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Summary/Abstract (150 words) 

Genome-wide association studies (GWAS) have laid the foundation for investigations into the 

biology of complex traits, drug development, and clinical guidelines. However, the dominance of European-
ancestry populations in GWAS creates a biased view of the role of human variation in disease, and hinders 

the equitable translation of genetic associations into clinical and public health applications. The Population 

Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and 

behavioral phenotypes in 49,839 non-European individuals. Using strategies designed for analysis of multi-

ethnic and admixed populations, we confirm 574 GWAS catalog variants across these traits, and find 38 

secondary signals in known loci and 27 novel loci. Our data shows strong evidence of effect-size 

heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping 
using diverse cohorts, and insights into clinical implications. We strongly advocate for continued, large 

genome-wide efforts in diverse populations to reduce health disparities.    
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A significant bias has been noted in the field of genome-wide association studies (GWAS), with the 

vast majority of discovery efforts conducted in populations of European ancestry. 1–3 In contrast, individuals 

of African or Latin American ancestry accounted for only 4.2% of samples analyzed. (Extended Data 

Figure 1) In light of differential genetic architecture that is known to exist between ancestral populations, 
there is a legitimate concern that bias in representation might exacerbate existing disease and health care 

disparities for several reasons. A) critical variants will be missed if they are low allele frequency or absent 

in European-descent groups, and B) effect sizes and risk prediction scores derived from one population 

may not accurately extrapolate to other populations. Indeed, recent seminal papers have demonstrated that 

some genetic predictors are restricted to certain ancestries, and thus may partially explain risk differences 

among populations. 4–10 Additionally, as the field shifts its attention towards low frequency variants, which 

are more likely to be population-specific, we can no longer rely on the transferability of findings from one 

population to another, a complication that has also been observed with some common variants. 11,12 In the 
United States where minority populations have a disproportionately higher burden of chronic conditions 13, 

the lack of representation of diverse populations in genetic research will result in inequitable access to 

precision medicine for those with the highest burden of disease.  

Many factors contribute to the Euro-centric bias in genetic research 3 , including a paucity of studies 

recruiting diverse populations, and a lack of statistical tools specifically developed to leverage multi-ethnic 

and admixed study populations. 14  However, recent advancements in statistical analyses and genotyping 

technologies have addressed many methodological concerns, removing barriers that had previously made 

researchers reluctant to recruit and analyze heterogeneous samples. Likewise, over the past decade the 
Population Architecture using Genomics and Epidemiology (PAGE) study has catalyzed the genomics 

community by building the next generation of arrays, methods, resources, and guidance for the interrogation 

of the genetics of underrepresented populations. 15,16  Here we report on our study of 49,839 individuals of 

non-European ancestry (see Supplementary Info Section 1 for demographic details) and describe results 

from our multi-ethnic GWAS analysis across 26 traits and diseases. Using a purpose-designed array and 

statistical methodology tailored for diverse populations,  our study allowed us to systematically test for 

population differences in effect size for risk variants reported in the current GWAS literature, as well as to 
screen for potentially novel alleles within previously reported loci (i.e. secondary signals). We further explore 

trends between our results using a genetically diverse sample, relative to meta-analyses of an equivalent 

number of European individuals sampled from the UK Biobank, showing strong evidence of effect-size 

heterogeneity across ancestries for published GWAS associations, and substantial benefits for fine-

mapping using diverse cohorts. Lastly, we report on the global patterns of allele frequencies of clinically 

relevant variants and illustrate the many advantages of genomics research in ancestrally diverse 

populations.  
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Results 

Unique Methodological Challenges are Inherent to Multi-ethnic Studies  

PAGE was developed by the National Human Genome Research Institute and the National Institute 

on Minority Health and Health Disparities to conduct genetic epidemiological research in ancestrally diverse 

populations within the United States, drawn from three major population-based cohorts (Hispanic 
Community Health Study/Study of Latinos (HCHS/SOL), Women’s Health Initiative (WHI), and Multiethnic 

Cohort (MEC)) and one metropolitan biobank (BioMe). Genotyped individuals self-identified as 

Hispanic/Latino (N=22,216), African American (N=17,299), Asian (N=4,680), Native Hawaiian (N=3,940), 

Native American (N=652), or Other (N=1,052, primarily South Asian or mixed heritage, as well as 

participants who did not identify with any of the available options; Supplementary Table 1, Supplementary 

Info Section 1). Using detailed phenotype data collected and harmonized across studies (Supplementary 

Info Section 2), we present genetic association results for 26 phenotypes related to inflammation, diabetes, 

hypertension, kidney function, cardiac electrophysiology, dyslipidemias, anthropometry, and 
behavior/lifestyle (smoking and coffee consumption). Our study explicitly solves multiple challenges 

inherent to multi-ethnic studies, including: (1) an initial study design with prioritization of diverse participants 

across pre-existing studies, (2) the development of a novel genotyping platform to capture global variation 

with the Multi-Ethnic Genotyping Array (MEGA) (Supplementary Info Section 3), (3) analysis in a complex 

population structure (Supplementary Info Section 4), (4) statistical modeling for association testing 

accounting for population structure, and (5) downstream interpretations in the context of global variation. In 

particular, groups have highlighted the challenges of joint analysis across multiple ethnicities, preferring 
meta-analysis approaches that analyze populations separately 17,18. We show that a joint analysis does not 

increase type 1 error, using tools (SUGEN, GENESIS) that explicitly model population structure, admixture, 

relatedness between individuals and population-specific genetic heterogeneity. 19–23; Supplementary Info 

Section 5). We provide specific recommendations for all of these components of a genetic study in the 

Supplementary Information. 

In brief, 49,839 multi-ethnic individuals were genotyped on MEGA (Illumina, see Supplementary 

Info Section 3), with 1,402,653 loci passing quality control filters, and subsequently imputed to 39,723,562 

variants. Sample sizes ranged from 9,066 to 49,796 individuals between the 26 traits, so variants with an 
effective N (effN) greater than 30 were tested for association, yielding 11.6-34.6 million unique variants per 

trait (details in Supplementary Table 1). Association models were adjusted for known phenotype-specific 

trait covariates, as well as the top 10 principal components of genetic ancestry, indicators for study, and 

self-identified race/ethnicity. (Supplementary Info Section 6) The primary results presented are from 

SUGEN (GENESIS results are provided in the Supplementary Tables 2 and 4 for comparison). For 

comparison against traditional multi-ethnic approaches and to assess heterogeneity by ancestry, we also 

conducted analyses stratified by self-identified race/ethnicity and subsequently combined in a meta-
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analysis (Supplementary Table 3). All known variants conditioned on by trait in the conditional analyses 

are provided in Supplementary Table 5.  

New Loci Found across 26 Phenotypes, Plus Additional Signals at Previously-Discovered 

Loci 

Since the majority of GWAS have been conducted in primarily European-descent populations, we 

hypothesized that the examination of underrepresented populations would reveal ancestry-specific 

associations that European-centric studies were unable to detect. The traditional P<5x10-8 was used for 

common variants (MAF>5%), and a more conservative threshold of P<3x10-9 for low frequency and rare 

variants 24. Novel findings were defined as signal reaching these thresholds after conditioning on all 

previously reported variants on that chromosome, more than 1 megabase (Mb) away from a known locus. 
We found 16 novel variants at the frequency-specific thresholds for significance, as well as 11 low-

frequency loci with suggestive associations (P<5x10-8). (Figure 1, Table 1, Supplementary Tables 2-3) A 

deeper discussion of the biological implications of these novel findings can be found in Supplementary 

Info Section 8, along with candidate genes and candidate functional polymorphisms.  

We also identified novel, independent signals (secondary variants) within known loci, further 

enriching our understanding of the genetic architecture of traits. Of 8,979 known variant-trait combinations 

(involving 3,322 unique variants, some reported for multiple traits), 1,444 replicated at P<0.05 significance 

threshold, Bonferroni-corrected by trait. To test for secondary signals, we screened for statistical 
associations located within one Mb of a previously known variant-trait combination, that remained genome-

wide significant after adjusting for all known variants in the “adjusted” model (Supplementary Table 3). As 

before, we applied MAF-specific P-value thresholds to the data, and identified 25 significant secondary loci 

at common variants (Pcond<5x10-8), 7 significant loci at low frequency or rare variants (Pcond<3x10-9), and 6 

suggestive associations with low frequency or rare variants (Pcond between 3x10-9 and 5x10-8). If the 

secondary signal represents a statistically independent association, then we would expect no net change 

in the strength of the association between unadjusted and adjusted models, and that the known variants 
are in weak LD with the secondary SNPs. Roughly half of these secondary variants are consistent with an 

independent association (r2<0.2 with any known SNP). (Supplementary Info Section 8) These results 

demonstrate that at a notable fraction of known loci (14%) there is significant secondary association in 

PAGE, after accounting for all previously reported SNPs.  

To tease apart the influence of specific ancestral components on the 27 novel and 38 secondary 

loci, we calculated the correlation between the risk allele genotype and each of the first ten principal 

components (PCs) (Extended Data Figure 3). These correlations reveal population structure underlying 

many of our novel and secondary findings, in which there are population differences in allele frequencies 
for the risk alleles. Most notably, the risk allele for a novel finding for cigarettes per day among smokers on 

chromosome 1 (rs182996728; P=3.1x10-8) was found to show significant correlation with PC4, which 
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represents Native Hawaiian/Pacific Islander ancestry. While this variant is monomorphic or rare in most 

populations, it is found at 17.2% within Native Hawaiian participants, where the signal is strongest 

(Pstratified=2.28x10-6). An additional example is shown with the 5 novel and secondary SNPs highly correlated 

with PC6, which are related to height and found to be at higher frequencies in 1000 Genomes within a 
subgroup of populations within East Asia, such as Japanese or Vietnamese. That our findings exhibit 

substantial variability in allele frequencies further illustrates a need for the inclusion of diverse populations.  

 

 

 
 
 
Figure 1: Inclusion of multi-ethnic samples enables discovery and replication in GWAS.  
(A) There are 8,979 previously reported trait-variant pairs, of which 1,444 replicated at a by-trait Bonferroni 
adjusted significance level.  In addition, we found 27 novel trait-variant pairs and 38 secondary signal pairs 
that remained after adjusting for known variants. (B) The population substructure present in the multi-ethnic 
sample of PAGE revealed complex patterns preventing meaningful stratification. Here we show principal 
component (PC) 1 and 2 to show major patterns of variation, stratified by self-identified race/ethnicity. 
Individuals denoted by orange self-identified as ‘Other’. 
BMI = body mass index, WHR = waist-hip ratio, DBP/SBP = diastolic/systolic blood pressure, HTN = 
hypertension, PR/QRS/QT = PR/QRS/QT interval, HbA1c = glycated hemoglobin, FG/FI = fasting 
glucose/insulin, T2D = type II diabetes, CRP = C-reactive protein, MCHC = mean corpuscular hemoglobin 
concentration, PLT = platelet count, WBC = white blood cell count, CKD = chronic kidney disease, ESRD 
= end-stage renal disease, GFR = estimated glomerular filtration rate, Cigarettes = cigarettes per day, 
Coffee = coffee consumption, HDL/LDL = high/low-density lipoproteins, TG = triglyceride, TC = total 
cholesterol.  
 

Effect Size Heterogeneity across Ancestries at Known GWAS Loci 

In general, GWAS identify loci where one or more SNPs show significant association with the trait 
of interest. However, GWAS do not lead directly to the identification of the causal or functional variant 

(fSNP), which generally is in strong linkage disequilibrium (LD) with surrogate associated SNPs (tagSNPs). 

LD can vary between populations, so a tagSNP in perfect LD with the fSNP in one population may be in 
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weak LD in a different population. This can lead to inconsistent estimates of the effect sizes between 

populations (and therefore effect size heterogeneity) if the tagSNP (instead of the causal fSNP) is used for 

effect size calculations. This has been explored previously in a disease-specific manner. 25–29 Because 

European-descent individuals are overrepresented in GWAS discovery populations and have different LD 
structures than other populations, we hypothesized that effect size heterogeneity between populations may 

exist for many previously reported tagSNP associations.  

To test this hypothesis, we measured the extent of effect heterogeneity in PAGE’s multi-ethnic 

study population for variants previously reported to the GWAS Catalog, a compilation of findings from 

published GWAS. 30 We replicated (P<5x10-8) a total of 574 known tagSNPs in 261 distinct genomic 

regions, out of the 3,322 unique GWAS Catalog variants previously reported for our 26 traits 

(Supplementary Table 4). However, 132 of these known tagSNPs had significant evidence of effect 

heterogeneity by genetic ancestry (SNPxPC P=8.71x10-5), a conservative estimate given limitations of 
statistical power. In 77% of these regions the strongest signal was not the previously reported GWAS 

Catalog variant 30. A complementary approach to testing for effect heterogeneity between ancestries 

involves directly comparing the effect sizes in PAGE against previously reported effect sizes. As suggested 

by Marigorta and Navarro 31 , dividing the z-score by the square root of the number of individuals analyzed 

for each trait yields a dimensionless estimate of effect size (z’), and the slope of a regression on this statistic 

can detect systematic differences in effect size between populations. Overall, we observed a slope of 0.75 

(95% CI: 0.70, 0.79), indicating that PAGE effect sizes tend to be significantly weaker than previous reports 

(null slope of 1). We also compared z’ from prior reports against z’ in PAGE African-Americans and 
Hispanics/Latinos separately (Figure 2A), to assess the influence of ancestry proportions. We observed a 

markedly stronger reduction of effect size in African Americans (r=0.45; 95% CI: 0.39, 0.51) than in 

Hispanics/Latinos (r=0.81; 95% CI: 0.756, 0.86), which is most consistent with truly differential effect sizes 

between ancestries at the originally reported variants, rather than a winner’s curse, which would be 

expected to affect findings in all ethnicities equally, regardless of ancestral proportions. These results are 

consistent with multi-ethnic analyses differentially tagging underlying functional variation at a large portion 

of reported GWAS catalog loci, as opposed to truly divergent underlying fSNP effect sizes.  
 

Multi-Ethnic Meta-Analysis Refines Known Loci and Reduces Disparity in Missing 

Heritability 

Meta-analysis combining previously reported results with new GWAS data is a useful approach 

that simultaneously places novel findings into the context of known loci, as well as identifies novel loci that 

were not significant in either analysis. To quantify the value of including multi-ethnic populations in GWAS, 
we used published data from GIANT (a study of >250,000 individuals of European descent for 

anthropometric traits 32,33), for a meta-analysis with either PAGE (~50,000 multi-ethnic individuals) or 50,000 
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randomly sampled “White-British’’ individuals from the UK Biobank (UKB50k). We conducted stratified 

GWAS for both PAGE and UKB50k with analogous models for BMI and height, adjusting for population 

substructure, age, population, and sex. Both were combined in a meta-analysis with GIANT using a fixed-

effect model.   
Meta-analysis with GIANT resulted in many more novel findings for height (PAGE+GIANT: 82, 

+UKB50k+GIANT: 107) than analysis of PAGE or UKB50k alone (8 and 1 novel loci, respectively; 

Extended Data Table 1). While the number of novel loci is indicative of new insights into trait biology, 

understanding the proportion of variance explained (PVE) by each locus has potentially significant 

consequences for personalized medicine 34. The proportion of variance explained with loci previously 

reported by GIANT for height 33 (Figure 2B, top pair of bars) reveals a gross disparity, with more than twice 

the PVE using UKB50k summary statistics (15.4%) as in the multi-ethnic PAGE (7.2%). Meta-analysis of 

GIANT with 50,000 more Europeans exacerbates this disparity, with 19.2% and 8.3% PVE in UKB50k and 
PAGE, respectively. Even at previously known loci in GIANT, improved PVE was observed in UKB50k 

(1.5% gain) relative to PAGE (0.4% gain), consistent with European-specific fine-mapping. In contrast, 

when we use the genome-wide significant loci from the GIANT+PAGE multi-ethnic meta-analysis, the PVE 

gap narrows, with 16.1% and 12.0% PVE in UKB50k and PAGE, respectively. This closing of the gap comes 

both from the identification of novel loci with a larger PVE in PAGE, as well as from a improvement in PVE 

at known loci in PAGE (3.0%). Results for BMI are consistent with results for height, albeit with a 

substantially smaller proportion of variance explained, which is expected for a trait with lower heritability. 

For BMI (Supplementary Figure 13) the addition of 50,000 more Europeans exacerbated the gap in PVE, 
with nearly twice as much of the variance explained in the UKB50k (2.7%) as in PAGE (1.7%). In contrast, 

meta-analysis with the multi-ethnic PAGE cohort (GIANT+PAGE) improved PVE in the multi-ethnic 

population (2.1% in UKB50k, 2.8% in PAGE).  

Meta-analysis results can also be used to fine-map associations at known loci, which can be 

important in identification of the functional polymorphism causing a statistical association. To assess the 

impact of a multi-ethnic cohort on fine-mapping precision, we compared the 95% credible sets for 390 

associated regions reported by GIANT for height, as well as the 93 associated regions for BMI. We then 
calculated the 95% credible sets for the PAGE+GIANT and UKB50k+GIANT analyses. For height we found 

that on average, an additional 50,000 individuals decreased the credible sets from 11.94 SNPs in GIANT 

to 11.01 SNPs in UKB50k+GIANT (P=0.37), demonstrating limited added value (Figure 3A). However, the 

addition of 50,000 multi-ethnic individuals significantly decreased the 95% credible sets to 9.68 SNPs 

(P=0.01) Additionally, the posterior probabilities of the top ranked SNP within the credible sets was 

significantly higher in the PAGE+GIANT meta-analysis compared to the GIANT analysis (P=1.9x10-6) and 

UKB50k+GIANT analysis (P=3.2x10-3; Figure 3B). The addition of the UKB50k to GIANT did not 

significantly improve the top posterior probability (P=0.09). For example, the intronic variant rs11880992 in 
DOT1L was previously identified by GIANT to be associated with increased height (P=7x10-28) 33. The 95% 
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credible sets for GIANT alone and GIANT+UKB50k contained the same four SNPs, all in high LD with each 

other (r2>0.99). (Figure 3C-E) However, GIANT+PAGE meta-analysis was able to narrow the 95% credible 

set to one SNP due to low LD between these SNPs in African-American and Hispanic/Latino populations. 

While trends were consistent, none of these analyses yielded significant results for BMI (P>0.05), likely due 
to the small number of regions analyzed (N=91; Supplementary Figure 14) 

 

 
Figure 2: Meta-analysis with multi-ethnic samples decreases gap in proportion variance explained 
for height.  
Within each analysis, we identified the SNP with the smallest p-value in each locus, and PVE was calculated 
using the estimated effect size from this set of tag SNPs (left: GIANT-only GWAS, center: UKB50k+GIANT 
meta-analysis, bottom: PAGE+GIANT meta). PVE was estimated independently for the UKB50k (White 
British) and PAGE (multi-ethnic) samples, and was summed across two categories of locus: known (blue) 
and novel (red). The gap in PVE with previously-reported loci from GIANT (8.14%) is exacerbated with the 
inclusion of 50,000 more European-descent individuals to 11.19%. However, it is narrowed dramatically 
with the inclusion of 50,000 multi-ethnic samples to 3.91%.  
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Figure 3: (A) Comparison of 95% credible sets for height, comparing GIANT alone to UKB50k+GIANT 
(P>0.05) and PAGE+GIANT (P=0.01). (B) Top posterior probability from each 95% credible set for height, 
comparing GIANT to UKB50K+GIANT and PAGE+GIANT. (C) Example of a height locus from GWAS 
(rs11880992), LD from weighted matrix from meta-analysis. (D) Posterior probabilities for this signal with 
credible set in indicated by diamond shape. (E) LD (r2) for the original 95% credible set from GIANT results 
stratified by populations.  

Relevance of Multi-ethnic Genetic Variation to Clinical Care  

Concepts of diversity, genetic drift and allele frequency not only impact disease associations and 

predictions, but can also identify medically actionable variants. We examined the worldwide distribution of 
several medically actionable variants that were designed onto MEGA 35, and demonstrate an association 

between HBB (rs334) and HbA1c levels (Pcond=6.87x10-31; N=11,178), with the majority of the signal from 

Hispanic/Latinos (P=7.65x10-27; N=10,408; MAF=0.01) and African Americans (P=5.62x10-4; N=559; 

MAF=0.06). The lead SNP, rs334, is a missense variant in HBB, which encodes the adult hemoglobin beta 

chain and is known for its role in sickle cell anemia. Although this association was recently reported in 

African Americans 36, this is the first time this association with HbA1c levels has been reported in 

Hispanic/Latinos with admixed European, African, and Native American ancestry. Hemoglobin genetic 
variants are also known to affect the performance of some HbA1c assays 37–39, potentially leading 

practitioners to incorrectly believe that a patient has achieved glucose control. This could leave the patient 

more susceptible to type II diabetes (T2D) complications. Alternative long-term measures of glucose control 

that are not impacted by hemoglobin variants, such as the fructosamine test, should be considered for 

sickle cell carriers being evaluated for T2D. This result illustrates how ancestry-specific findings may be 
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transferable to other groups that share components of genetic ancestry; in this case the African ancestry 

present in both African Americans and some Hispanic/Latinos. 

We also investigated the HLA-B*57:01 allotype, which interacts with the HIV drug abacavir to trigger 

a potentially life-threatening immune response 40–43. The FDA recommends screening all patients for HLA-

B*57:01, prior to starting abacavir treatment. 44 The rs2395029 (G) variant in HCP5, a near perfect tag of 

HLA-B*57:01 (in Europeans), is used to screen for abacavir hypersensitivity. 45 The tag SNP utility remains 

relatively high (r ~ 0.92, 46) across globally diverse populations in the 1000 Genomes Project. Using PAGE 

and Global Reference Panel samples, we show that risk allele frequencies for rs2395029 rise above 5% in 

multiple large South Asian populations, and rise above 1% within some, but not all, admixed populations 

with Native American ancestry (Figure 4). PAGE allele frequencies can therefore aid in expanding the 

reach of precision medicine to encompass individuals of diverse ancestry, particularly when combined with 

other studies. 47,48. However, as previously described, if differential LD patterns are found in different 
populations then the utility of the rs2395029 tag SNP as a screen may not be universal in all populations. 

As an example, out of 152 Southern African KhoeSan individuals previously typed, 3 were identified with 

the HLA-B*57:01 allotype but not the HCP5 tag SNP, suggesting a weaker association in that population. 
49 This argues for the need for discovery genomics programs that encompass broad and fine-scale diversity, 

both for common traits as described here, as well as for clinical variants. 

 

 
Figure 4: World map of HCP5-G frequencies.  
The histocompatibility protein variant HLA-B*57:01 interacts with the HIV drug abacavir to stimulate a 
hypersensitivity response. A variant in a gene near HLA-B, HCP5 rs2395029 (G allele), can be used to 
genotype for the -B*57:01 allele as it is in high linkage disequilibrium (correlation ~0.92 in 1000 Genomes 
Phase 1). 45,46,50,51. This HCP5 tag-SNP segregates within all continental populations of the PAGE study, 
providing increased resolution of the global haplotype frequency, particularly within Latin America. Above, 
minor allele (G) frequency is shown. Population size is indicated by the radius of the circle. Black dot (MAF 
not displayed): population has less than twenty individuals or the variant is a singleton in that population.  
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Discussion 

Our understanding of the genetics underlying most common traits is derived primarily from 

individuals of European descent. To address this gap in representation, we assembled the PAGE Study, 

an initiative to enhance our understanding of the genetics of complex traits through multi-ethnic analyses 

of a large number of measured phenotypes. We provide study design, methods, and best practices to move 

beyond the single population bias in GWAS. We perform well-powered, multi-ethnic GWAS to both identify 

novel signals and better characterize known loci by incorporating and accounting for the systematic role of 
population structure in genome-phenome architecture. We empirically assess a genomic database of 

common diseases and traits (GWAS Catalog), and demonstrate that over a quarter of variants in that 

database show evidence of differential effects across the spectrum of human diversity in PAGE. 

Furthermore, our results suggest that a majority of GWAS Catalog associations as reported are unlikely to 

be the causal variant from our fine-mapping in a multi-ethnic population, consistent with differential LD 

between tagSNPs and functional variants across populations. Finally, we demonstrate that meta-analysis 

of existing data with a multi-ethnic population (rather than more Europeans) not only reduces the gap in 

variance explained between European and minority populations, but also significantly improves fine-
mapping of known loci.  

We have focused on quantitating the scientific value of including diverse populations in the 

discovery and replication phases of GWAS. Population-specific allele frequencies allow underpowered rare 

variants in existing GWAS to be more easily detected in different populations, where these variants may 

have reached a higher frequency facilitating their discovery. 7 Additionally, differential patterns of linkage 

disequilibrium between populations facilitate fine-mapping within known loci. In both of these contexts, we 

show that meta-analysis of existing data with a diverse population (~50,000 PAGE individuals) provides 

added value (novel loci, or better refinement of known loci) over meta-analysis with a similar-sized 
Europeans-only study, even when combining PAGE with much larger studies. Further, polygenic risk 

prediction models are an active area of development in human genetics and researchers need to be aware 

of the limitations of primary discoveries that have not been replicated in multiple populations.12 As we move 

toward incorporating GWAS-based risk models in clinical care52, this, and other recent work53, 

demonstrates that we risk exacerbating health disparities unless diverse, multi-ethnic studies are included. 

This study also provides evidence that a significant number of novel loci (as well as independent, secondary 

alleles in known loci) relevant to non-European ancestries remain to be identified, many of which cannot 
be discovered in European-only study populations due to their low allele frequencies or absence in 

Europeans. Cumulatively, these results expose several shortcomings that arise from an overreliance on 

discovery genomics focused on a small number of populations. 

As next-generation sequencing, precision medicine, and direct-to-consumer genetic testing 

become more common, it is critical that the genetics community takes a forward-thinking approach towards 

the opportunities presented by including diverse populations. The increasing ability to identify rare variants 
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further highlights the necessity to study genetically diverse populations, as rare variation is more likely to 

be ancestry specific. 4 And, as we have demonstrated by adding rare, clinically relevant variants to MEGA, 

these alleles can be highly differentiated across populations. In the United States, the All of Us Research 

Program (AoURP) embraces the reality that the success of precision medicine requires precision genomics, 
and therefore emphasizes the recruitment and active participation of underrepresented populations. 54 It is 

in the best interest of our research community to follow suit and take steps to become more inclusive. As 

world populations become increasingly complex 55,56, geneticists and clinicians will be required to evaluate 

genetic predictors of complex traits in more and more diverse populations. Our current genomic databases 

are under representative of populations with the greatest health burden or that will ultimately benefit most 

from this work. This realization, combined with the increased availability of resources for studying diverse 

populations, means that researchers and funders can no longer afford to ignore non-European populations. 

Our study provides valuable resources in the design of MEGA and through the sharing of population-
specific allele frequencies and analysis approaches, which will provide the motivation to make research in 

diverse populations a priority in the field of genetics.  
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Methods  

Studies. The PAGE Study includes eligible minority participants from four studies. The Women’s Health 
Initiative (WHI) is a long-term, prospective, multi-center cohort study investigating post-menopausal 
women’s health in the US, which recruited women from 1993-1998 at 40 centers across the US. WHI 
participants reporting European descent were excluded from this analysis. The Hispanic Community Health 
Study / Study of Latinos (HCHS/SOL) is a multi-center study of Hispanic/Latinos with the goal of determining 
the role of acculturation in the prevalence and development of diseases relevant to Hispanic/Latino health. 
Starting in 2006, household sampling was used to recruit self-identified Hispanic/Latinos from four sites in 
San Diego, CA, Chicago, IL, Bronx, NY, and Miami, FL. All SOL Hispanic/Latinos were eligible for this 
study. The Multiethnic Cohort (MEC) is a population-based prospective cohort study recruiting men and 
women from Hawaii and California, beginning in 1993, and examines lifestyle risk factors and genetic 
susceptibility to cancer. Only the African American, Japanese American, and Native Hawaiian participants 
for MEC were included in this study. The BioMeTM BioBank is managed by the Charles Bronfman Institute 
for Personalized Medicine at Mount Sinai Medical Center (MSMC). Recruitment began in 2007 and 
continues at 30 clinical care sites throughout New York City. BioMe participants were African American 
(25%), Hispanic/Latino, primarily of Caribbean origin (36%), Caucasian (30%), and Others who did not 
identify with any of the available options (9%). Biobank participants who self-identified as Caucasian were 
excluded from this analysis. The Global Reference Panel (GRP) was created from Stanford-contributed 
samples to serve as a population reference dataset for global populations. GRP individuals do not have 
phenotype data and were only used to aid in the evaluation of genetic ancestry in the PAGE samples. 
Additional information about each participating study can be found in the Supplementary Information.  

 
Phenotypes. The 26 phenotypes included in this study were previously harmonized across the PAGE 
studies. They include: White Blood Cell (WBC) count, C-Reactive Protein (CRP), Mean Corpuscular 
Hemoglobin Concentration (MCHC), Platelet Count (PLT), High Density Lipoprotein (HDL), Low-Density 
Lipoprotein (LDL), Total Cholesterol (TC), Triglycerides (TG), glycated hemoglobin (HbA1c), Fasting Insulin 
(FI), Fasting Glucose (FG), Type II Diabetes (T2D), Cigarettes per Day (CPD), Coffee Consumption, QT 
interval, QRS interval, PR interval, Systolic Blood Pressure (SBP), Diastolic Blood Pressure (DBP), 
Hypertension (HT), Body Mass Index (BMI), Waist-to-hip ratio (WHR), Height (HT), Chronic Kidney Disease 
(CKD), End-Stage Renal Disease (ESRD), and Estimated glomerular filtration rate (eGFR) by the CKD-Epi 
equation. Single variant association testing was completed for all phenotypes using phenotype-specific 
models, adjusting by indicators for study, self-identified race/ethnicity as a proxy for cultural background, 
phenotype-specific standard covariates, and the first 10 PCs. Additional information about phenotype-
specific cleaning, exclusion criteria, and the model covariates are included in the Supplementary 
Information. 

 
Genotyping. A total of 53,338 PAGE and GRP samples were genotyped on the MEGA array at the Johns 
Hopkins Center for Inherited Disease Research (CIDR), with 52,878 samples successfully passing CIDR’s 
QC process. Genotyping data that passed initial quality control at CIDR were released to the Quality 
Assurance / Quality Control (QA/QC) analysis team at the University of Washington Genetic Analysis 
Center (UWGAC). The UWGAC further cleaned the data according to previously described methods 44, and 
returned genotypes for 51,520 subjects. A total of 1,705,969 SNPs were genotyped on the MEGA. Quality 
Control of genotyped variants was completed by filtering through various criteria, including the exclusion of 
(1) CIDR technical filters, (2) variants with missing call rate >= 2%, (3) variants with more than 6 discordant 
calls in 988 study duplicates, (4) variants with greater than 1 Mendelian errors in 282 trios and 1439 duos, 
(5) variants with a Hardy-Weinberg p-value less than 1x10-4, (6) SNPs with sex difference in allele frequency 
>= 0.2 for autosomes/XY, (7) SNPs with sex difference in heterozygosity > 0.3 for autosomes/XY, (8) 
positional duplicates. Sites were further restricted to chromosomes 1-22, X, or XY, and only variants with 
available strand information. After SNP QC, a total of 1,402,653 MEGA variants remained for further 
analyses. (For more details see Supplementary Information Section 3) 
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Imputation. In order to increase coverage, and thus improve power for fine-mapping loci, all PAGE 
individuals who were successfully genotyped on MEGA were subsequently imputed into the 1000 Genomes 
Phase 3 data release 57. Imputation was conducted at the University of Washington Genetic Analysis Center 
(GAC). Genotype data which passed the above quality control filters was phased with SHAPEIT2 58 and 
imputed to 1000 Genomes Phase 3 reference data using IMPUTE version 2.3.2 59. Segments of the 
genome which were known to harbor gross chromosomal anomalies were filtered out of the final genotype 
probabilities files. Imputed sites were excluded if the IMPUTE info score was less than 0.4. A total of 
39,723,562 imputed SNPs passed quality control measures. (For more details see Supplementary 
Information Section 3) 

 
Principal Component Analysis. The SNPRelate (Zheng et al. 2012) package in R was used for principal 
components analysis. (See Supplement for further details.) The relevant principal components (PCs) were 
selected using scatter plots. Scatter plots, with various PCs on the x- and y-axes, helped to assess the 
spread of genetic ancestry within with self-identified racial/ethnic clusters. A parallel coordinate plots for the 
first 10 PCs was generated, where each PAGE individual is represented by a set of line segments 
connecting his or her PC values. The amount of variance explained diminished with each subsequent PC, 
and we estimated that the top 10 PCs provided sufficient information to explain the majority of genetic 
variation in the PAGE study population. 

 
Genome-Wide Association Testing. All imputed autosomal variants with IMPUTE info score >0.4 
(n=39,723,562) were eligible for association testing in phenotype-specific models. An effective sample size 
(effN) was calculated for each SNP in a given phenotype-specific model, where effN = 2*MAF*(1-
MAF)*N*info, where MAF is the minor allele frequency among the set of individuals included in a phenotype-
specific model, N is the total sample size for a given phenotype, and info is the SNP’s IMPUTE info score. 
Variants with an effN less than 30 (continuous phenotypes) or 50 (binary phenotypes), were excluded from 
the final set of phenotype-specific results.  The number of variants analyzed per traits ranged from 
21,894,105 to 34,656,550 for continuous phenotypes and 11,665,604 to 28,263,875 for binary phenotypes 
(Supplementary Table 1). QQ plots and lambdas were used to assess genomic inflation in all phenotypes, 
for which lambdas ranged from 0.98 to 1.15. Single-variant association testing for each phenotype used an 
additive model that was adjusted by indicators for study, self-identified race/ethnicity, the first 10 PCs, and 
phenotype-specific covariates. Additional information about the phenotype-specific model covariates and 
transformations are included in the Supplementary Information. Association testing was completed in both 
SUGEN and GENESIS programs. 

The GENESIS 19,20 program is a Bioconductor package made available in R that was developed 
for large-scale genetic analyses in samples with complex structure including relatedness, population 
structure, and ancestry admixture. The current version of GENESIS implements both linear and logistic 
mixed model regression for genome-wide association testing. The software can accommodate continuous 
and binary phenotypes. The GENESIS package includes the program PC-Relate, which uses a principal 
component analysis based method to infer genetic relatedness in samples with unspecified and unknown 
population structure. By using individual-specific allele frequencies estimated from the sample with principal 
component eigenvectors, it provides robust estimates of kinship coefficients and identity-by-descent (IBD) 
sharing probabilities in samples with population structure, admixture, and HWE departures. It does not 
require additional reference population panels or prior specification of the number of ancestral 
subpopulations. 

The SUGEN program 22 is a command-line software program developed for genetic association 
analysis under complex survey sampling and relatedness patterns. It implements the generalized 
estimating equation (GEE) method, which does not require modeling the correlation structures of complex 
pedigrees. It adopts a modified version of the “sandwich” variance estimator, which is accurate for low-
frequency SNPs. Association testing in SUGEN requires the formation of “extended” families by connecting 
the households who share first degree relatives or either first- or second-degree relatives. Trait values are 
assumed to be correlated within families but independent between families. In our experience in analyzing 
this dataset, it is sufficient to account for first-degree relatedness. The current version of SUGEN can 
accommodate continuous, binary, and age-at-onset traits. A comparison of p-values produced by SUGEN 
and GENESIS for all previously identified known loci are included in Supplementary Figure 11. 
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Conditional Analyses. Phenotype-specific lists of previously identified “known loci” were hand-curated for 
each phenotype and included SNPs indexed in the GWAS Catalog or identified through non-GWAS high-
throughput methods (e.g. Metabochip, Exomechip, Immunochip, etc.). The full known loci lists for each 
phenotype are available in the Supplementary Table 5. Conditional analyses were conducted for all 
phenotypes by conditioning on all previously identified known loci on a given chromosome. P-values 
estimated in conditional analyses are denoted by “Pcond” in the main text, with the SUGEN conditional results 
for all novel and secondary findings in Supplementary Table 3.  

 
SNPxPC Effect Heterogeneity by Genetic Ancestry and Self-Identified Race/Ethnicity. We used two 
approaches to assess effect heterogeneity within PAGE participants. First, we used interaction analyses 
with models that included variant by PC (SNPxPC) interaction terms for all 10 PCs. The fit of nested models 
was compared using the F-statistic, where the associated interaction p-value indicated whether the 
inclusion of the 10 SNPxPC interaction terms improved the model fit compared to a model that lacked the 
interaction terms. The overall SNPxPC interaction p-values evaluated whether the additional variance 
explained by variant x genetic ancestry interactions was statistically significant, and represent effect 
modification driven by genetic ancestry. Interaction p-values for all novel and secondary findings are 
included in Supplementary Table 3.  

For comparison against more traditional (stratified) analysis strategies, all analyses were also run 
stratified by self-identified race/ethnicity. A minor allele count of at least 5 was required for a stratified model 
to be run within an ethnic group. The stratified analyses were then meta-analyzed using a fixed-effect model 
implemented in METAL49. I2 and chi2 heterogeneity p-values were estimated for all meta-analyzed results, 
and represent effect size heterogeneity driven by self-identified race/ethnicity. The race/ethnicity-specific 
results, I2, and chi2 heterogeneity p-values for all novel and secondary findings are included in 
Supplementary Table 3.  
 
Standardized Effect Size (z’) Analysis. The standardized effect size (z’) analysis for Figure 2A was 
performed as follows. To avoid double-counting of SNPs/loci, we constrained analysis for each trait to (a) 
the single previous report that (b) did not combine genome-wide genotypes with focused platforms like the 
metabochip, (c) reported the direction of effect with the allele in the GWAS catalog, and (d) included the 
maximum total number of individuals after applying criteria (a) and (b). (a) We selected a single manuscript 
because many traits already have serial meta-analyses published, where earlier publications represent a 
subset of individuals reported in later publications, so reported effect sizes in the GWAS catalog are not 
necessarily independent. (b) We excluded meta-analyses using mixtures of agnostic GWAS data 
(consistent map density across the genome) with focused platforms (e.g. metabochip, oncochip, or exome 
chip) because the actual sample size varies dramatically across the genome, with overlapping 
agnostic/focused regions having substantially greater numbers of individuals in the analysis. Sadly, most 
of these reports fail to specify the sample-size on a per-SNP basis, making it impossible to confidently 
calculate z’. (c) Starting from the 22 quantitative traits, we found reference studies that explicitly reported 
the allele associated with direction of effect for 18. Furthermore, in order to be confident that the direction 
of effect was consistent between PAGE and prior reports, we restricted analysis to asymmetric SNPs (A/C, 
A/G, C/T and G/T). These criteria yielded 615 previously reported genome-wide significant variants, 
distributed across the 18 traits (Supplementary  Table 7). Only 115 of these variants were traditionally 
genome-wide significant (p<5e-8) and therefore overlap with the SNPxPC heterogeneity analysis. 

 
Assessing Single-Variant Results. SUGEN association results were used for the identification of novel 
and secondary findings for all phenotypes. The variant with the smallest p-value in a 1Mb region was 
considered the “lead SNP”. A lead SNP was considered to be a novel loci if it met the following criteria: 1) 
the lead SNP was located greater than +/- 500 Kb away from a previously known loci (per the phenotype-
specific known loci list); 2) had a SUGEN p-value less than 5x10-8; 3) had a SUGEN conditional p-value 
less than 5x10-8 after adjustment for all previously known loci on the same chromosome; and 4) had 2 or 
more neighboring SNPs (within +/- 500 Kb) with a p-value less than 1x10-5. A lead SNP was considered to 
be a secondary signal in a previously known loci if it met the following criteria: 1) the lead SNP was located 
within +/- 500 Kb of a previously known loci; 2) had a SUGEN p-value less than 5x10-8; and 3) had a SUGEN 
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conditional p-value less than 5x10-8 after adjustment for all previously known loci on the same chromosome. 
Full results for all novel and secondary findings are included in Supplementary Table 2-3.  

 
Effect Size Heterogeneity in the GWAS Catalog. The full GWAS Catalog database was downloaded on 
December 31, 2016. 30 The data were filtered to identify results relevant to any of the 26 PAGE phenotypes, 
producing a subset of 3,322 unique tagSNPs that were genome-wide significant (p<5x10-8) in the GWAS 
Catalog. The PAGE results for each of the 3,322 GWAS Catalog tagSNPs was examined to first identify 
the subset of tagSNPs that replicated (p<5x10-8) in PAGE unconditioned models. Pairs of replicated 
tagSNPs within 500,000 base pairs of each other were then merged into loci, in order to count “unique” 
associated loci. Of the GWAS Catalog tagSNPs that were replicated in PAGE, SNPs that had a Bonferroni 
corrected SNPxPC interaction heterogeneity p-value (p < 8.71x10-5, 0.05/574) were considered to have 
evidence of effect size heterogeneity between ancestries. Effect heterogeneity was also assessed using 
PAGE’s multi-ethnic study population by first identifying the “lead SNP” in each locus with the smallest p-
value in PAGE, totaling 333 SNPs (302 known loci from the GWAS catalog, plus 31 novel loci discovered 
in the present analysis). Among the 333 lead SNPs, 24 (7.2%) had a significant Bonferroni corrected 
SNPxPC interaction heterogeneity p-value (P<1.5x10-4, 0.05/333).  
 
Meta-analysis and Finemapping with GIANT, UKB50k.  
Meta-analysis 
We meta-analyzed results for BMI and height in our PAGE multiethnic sample (~50,000 individuals) with 
the published data from GIANT consortium32,33 which included approximately >250,000 individuals of 
European descent for each trait. We a comparison for value added, we also conducted a meta-analysis 
with 50,000 
randomly sampled “White-British’’ individuals from the UK Biobank (UKB50k). We conducted GWAS for 
both PAGE and UKB50k with analogous models for BMI and height traits.  Within PAGE and UKB50k, we 
used the inverse normally transformed residuals for each trait by sex and race/ethnicity, and adjusted for 
population substructure, age, center, and racial/ethnic groups (if applicable). These methods were similar 
to what was performed by GIANT, using inverse normal adjusted residuals for each trait outcome.  We then 
meta-analyzed results using a fixed effects model from each PAGE or UKB50k with GIANT separately with 
METAL software 60.  We retained only variants available in the combined meta-analyses (for GIANT+PAGE 
or GIANT+UKB50k) which was approximately 2.5 million. Significance was defined at P-value <5x10-8.  
Novelty of a locus was defined as +/-500kb from anything known for the respective trait based on the GIANT 
published results in Locke et al. 2015 (32,33. We also required the at least 2 SNPs within a 1Mb results had 
a P-value <1x10-5 to be retained as a significant known or novel locus. 
 
Finemapping 
We used FINEMAP 61 for all finemapping analyses. For each previously-reported locus for height 33 and 
BMI 32 in GIANT, a one megabase region was subset, using the summary statistics from GIANT, the 
PAGE+GIANT meta-analysis, and the UKB50k+GIANT meta-analysis. The linkage disequilibrium for the 
finemapping was calculated using each individual ancestry from the PAGE sample and using the individuals 
of European descent from the ARIC study.  For weighted linkage disequilibrium that included all ancestries, 
we weighted each ancestry in PAGE by the actual sample size and added in the ARIC sample but used the 
sample size from the GIANT consortium by trait. All analyses were run assuming one causal variant. The 
cumulative 95% credible set was calculated from the estimated posterior probabilities.  
 
Proportion of variance explained (PVE). Each PVE analysis considered a single combination of (a) trait, 
(b) the analysis from which p-values were derived (GIANT, GIANT+PAGE, or GIANT_UKB50k), and (c) the 
target population in which PVE was calculated (either PAGE or UKB50k). To avoid over-weighting any 
single region due to LD between multiple associated SNPs, we first defined a “locus” as a contiguous series 
of genome-wide significant tagSNPs with genome wide significance, where each tagSNP was less than 
500k from the next. Then we selected the single SNP within each locus with the smallest p-value in the 
given analysis (the “best” tagSNP) and calculated PVE for that SNP in the target population.  The meta-
analysis was effectively limited to allele frequencies greater than 5%, so we used the standard P<5x10-8 
threshold for significance to define loci.  
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PVE was calculated for a given SNP using equation 4 from Supplement 1 in Shim et al. 34 

!"# ∼ %&2 ∗ 2((1 − ()
%&2 ∗ 2((1 − ()	+	(./(%&))2 ∗ 0 ∗ 2((1 − () 

This requires only the estimated effect size (%&) the standard error of the estimate (se(%&) ), the allele 
frequency (p), and the number of samples (N).  PVE was then summed across all of the “best” tagSNPs in 
a given analysis. 
 
Population allele frequencies of HCP rs2395029[G]. These 99 labels were compiled from self-identified 
ancestry information from the PAGE sample manifest, as well as self-reported country of origin from the 
Mount Sinai BioMe biobank. Per-population allele frequencies for rs2395029[G] were calculated in PLINK 
v.1.90 (www.cog-genomics.org/plink/1.9/) 62, and results were visualized in R (available at 
https://github.com/epsorokin/clinical_genetics).   
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 1 
 Largest GWAS catalog discovery population1  GWAS catalog tagSNPs best PAGE 

tagSNPs 

Novel 
Loci 

(count)6 

Secondary 
Loci 

(count)6 Phenotype European East 
Asian African Hispanic/ 

Latino PAGE Unique P<5x10-

8 Het.4 P<5x10-

8 Het.5 

Inflammatory Traits             

CRP 66,185 10,112 8,280 3,548 28,537 82 38 7 16 1 0 0 

WBC 19,509 33,231 16,388 - 28,534 27 10 5 11 3 1 1 

MCHC 62,553 - 16,485 - 19,803 21 9 1 5 0 0 2 

Platelet Count 48,666 14,806 7,943 12,491 29,328 92 23 0 28 0 1 1 

Lipid Traits             

HDL 99,900 12,545 7,917 4,383 33,063 244 71 8 21 1 2 2 

LDL 94,595 12,545 7,861 4,383 32,221 192 46 12 18 0 0 2 

TG 96,598 12,545 7,601 4,383 33,096 179 75 29 16 1 1 2 

TC 100,184 8,344 6,480 4,383 33,185 166 31 4 20 0 1 2 

Lifestyle Traits             

Cigarettes/Day Excluding 
Nonsmokers 74,035 11,696 32,389 - 15,862 12 0 0 3 0 2 1 

Coffee Cups/Day 91,462 - - - 35,902 16 3 1 3 0 1 0 

Glycemic Traits             

HbA1c 46,368 17,290 - - 11,178 29 8 1 9 0 1 3 

Fasting Insulin 51,750 7,696 1,040 229 21,596 34 0 0 3 0 1 0 

Fasting Glucose 58,074 24,740 2,029 4,176 23,963 55 15 3 7 0 2 0 

Type II Diabetes2 12,171/ 
56,862 

15,463/ 
26,183 

1,264/ 
5,678 

3,848/ 
4,366 

14,075/ 
31,752 286 28 2 13 0 0 1 
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 2 

Electrocardiogram Traits             

QT Interval 71,061 6,805 13,105 - 17,348 183 39 1 11 0 0 2 

QRS Interval 60,255 6,085 13,031 - 17,052 63 9 3 12 0 1 2 

PR Interval 28,517 6,085 13,415 - 17,428 154 19 1 10 0 1 2 

Blood Pressure Traits             

Systolic Blood Pressure 74,064 31,516 29,378 - 35,433 74 2 0 4 0 1 1 

Diastolic Blood Pressure 74,064 31,516 29,378 - 35,433 81 2 0 4 0 0 0 

Hypertension 74,064 31,516 29,378 - 49,158 111 0 0 2 0 1 1 

Anthropometric Traits             

Waist-to-hip Ratio3 142,762 39,869 19,744 3,484 33,904 94 5 0 6 0 1 0 

Height 253,288 36,227 20,427 - 49,781 698 99 42 93 18 5 13 

Body Mass Index 236,781 82,438 39,144 3,484 49,335 572 41 12 13 0 1 0 

Kidney Traits             

eGFR by CKD Epi 
Equation 133,413 23,536 16,840 16,325 27,900 135 1 0 5 0 3 0 

Average 90,953 20,953 14,710 5,570 Total 3356 548 194 333 24 27 38 

Table 1: GWAS Catalog heterogeneity by Trait, including number of novel and secondary findings. 2 
1 Only includes studies indexed in the GWAS Catalog on December 31, 2016 3 
2 Cases/Controls 4 
3 Includes pooled and sex-stratified studies / results 5 
4 P<8.71x10-5 for genotype:PC interaction in PAGE, adjusting for multiple tests (0.05/574) 6 
5 P<1.50x10-4 for genotype:PC interaction in PAGE, adjusting for multiple tests (0.05/333) 7 
6 Significant loci have P<5x10-8 after conditioning on all known loci from the literature 8 
 9 
 10 
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