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Abstract Genome-wide association studies are a powerful and widely used tool to decipher the genetic10

control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is11

to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals.12

Here, we compared two additive and three non-additive association models for their ability to identify13

genomic regions associated with flowering time in sunflower hybrids. A panel of 452 sunflower hybrids,14

corresponding to incomplete crossing between 36 male lines and 36 female lines, was phenotyped in five15

environments and genotyped for 2,204,423 SNPs. Intra-locus effects were estimated in multi-locus models16

to detect genomic regions associated with flowering time using the different models. Thirteen quantitative17

trait loci were identified in total, two with both model categories and one with only non-additive models.18

A quantitative trait loci on LG09, detected by both the additive and non-additive models, is located near a19

GAI homolog and is presented in detail. Overall, this study shows the added value of non-additive modeling20

of allelic effects for identifying genomic regions that control traits of interest and that could participate in21

the heterosis observed in hybrids.22
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1 Introduction24

Currently, several tools are available to geneticists and breeders to identify the genetic control of traits25

of interest and to improve the performance of animals and plants. A powerful tool for mapping the genes26

controlling complex traits, association genetics essentially evaluates statistical correlations between the27

alleles at a given locus and the observed phenotype (Ersoz et al, 2007). Genome-wide association studies28

(GWAS) have been widely used in the genetics of humans, animals, and plants (Kang et al, 2008, Wang29

et al, 2016, Yu et al, 2006, Zhang et al, 2010, Zhou et al, 2012). The method was first applied to human30

genetics (Corder et al, 1993), and the first association study on agronomic data was conducted in 200131

(Thornsberry et al, 2001) in maize with regard to flowering time.32

Flowering time (FT) is a key trait in plant biology. Its evolution has been crucial for the domestication33

of many crop species and their dissemination into new climatic regions (Blümel et al, 2015, Colledge and34

Conolly, 2007, Izawa, 2007). It is highly heritable, and the gene regulatory network controlling flowering35

time is very well described, making it an excellent trait to combine quantitative genetics and functional36

genomics. The impact of environmental cues on flowering time is well documented in the model plant37

Arabidopsis thaliana where a study (Li et al, 2010) identified SNPs that can explain up to 45% of the38

phenotypic variation of flowering time in a large panel of natural accessions. In sunflower, GWAS are more39

recent: Fusari et al (2012) on disease resistance, and Nambeesan et al (2015) on branching performed their40

GWAS with data collected on inbred lines, whereas Cadic et al (2013) studied the genetic control of FT in41

a panel evaluated in 15 environments as hybrids.42

Many crops, such as maize, sunflower and winter oil seed rape, are cultivated as hybrids. Hybrid vigor,43

or heterosis, was first observed by Darwin (1876). Genetic mechanisms underlying heterosis have been44

suggested, but their relative importance is not clearly elucidated (Lamkey and Edwards, 1999). Different45

hypotheses including dominance (Bruce, 1910, Jones, 1917), over-dominance (Crow, 1948), and subsequently46

epistasis have been proposed (Williams, 1959). Most GWAS models have been designed to consider only47

the additive effects of markers. Several studies have shown that non-additive effects constitute a major part48

of the variation of complex traits. These studies consider the intra-locus effects (Gengler et al, 1997, Norris49

et al, 2010), namely dominance, or inter-locus effects called epistasis (Huang et al, 2012, Mackay, 2014). The50

work of Yang et al (2014) on corn showed an increase in the proportion of heritability, explained because51

the model considered the dominance, thus allowing a better overview of heterosis. Mackay (2014) also52

stated that epistasis might be linked to missing heritability and small additive effects. Before them, Zhou53

et al (2012) demonstrated on rice hybrids that the accumulation of multiple effects, including dominance54

and overdominance, might partially explain the genetic basis of heterosis. In human genetics, it has also55

been shown that models considering non-additive intra-locus effects yield new information, as in the case56

for the study by He et al (2015), which found three new quantitative trait loci (QTLs) associated with57

kidney weight, compared to additive models. In contrast, Tsepilov et al (2015) showed in humans that it58

is preferable to use non-additive effects only for traits where the non-additive function is known. Additive59

models already capture a small part of the non-additive variability.60

Mixed models are among the methods used to perform association analysis. They take into account the61

dependence between individuals by introducing a covariance structure for the genetic value of each individual62

and was proposed by Yu et al (2006). The main drawback of the mixed model is its computational burden.63
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GWAS non-additive models 3

So new methods were proposed to accelerate the algorithm speed, EMMA (Kang et al, 2008) that avoid64

redundant matrix calculation, EMMAX (Kang et al, 2010) that is an approximation method with the65

ability to handle a large number of markers and finally GEMMA (Zhou and Stephens, 2012) that is exact66

and efficient. All these methods are based on single-locus tests, but the traits can be controlled by many67

loci, with broader effects, and these models do not yield a good estimate of the markers effects in this case.68

The identification of causal polymorphisms with the adjustment of more than one polymorphism at a69

time is complicated by the presence of linkage disequilibrium. Several multi-locus approaches have been70

proposed, including penalized regressions (Hoggart et al, 2008), Lasso (Waldmann et al, 2013, Wang et al,71

2011, Yi and Xu, 2008), and even the elastic net (Waldmann et al, 2013). Segura et al (2012) proposed a72

regression method with inclusion by forward selection. This method involves EMMAX, that reassesses the73

genetic and residual variances at each step of the algorithm. An assessment of the model quality, based on74

a selection criterion, is then performed.75

The aim of our study was to evaluate different GWAS models that take dominance into account to76

detect associations in a hybrid panel and patterns of genetic control putatively involved in heterosis. For77

this purpose, we used the sunflower and flowering time as an example of the genetic control of complex traits,78

and we performed this study in a variety of environments to introduce realistic phenotypic variability. Several79

models involving intra-locus non-additive effects that are appropriate for a GWAS were tested. We sought80

to compare these models and conventional additive models of GWAS based on a multi-locus method similar81

to the one reported in Segura et al (2012).82

2 Materials & Methods83

2.1 Dataset collection84

We collected data on the flowering time of sunflower (Helianthus annuus) from various French experiments85

conducted in 2013 by private partners (Biogemma, Caussade Semences, Maisadour Semences, RAGT2n,86

Soltis, Syngenta France) and by the French National Institute for Agricultural Research (INRA) as part of87

the SUNRISE project. Five experimental sites in different environments of regions in Southwestern France88

were planted with different hybrids from a set of 452 hybrids (between 303 to 444 hybrids per environment89

(Table S1)). Hybrids for this study were obtained by crossing 36 males and 36 females in an incomplete90

factorial design. They were chosen so that every parent was represented equivalently in the hybrid population91

(between 12 and 15 hybrids per parent).92

In each environment, each measure of flowering time corresponded to one plot, planted with individuals93

of a single genotype. Each plot varied from 10 to 18m2 depending on the environment, and the plant density94

(corresponding to the number of plants per m2) was 5.8 on average and varied from three to eight plants per95

m2. Flowering time was recorded when 50% of the plants in a plot were flowering and was then converted96

into degree days since the sowing date relative to the base 4.8 ◦C, using the mean daily air temperature97

measured at each location.98
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4 Fanny Bonnafous et al.

2.2 Genotyping data99

SNP genotyping was performed in the same way as submitted in Badouin et al.(2017), but here made100

from an Illumina type assembly. This work allowed us to obtain genotyping data from the 72 parents on101

2,204,423 SNPs that were coded depending on the allele that a parent line could transmit to its descendants:102

0, 1, or missing (0 for the XRQ allele, 1 for the variant). The genotyping data were imputed by genomic103

scaffolds by means of BEAGLE (Browning and Browning, 2009). Nevertheless, this step of the imputation104

of missing data created some redundancy among SNPs. Maintaining the redundancy for further GWAS105

analyses increases the computational burden. In addition, redundancy included in the calculation of the106

relatedness between hybrids tends to give more weight to regions containing many redundant markers,107

decreasing the power in these regions (Rincent, 2014). Redundant SNPs were therefore discarded. One last108

filter on minor allele frequency (MAF) was implemented. SNPs with MAF (calculated for parent genotypes109

before imputation) less than 0.1 were discarded. A total of 478,874 non-redundant polymorphic SNPs were110

finally retained for various subsequent analyses. The genotypic data of hybrids were deduced from the111

genotypic data of the parents and coded as 0, 1, or 2 for homozygous XRQ and heterozygous and variant112

homozygous, respectively. In addition, the male and female origin of alleles was recorded for heterozygous113

SNPs.114

2.3 Phenotype adjustment115

Data were first adjusted using a linear model including two spatial fixed factors (line and column numbers116

in the field), a replicate fixed factor if necessary, an independent random genetic factor and the residual117

error.118

2.4 GWAS119

The analyses were performed using a multi-locus approach with forward selection as proposed by (Segura120

et al, 2012). This method is based on inclusion (at every step) of the SNP with the smallest p-value as a121

fixed regressor in a model that contains a random polygenic effect, as in classic GWAS model of Yu et al122

(2006). The polygenic and residual variances are re-evaluated at each step, and a new scan of the remaining123

genome is performed. The more integrated regressors in the model, the lower the variance attributed to the124

random polygenic term. The forward selection analysis stops when the proportion of variance explained by125

this polygenic effect is close to zero.126

127

Five models were compared to find chromosomal regions linked to flowering time.128

2.4.1 Two additive models: AAIS and AXX′ models129

The first model, as described in (Segura et al, 2012), takes into account only the additive effect of markers.

Let yi denotes the adjusted phenotype of hybrid i. Then the additive model is

yi = µ+ xliθ
l
a + ui + ei (AAIS and AXX′ models)
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where xli is the centered genotype (coded as XRQ allelic dose) of the ith hybrid at the lth marker locus;130

θla is the additive effect of the lth locus; ui denotes the random polygenic effect; and ei is the residual error.131

Let u and e be vectors (ui, i = 1, · · · , n) and (ei, i = 1, · · · , n), respectively, and then u ∼ N (0, σ2
uKa),132

e ∼ N (0, σ2
eId), where Ka is a kinship matrix (relations among hybrids), and σ2

u and σ2
e are polygenic and133

residual variances, respectively.134

One simple way to calculate the relatedness between hybrids based on molecular markers is to consider135

the proportion of shared alleles between two individuals, also called Alike In State (AIS) relatedness.136

The formula for biallelic markers is137

AIS(i1, i2) =
G1
′G2 + (2−G1)′(2−G2)

4L

where L is the total number of markers, G1 and G2 are the vector of genotypes for i1 and i2 (length138

of L, coded as XRQ allelic dose), and 2 denotes a vector of two. The use of this formula for relatedness139

between hybrids does not consider haplotypic phases. However, haplotypic phases are known in our factorial140

design. Accordingly, we consider the AIS between the parents and known haplotypic phases to calculate141

the relatedness between hybrids. Thus, the AIS kinship that was used in the additive model designated the142

AAIS model was calculated as the average AIS between respective parents of hybrids.143

The other relationship matrix, used in the additive model designated the AXX′ model, is equivalent to144

the unscaled kinship matrix described by Vanraden (2008):145

KXX′ = XX′ (AXX′ model)

where X =
[
xli
]

l=1,··· ,L
i=1,··· ,n

is the centered matrix of the hybrid genotypes.146

2.4.2 The additive and dominant model: AD model147

A model including additive and dominant effects of SNP markers as proposed by Su et al (2012) was studied148

next. The model is149

yi = µ+ xliθ
l
a + wliθ

l
d +Ai +Di + ei (AD model)

where xli is the centered genotype of the ith hybrid at the lth marker locus; wli is defined later; θla is150

the additive effect of the lth locus; θld is the dominance effect of the lth locus; and ei denotes error. Ai151

is the random additive effect i, and Di is the random dominant effect i. Let A, D, and e denote vectors152

(Ai, i = 1, · · · , n), (Di, i = 1, · · · , n), and (ei, i = 1, · · · , n), respectively, and then A ∼ N (0, σ2
aKa),153

D ∼ N (0, σ2
dKd), e ∼ N (0, σ2

eId), where Ka is the additive kinship matrix; Kd is the dominance kinship154

matrix; and σ2
a, σ2

d and σ2
e are additive, dominance and residual variances, respectively. Ka = K′

XX as in155

the AXX′ model, and Kd = WW ′ where W =
[
wli
]

l=1,··· ,L
i=1,··· ,n

; L is the number of loci; n denotes the number156

of hybrids; and157

wli =

 −2pl(1− pl) if i is homozygote at locus l

1− 2pl(1− pl) if i is heterozygote at locus l

where pl is the XRQ allelic frequency at locus l within the parental population that is equal to the XRQ158

allelic frequency at locus l within the hybrid population under Hardy-Weinberg assumptions.159
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6 Fanny Bonnafous et al.

The part of additive variance used in the forward selection algorithm as a stopping criterion was defined160

in MLMM (Segura et al, 2012) by
σ2

u

σ2
u+σ

2
e
. To generalize the stopping criteria for the AD model, we used161

the ratio
σ2

a+σ
2
d

σ2
a+σ

2
d+σ

2
e
.162

2.4.3 The models with female and male effects: FM and FMI model163

These models include the male and female effects of SNP markers. The last also includes the interaction164

between male and female effect. Let yfm denote the adjusted phenotype of hybrid obtained when female165

line f was crossed with male line m, and then the model is166

yfm = µ+ xlfθ
l
f + zlmθ

l
m + Ff +Mm + efm (FM model)

yfm = µ+ xlfθ
l
f + zlmθ

l
m + wlfmθ

l
fm + Ff +Mm + Ifm + efm (FMI model)

where xlf is the centered (0 or 1) allele transmitted by female f at the lth marker locus; zlm is the167

centered (0 or 1) allele transmitted by male m at the lth marker locus; wlfm = xlfz
l
m; θlf is the female effect168

of the lth locus; θlm is the male effect of the lth locus; and θlfm is the female-male interaction effect of the169

lth locus. Ff , Mm, and Ifm are the random effects of female f , male m, and their interaction, respectively,170

and efm denotes error. Let F , M , I, and e denote vectors (Ff , f = 1, · · · , nf ), (Mm, m = 1, · · · , nm),171

(Ifm, f = 1, · · · , nf ; m = 1, · · · , nm), and (efm, f = 1, · · · , nf ; m = 1, · · · , nm), respectively, where172

nf and nm are the numbers of females and males, respectively. F ∼ N (0, σ2
fKf ), M ∼ N (0, σ2

mKm),173

I ∼ N (0, σ2
fmKfm), e ∼ N (0, σ2

eId) where Kf is the kinship matrix for the female; Km is the kinship174

matrix for the male; Kfm is the kinship matrix for the interaction between the male and female; and175

σ2
f , σ2

m, σ2
fm and σ2

e are the female, male, female by male interaction and residual variances, respectively.176

Kf = XfX
′
f and Km = ZmZ′

m as in the AXX′ model but now using the centered matrix of transmitted177

alleles, and Wfm =
[
xlfz

l
m

]
l=1,··· ,L
f=1,··· ,n
m=1,··· ,n

is the Hadamard product between Xf and Zm.178

The stopping criterion of the algorithm was defined by the ratio
σ2

f+σ
2
m

σ2
f+σ

2
m+σ2

e
and

σ2
f+σ

2
m+σ2

fm

σ2
f+σ

2
m+σ2

fm+σ2
e

for the179

FM and the FMI model, respectively.180

2.4.4 Model selection and detected SNP estimation181

The main problem of the multi-locus analysis is how much to integrate the SNPs into the model. BIC182

(Bayesian Information Criterion), which is generally used, is not strict enough for model selection in large183

model space (Chen and Chen, 2008). Accordingly, eBIC (extended Bayesian Information Criterion), an184

extension of BIC, was developed (Chen and Chen, 2008). It penalizes the BIC calculation by taking into185

account the number of possible models for a given number of regressors in the model using mathematical186

combination, also known as the binomial coefficient. For our models, the total and the given numbers of187

regressors used in mathematical combination depend on the SNP numbers and SNP modeling and are as188

follows:189

eBIC = BIC + 2γ ln

(
nvL

nvLS

)
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where L is the total number of SNPs; nv is the number of variance components other than residual190

variance in the model; Ls is the given number of SNPs in the model; 0 ≤ γ ≤ 1 and
(
nvL
nvLs

)
is the191

mathematical combination of nvLs among nvL.192

One way to choose the best γ is to find k so that L = nk and then to assume γ = 1 − 1
2k (Chen and193

Chen, 2008).194

To calculate the effects of SNPs selected by eBIC, the model FMI, which is the most complete model,195

was used. It was composed of all eBIC-selected SNPs. Tukeys test of mean comparison was then performed196

to analyze the significance of differences among the four genotypic classes (00, 01, 10, and 11).197

2.5 Linkage disequilibrium198

Linkage disequilibrium was studied to compare and pool the discovered SNPs among models and environ-199

ments. It was calculated between all pairs of SNPs selected by eBIC, using the classic r2 (squared Pearson’s200

correlation) of the hybrid parent genotypes (i.e., SNP correlation of 36 males and 36 females). The signifi-201

cance level of linkage disequilibrium was found by randomly sampling independent SNPs. A total of 10,000202

random pairs of SNPs (from 478,874) belonging to different chromosomes were processed. The significance203

threshold was computed as the 99% quantile of the 10,000 r2 distribution. We therefore focused on linkage204

disequilibrium values higher than this threshold.205

2.6 QTL definition206

The use of QTLs instead of SNPs allows us to identify regions of interest rather than specific loci. A207

QTL is defined as a group of SNPs located on the same chromosome with linkage disequilibrium greater208

than the predefined significance threshold, or an isolated SNP associated with a trait without the above209

characteristics. Since the 13EX03 and 13EX04 environments were not properly randomized, isolated SNPs210

from these environments were removed from the study.211

For functional analysis, one SNP per QTL was selected as representative of the QTL. This choice was212

made based on the test p-value in a SNP by SNP model FMI. If a given SNP was associated with a trait213

in several environments, one p-value per environment was calculated, and the minimal p-value was assigned214

to the SNP. The SNP ultimately representing the QTL is the one with the lowest p-value.215

3 Results216

3.1 Phenotypic data analysis217

The period from sowing date to flowering time was measured in various environments. The flowering time218

in each environment was assumed to be a separate trait. Genotypic variance differed significantly from zero219

in all environments. The proportion of variance explained by genotypes (usually defined as broad sense220

heritability) ranged from 0.78 to 0.94 (Table 1).221

The correlations among environments are high (Figure S1), ranging from 0.68 to 0.85. Environment222

13EX02 correlates with the others the least, with correlation coefficients between 0.679 and 0.697. This223
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Table 1: Proportion of variance explained by genotypes (h2) per environment (13EX01 to 13EX06)

13EX01 13EX02 13EX03 13EX04 13EX06

h2 0.86 0.79 0.94 0.91 0.88

result can be explained by the fact that the sowing date for this environment was 7 to 20 days after the224

other sowing dates. In addition, measurement in this environment was performed less regularly. Despite the225

good correlation among environments, we analyzed each one independently to capture environment-specific226

associations.227

3.2 SNPs associated with the trait228

Table 2 shows the number of associated SNPs in each model by environment. For analysis involving models229

that consider only additive effects (AAIS and AXX′), the number of associated SNPs ranges between two230

for model AAIS in environment 13EX01, for example, and eight for the same model in environment 13EX03.231

In the analysis with model AAIS , the number of SNPs associated with the trait is greater or equal to the232

number of SNPs in model AXX′ for all environments except 13EX01. For association analysis involving233

models other than additive ones (AD, FM , and FMI), the eBIC selection only retains a single SNP.234

Table 2: Number of SNPs associated with flowering time selected by the forward approach and eBIC per

environment and per model. The results for additive models with different kinships (AAIS and AXX′) and

non-additive models including dominance (AD), female and male effects (FM), and female, male and their

interaction effects (FMI), are presented in five environments (13EX01 to 13EX06).

13EX01 13EX02 13EX03 13EX04 13EX06

AAIS 2 3 8 4 6

AXX′ 4 3 5 4 2

AD 1 1 1 1 1

FM 1 1 1 1 1

FMI 1 1 1 1 1

The MLMM approach selects a single SNP, i.e., the most associated one, to explain the effect of the causal235

polymorphism in this genomic region. However, several SNPs could be in LD with the causal polymorphism236

and different sources of errors (phenotypic and genotypic), and missing data could lead to the selection of237

different SNPs to explain the same causal polymorphism in our different experiments. Therefore, we grouped238

the SNPs to define QTLs and refer to regions rather than specific positions. This grouping was achieved using239

linkage disequilibrium between SNPs and positions on the sunflower genomic reference sequence (Badouin240

et al, 2017).241
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3.3 Estimation of linkage disequilibrium (LD)242

All SNP pairs with r2 (squared Pearson’s correlation) above 0.155 were considered to be in linkage dise-243

quilibrium. This significance threshold was defined as the 99% quantile of the r2 distribution obtained for244

10,000 randomly sampled pairs of independent SNPs.245
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Fig. 1: Heatmap of linkage disequilibria between SNPs associated with the flowering time, among all envi-

ronments and models. Only linkage disequilibria above the significance threshold of 0.155 was represented.

Black lines highlight linkage disequilibria between SNPs on the same chromosome. The linkage group (LG)

is indicated above a group of interest in black.

We studied the linkage disequilibrium between the SNPs selected by eBIC for all models and envi-246

ronments. Figure 1 illustrates (according to the physical positions of SNPs in the reference genome) only247

disequilibria greater than the significance threshold of 0.155. Pairs of SNPs located on chromosome LG01,248

LG11 and LG16 are in strong LD. A LD block is located on chromosome LG09 (r2 between 0.29 and 0.93).249

One SNP in disequilibrium with this group is itself located on chromosome LG07. These LDs correspond250

either to long-range disequilibria that can be caused by imperfect positioning of contigs in the reference251

genome or to the limited size of our parental population. With the statistical risk at 1% (it should be252

reduced to take into account the multiplicity of LD tests between all pairs of discovered SNPs), we obtained253

a threshold of 0.155, which is slightly lower than the linkage disequilibrium thresholds used in other asso-254

ciation studies on the sunflower (r2 = 0.2 reported by Cadic et al (2013) and Nambeesan et al (2015)). In255

total, this approach allowed us to build 13 associated regions (QTLs) for flowering time on 11 chromosomes.256

3.4 QTL description257

Groups of five or two SNPs in LD together with single SNPs define the QTLs presented in Table 3. It is258

noteworthy that four of the five SNPs defining QTL FT09.199 were obtained with non-additive association259

models. Similarly, the FT11.47 region was only detected by non-additive models. The FT15.102 region was260

detected by the model taking into account male and female effects and by both additive models in all261

environments (Table S2). The last eight QTLs were detected by additive models only and tend to have262

higher p-values than non-additive QTLs.263
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Table 3: List of QTLs associated with flowering time. For each QTL, the following information on the

detected SNP is presented: chromosome (LG), position (bp), minor allele frequency (MAF), GWAS model:

additive with different kinships (AAIS and AXX′) and non-additive including dominance (AD), female and

male effects (FM), and female, male and their interaction effects (FMI), and p-values calculated in the

FMI model, incorporating only the detected SNP. For each QTL composed of several SNPs, the SNP with

the smallest p-value is highlighted in bold.

QTL SNP LG Position MAF Models p-value

FT09.199

ScaffXRQ8f0001036 42553 9 198,931,169 0.26 AD, FMI 1.84 ×10−11

ScaffXRQ8f0026401 16473 9 199,047,735 0.32 AD, FMI, FM 8.67 ×10−13

ScaffXRQ8f0079446 1603 9 199,131,966 0.33 AD, FMI 1.86 ×10−08

ScaffXRQ8f0007921 25083 9 199,145,681 0.29 AXX′ 6.14 ×10−09

ScaffXRQ8f0020380 5685 9 201,493,137 0.24 AD, FMI 3.57 ×10−09

FT11.47
ScaffXRQ8f0013797 23368 11 47,534,503 0.42 AD 4.16 ×10−07

ScaffXRQ8f0013797 23997 11 47,535,132 0.39 FM , FMI 3.62 ×10−07

FT16.167
ScaffXRQ8f0010376 19650 16 167,723,083 0.39 AXX′ , AAIS 2.76 ×10−04

ScaffXRQ8f0032750 6184 16 167,689,531 0.42 AXX′ 6.74 ×10−02

FT01.98
ScaffXRQ8f0007580 39617 1 98,035,404 0.17 AXX′ , AAIS 6.77 ×10−06

ScaffXRQ8f0022183 17128 1 91,634,676 0.21 AAIS 2.40 ×10−04

FT15.102 ScaffXRQ8f0000770 77572 15 102,863,872 0.26 AXX′ , AAIS , FM 1.91 ×10−06

FT02.78 ScaffXRQ8f0070840 1738 2 78,884,560 0.11 AXX′ , AAIS 3.55 ×10−06

FT17.184 ScaffXRQ8f0036751 6112 17 184,825,665 0.18 AXX′ , AAIS 4.64 ×10−03

FT05.208 ScaffXRQ8f0006894 28213 5 208,225,977 0.21 AAIS 1.42 ×10−01

FT04.144 ScaffXRQ8f0065196 696 4 144,357,532 0.36 AAIS 1.34 ×10−04

FT07.34 ScaffXRQ8f0001757 13384 7 34,580,910 0.11 AAIS 4.15 ×10−02

FT17.13 ScaffXRQ8f0006633 33043 17 13,852,550 0.39 AXX′ 3.10 ×10−02

FT04.74 ScaffXRQ8f0021459 19344 4 74,011,326 0.19 AXX′ 1.65 ×10−03

FT13.190 ScaffXRQ8f0023382 14615 13 190,953,163 0.12 AXX′ 8.91 ×10−01

The number of QTLs in common within a model and among environments is presented in Table 4.264

For each model, Table 4 shows the number of QTLs associated in several environments. Five (FT16.167,265

FT17.184, FT05.208, FT04.144, and FT07.34) and six QTLs (FT09.199, FT01.98, FT17.184, FT17.13,266

FT04.74, and FT13.190) were associated in only one environment using additive models AAIS and AXX′ ,267

respectively. In contrast, FT15.102 was associated in all five environments for these two models. For non-268

additive models (AD, FM , and FMI), no QTL appeared in the five environments. Models AD and FMI269

detected a QTL in a single environment (FT11.47) and a QTL in four environments (FT09.199). The270

FM model identified two QTLs (FT15.102 and FT11.47) in a unique environment and FT09.199 in two271

environments.272
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Table 4: Number of QTLs in common within a model and among environment. The results for additive

models with different kinships (AAIS and AXX′) and non-additive models including dominance (AD),

female and male effects (FM), and female, male and their interaction effects (FMI) are presented for

different numbers of environments (env).

AAIS AXX′ AD FM FMI

1 env 5 6 1 2 1

2 env 2 2 - 1 -

4 env - - 1 - 1

5 env 1 1 - - -

3.5 QTL effects273

We characterized the effects of the SNPs detected in both additive and non-additive models. Regarding274

QTLs detected by the additive models, the majority of SNPs have a clearly additive profile similar to275

Figure 2a. However, for some additive SNPs, Tukey’s mean comparison test did not separate the genotypes276

in three significantly different classes certainly because of a lack of power.277
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Fig. 2: Effects of SNPs on flowering time for the four genotypic classes. (a) Example of an additive SNP. (b)

SNP discovered with non-additive model and with an additive trend. 00 and 11 correspond to homozygous

genotypes, 10 to the heterozygous genotype that received allele 1 from the female parent and 01 to the

heterozygous genotype that received allele 1 from the male parent. Each symbol indicates membership in a

specific class in Tukeys mean comparison test with a 5% statistical risk.

The majority of QTLs detected using non-additive models have a profile similar to Figure 2b, with278

a dominant trend for one allele (reference allele of inbred line XRQ for the male in the example). Two279

significantly different classes in the mean comparison test, separating one homozygous genotype from the280

other genotypes, is expected for a dominant allele. Figure 2c illustrates SNP profiles that are more difficult281

to interpret. Such profiles could be due to slight dominance of the XRQ allele in males or more probably to282

an additive SNP and insufficient power of Tukey’s test.283
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3.6 QTL annotations284

For each QTL, the SNP with the lowest p-value in the model FMI was selected to represent the region.285

All redundant SNPs were excluded from the GWAS analysis, but in terms of the functionality of the286

gene, information on the location of redundant SNPs is important. SNPs redundant with SNPs that are287

representative of a QTL were therefore recovered and analyzed in the same way as other SNPs. The results288

of this analysis are presented in Table 5. All SNPs redundant with the referent SNP of FT09.199 are also289

located on chromosome LG09 at positions very close to each other (within a 61 kb interval). Two genes290

are present in this region, but none is known to be involved in flowering. Four QTLs are also located in291

the identified genes on chromosomes LG05, LG13, LG16, and LG17. These genes do not correspond to292

a flowering-related gene. One SNP located on chromosome LG17 is redundant with the referent SNP of293

FT11.47 and another SNP also on chromosome LG11. This situation may be due to the imperfect quality294

of the genome.295

Table 5: Genes underlying QTLs associated with flowering time. One SNP per QTL was selected, and its

redundancy, if applicable, was also analyzed. The table describes QTL name (QTL), chromosome (LG),

position (Position), closest gene, location with respect to the closest gene (In.Out) and distance to the start

of the closest gene (DistToStart).

QTL LG Position Nearest gene In.Out DistToStart

FT01.98 1 98,035,404 HanXRQChr01g0016411 Upstream -11,986

FT02.78 2 78,884,560 HanXRQChr02g0042521 Downstream 295,211

FT04.74 4 74,011,326 HanXRQChr04g0107731 Upstream -93,659

FT04.144 4 144,357,532 HanXRQChr04g0118011 Downstream 129,288

FT05.208 5 208,225,977 HanXRQChr05g0160261 In 81

FT07.34 7 34,580,910 HanXRQChr07g0191191 Upstream -651

FT09.199

9 199,047,452 HanXRQChr09g0272971 In 18,574

9 199,047,477 HanXRQChr09g0272971 In 18,599

9 199,047,735 HanXRQChr09g0272971 In 18,857

9 199,071,389 HanXRQChr09g0272971 In 42,511

9 199,109,369 HanXRQChr09g0272981 In 5,822

FT11.47
11 47,260,646 HanXRQChr11g0330951 Upstream -81,868

11 47,535,132 HanXRQChr11g0330981 Upstream -82,521

FT13.190 13 190,953,163 HanXRQChr13g0424551 In 3,214

FT15.102 15 102,863,872 HanXRQChr15g0487841 Upstream -44,505

FT16.167 16 167,723,083 HanXRQChr16g0528041 In 31,859

FT11.47 17 175,837,528 HanXRQChr17g0564111 Upstream -5,234

FT17.13 17 13,852,550 HanXRQChr17g0537591 In 4,839

FT17.184 17 184,825,665 HanXRQChr17g0565411 Upstream -13,145

Few of the SNPs are located in genes, but three genes known to be involved in the flowering process296

are located on chromosome LG09. Figure 3 presents the positions of the associated markers and these three297

genes in FT09.199. GIBBERELLIC ACID INSENSITIVE (GAI, homologous to HanXRQChr09g0272901 )298

is a gene involved in flowering time (Wilson and Somerville, 1995), whereas FLORICAULA (FLO, ho-299
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mologous to HanXRQChr09g0273821 ) (Coen et al, 1990) and CAULIFLOWER (CAL, homologous to300

HanXRQChr09g0273361 ) (Bowman et al, 1993) are genes involved in flowering development. FT09.199301

consists of four SNPs very close together (within a 214kb interval) and a more distant SNP (at 2 Mb down302

chromosome LG09). The most interesting gene based on its function, namely GAI, is the closest of the303

four SNPs. This region was further examined based on the p-values of all SNPs in it. Figure S2 represents304

p-values for all SNPs of the FT09.199 region and the three genes involved in the flowering. The presented305

p-values were calculated in the environment and with the model where the SNP of interest was discovered306

in association. It can be seen that the most significant associations are found in the region of the first four307

SNPs. With the FMI model and for the environments 13EX03 and 13EX06, we can see the SNP with low308

p-values downstream, i.e., between the two CAL and FLO genes.309

Fig. 3: Locations of genes involved in the flowering process, compared to locations of SNPs of FT09.199

located in the same region of the chromosome LG09. Gene and SNP positions are indicated in bold and

normal font, respectively. For genes, the two positions correspond to the start and end of the gene.

4 Discussion310

In this study, we propose new GWAS models including non-additive effects. These models were developed to311

better model the biological factors involved in sunflower trait variability. Indeed, the modeling of intra-locus312

effects with a dominance component can capture part of heterosis (Larièpe et al, 2012, Reif et al, 2012),313

a phenomenon usually observed in sunflower hybrids (Cheres et al, 2000). In addition, the modeling of314

differences in male and female allelic effects takes into account the two sunflower breeding groups, for which315

divergence between the maintainer and restorer germplasm has previously been observed by Gentzbittel et al316

(1994). As in the common additive GWAS model, there is a one-to-one correspondence, in these models317

between a non-additive fixed effect and its random effect. The rationale of such modeling is to consider318
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multiple QTLs in linkage equilibrium with the currently tested locus and to achieve the same modeling for319

all the QTLs. Let us suppose that all causal QTLs of the trait genetic architecture are known and located in320

the genome. A correct model to test each QTL effect while accounting for the other QTLs is a multiple QTL321

model. Because the QTL locations are unknown, this perfect model is unknown, and a model assuming a322

QTL effect on each marker is considered. However, the number of parameters in this model is then larger323

than the number of observed individuals, and to address this issue, it is necessary to abandon the least324

square estimation method and to use, for example, the L2 shrinkage method. The solution is to assume a325

normal distribution for the marker effects in linkage equilibrium with the tested locus `. Then, as in the326

equivalence between the rrBLUP method (Endelman, 2011) and the GBLUP method (Vanraden, 2008), it327

leads to as many fixed effects as random effects, depending on the non-additive model used. The kinship328

matrices of random effects are proportional to XX′, where X is linked to the marker effect modeling as in329

the additive model and the Vanraden kinship matrix (Vanraden, 2008). The computational burden required330

for computing kinship matrices at each location ` is then lessened by using the same kinship matrices for331

all `. As shown by Rincent (2014), having different kinship matrices improves the power of GWAS analyses,332

since it avoids absorbing a part of the signal roughly proportional to linkage disequilibrium in the region of333

` when testing at location `.334

The difference between the two additive models lies in the kinship matrix computation: one is the usual335

Vanraden (2008) matrix and the other an AIS-like matrix that takes into account known marker phases in336

hybrids. Both models detected the greatest number of associated SNPs and of QTLs in common. Indeed,337

five QTLs are found associated using both additive models and, in particular, FT15.102 was detected in338

all environments. The QTLs that differ between these models have higher p-values and therefore are less339

strongly associated with the phenotype. Overall, the two additive models yield coherent results, especially340

on strongly associated QTLs. Strandén and Christensen (2011) demonstrated that the use of a Vanraden341

(2008) or AIS relatedness matrix, gives the same prediction of additive genetic values in the GBLUP genomic342

selection model, and in particular, proved that both matrices give the same REML estimates of random343

variance components. Therefore, the Wald tests performed in the GWAS forward approach are identical344

for the two relatedness matrices. Although we used more information in our AIS-like matrix because we345

integrated the known marker phases, we did not obtain a power improvement in QTL detection, as could346

be expected.347

FT09.199 was found to be associated with flowering time with four models out of five. This region is348

located on chromosome LG09, and this chromosome was also highlighted by Cadic et al (2013). In their349

study, the region is found to be associated in six different environments (i.e., combinations Sites × Years).350

Together, these findings suggest that this QTL is the most interesting region in our study. In addition,351

3 genes (GAI (Wilson and Somerville, 1995), FLORICAULA (Coen et al, 1990) and CAULIFLOWER352

(Bowman et al, 1993)) known to be involved in flower development are also located on chromosome LG09.353

It is surprising that none of our results falls exactly into these 3 genes, but FT09.199 is near GAI. It is likely354

that the causal polymorphism could be close and in strong linkage disequilibrium with the associated SNPs355

without being located exactly at the same position. A QTL confidence interval around FT09.199 would be356

useful to estimate the region where the causal locus should be located. Hayes (2013) proposed a method357

based on the difference of QTL positions within the region of interest detected in two random subsamples;358

this method could be applied to our QTL.359
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GWAS are largely based on additive effect models [58, 44]. Here, three models including non-additive360

effects were also computed. These models make it possible to emphasize the most interesting region on361

LG09, as mentioned above. This region is indicated by five SNPs, among which a single SNP was detected362

by an additive model. The non-additive modeling results increase the reliability of this region through the363

identification of SNPs very close to the SNP identified using an additive model. Moreover, four SNPs out of364

five were detected with the FMI model, which is the most complex. The usefulness of non-additive models365

is also illustrated by FT11.47 (on chromosome LG11), since this QTL was only detected with non-additive366

models despite having a strong impact on flowering time, as illustrated by its effects and p-values in the FMI367

model. In addition, models AD and FMI, which include intra-locus interaction by modeling dominance368

or parental allelic interaction, both found the most strongly associated regions indicated by FT09.199 and369

FT11.47. The first exhibits a clear deviation from an additive behavior, in contrast to the latter, for which370

an additive behavior cannot be rejected. FT11.47 was not found by additive models, because there is linkage371

disequilibrium between it and the strong FT16.167 on LG16 detected by additive models. In our forward372

detection procedure of the additive models, this phenomenon led to the addition of FT16.167 first, which373

likely decreased the signal of FT11.47 and prevented its detection. Performing GWAS with different models374

allowed us to increase both the number of associated QTLs and the confidence in the detected regions.375

Non-additive models can highlight regions with non-additive behavior even for a trait such as flowering376

time, which is notably genetically additive (Miller et al, 1980, Roath et al, 1982).377

However, in our procedure, the extended BIC used to choose non-additive models had two major draw-378

backs that certainly decreased the number of QTLs detected by these models and thus limited their useful-379

ness. eBIC is an extension of BIC suitable for handling the so-called ”high dimension issue” resulting from380

fewer observations than possible regressors to be put in the model. A penalization term that depends on the381

number of possible models formed with a given number of regressors is added to BIC in the eBIC calculation382

(Chen and Chen, 2008). eBIC was established for additive regressor models (Chen and Chen, 2008), and383

therefore we had to adapt it to the non-additive models AD, FM , and FMI. The penalization term, which384

is proportional to the mathematical combination of the number of SNPs in the current model among all385

SNPs in additive models, was transformed by multiplying both terms of the mathematical combination by386

the number of SNP effects in non-additive models (2 for AD and FM and 3 for FMI). Nonetheless, it387

is clear that all possible models are not analyzed during the forward selection process. Indeed, each SNP388

selected by the algorithm is added to the current model with all its modeling effects. The dominant part389

of a SNP cannot be added without the additive part, if we take the AD model as an example. The num-390

ber of possible models should have been reduced to take this constraint into account and the penalization391

term is therefore too high and not completely suitable for non-additive models. Furthermore, the likelihood392

computation for the eBIC calculation could also be improved. Segura et al (2012) used restricted maximum393

likelihood (REML) for BIC and eBIC calculations, and we performed our calculations on the same basis.394

However, REML is not the correct likelihood to compute when selecting a model among models that do395

not share the same number of fixed effects. This case occurs during the forward selection process, as the396

algorithm incorporates a new SNP at each iteration. Therefore, we can assume that maximum likelihood397

(ML) should have been used instead of REML in BIC. Based on this problem, Gurka (2006) performed398

simulations to compare the use either of REML or ML in model choice criteria. This study demonstrated399

that REML should incorporate the fixed effects using 1/2 log det(X′X), where X is the fixed effect design400
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matrix, and showed that this REML approach gave similar or better results than ML in choosing the actual401

simulated model using BIC. The stringency of eBIC and the absence of a term due to fixed effects may both402

explain why only a single SNP was selected by the non-additive models for each environment. Nevertheless,403

as it is more acceptable to exclude too many false negatives than to select too many false positives, we kept404

the eBIC for our model choice.405

Flowering time is an important agronomic trait that impacts crop yield, ecological fitness including406

adaptation to abiotic factors, and interaction with pollinators. Knowledge of the relative lengths of the407

period from sowing to flowering is particularly important for breeding yield (Tuteja, 2012), as late hybrids408

accumulate more biomass than early hybrids, and this advantage can lead a higher yield (Cadic, 2014). For409

a maximal dry matter yield, all parts of the plant need to develop. This morphology corresponds to late-410

flowering genotypes (Gallais et al, 1983). The aim of breeders is to find genotypes with the best performance,411

so regarding the selection of sunflower lines, studies tend to select late lines. Precocity is linked to yield,412

and therefore the variability of the effect of SNP associated with the flowering time for different genotypes413

is of interest. The genotypic effects of FT09.199 are far from an additive profile, with homozygotes for the414

variant allele that flower earlier than the other genotypes. In terms of degree days, 80 degree days separate415

homozygotes for the variant allele from homozygotes that received XRQ alleles, i.e., a difference of nearly416

6 days. This effect is very important regarding the observed variability of approximately 15 days in the417

multi-environment trials.418

The two breeding pools of sunflower (maintainers and restorers of male sterility) have undergone neither419

the same trait improvement nor the same selection pressure (Mandel et al, 2011). It is therefore expected420

that modeling different effects for each parental allele, as in FM and FMI models, will yield different421

results from other models. However, this expected difference in QTL detection is not obvious in our study,422

since only a single QTL was detected exclusively by the FM and FMI models. A lack of differentiation423

between the two breeding pools in this study compared to Mandel et al (2011) or the too-small number of424

non-additive QTLs detected because of eBIC could explain this result. Furthermore, even if there are highly425

differentiated regions between pools, they may not be involved in flowering time variability, as branching426

and restorer of cytoplasmic male sterility are located on chromosomes LG10 and LG13.427

Association analyses were conducted within each environment, as was the phenotypic adjustment to428

correct the data for local field effects. The differences of observed hybrids and the intra-environment adjust-429

ments produced a disturbance in the trait of interest from one analysis to another. Moreover, the sources of430

trait variation may be different (location, climate, soil, cultural practices, and biotic stress), and these varia-431

tions may reveal different types of QTLs: generalist QTLs whose action does not depend on the environment432

and specific QTLs with action that is revealed only in a specific environment. Apart from Cadic et al (2013)433

in sunflower, this behavior was also observed in Brassica napus in Li et al (2015), with a multi-environment434

GWAS on flowering time. In this study, 44% of all SNPs identified at 3 different locations were found in435

only one of them. In our study, we detected 6 generalist QTLs revealed by one to five SNPs and found in436

two to five environments and seven specific QTLs. Naturally, the confidence is greater for generalist QTLs437

that were detected despite the disturbance of the observed panel, and a region indicated by several SNPs,438

when they exist, could help to define a confidence region for the underlying causal locus.439

Non-additive effects, including dominance or overdominance, have been suggested as underlying hetero-440

sis. The modeling of non-additive effects in our models captured part of the heterosis observed in hybrids.441
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This study shows the added value of non-additive modeling of allelic effects, and thus the importance of442

taking into account heterosis, to identify genomic regions controlling traits of interest for sunflower hybrids.443
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Gouzy · Ludovic Legrand · Gwenola Marage ·

Emmanuelle Bret-Mestries · Stéphane Munos · Nicolas
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Fig. S1: Heatmap of phenotypic values per environment (13EX01 to 13EX06). For each heatmap (one

environment), the flowering time values are illustrated by hybrid (one square) according to their parents

(female lines on the left and male lines at the bottom). Parents are ranked by the mean of their

descendants. The more the square are green, the earlier the hybrid has bloomed, and the more the square

are red, more the hybrid has bloomed late.
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Fig. S2: Flowering time in the sunflower hybrid population across environments. Pearsons correlation

values are in red on the top right, trait distribution for each environment is presented in gray (middle),

and point clouds with the regression slope (red line) with confidence interval (green shading) are presented

on the bottom left. Correlations between two environments are based on 370 hybrids on average

(minimum 297, maximum 425).
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Fig. S8: Manhattan plot of p-values of SNPs in QTL FT09.199. Combination of the association model and

environment when significant association were found are illustrated. P-values are calculated in the

corresponding model with the EMMAX model approximation. Red lines indicate the positions of

associated SNPs. Gene involved in flowering process are positioned and indicated in red.
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Table S1: Parts of variance for the models A (AXX′), AD, FM and FMI for all the environments

(13EX01 to 13EX06). σ2
a, σ2

d, σ2
f , σ2

m, σ2
fm and σ2

e represent the additive, the dominant, the female, the

male, the interaction between female and male, and the residual part of variance, respectively. The model

used to compute theses parts of variance is the one without the effects of SNPs, using only kinships. The

values of the variance components are shown in parentheses.

13EX01 13EX02 13EX03 13EX04 13EX06

A
σ2
a 0.19 (331.47) 0.19 (257.83) 0.21 (540.81)) 0.19 (538.11) 0.19 (399.45)

σ2
e 0.81 (1405.78) 0.81 (1115.82) 0.79 (2080.87) 0.81 (2258.57) 0.81 (1663.83)

AD

σ2
a 0.17 (333.85) 0.17 (263.37) 0.20 (509.98) 0.19 (514.87) 0.20 (384.92)

σ2
d 0.15 (279.36) 0.16 (239.70) 0.16 (40.41) 0.01 (13.38) 0.01 (9.86)

σ2
e 0.68 (1301.48) 0.67 (1031.70) 0.64 (1947.71) 0.80 (2115.86) 0.79 (1559.95)

FM

σ2
f 0.30 (585.79) 0.28 (456.95) 0.37 (1321.31) 0.32 (1178.76) 0.33(866.58)

σ2
m 0.40 (777.16) 0.41 (660.31) 0.46 (1644.47) 0.44 (1617.84) 0.43 (1118.92)

σ2
e 0.30 (574.80) 0.31 (505.34) 0.17(635.86) 0.24 (846.81) 0.24 (651.70)

FMI

σ2
f 0.30 (576.35) 0.29 (472.04) 0.36 (1332.79) 0.32 (1178.76) 0.33 (870.75)

σ2
m 0.42 (817.42) 0.42 (693.70) 0.47 (1719.12) 0.44 (1617.85) 0.43 (1138.14)

σ2
fm 0.11 (221.85) 0.18 (300.76) 0.05 (186.02) ∼ 0 (8.57×10−7) 0.03 (78.51)

σ2
e 0.16 (337.80) 0.11 (180.71) 0.12 (435.50) 0.24 (846.81) 0.21 (567.85)

Table S2: Summary of QTLs found for each model in each environment. “1” indicates that the QTL is

associated to the flowering time in this environment with this model and “0” indicates no association.

13EX01 13EX02 13EX03

AAIS A
XX′ AD FM FMI AAIS A

XX′ AD FM FMI AAIS A
XX′ AD FM FMI

FT09.199 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1

FT11.47 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

FT16.167 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0

FT01.98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FT15.102 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0

FT02.78 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

FT17.184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FT05.208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FT04.144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FT07.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FT17.13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

FT04.74 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

FT13.190 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

13EX04 13EX06

AAIS A
XX′ AD FM FMI AAIS A

XX′ AD FM FMI

FT09.199 1 0 0 1 1 0 0 1 1 1

FT11.47 0 0 0 0 0 0 0 0 0 0

FT16.167 0 0 0 0 0 0 0 0 0 0

FT01.98 1 1 0 0 0 1 0 0 0 0

FT15.102 1 1 0 0 0 1 1 0 0 0

FT02.78 0 0 0 0 0 0 0 0 0 0

FT17.184 0 0 0 0 0 1 1 0 0 0

FT05.208 0 0 0 0 0 1 0 0 0 0

FT04.144 0 0 0 0 0 1 0 0 0 0

FT07.34 0 0 0 0 0 1 0 0 0 0

FT17.13 0 0 0 0 0 0 0 0 0 0

FT04.74 0 0 0 0 0 0 0 0 0 0

FT13.190 0 0 0 0 0 0 0 0 0 0
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