;15 (the ”α model”), in which the

per-allele trait effect β of a SNP depends on its MAF p via:

E(β2|p) = σ2
g,α · [2p(1− p)]α . (1)

A negative value of α implies that lower-frequency SNPs have larger per-allele effect sizes,

whereas α = 0 implies no dependence, and σ2
g,α is the component of SNP effect variance

that is independent of frequency. We note that Equation 1 pertains to genome-wide SNPs,

including SNPs that do not affect the trait. The α model is simple and convenient, but

has not previously been validated by evolutionary modeling.

For a given set of genotype and phenotype data, we estimate α using a linear mixed

model framework16. The model likelihood depends on α, σ2
g,α, and the environmen-

tal variance (see Online Methods). We compute the profile likelihood over values of α

by maximizing the likelihood with respect to σ2
g,α and the environmental variance for a

given α. Our estimate α̂ is defined as the mode of the profile likelihood curve, whose

width is used to compute error estimates. We show that the corresponding values of σ̂2
g,α

can be used to estimate the SNP-heritability h2
g while accounting for MAF-dependent

SNP effects, which can bias h2
g estimates when not accounted for14;15. We include link-

age disequilibrium (LD)-dependent SNP weights17 in our model, to avoid biases due to

LD-dependent architectures4;14;18;19. Details of the method are described in the Online

Methods section; we have released open-source software implementing the method (see

URLs).
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Simulations

We evaluated our method using simulations based on imputed UK Biobank genotypes20

and simulated phenotypes, using N = 5, 000 individuals and M = 100, 000 consecutive

SNPs from a 25Mb block of chromosome 1 (see Online Methods). We used default param-

eter settings of α = −0.3, h2
g = 0.4, 1% of SNPs causal, imputation noise based on actual

imputed genotype probabilities, and LD-dependent effects17, but we also considered other

parameter settings for each of these. Imputation noise was introduced by randomly sam-

pling the genotypes used to simulate phenotypes from imputed genotype probabilities,

while still using the expected dosage values for inference (see Online Methods).

In Table 1, we report α estimates at default and other parameter settings, both using

LD-dependent weights (α̂) and without using LD-dependent weights (α̂noLD). In simula-

tions with LD-dependent effects, α̂ was unbiased at all parameter settings tested, while

α̂noLD was upward biased by approximately 0.1. In simulations without LD-dependent

effects, α̂ was downward biased by less than 0.1, while α̂noLD was unbiased. These sim-

ulations suggest that our method provides unbiased estimates of α when LD is correctly

modeled, and only modestly biased estimates of α when LD is not correctly modeled. We

also compared our profile likelihood standard error estimates to empirical standard errors

from simulations. These quantities do not differ significantly (see Supplementary Table

1), indicating that our standard error estimates are well-calibrated. The profile likelihood

curves were smooth and unimodal at all parameter settings (see Supplementary Figure

1).

Although the main focus of this paper is on obtaining and interpreting estimates of

α, we also used our simulation framework to evaluate the effectiveness of our method

in obtaining SNP-heritability estimates that avoid biases due to MAF-dependent and

LD-dependent architectures. In Supplementary Table 2 we report SNP-heritability es-

timates using our method, both using LD-dependent weights (ĥ2
α) and without using

LD-dependent weights (ĥ2
α,noLD), and using GCTA with a single variance component

(ĥ2
GCTA)16. ĥ2

α and ĥ2
α,noLD were roughly unbiased at all parameter settings, while GCTA

with a single variance component produced biased estimates, consistent with previous

work4;14. Other methods of avoiding bias due to MAF-dependent and LD-dependent

architectures have recently been proposed, including GREML-LDMS4 and LDAK19; a

complete benchmarking of SNP-heritability estimation methods will be provided else-

where (ref.21, which we are updating to include a comparison to LDAK19).
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Analysis of 25 UK Biobank traits

We applied our method to 113,851 British-ancestry individuals from the UK Biobank

with 1000 Genomes- and UK10K-imputed genotypes at 11,062,620 SNPs with at least

5 minor alleles in the UK10K reference panel (MAF > 0.07%; see Online Methods).

We analyzed 25 heritable, polygenic traits with at least 50% of individuals phenotyped

(Table 2). Phenotype values were corrected for fixed effects, including sex and 10 principal

components (see Online Methods). Profile likelihood curves for all 25 traits are displayed

in Supplementary Figure 2. We observed that the curves were smooth and unimodal

(consistent with simulations; Supplementary Figure 1), suggesting that estimates of α are

likely to be robust.

In Table 2, we report estimates of α for all 25 traits. All traits had negative α esti-

mates (with most estimates lying between −0.5 and −0.2), and 20 traits had significantly

negative estimates (i.e. 95% credible intervals did not overlap zero), implying that lower-

frequency SNPs have larger per-allele effect sizes. We observed statistically significant

heterogeneity in estimates of α across the 25 traits (P=0.0014), consistent with different

levels of (direct and/or pleiotropic) negative selection across traits (see Discussion). We

estimated the underlying distribution of true (unobserved) values of α to have mean −0.38

(s.e. 0.02) and standard deviation 0.08 (s.e. 0.03), assuming a normal distribution (see

Online Methods). We obtained very similar results when repeating the entire analysis

using 9,336,687 SNPs with MAF > 0.3% in the UK10K reference panel (Supplementary

Table 3); we note that these results are unlikely to be affected by imputation error, be-

cause simulation results in Table 1 show that our method is not significantly affected by

imputation error under correctly calibrated imputation accuracies, and because we further

determined that MAF > 0.3% SNPs generally have well-calibrated imputation accuracies

(Supplementary Figure 3).

We estimated the proportion of SNP-heritability explained by SNPs in each part of the

MAF spectrum, for different values of α. This computation relies on the empirical MAF

spectrum in UK10K, as heritability per MAF bin depends both on heritability per SNP

and number of SNPs per MAF bin (see Online Methods). Results are reported in Figure 1.

We determined that rare and low-frequency variants contribute a very small proportion

of SNP-heritability at the mean α estimate of −0.38, and a relatively small proportion

of SNP-heritability even for the most negative α estimate of −0.60. Specifically, at α =

−0.38 (s.d. 0.08), only 8.9% (s.d. 2.7%) of SNP-heritability is explained by SNPs with

MAF < 1%. We also used α̂ to obtain total SNP-heritability estimates corrected for

biases due to MAF-dependent and LD-dependent architectures for each of the 25 traits
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(Supplementary Table 4; see Online Methods).

Effect of negative selection on the MAF-dependence of genetic

architectures

Frequency-dependent trait effect sizes have been widely attributed to negative (purifying)

selection on variants that affect complex traits, which causes them to be enriched for lower-

frequency variants, so that lower-frequency SNPs will have larger traits effects1;2;8;9;10;11.

Here we use evolutionary modeling to predict the frequency-dependent architecture of a

trait, given the coupling between fitness effects and trait effects. The aim of this analysis

was to investigate whether the α model (Equation 1) is consistent with the predictions

of evolutionary models, and to draw conclusions about evolutionary parameters from our

estimates of α across 25 UK Biobank traits.

We used an evolutionary model of Eyre-Walker9, which introduces a parameter τ

quantifying the coupling between a SNP’s fitness effect (selection coefficient s) and target

trait effect size (β); τ > 0 implies that SNPs under negative selection have larger trait

effect sizes on average, whereas τ = 0 corresponds to no coupling. Using this model, we

derived two analytical results. First, it is straightforward to show that

E
(
β2
∣∣p) ∝ E

(
s2τ
∣∣p) , (2)

where p is minor allele frequency (see Online Methods). This implies that increased

trait effects for lower-frequency variants requires both that lower-frequency variants have

significantly larger selection coefficients s and that τ > 0. Second, based on Equation 2,

we analytically evaluated E(s2τ |p) to quantify the MAF-dependence of SNP effects under

the Eyre-Walker model (see Online Methods). In this derivation, we ignored LD between

selected SNPs, assumed a constant effective population sizeNe, and assumed that selection

coefficients s of SNP loci across the genome are drawn from a gamma distribution, with

mean s̄ and shape parameter k (ref.22). (We note that k parametrizes the polygenicity of

fitness: if k � 1, all SNPs in the genome have roughly the same selection coefficient; if

k � 1, a few SNPs have extremely large selection coefficients.) Under these assumptions,

we derived the result that there exists a MAF threshold T such that for p > T the α

model approximately holds, but for p < T trait effects are approximately independent of

frequency (see Online Methods). The threshold is

T =
k

4Nes̄
. (3)
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Intuitively, this threshold corresponds to the maximum frequency at which even the most

strongly selected SNPs are still only affected by genetic drift, with their frequency being

too low to be significantly affected by selection. We note that T is independent of the trait

analyzed, since s̄ and k parametrize the distribution of genome-wide selection coefficients.

Although our derivation of Equation 3 ignored the effects of demographic changes

and LD, we confirmed this result by performing forward simulations using SLiM223, us-

ing a European demographic model24 and realistic LD patterns (see Online Methods).

Specifically, for a given τ we computed E (s2τ |p) in Equation 2 from the s and p values of

simulated SNPs. Our main simulations assumed τ = 0.4, effective Ne = 10, 000, s̄ = 0.001

and k = 0.25 (ref.22), so that T = 0.006 (Equation 3). Results are reported in Figure 2,

which shows that for p > T = 0.006 the α model with best-fit α = −0.32 provides a

good fit, but for p < T = 0.006 the effect sizes are less MAF-dependent and are thus

significantly smaller than expected under the α model. Results at other parameter set-

tings were qualitatively similar, with the threshold varying according to Equation 3 (see

Supplementary Figure 4).

We sought to draw inferences about the threshold T from our analysis of 25 traits.

If a significant fraction of SNPs used to estimate α in that analysis had MAF below T ,

we would expect to obtain smaller (more negative) estimates of α by restricting to more

common SNPs, since SNPs of MAF below T with less MAF-dependent effects would be

ignored. We repeated the estimation of α for all 25 traits using 6,273,557 SNPs with MAF

> 5% (instead of 11,062,620 SNPs with MAF > 0.07%). Estimates did not significantly

change for any trait (see Supplementary Table 5), nor did the best-fit α estimate across

traits, which actually increased slightly from −0.38 (s.e. 0.02) to −0.35 (s.e. 0.02). It is

possible that effects of rare SNPs above the original MAF threshold of 0.07% are indeed

overestimated in the α model (if T > 0.07%), but if so the impact of this deviation is

not large enough to significantly change our estimates. On the other hand, it is unlikely

that this is the case for all rare and low-frequency SNPs (MAF < 5%), since they explain

roughly 10% of heritability even under a neutral model (Figure 1). We conclude that the

threshold T is likely to be < 5%, so that the α model provides a good fit for common

SNPs (MAF ≥ 5%). However, the α model may potentially overestimate the effects of rare

SNPs. This implies that the fraction of heritability explained by rare SNPs in Figure 1

should be viewed as an upper bound.

Finally, we sought to draw conclusions about the values of the average genome-wide

selection coefficient s̄ and the Eyre-Walker coupling parameter τ . First, a threshold T <

5% (see above) implies an average selection coefficient s̄ > 5k/Ne. Assuming Ne = 10, 000

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2017. ; https://doi.org/10.1101/188086doi: bioRxiv preprint 

https://doi.org/10.1101/188086
http://creativecommons.org/licenses/by-nc-nd/4.0/


(ref.25) and k = 0.25 (ref.22), s̄ is likely to be on the order of 10−4 or stronger. Second,

we determined that the best-fit estimate of α̂ = −0.38 across 25 traits corresponds to a τ

value in the range [0.3, 0.5] (Figure 3, see Online Methods). We reached this conclusion by

repeating our forward simulations for τ ∈ [0, 1] (vs. τ = 0.4 above), s̄ ∈ {0.0001, 0.001}
(vs. 0.001 above) and k ∈ {0.125, 0.25} (vs. 0.25 above) and fitting the α model using

SNPs above the threshold T from Equation 3. Figure 3 shows that the best-fit α depends

primarily on τ , with only weak dependence on s̄ and k. Estimates of τ for each of the 25

traits are provided in Supplementary Table 6.

Discussion

We have quantified the MAF-dependent architectures of 25 diseases and complex traits

under the α model14;15 (Equation 1). We inferred negative values of α̂ for all 25 traits

and significantly negative values for 20 traits, corresponding to higher trait effects for

lower-frequency SNPs. The best-fit distribution of α across traits had mean −0.38 (s.e.

0.02) and standard deviation 0.08 (s.e. 0.03), implying that only 8.9% (s.d. 2.7%) of SNP-

heritability is explained by rare SNPs (MAF < 1%), despite significantly larger effects

for rare variants. Although rare variants explain relatively little heritability, rare variant

association studies may still identify variants of large effect that reveal interesting biology

and actionable drug targets11;26. On the other hand, rare variants will likely play only a

limited role in polygenic risk prediction, which will be largely driven by common variants.

Using evolutionary modeling and simulations, we determined that the α model pro-

vides a good fit for common SNPs (MAF ≥ 5%), though it may potentially overestimate

effects of rare SNPs; our estimate of 8.9% (s.d. 2.7%) of SNP-heritability explained by

rare SNPs should therefore be viewed as an upper bound. We concluded that an average

genome-wide negative selection coefficient on the order of 10−4 or stronger is required

to explain the MAF-dependent architectures that we inferred. The best-fit α estimate

across 25 traits implies an Eyre-Walker9 τ parameter between 0.3 and 0.5, quantifying

the coupling between fitness effects and trait effects. Our finding that estimates of α

(and hence τ) vary only modestly across traits is consistent with the action of pleiotropic

selection, in which SNPs that affect the target trait also affect other selected traits27;28;

under direct selection, greater variation in τ would be expected, and traits that are not

directly selected would have τ = 0.

Recent studies have investigated MAF-dependent architectures in genome-wide analy-

ses of schizophrenia3;5, as well as height and BMI4. These studies analyzed a small number
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of traits, and either did not analyze rare variants3;5 or aggregated all MAF < 10% variants

into a single MAF bin4, underscoring the difficulty of obtaining precise estimates of rare

variant heritability using the MAF bin approach. Another study used targeted sequencing

of 63 prostate cancer risk regions to conclude that 42% (s.e. 11%) of the prostate cancer

SNP-heritability attributable to these regions in African Americans is due to rare SNPs

(MAF < 1%), although rare variant heritability in Europeans was non-significant6.

A more recent study introduced a revised LDAK method19 (revising an earlier LDAK

method14) and estimated a parameter that it referred to as α. We refer to this parameter

as αLDAK, because it is different from the parameter α that was previously described

in ref.14;15 and that is defined and estimated in this paper. Specifically, the Discussion

section of ref.19 states that the SNP effect size variance is proportional to [pj(1−pj)]αLDAK .

However, that statement is incorrect. Actually, under the model of ref.19, the SNP effect

size variance is proportional to [2pj(1−pj)]αLDAK ·wj, where wj is an LD-dependent weight

(see Equation 1 of ref.19). Unlike the LD-dependent weights that we use17, wj is dependent

on MAF, with lower frequency SNPs having higher values of wj. Thus, SNP effect size is

specifically not proportional to [pj(1−pj)]αLDAK , and αLDAK is a parameter that is different

from α. Indeed, our simulations confirmed that estimates of αLDAK obtained using the

LDAK software were upward biased by roughly 0.4 compared to the true α as defined in

previous work14;15 and this paper (see Supplementary Table 7). Thus, the revised LDAK

method and software19 cannot be used to estimate α.

An unpublished study conducted in parallel to this work investigated MAF-dependent

architectures of 28 UK Biobank traits29 using a Bayesian method to estimate a parameter

identical to the α parameter that we estimate. Results of ref.29 were broadly similar to our

results, but we note three key differences between the studies. First, ref.29 did not include

rare variants (MAF < 1%) in their analyses, although we determined here that inclusion

or exclusion of rare variants does not significantly affect our results. Second, ref.29 used an

elegant approach to infer the polygenicity of each trait. Third, although ref.29 performed

forward simulations to show that their findings implicate negative selection on trait-

affecting SNPs, they did not use these simulation results to investigate the validity of

their parametric inference model or to infer evolutionary parameters.

In addition, several recent studies have drawn inferences about evolutionary param-

eters that affect complex traits. Ref.12 and ref.13 estimated τ in type 2 diabetes to be

approximately 0.1, by comparing the number of rare and low-frequency associations in

empirical studies to the number in simulations. Ref.6 estimated τ by matching the her-

itability explained by rare SNPs (MAF < 1%) in their analysis of prostate cancer to
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simulation results, inferring τ̂ = 0.48 (95% CI: [0.19, 0.78]). We are not aware of any pre-

vious study that has drawn inferences about the genome-wide average strength of negative

selection, although ref.28 used a different modeling approach to estimate the mutational

target load.

We note several limitations in our work. First, our analyses are restricted to high-

prevalence diseases and quantitative traits, as low-prevalence diseases are not well-represented

in the UK Biobank due to random ascertainment. This motivates additional analyses of

low-prevalence diseases, which could potentially be subject to stronger direct selection.

However, we caution that our method might be susceptible to biases when used to ana-

lyze ascertained case-control traits, as previously described for linear mixed model based

heritability estimation methods30;31, meriting further investigation. Second, we use the

Eyre-Walker model9 to parameterize the coupling between fitness effects and trait effects.

The Eyre-Walker model has previously proven useful in a variety of settings6;12;13, but

other coupling models are also possible28;32. One limitation of the Eyre-Walker model

is that it does not allow for signed correlations between SNP trait effect and selection

coefficient, i.e. the damaging allele is equally likely to reduce or increase the trait value.

This assumption is violated when the target trait is under direct selection, but is plausible

if selection on the SNP is mainly pleiotropic, which appears to be the dominant form of

selection for the traits analyzed here (see above). Third, we assume that the distribution

of selection coefficients follows a gamma distribution. This assumption implies that there

are no outlier SNPs under exceptionally strong negative selection. Such extremely selected

SNPs would stay at very low frequencies and only affect our results if they had extreme

effects on the target trait. However, such SNPs have not been identified for most complex

traits2. We specifically assume that the distribution of selection coefficients has a gamma

shape parameter of k = 0.25, which is the value that ref.22 inferred for coding variants.

Although we also considered different values of k within the plausible range inferred by

ref.22, it is possible that this parameter could be different for noncoding variants. How-

ever, we are not aware of any specific reason why this should be the case. Fourth, our

analytic derivations ignore LD and assume a constant population size. Our derivations

imply that α ≈ −2τ (see Online Methods), but our forward simulations, which include

realistic LD patterns and demography, suggest that α ≈ −τ . The direction of this change

is consistent with the action of background selection due to LD, since strong LD leads

to a SNP’s frequency being influenced not only by its own selection coefficient but also

by the selection coefficients of many other correlated SNPs, leading to a less negative α

value for a given τ . However, this difference could potentially also be due to demography.
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The impact of LD and demography on α could potentially be investigated further using

forward simulations. Finally, our forward simulations assume that negative (purifying)

selection is the dominant mode of selection affecting complex traits. Although positive

selection is likely to affect some loci, recent work has suggested that selective sweeps were

rare in human evolution33 and hence unlikely to have substantial genome-wide effects on

MAF-dependent trait architectures. We also did not investigate the potential effects of

stabilizing selection28. Despite these limitations, our quantification of MAF-dependent

effect sizes and the underlying evolutionary parameters is broadly informative for the

genetic architectures of diseases and complex traits.

URLs

Software implementing our method will be released prior to publication as a publicly avail-

able, open-source software package at https://www.hsph.harvard.edu/alkes-price/

software/; UK Biobank website, http://www.ukbiobank.ac.uk/; BGEN file format,

http://www.well.ox.ac.uk/~gav/bgen_format/; UK Biobank genotype imputation man-

ual, http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/imputation_documentation_

May2015.pdf
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Online Methods

Inferring frequency dependence of SNP effects

We assume a linear complex trait model for N individuals and M SNPs with

y = Xβ + ε, with εi
iid∼ N (0, σ2

ε ) (4)
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Here, y is a vector ofN phenotype values with mean zero, X is the mean-centered genotype

matrix, β is the vector of M SNP effects and ε is a vector of environmental effects (i.e.

any non-SNP effects). Furthermore we assume the effect size of SNP j to be a random

variable that follows a distribution depending on its minor allele frequency (MAF) pj:

βj ∼ N (0, σ2
g,α · [2pj(1− pj)]α), (5)

where effect sizes of two SNPs are independent conditional on their allele frequencies. A

negative α value indicates larger trait effects on average for lower-frequency SNPs, whereas

σ2
g,α is the component of the SNP effect variance independent of frequency. This model,

which we call the α model, has been used in previous analyses of complex traits14;15.

We note that β defines the per-allele SNP effect which is distinct from the heritability

explained by a SNP. Under Hardy-Weinberg equilibrium and given Equation 5, the average

heritability explained by a SNP of frequency p is proportional to [2p(1− p)]1+α.

From Equations 4 and 5 it follows that the distribution of the phenotype vector y is

a multivariate normal distribution with

y ∼ NN(0, XDαX
Tσ2

g,α + Iσ2
ε ), Dα diagonal with (Dα)jj = [2pj(1− pj)]α (6)

Given the genotype matrix X, SNP frequency vector p and phenotype vector y, the

likelihood over the three parameters σ2
g,α, σ2

ε and α is fully defined by Equation 6. Hence,

the MLE of the parameter triple (σ2
g,α, σ

2
ε , α) can be found directly by maximizing the

corresponding likelihood. Since we are primarily interested in estimating α, we used a

profile likelihood based approach, with the profile likelihood of α defined as Lprof(α) =

max(σ2
g,α,σ

2
ε ) L(σ2

g,α, σ
2
ε , α). In this analysis we use α̂ = argmaxα Lprof(α) as the estimator

of α, given genotype and phenotype data X and y. α̂ is also equal to the α value in

(σ2
g,α, σ

2
ε , α) that maximizes the total likelihood in Equation 6.

In practice, the profile likelihood Lprof(α) was derived in the following way: for some

α′, XDα′XT was calculated. Given phenotype values y and for a given α′, we inferred

maximum likelihood estimates for σ2
g,α and σ2

ε via restricted maximum likelihood estima-

tion34, using the GCTA software implementation35. This procedure was repeated for a

range of α′. Here we used a minimal range of α′ ∈ {−1.00,−0.95, ..., 0.00} for all traits,

but extended the range to higher values if necessary, such that there is a minimal difference

of 5 in log profile likelihood between the mode and the boundary. This ensures that the

part of the curve that is significantly above zero is sampled. These data points were then

interpolated with a natural cubic spline, yielding the final profile likelihood curve. Cred-
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ible intervals for α̂ were estimated by combining the profile likelihood curve with a flat

prior. Although our above modeling assumes a quantitative trait, this method is equally

applicable to randomly ascertained case-control traits since all likelihood calculations are

performed using the GCTA software, which analyzes case-control traits accordingly via a

liability threshold model36.

Given α̂ for a set of phenotypes, the cross-trait estimate, α̂cross-trait, was calculated as

the inverse standard error weighted mean across the traits. We tested for heterogeneity

of true underlying α values across n traits by comparing
∑n

i=1
(α̂i−α̂cross-trait)

2

std. error2i
to a χ2

n null

statistic. The best-fit standard deviation in true α values across traits, was calculated

by assuming normally distributed true α with mean α̂cross-trait, and then choosing the

standard deviation, for which the variance of the simulated α̂ using the inferred standard

errors matched the variance of the 25 α estimates most closely.

Correcting for LD-dependent architectures

Ref.17 showed that for a given MAF, SNPs with higher LD have lower per-allele effects

on average. Specifically, they use level of LD (LLD), defined as the rank-based inverse

normal transform of the LD score. LLD is transformed separately in each part of the

MAF spectrum, ensuring that it is independent of MAF. Ref.17 reported that SNPs that

have LLD one standard deviation above the mean have a squared per-allele effect size

reduced by (30± 2)% on average. This violates our assumption that, at a given MAF, all

SNP effects are independent and identically distributed.

To avoid bias in our estimation due model misspecification, we incorporated LD-

dependent SNP effects by changing Equation 1 to

βj|pj,LLDj ∼ N
(
0, σ2

g,α · [2pj(1− pj)]α · (1− 0.3 · LLDj)
)

(7)

This expression incorporates the LD dependence of ref.17, however, since LLD has mean

zero and is independent of MAF, βj|pj ∼ N (0, σ2
g,α · [2pj(1 − pj)]

α) still holds, even

though effect sizes β are not iid given p. To remove the LD dependence in the effect size

distribution, we calculated a renormalized genotype matrix X̃, with X̃ij = Xij · (1− 0.3 ·
LLDj)

1/2. This effectively changes the complex trait model in Equation 4 to y = X̃β̃ + ε,

where now β̃j ∼ N (0, σ2
g,α · [2pj(1 − pj)]

α) is again iid for a fixed p. Unless otherwise

stated, we hence estimated α using X̃ instead of X to avoid biases due to LD-dependent

architectures.
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Genotype data

We use the UK Biobank phase 1 data release (see URLs), which comprises of data from

152,729 individuals genotyped at 847,131 SNP loci. Here, we only used data from 113,851

individuals following selection criteria previously used by Galinsky et al.37: individuals

were selected to have self-reported and confirmed British ancestry and related individuals

were removed from the analysis such that the pairwise genetic relatedness is < 5% (after

LD-pruning SNPs). Individuals that had withdrawn consent to participate in the UK

Biobank project after initial publication were removed from the analysis. We used im-

puted genotype data as provided by UK Biobank. These genotypes were imputed using

the IMPUTE2 software38 and a joint reference panel from the UK10K project39 and 1000

Genomes Phase 340. The resulting imputed genotype data includes roughly 70,000,000

SNPs loci across the 22 autosomal chromosomes. The data was downloaded in the BGEN

file format (see URLs), a compressed file format that includes - for each individual and

variant site - the probability of being homozygous reference, heterozygous, or homozy-

gous alternative. Due to imputation uncertainty, the genotype matrix X and the allele

frequencies p are not known precisely. Instead, we use the expected genotypes given these

probabilities (genotype dosages). To exclude large-effect SNP loci from human leukocyte

antigen genes, SNPs on chromosome 6 in the 30-31Mb region were masked and we ver-

ified that no significant associations were found in nearby regions after masking. Due

to memory constraints, GCTA could not be run using a GRM of all 113,851 individuals

at once. Instead, we divided all individuals into 3 equally sized batches, calculating the

profile likelihood of α for each batch and using the sum of the resulting log likelihoods to

compute the final likelihood curve.

Although our analysis does not require knowing all imputed genotypes precisely, we

do assume that the genotype probabilities are well calibrated, i.e. that we are not overly

confident in the imputation accuracy. Since imputation accuracy is difficult to assess if

the number of minor alleles in the reference panel is very low, we only used SNP loci that

had 5 or more minor alleles in the UK10K reference panel (MAF > 0.07%) in our main

analysis. To further assess calibration of imputation noise, we compared the uncertainty

implied by the genotype probabilities with an empirical assessment of imputation accuracy

performed by the UK Biobank study (see URLs). Supplementary Figure 3 shows that

imputation accuracy is significantly overestimated for SNPs of frequency 0.1% or less,

which could potentially bias our results. However, repeating α estimation only using

SNPs of MAF > 0.3% did not lead to significantly different results, implying that our

results are not significantly affected (see Supplementary Table 3).
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Simulations

Simulations were performed using genotype data from an N = 5, 000 random subset of the

113,851 unrelated British UK Biobank individuals. We used M = 100, 000 consecutive

SNPs from a 25Mb block of chromosome 1. N and M where chosen such that the simu-

lations had similar statistical power as the main analysis41. As in the main analysis, only

SNPs with at least 5 minor alleles (MAF > 0.07%) in the UK10K reference panel were

included. Phenotype values were generated using the linear model described in Equation 4.

The trait effect of the jth SNP was drawn fromN
(
0, σ2

g,α · [2pj(1− pj)]α · (1 + τ ∗ · LLDj)
)
,

with τ ∗ = −0.3 when simulating LD-dependent architectures17, and τ ∗ = 0 otherwise.

The environmental noise variance was chosen such that the simulated trait had the desired

heritability. In simulations with only 1% of SNPs causal, the causal SNPs were chosen at

random. Imputation noise was introduced by randomly sampling the genotypes used to

simulate phenotypes from imputed genotype probabilities, as reported by UK Biobank.

In simulations without imputation noise, genotype dosages, i.e. the expected number of

minor alleles, were used. In the inference procedure, we used genotype dosages in both

types of simulations.

Simulations to estimate αLDAK were performed using the same set of 5,000 individuals

and 100,000 SNP loci. Phenotype values were simulated as described above. αLDAK

estimation was performed in the same way as in the previous set of simulations, only now

using the LDAK software19 to calculate the likelihood for a given α value instead of the

GCTA software. This approach hence includes the LD weights proposed by LDAK and is

identical to their proposed approach for estimating α, although, to enable a more accurate

comparison, we used a finer set of tested α values (α′ ∈ {−1.00,−0.95, ..., 0.60}) than in

their study (α′ ∈ {−1.25,−1.00,−0.75,−0.50,−0.25, 0.00, 0.25}). Due to computational

constraints we did not use their workflow for imputed genotypes, but rather used the same

hard-called genotypes for both phenotype simulations and estimation, an option available

in LDAK.

Correcting for bias in heritability estimation

Heritability estimation methods based on standard restricted maximum likelihood (REML)

estimation in a linear mixed model framework16 require that all SNP effects are iid dis-

tributed in order to avoid biases. In the case of MAF-dependent SNP effects, this assump-

tion is clearly broken. This issue has been addressed in previous work and several solutions

to this problem have been suggested15;19. Here we show that knowing α for a given trait
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can provide another way to avoid heritability estimation biases due to MAF-dependent

architectures. As previously stated, our model assumes y = Xβ + ε, with εi
iid∼ N (0, σ2

ε )

and βj ∼ N (0, σ2
g,α · [2pj(1−pj)]α). Here β is the per-allele effect, the average effect on the

phenotype of having one minor allele. However, one can define renormalized genotypes X̃,

with X̃ij = Xij · [2pj(1− pj)]α/2. The per-normalized -allele effects are now β̃
iid∼ N (0, σ2

g,α)

in y = X̃β̃ + ε. Since β̃ are now iid, σ2
g,α and σ2

ε can now be estimated without bias

from X̃ and y using REML. The variance in the phenotype explained by M SNPs can be

calculated in the following way:

σ2
g = Var(x̃β̃) = β̃TVar(x̃)β̃ ≈ Eβ̃

(
β̃TVar(x̃)β̃

)
=

M∑
j=1

σ2
g,α[2pj(1− pj)]1+α (8)

where x̃ is a random renormalized genotype row vector. Here we used the fact that

(Var(x̃))jj = 2pj(1− pj) under Hardy-Weinberg equilibrium and cross terms cancel since

β̃j are independent and mean zero. We define A =
∑M

j=1[2pj(1− pj)]1+α, with the genetic

variance σ2
g = Aσ2

g,α. If α = −1, as has been used in many previous methods14;16, A is

simply equal to M .

In practice, heritability estimation was performed in the following way: the renor-

malized genotype matrix X̃ was calculated using the α̂ as estimated from the data.

From X̃ and the phenotype vector, σ̂2
g,α and σ̂2

ε were obtained using GCTA REML35.

Our SNP heritability estimate ĥ2
α,noLD is then defined as Âσ̂2

g,α/(Âσ̂
2
g,α + σ̂2

ε ), with Â =∑M
j=1[2pj(1 − pj)]1+α̂. ĥ2

α was calculated equivalently only now including previously de-

scribed LD weights, i.e we used [2pj(1−pj)]α̂/2 ·(1−0.3·LLDj)
1/2 instead of [2pj(1−pj)]α̂/2

when calculating X̃ and Â.

Phenotype selection and preprocessing

In this analysis we investigated 25 highly heritable and polygenic human traits (see Ta-

ble 2) from the UK Biobank study (see URLs). Specifically, we required a SNP heritability

of 0.2 or more for quantitative traits and 0.1 or more for case-control traits (on the ob-

served scale, see ref.36), as well as at least 50% of the 113,851 British ancestry individuals

to be phenotyped. We also removed phenotypes for which the top 10 SNPs explained

10% or more of the trait variance, so as to avoid α estimates that are dominated by a few

top SNPs, as our goal is to study polygenic architectures. (Only one trait, mean platelet

volume, was removed due to this restriction.) The 25 traits that we chose include 21

quantitative traits and 4 case-control traits. 11 of the quantitative traits are blood cell
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traits, whereas the remaining 14 include a wider range of physiological measurements and

diseases. Since the number of available blood cell traits was large and many of them were

highly correlated, we additionally required blood cell traits to have a pairwise phenotypic

correlation of r2 < 0.5, removing the less heritable trait for any correlated pair.

For each trait, phenotype values had outliers removed and fixed effects were regressed

out. Specifically, phenotype values 4 or more standard deviations away from the mean

(or similarly extreme outliers for skewed distributions) were removed from the analysis.

Sex and 10 principal components of the GRM were included as fixed effects for all traits,

with additional trait specific covariates also included for some traits (see Supplementary

Table 8). All trait values were then rank-based inverse normal transformed before being

analyzed.

Inference of fitness-trait coupling and selection parameters

We aimed to use the frequency dependence of SNP effects to draw conclusions about the

fitness effects of SNPs, as well as the coupling between between fitness and the target trait

effects. Let β2|p be the squared trait effect size of a SNP given its MAF p, and s the fitness

effect of the SNP, which is here assumed to be deleterious or neutral. From the law of

total expectation it follows that E(β2|p) = E (E (β2|s, p) |p). The main assumption of this

analysis is that, at a given selection coefficient, the effect size of the SNP is independent

of its frequency, i.e. E(β2|s, p) = E(β2|s). This is equivalent to the statement that the

frequency dynamics of a SNP is influenced by β2 only through s. We then use the model of

Eyre-Walker9, where the absolute value of β is proportional to sτ (1+ε), with ε ∼ N (0, σ2)

and τ indicating how strongly β depends on s. It follows that E(β2|s) ∝ s2τ and from

above, for some constant c,

E
(
β2|p

)
= c · E

(
s2τ |p

)
. (9)

Given a positive τ , this equation shows that increased average effects of lower-frequency

SNPs requires lower-frequency SNPs having increased s and hence implies significant neg-

ative selection. Some previous analyses4;6;29 have argued that in the absence of selection,

SNPs of MAF ranges of equal width (e.g. 5-10% and 10-15%) are expected to explain

an equal fraction of heritability. However, even in the absence of selection, population

expansion can lead to excess rare variants, leading to increased rare variant heritability42.

Increased rare variant heritability is therefore not necessarily a sign of selection.

Assuming we know τ and the joint distribution of s and p, E (β2|p) can be derived

from Equation 9. We simulated samples of this distribution using the evolutionary forward
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simulation framework SLiM2 (ref.23). Simulations were run with a European demographic

model inferred by ref.24, a burn-in of 3,880 generations before the bottleneck, a mutation

rate of 2 · 10−8 per base pair per individual per generation43, and a recombination rate

of 10−8 per base pair per individual per generation44. These simulations also require

assumptions about the distribution of fitness effects (DFE), i.e. the distribution of s

for de novo mutations, but the DFE for genome-wide SNPs in humans is currently not

known. We assumed a gamma distributed DFE, using a plausible range of average fitness

effects, s̄ ∈ {10−3, 10−4, 10−5}, and shape parameters of 0.125 and 0.25 which includes

the range of plausible values derived by ref.22. For each choice of DFE we simulated 25

independent replicates over a 4Mb block each, for a total of 100Mb with each DFE. In all

simulations the Eyre-Walker noise parameter, σ2, was set to zero. This parameter does

not change SNP effects on average and is therefore negligible in the limit of large SNP

numbers. This was also noted in original analysis by ref.9.

In the absence of LD between selected SNPs and assuming a constant effective pop-

ulation size Ne, E(β2|p) can also be derived analytically. Under these assumptions and

assuming mutation rate per base pair µ � 1/Ne (ref.43), it is known that P (p|s) ∝
[p(1−p)]−1e−4Nesp (ref.45). Given s is drawn from a gamma distribution with mean s̄ and

shape parameter k, we obtain

E(β2|p) = c · E(s2τ |p) = c ·
∫∞

0
s2τP (p|s)P (s)ds∫∞

0
P (p|s)P (s)ds

≈ c · Γ(2τ + k)

Γ(k)
(4Ne)

−2τ

[
p+

k

4Nes̄

]−2τ

(10)

This result shows that for p� k
4Nes̄

, E(β2|p) is constant, whereas for p� k
4Nes̄

it falls off

as p−2τ . We note that these calculations imply α ≈ −2τ , whereas α is significantly less

negative in simulations (see Figure 3), with the difference likely being due to LD between

SNPs with different selection coefficients (see Discussion). For simplicity, we have here

assumed that p is the derived allele frequency - if p is the minor allele frequency, results

are similar though there is a correction factor for very common SNPs, roughly matching

the (1− p) factor in the our E(β2|p) ∝ [p(1− p)]α model (see Supplementary Figure 5).

When fitting α to SNP effects from a simulation with a given s̄, k and τ in Figure 3, we

only used SNPs with frequency above k
4Nes̄

. (ĉ′, α̂) is calculated by minimizing the squared

deviation between c′ · [p(1 − p)]α and the simulated SNP effects summed over all SNPs

from 25 independent simulations. Error bars were obtained by bootstrap resampling of

these 25 simulations. The proportionality constant in Equation 9 does not affect α̂ and

was set to c = 1. When estimating τ from α̂ of a given trait, we assumed a flat prior on

α over [−1, 0] and on τ over [0, 1], in which case P (α|data) ∝
∫ 0

−1
P (α|τ)P (α|data)dα.
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Here, P (α|data) is proportional to the calculated profile likelihood and P (α|τ) is based

on estimates and error bars displayed in Figure 3, assuming equal probability for s̄ = 10−3

and s̄ = 10−4, and k = 0.25. Using k = 0.125 lead to similar results, e.g. α = −0.38 then

corresponds to τ ∈ [0.33, 0.43] instead of τ ∈ [0.32, 0.48] for k = 0.25.
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Tables

Table 1: Estimates of α in simulations

α h2
g

poly-
genicity

imput.
noise

LD
dep.
effects

mean α̂ mean α̂noLD

-0.3 0.4 1% yes yes −0.305± 0.014 −0.192± 0.015
0 0.4 1% yes yes 0.027± 0.017 0.134± 0.014

-0.6 0.4 1% yes yes −0.597± 0.010 −0.499± 0.011
-0.3 0.2 1% yes yes −0.267± 0.026 −0.146± 0.024
-0.3 0.4 100% yes yes −0.305± 0.013 −0.190± 0.014
-0.3 0.4 1% no yes −0.289± 0.016 −0.179± 0.017
-0.3 0.4 1% yes no −0.372± 0.013 −0.282± 0.013

We simulated phenotypes using imputed UK Biobank genotypes and applied our
method to infer α. In each line we show results from phenotypes that were simulated
using various values of α, h2

g, and the proportion of causal SNPs. In most simulations,
imputation noise and LD dependent SNP effects were included in the simulated
phenotypes. In each case we report the mean estimated α and standard error of the
mean, using our estimation method either with LD correction (α̂) or without LD
correction (α̂noLD).
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Table 2: Estimates of α for 25 UK Biobank traits

phenotype sample size α̂ [95% CI]
age of menarche 58,329 -0.40 [-0.63, -0.11]
blood pressure (diastolic) 104,835 -0.39 [-0.54, -0.20]
blood pressure (systolic) 104,835 -0.38 [-0.54, -0.18]
BMI 113,540 -0.24 [-0.38, -0.06]
bone mineral density 110,611 -0.35 [-0.45, -0.23]
FEV1/FVC 97,075 -0.44 [-0.55, -0.31]
FVC 97,075 -0.15 [-0.31, 0.04]
height 113660 -0.45 [-0.52, -0.39]
smoking status 113,560 -0.16 [-0.43, 0.21]
waist-hip ratio 113,668 -0.17 [-0.43, 0.19]
allergic eczema 113,707 -0.60 [-0.85, -0.26]
asthma 113,707 -0.25 [-0.60, 0.28]
college education 112,811 -0.32 [-0.54, -0.04]
hypertension 113,689 -0.18 [-0.46, 0.21]
eosinophil count 108,957 -0.40 [-0.54, -0.24]
high light scatter reticulocyte count 108,785 -0.53 [-0.65, -0.38]
lymphocyte count 108,664 -0.52 [-0.63, -0.38]
mean corpuscular hemoglobin 108,513 -0.42 [-0.53, -0.31]
mean sphered cell volume 109,523 -0.43 [-0.56, -0.28]
monocyte count 110,026 -0.19 [-0.35, -0.01]
platelet count 109,971 -0.19 [-0.32, -0.03]
platelet distribution width 109,938 -0.27 [-0.44, -0.07]
red blood cell count 110,054 -0.39 [-0.51, -0.25]
red blood cell distribution width 109,913 -0.20 [-0.36, -0.01]
white blood cell count 110,186 -0.25 [-0.42, -0.03]

We computed α estimates for 25 UK Biobank traits, including 10 quantitative traits, 4
case-control traits, and 11 blood cell traits (all quantitative). The reported 95% credible
intervals were calculated from the profile likelihood curves using a flat prior.
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Figure 1: Fraction of SNP-heritability in different MAF ranges given α. We report the
fraction of SNP-heritability explained by SNPs up to a certain MAF (x-axis), for
different values of α. For example, assuming α = −0.4, SNPs with MAF ≤ 5%
collectively explain about 20% of the total SNP-heritability. These results are based on
the UK10K allele frequency spectrum and our model assumption that the squared
per-allele effects is proportional to [2p(1− p)]α.
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Figure 2: MAF-dependence of SNP effects in evolutionary forward simulations. Forward
simulations confirm that α model approximately holds above the MAF threshold
T = k

4Nes̄
. We report simulated mean squared SNP effect sizes at a given MAF on a

log-log plot, assuming τ = 0.4 and a genome wide selection coefficient distribution with
mean s̄ = 10−3 and shape parameter k = 0.25. Data points represent the mean squared
effect size of 1000 SNPs of similar MAF, calculated assuming Equation 2. The blue
curve represents mean squared effect sizes under the α model (Equation 1) with
α = −0.32, fitted to SNPs above the MAF threshold T . The MAF threshold T = 0.006
is indicated by a dotted red line.
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Figure 3: Value of α as a function of τ and other parameters in forward simulations. We
report best-fit α estimates for simulations at each value of τ at a given genome-wide
average selection coefficient s̄. Selection coefficients were sampled using a gamma
distribution shape parameter of k = 0.25 (solid lines) or k = 0.125 (dotted lines). α
estimates where calculated by fitting the model in Equation 1 to simulated SNP effects
above the MAF threshold T = k

4Nes̄
, with error bars representing standard errors

calculated by bootstrap resampling of 25 independent SLiM2 simulations. The
horizontal dashed line indicates α = −0.38, the best-fit α across the 25 UK Biobank
traits.
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