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Abstract

Individuals differ greatly in their life courses, but how such diversity is gen-

erated, how it has evolved and how it is maintained is less understood. How-

ever, such understanding is crucial to comprehend evolutionary and ecologi-

cal population dynamics. In structured populations individuals diversify by

transitioning through discrete stages that end with death. Such stage tran-

sitions can be described by a Markov chain, and the rate of diversification

of these stage-sequences individuals experience with increasing age can be

quantified by the population entropy of a Markov chain. Here, we derive

sensitivities of the population entropy of a Markov chain in order to identify

which transitions are generating most diversification among life courses, i.e.

what drives diversification. We then use these derived sensitivities to reveal

potential selective forces on the dynamics of life courses. We illustrate our

exact result for the sensitivity of the entropy using an example on a seabird

population that is structured by reproductive stages. In our example on the
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murres, the most important drivers of diversification of life courses are not

linked to the most sensitive transitions influencing population growth, which

suggests that observed diversification in life courses are rather neutral than

adaptive. However, this interpretation has to approached with caution since

we only explored one of many solutions for the constraints among transition

probabilities. We believe to only start to understand how individual level

dynamics shape population level evolutionary and ecological dynamics, and

many more exciting discoveries await us in exploring underlying dynamics of

age- and stage-structured populations.

Introduction

In any population we observe a great diversity in life courses among in-

dividuals (Tuljapurkar et al., 2009; Steiner and Tuljapurkar, 2012). How

such diversity is generated, how it has evolved and how it is maintained

is of central interest to us as biodemographers, evolutionary ecologists, and

population biologist, because such knowledge furnish understanding of evolu-

tionary and ecological population dynamics (Endler, 1986; Hartl and Clark,

2007). We know that genetic variability, environmental variability and their

interaction contribute to individual differences in life courses, as do stochas-

tic events (e.g. demographic stochasticity) (Lande et al., 2003; Finch and

Kirkwood, 2000; Melbourne and Hastings, 2008). Population geneticists and

quantitative geneticists have provided us with theoretical and empirical un-

derstanding about changes in genotype frequencies and trait distributions,

such changes in distributions aim at the population level dynamics, but the

underlying individual level dynamics that lead to the diversity in individual

life courses are less explored (Lande et al., 2003). Besides the lack of un-

derstanding drivers of individual level dynamics, we do not know to what

degree such individual level dynamics are adaptive, mal-adaptive or neutral
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(Lenormand et al., 2009).

Whatsoever the actual underlying driver of the diversity in life courses

might be, in any structured population the diversity of individual life courses

is generated by transitions through discrete stages that end with death

(Caswell, 2001). Individuals are born into one, or one of several, discrete

stage and subequently transition to one of several discrete stages at each

observation. Hence, an individual’s life course can be be described as a

stage sequence, which we call a trajectory (Tuljapurkar et al., 2009). The

stages, each individual at each observation attains, can comprise develop-

mental stages including levels of breeding success, morphological stages such

as size, behavioral stages such as feeding or mating activity, physiological

stages such as condition, gene expression stages such as transcription factor

expression, epigenetic stages such as the methylation stage, or geographically

defined spatial location.

Say there are s stages, so that the population is described by the

frequency with which we observe each stage at each observation, underly-

ing these population level frequencies lay the individual trajectories. Note,

that we can generate population stage frequencies with very different under-

lying individual trajectories. For instance, heterogeneous trajectories with

individuals frequently changing among stages can lead to very similar popu-

lation level frequencies as can a few trajectories with low level of dynamics

(Hernandez-Pacheco and Steiner, 2017). Therefore the population stage fre-

quencies, which are also the focus of population genetics and quantitative

genetics, does not reveal underlying individual level stage dynamics. Here,

we consider only systems whose dynamics – changes in stage frequency –

are described by a Markov chain, i.e., there is a probability pij ≥ 0 that an

individual changes its stage from stage j to stage i, for every possible pair of

stages. The notation here is similar to Caswell (2001); Hill et al. (2004).

In many systems initial stage distribution at birth is centered to-
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wards one or a few stages, e.g. individuals start life in a newborn stage or

immature stage if developmental and reproductive stages are tracked. With

increasing age, individuals transition through stages described by a Markov

chain, individual trajectories diversify. We can quantify the rate of diversi-

fication of these trajectories by the population entropy of a Markov chain.

This population entropy has breviously been used as a measure of the rate of

diversification among life courses, also termed dynamic heterogeneity among

alternative individual trajectories (Tuljapurkar et al., 2009; Steiner and Tul-

japurkar, 2012) (other related concepts are termed individual heterogeneity

(Caswell, 2009)). This quantification of population entropy is based on the

transition probabilities pij of the Markov chain, that determines the diver-

sity in trajectories. Here we aim at revealing the drivers of such diversity by

seeking for the sensitivity of the population entropy of a Markov chain, that

is, we perturb a set of transition probabilities and see how entropy responds

to such perturbation.

The sensitivity of the population entropy reveals to us which transi-

tions are generating most diversification among life courses, but it does not

provide any understanding whether such diversification might be under selec-

tion, i.e. whether it is adaptive or neutral. To investigate potential adaptive

features of such diversification we can compare the sensitivity of the popu-

lation entropy to the sensitivity with respect to the population growth rate,

λ. This latter sensitivity to λ is linked to the evolutionary forces acting on

these transition probabilities, because population growth rate quantifies fit-

ness and selection is expected to have acted most strongly on the most sensi-

tive transition probabilities (Caswell, 2001). After calculating both measures

of sensitivity (sensitivity to entropy and sensitivity to λ) we can correlate the

two to reval potential adaptive drivers of diversification among life courses.

If we find a positive correlation diversification should be adaptive, or diver-

sification is rather neutral if we do not see any relationship between the two

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2017. ; https://doi.org/10.1101/188276doi: bioRxiv preprint 

https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/


measures of sensitivities.

Our aim here is two fold, first we derive sensitivities of the population

entropy of a Markov chain in order to identify drivers of diversification, and

second we use these derived sensitivities to reveal potential selective forces

on the dynamics of life histories. We describe such sensitivities for ergodic

markov chains, and markov chains with absorbing stages. Classical popula-

tion projection matrix models that include reproduction (e.g. Lefkovitch or

Leslie population matrix models) first need to be transformed into a Markov

chain before we can estimate the population entropy. We can achieve this

transformation as described by Tuljapurkar (1982) (Appendix). We illus-

trate our exact result for the sensitivity of the entropy using an example on a

seabird population, the Thick-billed murre on Coats Island, Canada (Gaston

et al., 1994; Steiner and Gaston, 2005). This population is structured by

reproductive stages.

Our results have the virtue that they only require the dominant

eigenvalue and corresponding eigenvectors of non-negative matrices – this is

numerically straightforward and well-conditioned, unlike the computation of

all subdominant eigenvalues. Our approach is therefore applicable to many

structured populations.

When the population is ergodic (actually, irreducible and aperiodic)

there is a stationary (or equivalently, equilibrium) frequency distribution

over the possible stages: a vector w whose elements wi are the frequencies of

stages i = 1, . . . , s. A stage’s equilibrium frequency also equals the fraction

of times that an individual is expected to be in that stage, if we make many

repeated observations. Entropy H(P) quantifies the diversity in individual

5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2017. ; https://doi.org/10.1101/188276doi: bioRxiv preprint 

https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/


trajectories described by the Markov chain:

H(P) = −
s∑

j=1

wj

s∑
i=1

pij log pij, (1)

= −eT (P ◦ log(P))w. (2)

Here P is a matrix of the Markov chain transition probabilities pij. The

second line above is useful numerically and analytically: the superscript T

indicates a transpose; e is a vector whose entries all equal 1; the Hadamard

product (◦) is elementwise so that for matrices P, log(P) of equal size with

elements pij, log(pij) respectively the matrix P ◦ log(P) is of same size and

has ij element equal to pij log(pij).

We start with deriving sensitivities for an ergodic chain (irreducible,

non-absorbing), by asking what happens if we make a small change in the

transition probabilities so that P becomes P + εB (for small positive ε).

Throughout this paper, we consider only perturbations that leave unchanged

the signature of the Markov chain: i.e., whenever pij = 0 we keep bij = 0.

Then the entropy must change from H(P) to say H(P) + εH1. Then H1 is

the sensitivity of the entropy. We obtain here an exact analytical expression

for this sensitivity.

Thereafter, we answer the analogous question for a Markov chain

that has at least one “absorbing” stage. To see why this is different, suppose

death is the absorbing stage so that an individual wanders among the non-

absorbing stages until it dies. Conditional on being alive, we expect that

there is a quasi-stationary distribution over the non-absorbing stages, if we

can find appropriate conditional Markov transition probabilities. Darroch

and Seneta (1967) show that we can, providing that absorption takes a long

time; see also Matthews (1970). The entropy of this conditional Markov chain

measures the dynamic heterogeneity of individual trajectories until death.
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Our contributions are an exact result for the sensitivity of the entropy of an

ergodic chain and absorbing Markov chains. Comparing the sensitivities be-

tween the two types of markov chains (ergodic and absorbing) from the same

system can then be used to evaluate the contribution of survival differences

among individuals on the diversity of stage trajectories (Hernandez-Pacheco

and Steiner, 2017).

Sensitivity of Entropy: Ergodic Chains

Changing Transition Probabilities

The starting point is a population described by a specified matrix P of tran-

sition probabilities; we assume the chain is irreducible and aperiodic, hence

ergodic. An ergodic population is characterized by its asymptotic dynamics

being independent of the starting conditions. Here, we are mainly interested

in such ergodicity since our focus is on revealing underlying processes, i.e.

the drivers of diversity in life courses, than on initial conditions a population

starts at. For such ergodic models the stationary frequency is an eigen-

vector, Pw = w. Transition probabilities out of each stage sum to unity,

so eT P = eT . We compute the fundamental matrix, which has also been

described as the stage duration matrix (Steiner et al., 2012).

Z =
[
I−

(
P−weT

)]−1
, (3)

where I is the identity matrix.

Now perturb the transition probabilities to P+εB, so that transition

probability pij changes to pij + εbij. Clearly we must have

eT B = 0T , i.e., columns sum to zero. (4)
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This means that changes in the transition probabilities are necessarily con-

strained; some biologically distinct ways of achieving this constraint are dis-

cussed by Caswell (2001).

Then following Schweitzer (1968) the stationary frequencies change

to w + εy + ε2y2 +O(ε3) where eTy = eTy2 = 0

y = ZBw, (5)

yi =
s∑

k=1

s∑
m=1

Zim bmk wk. (6)

The more involved expression for y2 is found in Kato (1966). So the vector

y from equation (5) comprises the time an individual spends in each stage

given its current stage (stage duration matrix, Z), the product with the

perturbation matrix B then determines the change in time each individual

spends in each stage given its current stage, and finally the multiplication

with the stable stage distribution w quantifies how many individuals (or

more precisely what proportion of individuals) are affected by the change

in time they spent in each stage, i.e. how many individuals are affected by

how much time they spend in each stage due to the perturbation, which is

exactly how much change in the stationary stage distribution is caused by

the perturbation.
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Sensitivity of Entropy

From equation (1) (and the Appendix) the entropy of the perturbed Markov

chain is

H(P + εB) = H(P) + εH1 + ε2H2 +O(ε3), (7)

H1 = −
s∑

i=1

s∑
j=1

[wj bij log pij + yj pij log pij] , (8)

= −eT [B ◦ log(P)w + P ◦ log(P)y] , (9)

H2 = −eT [(1/2)B ◦Bw + B ◦ log(P)y + P ◦ log(P)y2 + P ◦By] .

(10)

Here H1 is the sensitivity to the population entropy we seek. The second-

order change in entropy (essentially the second derivative) is H2.

Special Case: Perturbing a Maximum Entropy chain

A chain with maximum entropy has transition matrix elements pij = (1/s)

where, as before, s is the number of stages (Tuljapurkar et al., 2009). Clearly

w has every element equal to (1/s) and we can write

P = weT . (11)

The entropy of this chain is just H = log s (see also Tuljapurkar et al. (2009)).

The chain’s fundamental matrix (see (3)) is just Z = I, which means that

when we perturb the chain to P + εB the eigenvector w becomes (see (5))

just w + εy with y = Bw. The second-order perturbation of w is zero (i.e.,

y2 = 0).

The sensitivity of this chain is zero! To see that this is true in our
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equations, observe that in (9) we have

B ◦ log(P) = log(1/s)B,

P ◦ log(P)y = (1/s) log(1/s) ◦ Ey = (1/s) log(1/s) ◦ EBw, (12)

where E is a matrix with all elements equal 1. Hence both terms in H1 (9) are

proportional to eT B – but this has to be zero for any possible perturbation,

so H1 = 0. More generally, sensitivity is just a (complicated) derivative of

entropy and since we start with maximum entropy it must be true that any

derivative of the entropy is zero (that’s what defines a maximum).

So what about H2 in (10)? Note that here by2 = 0 , and that the

arguments in (12) imply that the only surviving term in (10) is

H2 = −eT [(1/2)B ◦Bw] = − 1

2s

∑
i

∑
j

B2
ij. (13)

Thus perturbing a maximum entropy chain with transition matrix P by the

constrained matrix εB always yields a reduced entropy

H(P + εB) = H(P) + ε2H2 = log s− ε2

2s

∑
i

∑
j

B2
ij,

to order ε3.

Sensitivity of Entropy: Chains with Absorbing

stages

Transition Probabilities with Absorption

We consider just one absorbing stage – multiple absorbing stages are easily

dealt with (Matthews, 1970). Let’s say the absorbing stage (think “death”)
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is stage s so that stages 1 to (s − 1) are the transient (i.e., “alive”) stages.

The transition probability matrix must have the form

P =

(
Q 0

µT 1

)
, (14)

with absorption (death) probabilities given by the elements µi of vector µ:

µi = 1 −
(s−1)∑
j=1

pji = 1 −
(s−1)∑
j=1

qji.

Matrix Q, describes the transition probabilities among the life stages,

summing over the columns of Q gives the survival probability of each stage.

Conditional on non-absorption (i.e., being alive), the transition probabilities

among the (s−1) transient stages (Darroch and Seneta, 1967) are the entries

in the (s− 1) × (s− 1) matrix

R =
1

ρ
v̂ Q v̂−1, (15)

where 0 < ρ < 1 is the dominant eigenvalue of Q, v with elements vi is the

corresponding left eigenvector,

vT Q = ρvT ,

and the diagonal matrix

v̂ = diag(v).

The ij element of matrix R is viqij/(ρvj); clearly, the columns of R sum to

1, so this is a Markov matrix, while matrix Q is not. So what we have done

in (15) is to transfrom the transient (absorbing stage transition) matrix Q

to a Markov chain R. Let w be the right eigenvector of Q corresponding
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to its dominant eigenvalue, normalized so that (vTw) = 1. The equilibrium

frequency distribution of the conditional process governed by R is given by

the products (wivi), i = 1 . . . (s− 1).

We can measure the dynamic heterogeneity of individual trajecto-

ries while they are still alive by the entropy of the conditional process (see

Appendix),

H(P) = H(Q),

= −
(s−1)∑
j=1

wj vj

(s−1)∑
i=1

rij log rij,

= log ρ− 1

ρ

(s−1)∑
i=1

(s−1)∑
j=1

viwj qij log qij. (16)

Perturbing an Absorbing Chain

We now want the effect on the population entropy of small changes in the

transition probabilities of the Markov chain. In (14), consider simply changes

in the transient matrix Q to Q + εB. It is easy to see how this changes the

full matrix P. These changes will alter ρ,v, and w to ρ+ εν,v+ εx,w+ εy,

respectively. Here we give explicit formulas to compute these changes and in

the next subsection show how these are used to compute the sensitivity of

entropy we seek.

Recalling that (vTw) = 1, we have the well-known (see e.g., Caswell

(2001)) fact that

ν = vT Bw. (17)
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We define two new matrices:

D1 = I−wvT , (18)

Z1 =
1

ρ

[
I−

(
Q

ρ
−wvT

)]−1
. (19)

Then we have (see Appendix) the less well-known results,

y = Z1D1Bw, (20)

xT = vT BD1 Z1. (21)

The interpretation of y in (20) is similar to the one in equation (5),

i.e. how many individuals are affected by how much (more or less) time they

spend in each stage due to the perturbation, which equals how much change

in the stationary stage distribution is caused by the perturbation, except

here (20) this change is based on the absorbing (transient) transition matrix.

Sensitivity of Entropy for an Absorbing Chain

The last step is to compute the difference between the entropy of the per-

turbed chain (H(Q)) and the original chain,

H(Q + εB) = H(Q) + εH1. (22)

The sensitivity H1 is given (see Appendix) by

H1 = ν

(
1

ρ

)
[(1 + log ρ−H(Q)]

−
(

1

ρ

) (s−1)∑
i,j=1

[(xiwj + viyj) qij log qij + viwj bij log qij] .

(23)
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Illustrative example sensitivity of entropy: The

Thick-billed murre

To illustrate our exact result for the sensitivity of the population entropy of

a Markov chain, we first built a stage-structured matrix population model

using longitudinal mark resighting data on a highly philopatric and colonial

seabird species, the Thick-billed murre (Uria lomvia) (Gaston et al., 1994;

Steiner and Gaston, 2005). After parameterizing the population projection

matrix based on the longitudinal data, we transformed this matrix in order

to generate a Markov chain, as described by Tuljapurkar (1982) (Appendix).

Here we present the results on population entropy (ergodic chain) of the

resulting Markov chain and discuss its implications.

Structured population model of the Thick-billed Murre

To parameterize the stage-structured matrix model, we used data on 1984

individual seabirds, Thick-billed murres, banded between 1981 and 2010,

on Coats Island, Nunavut, Canada (62◦30′N , 83◦00′W ). Resightings (band

readings) have been made between 1991 and 2011 in the colony over each

breeding season. When a bird was resighted its breeding status was recorded

as a) immature, I, birds prior to any breeding attempt; b) egg, E, egg laid but

not hatched; c) hatch, H, chick hatched but not fledged; d) fledge, F, chick

fledged, i.e. chick disappeared >=10 days after hatching; or e) unknown, U,

when the breeding outcome was not known. Birds are born into an immature

stage (I) and they remain in that stage until they are three years old (only 3

out of the 1128 individuals banded as chicks, i.e. know aged birds, recruited

at age two into the breeding cohort). After the third year, individuals can

stay as immatures, or transition to and then among one of the other breeding

stages, E, H, and F. Since some birds had unknown breeding stages, we cor-
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rected the estimated survival and transition probabilities among the observed

breeding stages (E, H, F) for the unknown events by weighting probabilities

according to survival and transition rates (Appendix). Our stage structured

matrix projection model included the four stages (I,E,H,F), with stage F be-

ing the only stage contributing to reproduction. Since sex determination for

Thick-billed murres is challenging, we used data on both sexes for estimat-

ing survival, resighting, and transition probabilities (assuming same survival

and transitioning among sexes). For the stage structured matrix projection

model we assumed 50% of chicks to be female, and we included only females

for the fertility of the projection model (Table 1).

The colony on Coats Island is divided in different study plots and

resighting effort varied among study plots and years. We therefore accounted

for this varying effort among plots and years when we estimated the stage

specific survival and transition probabilities, that is we accounted for plot

and year specific resighting probabilities (mean= 0.41 ± 0.17 Stdev) but not

stage specific resighting probabilities (i.e. we assumed that E,H,F stages

are equally likely being resighted). We estimated survival and transition

probabilities across all plots. This means, the probability of a bird surviving

or transitioning among stages did not depend on the study plot it bred at,

but on its current stage. Further detail on estimating resighting, survival

and transition probabilities, for which we used program MARK (White and

Burnham, 1999), is provided in the Appendix.

The data only included birds that recruited as breeders (or attempted

breeders) to the colony, we therefore adjusted the immature survival for the

population projection model using a previously described estimate of 40.5%

of fledglings survival to age three, the age when many indivdiuals started to

recruit as breeders (Gaston et al., 1994). This resulted in an annual imma-

ture survival of 0.74. Survival rates of the other states (after correcting for

the unknown events) equalled 0.96 for E, 0.87 for H, and 0.91 for F. Table 1
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shows the population projection matrix, summarizing the stage transition

and survival rates (column sums). The corresponding transformed Markov

chain is shown in Table 2.

Demographic parameters of the stage structured Thick-

billed murre population model

We estimated the population growth rate for the projection model at λ=1.041

(dominant eigenvalue of matrix shown in Table 1), which might be a slight

overestimation compared to the observed population growth. The quasi sta-

ble stage distribution of the projection model was I=0.33, E=0.25, H=0.07,

F=0.36 (scaled corresponding right eigenvalue w) and the corresponding re-

productive values are I=1.0, E=2.2, H=2.1, F=2.7 (corresponding left eigen-

value v, scaled for I=1). The sensitivities with respect to λ of the population

projection model (Table 1) are given in Table 3. They show that popula-

tion growth rate is most sensitive to transitions from the immature to the

fledging stage, as well as remaining in the fledging stage, the only stage that

contributes to fertility. The population shows a high rate of diversification

with an entropy, H=0.98% of the maximum entropy for the Markov chain

matrix (Table 2).

Integrated sensitivities and selective forces

The sensitivities, as we estimated for instance in Table 3, imply that a re-

alized perturbation in a transition probability is traded-off against survival

of that stage. Here we are not interested in reproduction-survival trade-

offs, but in changes among stage dynamics without changing stage survival.

If we perturb one transition probability, but keeping the survival rate of

this stage constant, we have to compensate this perturbation by one or

more transitions of this stage. Such constraints in changing the transition
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probabilities for stage structured models are discussed by Caswell (2001)

from a biological perspective. There are many solutions to fulfill these con-

straints, here, we reduced the transition probability of one matrix param-

eter by 0.01 and increased at the same time the transition probabilities

of the remaining stage parameters by equal amounts as to perturbations

eT B = 0T , i.e., columns sum of the perturbations equal zero (see also equa-

tion (4)). We call these sensitivities integrated sensitivities, because they

comprise changes in multiple transition rates and we sum weighted sensi-

tivities according to the perturbations described in B. We estimated such

an integrated sensitivity related to a reduction in each transition probability

(note we consider only perturbations that leave unchanged the signature of

the Markov chain: i.e., whenever pij = 0 we keep bij = 0). Each change in

the transition probability changes the entropy and the population growth,

but perturbations now having signs, and resulting changes on entropy (di-

versification) or population growth can be positive or negative. Classical

sensitivities, as illustrated for instance in Table 3, hold only positive values

(any increase in a transition rate also increases survival and therefore has to

increase population growth).

In Table 4 we show results for the integrated sensitivities of pop-

ulation entropy for the murre example. Table 5 shows the correspond-

ing integrated sensitivities with respect to λ. If we reduce the transition

rate of remaining as immatures (I to I) by 0.01, and at the same time in-

crease the remaining three transition probabilities (from I to E,H &F) by

0.01/3 = 0.003333, entropy (rate of diversification) increases by 0.0034, while

the population growth rate, λ, increases by 0.00219. A reduction in the prob-

ability of fledging a chick in two consecutive years (transition stage F to F)

and increasing the probability of transitioning from a fledging event (F) to

stage E, or H, and changing fecundity increases entropy most, while reducing

the transition between F and H reduces entropy most (Table 4). These inte-
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grated sensitivites of entropy are distinct from integrated sensitivities with

resepct to λ. Reducing the probability of staying in stage I in consecutive

years (I to I transition) and increasing the chance of recruiting to the breed-

ing cohort (I to E,H,F transitions) increases population growth rate most

strongly. Reducing fecundity (F to I transitions) also leads to a strong in-

crease in population growth when at the same time transitions between F

and E, H, F are increased (Table 5). The most negative effect for population

growth rates are achieved if transitions between I and F, and F and F are

reduced (and at the same time transitions to the other stages are increased).

This latter observation is not surpising given that we find the highest clas-

sical (non-integrated) sensitivities with respect to λ (Table 3) for the same

transitions.

The integrated sensitivities with respect to entropy (Table 4), show

which transitions are most critical for generating diversity among life courses,

but they do not provide information on whether such diversity might be

adaptive or neutral. The integrated sensitivities with respect to λ (Table 5)

provide us with information how changes in transitions affect population

growth and fitness, and such sensitivities have been used to quantify forces

of selection on transition probabilities (Caswell, 2001). The higher the sen-

sitivity with resepect to λ, the stronger selection should have acted on these

transition rates. However, these integrated sensitivities with respect to λ

(Table 5) do not inform us on diversity among life courses. Therefore, we

correlated the two measures of integrated sensitivities to approach the ques-

tion whether the observed diversity and generating moments measured as

the entropy, the rate of diversification among life courses, might be adaptive.

As we see in Fig. 1, the two measures of sensitivity are not correlated and

hence the rate of diversification and the resulting diversity among life courses

might rather be neutral. Such interpretation supports neutral theories of life

history evolution (Tuljapurkar et al., 2009; Steiner and Tuljapurkar, 2012),
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and challenges adaptive theories arguing that variability in life courses is

adaptive, an interpretation found in various evolutionary ecological studies

(Stearns, 1992).

Conclusions

The sensitivities of the population entropy we derived for different types of

Markov chains are widely applicable to population biology and demography,

since they only require the dominant eigenvalue and corresponding eigenvec-

tors of non-negative matrices. We have shown how they reveal drivers of

diversification in life courses (Table 4), and we can use them in combination

with other sensitivities to inform on a larger and controversial debate on po-

tential selective forces acting on the dynamics of life histories. Our example

on the Thick-billed Murres illustrates that we only have a poor understand-

ing about apriory predicting drivers of diversification. In our example these

drivers are not linked to the most sensitive transitions influencing popula-

tion growth and hence suggest that observed diversification in life courses

and related variability in individual fitness components (survival and repro-

duction) are rather neutral than adaptive. We have to be cautious about over

interpretation of this result, since many solutions for the constraints among

transition probabilities exist (Caswell, 2001) and we only have explored one,

that seemed to us biologically plausible. We believe novel approaches as our

investigation of sensitivities to entropy will proof useful in understanding

how individual level dynamics shape population level evolutionary and eco-

logical dynamics and their demographic consequences for the populations.

We see such examination only in its infancy and many more exciting discov-

eries await us in exploring underlying dynamics of age- and stage-structured

populations.
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Table 1: Projection matrix model

I E H F

I 0.494 0 0 0.5
E 0.22 0.465 0.231 0.161
H 0.006 0.116 0.094 0.088
F 0.02 0.378 0.55 0.657

Table 2: Tranformed Markov chain matrix

I E H F

I 0.474 0 0 0.178
E 0.462 0.446 0.231 0.125
H 0.012 0.107 0.09 0.066
F 0.446 0.446 0.679 0.63

Table 3: Sensitivity to λ

I E H F

I 0.165 0 0 0.181
E 0.361 0.277 0.073 0.396
H 0.346 0.266 0.07 0.379
F 0.445 0.342 0.09 0.487

Table 4: Integrated sensitivity to entropy

I E H F

I 0.0034 0 0 0.00062
E 0.0031 0.00192 -0.00006 -0.0024
H -0.00461 -0.00352 -0.00093 -0.0058
F -0.00189 0.0016 0.00099 0.00758
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Table 5: Integrated sensitivity to λ

I E H F

I 0.00219 0 0 0.0024
E -0.00043 0.00026 0.00007 -0.00047
H -0.00022 0.00044 0.00012 -0.00024
F -0.00154 -0.0007 -0.00019 -0.00169

A Appendix

A.1 The Ergodic Case

The perturbation matrix B satisfies (1) of the main text. Writing

D = P−weT ,

see also that

eT Z = eT
[
I + D + D2 + . . .

]
= eT ,

so finally, from (5),

eT y = eT ZBw = eT Bw = 0.

The perturbation of the entropy in (1) uses the expansion

p log(p+ εb) = p log p+ p ε(b/p) +O(ε2) = p log p+ ε b+ ε2 (b2/p) +O(ε2).

Keeping terms to O(ε) yield three terms (omitting the summations over i

and j),

wjbij + wj bij log pij + yj pij log pij.

Recall that
∑

i bij = 0 for every j to see that the first term is zero, leaving

us with equation (8).
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A.2 Conditional Entropy

A.2.1 Simplifying the Entropy

The entropy is defined by the middle line of (16). Insert (15) to obtain

−1

ρ

(s−1)∑
i=1

(s−1)∑
j=1

wj vi qij [log qij + log vi − log vj − log ρ] .

Now use the facts
∑

j qijwj = ρwi,
∑

i viqij = ρvj to see that the two middle

terms cancel, and to see that the last term (with sums) is just log ρ. This

yields the last line of equation (16).

A.2.2 Perturbing Eigenvectors

We derive (20); proceed similarly to get (21). Now the perturbed right

eigenvector of Q satisfies the usual equation

(Q + εB) (w + εy) = (ρ+ εν) (w + εy).

The order ε terms here are:

Qy + Bw = (νw + ρTy). (A-24)

Now note that wvT is a matrix that projects any vector onto w.

When we perturb the matrix Q, the change y must be orthogonal to w (oth-

erwise we are just making a proportional change in every matrix element).

Hence we must have

D1y = (I−wvT )y = y.

Also

D1Q = (I−wvT )Q = Q−wvTQ = Q− ρ(wvT ).
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Using these facts, multiply all terms of (A-24) by matrix D1 to get,

first,

D1Qy + D1Bw = ρy,

and then

D1Bw =
(
ρ−

[
Q− ρ

(
wvT

)])
y.

Using the inverse of the matrix on the right (guaranteed to exist because ρ

is the dominant eigenvalue) leads to (20).

A.2.3 Sensitivity of Entropy

We examine separately the two terms of (16) and find perturbations to order

ε. The first term changes to

log(ρ+ εν) = log(ρ) + ε

(
ν

ρ

)
.

The second term of (16) has the form

1

ρ
F,

say, where F stands for the double sum.

Now (much as in Section A.1) the perturbation of the double sum

in (16) is

F1 =

(s−1)∑
i,j=1

[(xiwj + viyj) qij log qij + viwj bij log qij] .

Thus the effect of the perturbation on the second term of (16) is to

produce
1

(ρ+ εν)
(F + εF1) =

1

ρ
F + ε

[
F1

ρ
− ν

F

ρ2

]
.
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So the total perturbation is(
ν

ρ

)[
1 +

F

ρ

]
− F1

ρ
.

Using (16) to express F/ρ in terms of the entropy H(Q) yields (23).

A.3 Transforming projection matrix to Markov chain

To transform a population projection model into a Markov chain, we follow

Tuljapurkar’s approach (Tuljapurkar, 1982). Note, Tuljapurkar’s projection

matrix describes transitions from rwo to column, whereas our matrix P de-

scribes transitions from columns to rows, hence the transformation for our

matrix is as follows:

PM =
1

λ
W−1PPW

with PM being the Markov chain (Table 2), PP being the population

projection matrix (Table 1), λ being the population growth rate (dominant

eigenvalue of PP ), and W being a matrix of zeros except for the diagonal

elements of (wi), which are the normalized stable stage distribution values

(normalized right eigenvector corresponding to dominant eigenvalue of matrix

PP ). W−1 is the inverse of matrix W.

A.4 The thick-billed murre, population projection model

We used data from a total of 1984 individuals, of which 1128 individuals

where banded as chicks (immatures), and 856 were banded as adults (left

censored). In the breeding colony on Coats Island, these birds were observed

over a breeding season and many resightings of an individual bird were made

each year. Birds are highly philopatric to their breeding sites which makes it

relatively easy to record the breeding outcome for a given year (Steiner and
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Gaston, 2005). We used 5956 records of annual breeding outcomes of which

1313 were egg failures, E, 518 hatching failures, H, 3031 fledging successes,

F, and 1094 unknown events, U. Since birds are highly philopatric to their

breeding site we could assing each bird to a breeding plot. For a few birds

that switched a breeding plot within their lifetime, we assigned them to the

breeding plot they spent most time breeding at.

We only included data from six study plots (D, J, K, N, Q, S) that

had longitudinal data on a larger number of individuals. For the 1128 im-

mature individuals that were banded as chicks in the colony and then later

recruited as breeders, we assumed that they would stay as immatures for

the first three years, before they would be allowed to start transitioning to

and among the breeding stages (E, H, F, U). Only three of these 1128 birds

recruited at age two into the breeding cohort, for these three birds we con-

sidered their observed breeding status at age three. Once a bird left the

immature stage it was not allowed to transition back to the immature stage.

Entering the immature stage from a breeding stage (E, H, F, U) was only

possible as a newborn, that is through fertility (Table 1).

When we estimated the stage specific survival and transition rates

using program MARK (White and Burnham, 1999), we accounted for differ-

ences in resighting effort among years and plots. Banding of chicks started in

1981 but band reading only began in 1991, so all resighting probabilities for

all plots prior to 1991 were set to 0. Similarly no resightings were made for

plot D in 2001; for plot J prior to 1995, and in 2000, 2005-2008, 2010, 2011;

for plot K in 2001, 2003-2006, and 2011; for plot N in 2001, 2003-2006, and

2011; for plot S in 2000-2002, 2004, 2006, and 2011. In those years for these

plots resighting probabilities for the breeding stages (E, H, F, U) were set

to 0. For plot Q we had resighting records for each year between 1991 and

2011 and estimated plot specific resighting rates for each year. We did not

estimate stage specific resighting probabilities, but only plot and year specific
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resighting probabilities, since the resighting probability should not depend

on the breeding stage (recall we have many observation of each individual

within a breeding season).

When we estimated the stage specific transition parameters, using

program MARK, we used a multinomial logit function to assure that the

transition rates of a given stage sum to 1. This estimation of the survival and

transition probabilities included unknown breeding outcomes, U. To account

for these unknown breeding outcomes we corrected the survival and transition

probabilities of the known breeding stages (E, H, F). We did this by first

estimating the fractions of the known breeding outcomes (1313 E, 518 H,

3031 F; i.e. 0.27% E, 0.11% H; and 0.62% F). The expected number of

unknown events and their associated survival rates compared to the known

events was then taken into account to correct the survival rates of the known

stages.

Transition rates to the unknown stage were added to the transition

rates of the known stages (E, H, F). We did this by taking the estimated

transition probability of a given stage to the unknown stage, and increased

each stage transition of the observed stages by its relative weight. This

correction was done for each stage (I, E, H, F) and provided the four by four

matrix that contributes to Table( 1).

Suvival estimates of the immature stage, I, based on the MARK

model was very close to 1 (if we forced it to be exactly one we had convergence

issues). Such a high survival rate is expected since only birds entered the

data base if they were recorded as breeders (or atempted breeders), i.e. they

all needed to survive the immature stage. In order to get a more realistic

population projection model, we reduced annual immature survival to 0.74

which leads to a survival between fledging and age three of 40.5 %; a survival

rate reported by Gaston et al. (1994) for this population.

Murres lay a single egg and do not have multiple broods, for that
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any successfull fledgling (stage F event) contributed to fertility. We did only

consider female fledglings, assuming that 50% of all fledglings are females. So

our resulting population projection model can be seen as a one sex (female)

model even though we used male and female observations for estimating

survival, transition and resighting probabilities. Other than a slight delay in

onset of breeding for males, transition and survival rates have been estimated

to be very similar in this species (Gaston et al., 1994). If we only had used

data from known females the amount of data would have been much lower

and parameter estimations less accurate.
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Figure 1: Correlation between sensitivity of entropy and sensitivity of λ
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