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Abstract13

Individuals differ in their life courses, but how this diversity is generated,14

how it has evolved and how maintained is less understood. However, this15

understanding is crucial to comprehend evolutionary and ecological popula-16

tion dynamics. In structured populations, individual life courses represent17

sequences of stages that end in death. These sequences can be described by a18

Markov chain and individuals diversify over the course of their lives by tran-19

sitioning through diverse discrete stages. The rate at which stage sequences20

diversify with age can be quantified by the population entropy of a Markov21

chain. Here, we derive sensitivities of the population entropy of a Markov22

chain to identify which stage transitions generate—or contribute—most to23

diversification in stage sequences, i.e. life courses. We then use these sen-24

sitivities to reveal potential selective forces on the dynamics of life courses.25

To do so we correlated the sensitivity of each matrix element (stage transi-26

tion) with respect to the population entropy, to its sensitivity with respect27
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to fitness λ, the population growth rate. Positive correlation between the28

two sensitivities would suggest that the stage transitions that selection has29

acted most strongly on (sensitivities with respect to λ) are also those that30

contributed most to the diversification of life courses. Using an illustrative31

example on a seabird population, the Thick-billed Murres on Coats Island,32

that is structured by reproductive stages, we show that the most influential33

stage transitions for diversification of life courses are not correlated with the34

most influential transitions for population growth. Our finding suggests that35

observed diversification in life courses is neutral rather than adaptive. We36

are at an early stage of understanding how individual level dynamics shape37

ecological and evolutionary dynamics, and many discoveries await.38

Introduction39

In any population we observe great diversity in phenotypes and life courses40

among individuals (Tuljapurkar et al., 2009; Steiner and Tuljapurkar, 2012).41

How such diversity is generated, how it has evolved and how maintained is of42

interest to population biologists, biodemographers, evolutionary biologists,43

and ecologists, because such knowledge furthers understanding of ecological44

and evolutionary change (Endler, 1986; Hartl and Clark, 2007). This interest45

has propelled analyses of how genetic variability, environmental variability46

and their interaction generate individual differences in phenotypes and life47

courses. Population genetic models focus on mutations, drift, and so on to48

explain genotype frequencies and their dynamics (Hartl and Clark, 2007; Bar-49

ton and Keightley, 2002; Mackay et al., 2009; Orr, 2005; Der et al., 2011). A50

challenge not fully mastered, is how these mechanisms lead to stable popula-51

tions that show the kind of variability observed in natural populations (Evans52

and Steinsaltz, 2007; Roze and Rousset, 2008). Quantitative genetics circum-53

vents some of these challenges by investigating phenotypic trait distributions54
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and their changes within populations (Walsh, 2001; Barton et al., 2017).55

Environmental variation leads to changes in the phenotype, and genotype-56

environment interaction further adds to the complexity in understanding57

observed diversity in phenotypes and life courses (Champagnat et al., 2006).58

Phenotypic plasticity investigates these genotype-environment interactions,59

and processes such as niche construction and eco-evolutionary feedback em-60

phasize that the population’s environment is not fixed, but interacts with and61

can be altered by the organism (Diekmann et al., 2003; Vuilleumier et al.,62

2010; Pelletier et al., 2009). Ideas about neutral variability and epigenetics63

have also been used to explain the observed diversity of genotypes, pheno-64

types, and life histories (Ohta and Gillespie, 1996; Steiner and Tuljapurkar,65

2012; Geoghegan and Spencer, 2012). Neutral concepts include non-adaptive66

phenotypic variation due, e.g., to spandrels—phenotypes as byproducts of se-67

lection on other traits, or genetic hitchhiking (Evans and Steinsaltz, 2007;68

GOULD and LEWONTIN, 1979). Most of the above concepts are consid-69

ered to be generally applicable across biological systems. However, these70

concepts are challenged to explain the surprising diversity in life courses71

of even isoclonal individuals raised under highly controlled environmental72

conditions (Lande et al., 2003; Finch and Kirkwood, 2000; Melbourne and73

Hastings, 2008; Steiner and Tuljapurkar, 2012; Jouvet et al., 2018; Steiner74

et al., 2019). The challenges arise because these concepts do not consider the75

underlying individual level dynamics that contribute substantially to the di-76

versity in individual life courses. Besides the lack of understanding of drivers77

of individual level dynamics, we often do not know to what degree these78

drivers are adaptive, maladaptive or neutral (Lenormand et al., 2009).79

Whatever the actual mechanisms may be, the diversity in life courses80

in any structured population can be characterized by differences among stage81

trajectories—sequences of stages that individuals go through over their life82

course and that end in death (Caswell, 2001; Tuljapurkar et al., 2009). Here83
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we assume stages are discrete (this is just binning). Individuals are born84

into one, or one of several, discrete stages and subsequently transition to one85

of several discrete stages at each observation. If the transition probability86

only depends on the current stage, these trajectories can be described by a87

Markov chain. Over L observations—think of one observation per year—with88

s stages there are a maximum of sL possible trajectories, i.e. trajectories di-89

versify with increasing length L. The larger the uncertainty at each step,90

the larger is the diversity of life course trajectories (Tuljapurkar et al., 2009).91

Stages include developmental stages including levels of breeding success, mor-92

phological stages such as size, behavioral stages such as feeding or mating93

activity, physiological stages such as condition, gene expression stages such as94

transcription factor expression, epigenetic stages such as methylation stage,95

or spatial location.96

In this paper, individual trajectories are described by a Markov97

chain, i.e., there is a probability pij ≥ 0 that an individual changes its stage98

from stage j to stage i, for every possible pair of stages. The notation here99

is similar to Caswell (2001); Hill et al. (2004). In many systems the stage100

distribution at birth is centered on one or a few stages. With increasing101

age, individuals transition through stages described by the Markov chain102

and individual stage trajectories diversify. We can quantify the rate of diver-103

sification of these trajectories by the entropy of the Markov chain (Shannon,104

1948). This entropy has been termed population entropy (Tuljapurkar et al.,105

2009). The process of diversification of life courses by Markovian (stochas-106

tic) stage transitions has been called dynamic heterogeneity with its outcome107

of individual differences (Tuljapurkar et al., 2009; Steiner and Tuljapurkar,108

2012; Caswell, 2009). This process, based on transitions with identical prob-109

abilities but different outcomes, contrasts with fixed differences in transition110

rates. With fixed differences, each genotype is described by its own matrix111

of transition rates.112
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Here we focus on the sensitivity of population entropy to the under-113

lying set of transition probabilities. These sensitivities should reveal which114

transitions generate the most diversification among life courses. These sensi-115

tivities of the population entropy, however do not provide any understanding116

whether such diversification might be under selection, i.e. whether it is adap-117

tive, maladaptive, or neutral. To investigate potential adaptive features, we118

conider each transition rate and compare the sensitivity of the population119

entropy to the sensitivity of the population growth rate, λ. This latter sensi-120

tivity to λ is linked to the evolutionary forces acting on these transition prob-121

abilities, because population growth rate quantifies fitness (Caswell, 2001). A122

positive correlation between sensitivities suggests that diversification should123

be adaptive; diversification is neutral if we do not see any relationship be-124

tween the sensitivities; and diversification may be maladaptive if the sensi-125

tivities are negatively correlated.126

We describe sensitivities for ergodic Markov chains, and Markov127

chains with absorbing stages. In most applied cases the absorbing stage is128

the death stage. Classical population projection matrix models that include129

reproduction (e.g. Lefkovitch or Leslie population matrix models) first need130

to be transformed into a Markov chain before we can estimate the popula-131

tion entropy. We can achieve this transformation as described by Tuljapurkar132

(1982) (Appendix). We illustrate our results for a seabird population, the133

Thick-billed Murre on Coats Island, Canada (Gaston et al., 1994; Steiner and134

Gaston, 2005). This population is structured by reproductive stages, defined135

as breeding outcomes.136

Our results have the virtue that they only require the dominant137

eigenvalue and corresponding eigenvectors of non-negative matrices—these138

are numerically straightforward and well-conditioned, unlike the computation139

of all subdominant eigenvalues. Our approach is therefore applicable to many140

structured populations.141
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Population entropy and Matrix of a Markov chain142

When the population is ergodic (actually, irreducible and aperiodic) there

is a stationary (or equivalently, equilibrium) frequency distribution over the

possible stages: a vector w whose elements wi are the frequencies of stages

i = 1, . . . , s. A stage’s equilibrium frequency also equals the fraction of times

that an individual is expected to be in that stage, if we make many repeated

observations. Population entropy H(P) quantifies the diversity in individual

trajectories described by the Markov chain:

H(P) = −
s∑

j=1

wj

s∑
i=1

pij log pij, (1)

= −eT (P ◦ log(P))w. (2)

Here P is a matrix of the Markov chain transition probabilities pij, with143

individuals transitioning from column j to row i. The second line above is144

useful numerically and analytically: the superscript T indicates a transpose;145

e is a vector whose entries all equal 1; the Hadamard product (◦) is element-146

wise so that for matrices P, log(P) of equal size with elements pij, log(pij)147

respectively the matrix P ◦ log(P) is of same size and has ij element equal148

to pij log(pij).149

We start with deriving sensitivities for an ergodic chain (irreducible,150

non-absorbing), by asking what happens if we make a small change in the151

transition probabilities so that P becomes P + εB (for small positive ε).152

Throughout this paper, we consider only perturbations that leave unchanged153

the signature of the Markov chain: i.e., whenever pij = 0 we keep bij = 0.154

Then the population entropy must change from H(P) to say H(P) + εH1.155

Then H1 is the sensitivity of the population entropy. We obtain here an156

exact analytical expression for this sensitivity.157

Thereafter, we answer the analogous question for a Markov chain158
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that has at least one “absorbing” stage. To see why this is different, suppose159

death is the absorbing stage so that an individual wanders among the non-160

absorbing stages until it dies. Conditional on being alive, we expect that161

there is a quasi-stationary distribution over the non-absorbing stages, if we162

can find appropriate conditional Markov transition probabilities. Darroch163

and Seneta (1967) show that we can, providing that absorption takes a long164

time; see also Matthews (1970). The entropy of this conditional Markov chain165

measures the rate of individual trajectory diversification until death. Our166

contributions are an exact result for the sensitivity of the population entropy167

of an ergodic chain and absorbing Markov chains. Comparing the sensitivities168

between the two types of Markov chains (ergodic and absorbing) from the169

same system can then be used to evaluate the contribution of individuals170

surviving to different ages on the diversity of stage trajectories, as has been171

done before (Hernandez-Pacheco and Steiner, 2017).172

Sensitivity of Entropy: Ergodic Chains173

Changing Transition Probabilities174

The starting point is a population described by a matrix P of transition175

probabilities; we assume the chain is irreducible and aperiodic, hence ergodic.176

An ergodic population is characterized by its asymptotic dynamics being177

independent of the starting conditions. Here, we are mainly interested in such178

ergodicity since our focus is on revealing underlying processes, i.e. the drivers179

of diversity in life courses, than on initial conditions a population starts at.180

For such ergodic models the stationary frequency is an right eigenvector,181

Pw = w. Transition probabilities out of each stage sum to unity, so eT P =182

eT . We compute the fundamental matrix, which has also been described as183
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the stage duration matrix (Steiner et al., 2012).184

Z =
[
I−

(
P−weT

)]−1
, (3)

where I is the identity matrix, and −1 indicates the inverse of the function.185

Now perturb the transition probabilities to P+εB, so that transition186

probability pij changes to pij + εbij. Clearly we must have187

eT B = 0T , i.e., the perturbations balance each other and columns sum to zero.

(4)

This means that changes in the transition probabilities are necessarily con-188

strained, we cannot simply perturb only a single pij; some biologically dis-189

tinct ways of achieving this constraint are discussed by Caswell (2001), pages190

218-220.191

Following Schweitzer (1968) the stationary frequencies change to w+

εy + ε2y2 +O(ε3) where eTy = eTy2 = 0

y = ZBw, (5)

yi =
s∑

k=1

s∑
m=1

Zim bmk wk. (6)

The more involved expression for y2 is found in Kato (1966). So the vector192

y from equation (5) comprises, first, the time an individual spends in each193

stage given its current stage (i.e. the fundamental or stage duration matrix,194

Z), second, the product with the perturbation matrix B then determines the195

change in time each individual spends in each stage given its current stage,196

and finally, the multiplication with the stable stage distribution w quantifies197

how many individuals (or more precisely what proportion of individuals)198

are affected by the change in time they spent in each stage. That is the199

final multiplication with the stable stage distribution w quantifies how many200
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individuals are affected by how much time they spend in each stage due to201

the perturbation, which is exactly how much change in the stationary stage202

distribution is caused by the perturbation.203

Sensitivity of Entropy204

From equation (1) (and the Appendix) the entropy of the perturbed Markov

chain is

H(P + εB) = H(P) + εH1 + ε2H2 +O(ε3), (7)

H1 = −
s∑

i=1

s∑
j=1

[wj bij log pij + yj pij log pij] , (8)

= −eT [B ◦ log(P)w + P ◦ log(P)y] , (9)

H2 = −eT [(1/2)B ◦Bw + B ◦ log(P)y + P ◦ log(P)y2 + P ◦By] .

(10)

Here H1 is the sensitivity to the population entropy we seek. The second-205

order change in entropy (essentially the second derivative) is H2. For equa-206

tion (8) we have the stage distribution element wj (how many individuals207

are affected), by the amount of perturbation bij, and the change in stage dis-208

tribution yj. An illustration for the special case of perturbing a Maximum209

Entropy chain is given in the Appendix.210
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Sensitivity of Entropy: Chains with Absorbing211

stages212

Transition Probabilities with Absorption213

We consider just one absorbing stage—multiple absorbing stages are easily214

dealt with (Matthews, 1970). Let us say the absorbing stage (think “death”)215

is the last stage of s stages, so that stages 1 to (s− 1) are the transient (i.e.,216

“alive”) stages. The transition probability matrix must have the form217

P =

(
Q 0

µT 1

)
, (11)

with absorption (death) probabilities given by the elements µi of vector µ:

µi = 1 −
(s−1)∑
j=1

pij = 1 −
(s−1)∑
j=1

qij.

Matrix Q, describes the transition probabilities among the life stages,218

summing over the columns of Q gives the survival probability of each stage.219

Conditional on non-absorption (i.e., being alive), the transition probabilities220

among the (s−1) transient stages (Darroch and Seneta, 1967) are the entries221

in the (s− 1) × (s− 1) matrix222

R =
1

ρ
v̂ Q v̂−1, (12)

where 0 < ρ < 1 is the dominant eigenvalue of Q, v with elements vi is the

corresponding left eigenvector,

vT Q = ρvT ,
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and the diagonal matrix

v̂ = diag(v).

The ij element of matrix R is viqij/(ρvj); clearly, the columns of R sum to223

1, so this is a Markov matrix, while matrix Q is not. So what we have done224

in (12) is to transform the transient (absorbing stage transition) matrix Q225

to a Markov chain R. Let w be the right eigenvector of Q corresponding226

to its dominant eigenvalue, normalized so that (vTw) = 1. The equilibrium227

frequency distribution of the conditional process governed by R is given by228

the products (wivi), i = 1 . . . (s− 1).229

We can measure the diversification of individual trajectories with

increasing age while they are still alive by the population entropy of the

conditional process (see Appendix),

H(P) = H(Q),

= −
(s−1)∑
j=1

wj vj

(s−1)∑
i=1

rij log rij,

= log ρ− 1

ρ

(s−1)∑
i=1

(s−1)∑
j=1

viwj qij log qij. (13)

Perturbing an Absorbing Chain230

We now want the effect on the population entropy of small changes in the231

transition probabilities of the Markov chain. In (11), consider simple changes232

in the transient matrix Q to Q + εB. It is easy to see how this changes the233

full matrix P. These changes will alter ρ,v, and w to ρ+ εν,v+ εx,w+ εy,234

respectively. Here we give explicit formulas to compute these changes and in235

the next subsection show how these are used to compute the sensitivity of236

entropy we seek.237

Recalling that (vTw) = 1, we have the well-known (see e.g., Caswell238
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(2001)) fact that239

ν = vT Bw. (14)

We define two new matrices:

D1 = I−wvT , (15)

Z1 =
1

ρ

[
I−

(
Q

ρ
−wvT

)]−1
. (16)

Then we have (see Appendix) the less well-known results,

y = Z1D1Bw, (17)

xT = vT BD1 Z1. (18)

The interpretation of y in (17) is similar to the one in equation (5),240

i.e. how many individuals are affected by how much (more or less) time they241

spend in each stage due to the perturbation, which equals how much change242

in the stationary stage distribution is caused by the perturbation, except243

here (17) this change is based on the absorbing (transient) transition matrix.244

Sensitivity of Entropy for an Absorbing Chain245

The last step is to compute the difference between the entropy of the per-246

turbed chain (H(Q)) and the original chain,247

H(Q + εB) = H(Q) + εH1. (19)
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The sensitivity H1 is given (see Appendix) by248

H1 = ν

(
1

ρ

)
[(1 + log ρ−H(Q)]

−
(

1

ρ

) (s−1)∑
i,j=1

[(xiwj + viyj) qij log qij + viwj bij log qij] .

(20)

Illustrative example sensitivity of population249

entropy: The Thick-billed Murre250

To illustrate our exact result for the sensitivity of the population entropy of a251

Markov chain, we first built a stage-structured matrix population model using252

longitudinal mark-recapture data on a highly philopatric and colonial seabird253

species, the Thick-billed Murre (Uria lomvia) (Gaston et al., 1994; Steiner254

and Gaston, 2005). After parameterizing the population projection matrix255

based on the longitudinal data, we transformed this matrix to a Markov256

chain, as described by Tuljapurkar (1982) (Appendix, see also equation (12)).257

Here we present the results on population entropy (ergodic chain) of the258

resulting Markov chain and discuss its implications.259

Structured population model of the Thick-billed Murre260

To parameterize the stage-structured matrix model, we used data on 1984261

individual seabirds, Thick-billed Murres, banded between 1981 and 2010, on262

Coats Island, Nunavut, Canada (62◦30′N , 83◦00′W ). Band readings have263

been made between 1991 and 2011 in the colony over each breeding season.264

For each bird for which a band was read its breeding status (breeding out-265

come) for that season was recorded as a) I, immature, birds prior to any266

breeding attempt; b) E, egg laid, bird laid an egg but the egg did not hatch;267

c) H, hatch, bird managed to hatch a chick but the chick did not fledge; d)268
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F, fledged, the bird’s chick fledged, i.e. chick disappeared >=10 days after269

hatching; or e) U, unknown, when the breeding outcome of the bird was not270

known. Birds are born into the immature stage (I) and they remain in that271

stage until they are three years old (only 3 out of the 1128 individuals banded272

as chicks, i.e. known aged birds, recruited at age two into the breeding co-273

hort). After the third year, individuals can stay as immatures, or transition274

to and then among one of the other breeding outcome stages, E, H, and F.275

Since some birds had unknown breeding stages, we corrected the estimated276

survival and transition probabilities among the observed breeding stages (E,277

H, F) for the unknown events by weighting probabilities according to survival278

and transition rates (Appendix).279

Our resulting stage structured matrix projection model included the280

four stages (I,E,H,F), with stage F being the only stage contributing to re-281

production. Since sex determination for Thick-billed Murres is challenging,282

we used data on both sexes for estimating survival, recapture (sighting), and283

transition probabilities (assuming same survival and transitioning for both284

sexes). We assumed 50% of chicks to be female, and we included only fe-285

males for the fertility of the projection model (Table 1). Further detail on286

estimating resighting, survival and transition probabilities, for which we used287

program MARK (White and Burnham, 1999), is provided in the Appendix.288

The corresponding transformed Markov chain (see equation (12)) is shown289

in Table 2.290

Demographic parameters of the stage structured Thick-291

billed Murre population model292

We estimated the population growth rate for the projection model at λ=1.041293

(dominant eigenvalue of matrix shown in Table 1), which might be a slight294

overestimation compared to the observed population growth; accounting for295
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stochastic environmental variation would lower the expected growth rate296

slightly. The quasi stable stage distribution of the projection model was297

I=0.33, E=0.25, H=0.07, F=0.36 (scaled corresponding right eigenvalue w)298

and the corresponding reproductive values are I=1.0, E=2.2, H=2.1, F=2.7299

(corresponding left eigenvalue v, scaled for I=1). The sensitivities with re-300

spect to λ of the population projection model (Table 1) are given in Table 3301

and estimated according to Caswell (2001) (page 209ff). They show that302

population growth rate is most sensitive to transitions from the immature303

to the fledging stage, as well as remaining in the fledging stage, the only304

stage that contributes to fertility. Moving from population growth—and its305

sensitivity—to evaluating diversification, the population shows a high rate of306

diversification with an population entropy (H=0.98%) close to the maximum307

entropy for the Markov chain matrix (Table 2).308

Integrated sensitivities and selective forces309

The sensitivities with respect to λ of the population projection model, as310

we estimate for instance in Table 3, imply that a realized perturbation in311

a transition probability pij alters the survival rate of that stage j. That312

is, if we increase a transition rate, pij, in a given stage j, we automati-313

cally increase the column sum across transitions in the given stage j by314

the same amount; the column sum determines the survival rate of a stage.315

Here we are not interested in relationships between reproduction and sur-316

vival, but in changes among stage dynamics without changing stage sur-317

vival. We therefore need to keep the column sum of the stage constant318

when we perturb a transition probability. This constraint implies, if we per-319

turb one transition probability we have to compensate this perturbation by320

one or more matrix elements in the same column, i.e. transition rates in321

the same stage. The biological implications of such constraints in chang-322
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ing the transition probabilities for stage structured models are discussed323

by Caswell (2001) (pages 2018-2019). There are many solutions to fulfill324

these constraints, here, we reduced (perturbed) the transition probability of325

one matrix parameter by 0.01 and increased at the same time the transi-326

tion probabilities of the remaining stage parameters by equal amounts as to327

perturbations eT B = 0T , i.e., columns sum of the perturbations equal zero328

(see also equation (4)). We call these sensitivities integrated sensitivities fol-329

lowing Van Tienderen (1995); these integrated sensitivities comprise changes330

in multiple transition rates and we sum weighted sensitivities according to331

the perturbations described in B. These constraints on the perturbations332

(eT B = 0T ) ascertain the assumption (requirement) of ergodicity of the333

matrix model (Markov chain). We estimated such an integrated sensitivity334

related to a reduction in each transition probability (note we consider only335

perturbations that leave unchanged the signature of the Markov chain: i.e.,336

whenever pij = 0 we keep bij = 0). Each change in a transition probabil-337

ity changes the population entropy (diversification in life courses) and the338

population growth (λ), but perturbations now having signs, and resulting339

changes on population entropy or population growth can be positive or neg-340

ative. Classical sensitivities, as illustrated for instance in Table 3, hold only341

positive values; any increase in a transition rate also increases survival and342

therefore has to increase population growth. Classical sensitivities do not343

evaluate changes among stage dynamics as we do here.344

In Table 4 we show results for the integrated sensitivities of pop-345

ulation entropy for the Thick-billed Murre example. Table 5 shows the346

corresponding integrated sensitivities with respect to λ. If we reduce the347

transition rate of remaining as immatures (I to I, b1,1) by 0.01, and at the348

same time increase the remaining three transition probabilities (from I to349

E,H &F, b2,1 to b4,1) by 0.01/3 = 0.003333, population entropy increases by350

0.0034 (first element Table 4), while the population growth rate, λ, increases351
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by 0.00219 (first element Table 5). A reduction in the probability of birds352

successfully fledging a chick in two consecutive years (transition stage F to353

F, p4,4) and at the same time increasing fecundity and the probability of354

birds transitioning from having a successful fledging event (F) to failing to355

fledge a chick (stage E, or H) increases population entropy most (Table 4).356

Reducing the transition between F and H (p3,4, and increasing fecundity, p1,4,357

the transitions to stage E, p2,4 and stasis of stage F, p4,4) reduces population358

entropy most (Table 4).359

These integrated sensitivities of population entropy are distinct from360

integrated sensitivities with respect to λ. Sensitivities of population entropy361

quantifies the change in diversification among life course trajectories (Ta-362

ble 4), while sensitivities of population growth quantify the change in fitness363

(Table 5). Reducing the probability of staying in stage I in consecutive years364

(I to I transition, p1,1) and increasing the chance of recruiting to the breed-365

ing cohort (I to E,H,F transitions, p2,1 to p4,1) increases population growth366

rate most strongly (Table 5), but is not as influential on diversification of life367

courses (Table 4). Reducing fecundity (F to I transitions, p1,4) also leads to368

a strong increase in population growth when at the same time transitions be-369

tween F and E, H, F (p2,4 to p4,4) are increased (Table 5). The most negative370

effect for population growth rates are achieved if transitions between I and371

F (p4,1), and F and F (p4,4) are reduced (and at the same time transitions to372

the other stages are increased, Table 5). This latter observation is not sur-373

prising given that we find the highest classical (non-integrated) sensitivities374

with respect to λ for the same transitions (p4,1 and p4,4, Table 3).375

The integrated sensitivities with respect to population entropy (Ta-376

ble 4), show which transitions are most critical for generating diversity among377

life course trajectories, but they do not provide information on whether such378

diversity might be adaptive or neutral. This understanding, whether diver-379

sification of life courses is adaptive or neutral, might not only be informative380
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on a fundamental question in biology, how heterogeneity among individuals381

evolves and can be maintained, it might also inform on adaptive strategies382

of niche differentiation expressed as diversification in life courses. The inte-383

grated sensitivities with respect to λ (Table 5) provide us with information384

how changes in transitions affect population growth and fitness. Sensitivities385

with respect to λ (Table 3) have been used to quantify forces of selection386

acting on transition probabilities (Caswell, 2001). The higher the sensitivity387

with respect to λ, the stronger selection should have acted on these transition388

rates. The integrated sensitivities with respect to λ we compute in Table 5,389

do not inform us on diversity among life courses. Therefore, to approach the390

question whether the diversification in life course trajectories measured as391

the population entropy, might be adaptive, we correlated the two measures392

of integrated sensitivities for each matrix element. As we see in Fig. 1, the393

two measures of sensitivity are not correlated and hence the elements that394

contribute most to diversification of life courses are not those that are under395

the strongest selection. We also do not find evidence for negative correlation,396

that is, selections seems not to act against diversification. This suggests that397

the resulting diversity among life courses might rather be neutral. Such in-398

terpretation supports neutral theories of life history evolution (Tuljapurkar399

et al., 2009; Steiner and Tuljapurkar, 2012), and challenges adaptive theories400

arguing that variability in life courses is adaptive, an interpretation found401

in various evolutionary ecological studies (Stearns, 1992). However, our in-402

terpretation must be approached with caution since we only explored one of403

many solutions for the constraints among transition probabilities.404

Our example on the Thick-billed Murre, illustrates how sensitivities405

of population entropy can be used to approach questions about adaptive di-406

versification in individuals life courses, but our example is only limited to407

one population. For a more general understanding more species and more408

solutions to constraints among transition probabilities should be explored.409
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Population entropy varies substantially among populations and species (Tul-410

japurkar et al., 2009). Within populations population entropy varies among411

years, i.e. with varying environments, but the selective forces that shape412

heterogeneity among individual life courses do not correlate with well-known413

classical ecological selective forces such as population density (Hernandez-414

Pacheco and Steiner, 2017). Population entropy also changes with age within415

a population, indicating changes in transition probabilities with age (Plard416

et al., 2012). This knowledge on other species and populations show that en-417

tropy, as well as fitness varies among populations and conditions experienced418

by populations. In our example we averaged across environments and across419

age for simplification and better illustration of the method, but such addi-420

tional environmental and demographic dimensions can easily be explored.421

Our motivation to derive the sensitivity with respect to population entropy422

was mainly to explore the potential evolution of individual stage dynamics,423

and its effect beyond genotypic, environmental and gene-by-environment in-424

teractions. One could ask a different question with a simpler approach: are425

populations that diversify fast in their life courses more fit? To answer this426

question one could simply correlate the population entropy to the population427

growth rate, λ, i.e. one would not use the derivatives (sensitivities to each428

matrix element) but the population level measure of entropy and growth.429

These population level demographic parameters do not reveal the influence430

of the individual stage transitions and which stage transitions contribute431

most to diversification and fitness. However, the latter information might432

be crucial to better understand and infer on the underlying mechanisms and433

allow to go beyond decomposing variance explained by genotypes, environ-434

ments and their interactions. These insights might also be informative for435

managing populations and species conservation.436

We also like to highlight that neutral and adaptive processes have437

shaped the transition rates in the stage structured matrix. From a theo-438
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retical perspective two matrices with the same population growth rate, can439

differ vastly in their population entropy, from complete determinism of life440

courses to maximum entropy (all transition probabilities are equal). Simi-441

larly, we can construct matrices that have the same population entropy but442

differ substantially in their fitness, λ. Such differences are also observed443

in nature — though perhaps not to the same extreme. For instance, in a444

free-living monkey population where individuals are closely tracked, hetero-445

geneous trajectories with individuals frequently changing among stages can446

lead to very similar population structure as can a few trajectories with low447

level of dynamics, only depending on the environment (Hernandez-Pacheco448

and Steiner, 2017). The population level stage frequencies do not reveal449

the underlying differences in individual level stage dynamics. We believe it450

therefore to be crucial to explore individual level dynamics to understand451

how diversity in phenotypes and life courses is generated and maintained.452

Conclusions453

The sensitivities of the population entropy we derived reveal the transitions454

among life stages that contribute most to the diversification in life course455

trajectories (Table 4). We can use these sensitivities of the population en-456

tropy in combination with sensitivities on fitness to inform a larger debate457

on potential selective forces acting on the dynamics and diversification of life458

courses (Shefferson, 2010). Our example on the Thick-billed Murres illus-459

trates that we only have a limited understanding about changes that generate460

differences between individuals. In our example the transitions that generate461

diversity in life courses are not linked to the most sensitive transitions influ-462

encing population growth and hence suggest that observed diversification in463

life courses are neutral rather than adaptive. We have to be cautious about464

over interpretation of this result, since many solutions for the constraints465
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among transition probabilities exist (Caswell, 2001) and we only have ex-466

plored one, that seemed to us biologically plausible. Identifying influential467

stage transitions may not directly reveal the underlying mechanisms that468

generate diversification but may nonetheless be useful. Mechanistic insights469

should be easier for populations in which individual stages are closely asso-470

ciated with known underlying mechanisms, for instance via gene expression471

or methylation. If stages are defined as geographic location, identifying the472

transitions (migration among locations) that generate most diversification473

(sensitivity with respect to population entropy) and those that are associ-474

ated with the highest increase of fitness (sensitivity with respect to λ), might475

inform niche differentiation and dynamics in metapopulations, and so guide476

conservation decisions.477
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Table 1: Projection matrix model

I E H F

I 0.494 0 0 0.5
E 0.22 0.465 0.231 0.161
H 0.006 0.116 0.094 0.088
F 0.02 0.378 0.55 0.657

Table 2: Tranformed Markov chain matrix

I E H F

I 0.474 0 0 0.178
E 0.462 0.446 0.231 0.125
H 0.012 0.107 0.09 0.066
F 0.446 0.446 0.679 0.63

A Appendix480

A.1 The Ergodic Case481

The perturbation matrix B satisfies (1) of the main text. Writing482

D = P−weT ,

see also that483

eT Z = eT
[
I + D + D2 + . . .

]
= eT ,

Table 3: Sensitivity to λ

I E H F

I 0.165 0 0 0.181
E 0.361 0.277 0.073 0.396
H 0.346 0.266 0.07 0.379
F 0.445 0.342 0.09 0.487
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Table 4: Integrated sensitivity to entropy

I E H F

I 0.0034 0 0 0.00062
E 0.0031 0.00192 -0.00006 -0.0024
H -0.00461 -0.00352 -0.00093 -0.0058
F -0.00189 0.0016 0.00099 0.00758

Table 5: Integrated sensitivity to λ

I E H F

I 0.00219 0 0 0.0024
E -0.00043 0.00026 0.00007 -0.00047
H -0.00022 0.00044 0.00012 -0.00024
F -0.00154 -0.0007 -0.00019 -0.00169

so finally, from (5),484

eT y = eT ZBw = eT Bw = 0.

The perturbation of the entropy in (1) uses the expansion

p log(p+ εb) = p log p+ p ε(b/p) +O(ε2) = p log p+ ε b+ ε2 (b2/p) +O(ε2).

Keeping terms to O(ε) yield three terms (omitting the summations over i

and j),

wjbij + wj bij log pij + yj pij log pij.

Recall that
∑

i bij = 0 for every j to see that the first term is zero, leaving485

us with equation (8).486
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A.2 Conditional Entropy487

A.2.1 Simplifying the Entropy488

The entropy is defined by the middle line of (13). Insert (12) to obtain489

−1

ρ

(s−1)∑
i=1

(s−1)∑
j=1

wj vi qij [log qij + log vi − log vj − log ρ] .

Now use the facts
∑

j qijwj = ρwi,
∑

i viqij = ρvj to see that the two middle490

terms cancel, and to see that the last term (with sums) is just log ρ. This491

yields the last line of equation (13).492

A.2.2 Perturbing Eigenvectors493

We derive (17); proceed similarly to get (18). Now the perturbed right

eigenvector of Q satisfies the usual equation

(Q + εB) (w + εy) = (ρ+ εν) (w + εy).

The order ε terms here are:494

Qy + Bw = (νw + ρTy). (A-21)

Now note that wvT is a matrix that projects any vector onto w.

When we perturb the matrix Q, the change y must be orthogonal to w (oth-

erwise we are just making a proportional change in every matrix element).

Hence we must have

D1y = (I−wvT )y = y.

Also

D1Q = (I−wvT )Q = Q−wvTQ = Q− ρ(wvT ).
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Using these facts, multiply all terms of (A-21) by matrix D1 to get,

first,

D1Qy + D1Bw = ρy,

and then

D1Bw =
(
ρ−

[
Q− ρ

(
wvT

)])
y.

Using the inverse of the matrix on the right (guaranteed to exist because ρ495

is the dominant eigenvalue) leads to (17).496

A.2.3 Sensitivity of Entropy497

We examine separately the two terms of (13) and find perturbations to order

ε. The first term changes to

log(ρ+ εν) = log(ρ) + ε

(
ν

ρ

)
.

The second term of (13) has the form

1

ρ
F,

say, where F stands for the double sum.498

Now (much as in Section A.1) the perturbation of the double sum

in (13) is

F1 =

(s−1)∑
i,j=1

[(xiwj + viyj) qij log qij + viwj bij log qij] .

Thus the effect of the perturbation on the second term of (13) is to

produce
1

(ρ+ εν)
(F + εF1) =

1

ρ
F + ε

[
F1

ρ
− ν

F

ρ2

]
.
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So the total perturbation is(
ν

ρ

)[
1 +

F

ρ

]
− F1

ρ
.

Using (13) to express F/ρ in terms of the entropy H(Q) yields (20).499

A.3 Transforming projection matrix to Markov chain500

To transform a population projection model into a Markov chain, we follow501

Tuljapurkar’s approach (Tuljapurkar, 1982). Note, Tuljapurkar’s projection502

matrix describes transitions from row to column, whereas our matrix P de-503

scribes transitions from columns to rows, hence the transformation for our504

matrix is as follows:505

PM =
1

λ
W−1PPW

with PM being the Markov chain (Table 2), PP being the population506

projection matrix (Table 1), λ being the population growth rate (dominant507

eigenvalue of PP ), and W being a matrix of zeros except for the diagonal508

elements of (wi), which are the normalized stable stage distribution values509

(normalized right eigenvector corresponding to dominant eigenvalue of matrix510

PP ). W−1 is the inverse of matrix W.511

Special Case: Perturbing a Maximum Entropy chain512

A chain with maximum entropy has transition matrix elements pij = (1/s)513

where, as before, s is the number of stages (Tuljapurkar et al., 2009). Clearly514

w has every element equal to (1/s) and we can write515

P = weT . (A-22)
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The entropy of this chain is just H = log s (see also Tuljapurkar et al. (2009)).516

The chain’s fundamental matrix (see (3)) is just Z = I, which means that517

when we perturb the chain to P + εB the eigenvector w becomes (see (5))518

just w + εy with y = Bw. The second-order perturbation of w is zero (i.e.,519

y2 = 0).520

The sensitivity of this chain is zero! To see that this is true in our

equations, observe that in (9) we have

B ◦ log(P) = log(1/s)B,

P ◦ log(P)y = (1/s) log(1/s) ◦ Ey = (1/s) log(1/s) ◦ EBw, (A-23)

where E is a matrix with all elements equal 1. Hence both terms in H1 (9)521

are proportional to eT B – but this has to be zero for any possible perturba-522

tion (recall the column sums of B equal zero), so H1 = 0. More generally,523

sensitivity is just a (complicated) derivative of entropy and since we start524

with maximum entropy it must be true that any derivative of the entropy is525

zero (that’s what defines a maximum).526

So what about H2 in (10)? Note that here by2 = 0 , and that the527

arguments in (A-23) imply that the only surviving term in (10) is528

H2 = −eT [(1/2)B ◦Bw] = − 1

2s

∑
i

∑
j

B2
ij. (A-24)

Thus perturbing a maximum entropy chain with transition matrix P by the

constrained matrix εB always yields a reduced entropy

H(P + εB) = H(P) + ε2H2 = log s− ε2

2s

∑
i

∑
j

B2
ij,

to order ε3.529
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A.4 The thick-billed Murre, population projection model530

We used data from a total of 1984 individuals, of which 1128 individuals531

where banded as chicks (immatures), and 856 were banded as adults (left532

censored). In the breeding colony on Coats Island, these birds were observed533

over a breeding season and many sightings of uniquely banded bird were made534

each year. Birds are highly philopatric to their breeding sites which makes535

it relatively easy to record the breeding outcome for a given year (Steiner536

and Gaston, 2005). We used 5956 records of annual breeding outcomes of537

which 1313 were birds laid an egg but not manage to hatch a chick, E; 518538

hatch a chick but did not manage to fledge the chick, H, 3031 birds that539

successfully fledged a chick, F, and 1094 unknown events, U. Since birds540

are highly philopatric to their breeding site we could assign each bird to541

a breeding plot. For a few birds that switched a breeding plot within their542

lifetime, we assigned them to the breeding plot they spent most time breeding543

at.544

The colony on Coats Island is divided into different study plots, and545

we only included data from six study plots (D, J, K, N, Q, S) that had546

longitudinal data on a larger number of individuals. For the 1128 immature547

individuals that were banded as chicks in the colony and then later recruited548

as breeders, we assumed that they would stay as immatures for the first three549

years, before they would be allowed to start transitioning to and among the550

breeding stages (E, H, F, U). Only three of these 1128 birds recruited at551

age two into the breeding cohort, for these three birds we considered their552

observed breeding status at age three. Once a bird left the immature stage553

it was not allowed to transition back to the immature stage. Entering the554

immature stage from a breeding stage (E, H, F, U) was only possible as a555

newborn, that is through fertility (Table 1).556

Recapture (sighting) effort varied among study plots and years. We557

therefore accounted for this varying effort among plots and years when we558
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estimated the stage-specific survival and transition probabilities for which559

we used program MARK (White and Burnham, 1999). This means we ac-560

counted for plot and year specific recapture probabilities (mean= 0.41 ± 0.17561

Stdev) but not stage-specific recapture probabilities (i.e. we assumed that562

E,H,F stages are equally likely being sighted). Accounting for these biases563

ascertained that the probability of a bird surviving or transitioning among564

stages did not depend on the study plot it bred at, but on its current stage.565

Banding of chicks started in 1981 but band reading (sightings) only566

began in 1991, so all recapture (sighting) probabilities for all plots prior to567

1991 were set to 0. Similarly no sighting effort was made for plot D in 2001;568

for plot J prior to 1995, and in 2000, 2005-2008, 2010, 2011; for plot K in569

2001, 2003-2006, and 2011; for plot N in 2001, 2003-2006, and 2011; for plot570

S in 2000-2002, 2004, 2006, and 2011. In those years for these plots sighting571

probabilities for the breeding stages (E, H, F, U) were set to 0. For plot Q572

we had sighting records for each year between 1991 and 2011 and estimated573

plot specific sighting rates for each year. We did not estimate stage-specific574

sighting probabilities, but only plot- and year-specific sighting probabilities,575

since the sighting probability should not depend on the breeding stage (recall576

we have many observation of each individual within a breeding season).577

The data only included birds that recruited as breeders (or attempted578

breeders) to the colony, we therefore adjusted the immature survival for the579

population projection model using a previously described estimate of 40.5%580

of fledglings survival to age three, the age when many individuals started to581

recruit as breeders (Gaston et al., 1994). This resulted in an annual imma-582

ture survival of 0.74. Survival rates of the other stages (after correcting for583

the unknown events) equalled 0.96 for E, 0.87 for H, and 0.91 for F. Table 1584

shows the population projection matrix, summarizing the stage transition585

and survival rates (column sums). The corresponding transformed Markov586

chain is shown in Table 2.587
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When we estimated the stage specific transition parameters, using588

program MARK, we used a multinomial logit function to assure that the589

transition rates of a given stage sum to 1. This estimation of the survival and590

transition probabilities included unknown breeding outcomes, U. To account591

for these unknown breeding outcomes we corrected the survival and transition592

probabilities of the known breeding stages (E, H, F). We did this by first593

estimating the fractions of the known breeding outcomes (1313 E, 518 H,594

3031 F; i.e. 0.27% E, 0.11% H; and 0.62% F). The expected number of595

unknown events and their associated survival rates compared to the known596

events was then taken into account to correct the survival rates of the known597

stages.598

Transition rates to the unknown stage were added to the transition599

rates of the known stages (E, H, F). We did this by taking the estimated600

transition probability of a given stage to the unknown stage, and increased601

each stage transition of the observed stages by its relative weight. This602

correction was done for each stage (I, E, H, F) and provided the four by four603

matrix that contributes to Table( 1).604

Survival estimates of the immature stage, I, based on the MARK605

model was very close to 1 (if we forced it to be exactly one we had convergence606

issues). Such a high survival rate is expected since only birds entered the607

data base if they were recorded as breeders (or attempted breeders), i.e. they608

all needed to survive the immature stage. In order to get a more realistic609

population projection model, we reduced annual immature survival to 0.74610

which leads to a survival between fledging and age three of 40.5 %; a survival611

rate reported by Gaston et al. (1994) for this population.612

Murres lay a single egg and do not have multiple broods, for that613

any successful fledgling (stage F event) contributed to fertility. We did only614

consider female fledglings, assuming that 50% of all fledglings are females. So615

our resulting population projection model can be seen as a one sex (female)616
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model even though we used male and female observations for estimating617

survival, transition and sighting probabilities. Other than a slight delay in618

onset of breeding for males, transition and survival rates have been estimated619

to be very similar in this species (Gaston et al., 1994). If we only had used620

data from known females the amount of data would have been much lower621

and parameter estimations less accurate.622
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Figure 1: Correlation between sensitivity of entropy and sensitivity of λ

32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/188276doi: bioRxiv preprint 

https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/


References623

Barton, N. and Keightley, P. (2002). Understanding quantitative genetic624

variation. NATURE REVIEWS GENETICS, 3(1):11–21.625

Barton, N. H., Etheridge, A. M., and Veber, A. (2017). The infinitesimal626

model: Definition, derivation, and implications. THEORETICAL POPU-627

LATION BIOLOGY, 118:50–73.628

Caswell, H. (2001). Matrix population models: construction, analysis, and629

interpretation, volume 2nd. Sinauer Associates.630

Caswell, H. (2009). Stage, age and individual stochasticity in demography.631

Oikos, 118(12):1763–1782.632

Champagnat, N., Ferriere, R., and Meleard, S. (2006). Unifying evolutionary633

dynamics: From individual stochastic processes to macroscopic models.634

THEORETICAL POPULATION BIOLOGY, 69(3):297–321.635

Darroch, J. N. and Seneta, E. (1967). On Quasi-Stationary Distributions636

in Absorbing Continuous-Time Finite Markov Chains. Journal of Applied637

Probability, 4(1):192.638

Der, R., Epstein, C. L., and Plotkin, J. B. (2011). Generalized population639

models and the nature of genetic drift. THEORETICAL POPULATION640

BIOLOGY, 80(2):80–99.641

Diekmann, O., Gyllenberg, M., and Metz, J. (2003). Steady-state analysis642

of structured population models. THEORETICAL POPULATION BIOL-643

OGY, 63(4):309–338.644

Endler, J. A. (1986). Natural selection in the wild, volume 21 of Monographs645

in Population Biology 21. Princeton University Press.646

Evans, S. N. and Steinsaltz, D. (2007). Damage segregation at fissioning647

may increase growth rates: a superprocess model. Theoretical population648

biology, 71(4):473–90.649

Finch, C. and Kirkwood, T. B. (2000). Chance, Development, and Aging.650

Oxford University Press, Oxford.651

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/188276doi: bioRxiv preprint 

https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gaston, A. J., de Forest, L. N., Donaldson, G., and Noble, D. G. (1994).652

Population Parameters of Thick-Billed Murres at Coats Island, Northwest653

Territories, Canada. The Condor, 96(4):935–948.654

Geoghegan, J. L. and Spencer, H. G. (2012). Population-epigenetic models655

of selection. THEORETICAL POPULATION BIOLOGY, 81(3):232–242.656

GOULD, S. and LEWONTIN, R. (1979). SPANDRELS OF SAN-MARCO657

AND THE PANGLOSSIAN PARADIGM - A CRITIQUE OF THE658

ADAPTATIONIST PROGRAM. PROCEEDINGS OF THE ROYAL SO-659

CIETY SERIES B-BIOLOGICAL SCIENCES, 205(1161):581–598.660

Hartl, D. J. and Clark, A. (2007). Principles of population genetics. Sinauer,661

Sunderland.662

Hernandez-Pacheco, R. and Steiner, U. K. (2017). Drivers of diversification663

in individual life courses. The American Naturalist, 190(6):E132–E144.664

Hill, M. F., Witman, J. D., and Caswell, H. (2004). Markov chain analysis665

of succession in a rocky subtidal community. The American naturalist,666

164(2):E46–61.667

Jouvet, L., Rodriguez-Rojas, A., and Steiner, U. K. (2018). Demographic668

variability and heterogeneity among individuals within and among clonal669

bacteria strains. Oikos, 127(5):728–737.670

Kato, T. (1966). Perturbation theory for linear operators. Grundlehren der671

mathematischen Wissenschaften, 132.672

Lande, R., Engen, S., and Saether, B. (2003). Stochastic population dynamics673

in ecology and conservation.674

Lenormand, T., Roze, D., and Rousset, F. (2009). Stochasticity in evolution.675

Trends in ecology & evolution, 24(3):157–165.676

Mackay, T. F. C., Stone, E. A., and Ayroles, J. F. (2009). The genetics677

of quantitative traits: challenges and prospects. NATURE REVIEWS678

GENETICS, 10(8):565–577.679

Matthews, J. P. (1970). A Central Limit Theorem for Absorbing Markov680

Chains. Biometrika, 57(1):129.681

34

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/188276doi: bioRxiv preprint 

https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/


Melbourne, B. a. and Hastings, A. (2008). Extinction risk depends strongly682

on factors contributing to stochasticity. Nature, 454(7200):100–3.683

Ohta, T. and Gillespie, J. (1996). Development of Neutral and Nearly Neutral684

Theories. Theoretical population biology, 49(2):128–42.685

Orr, H. (2005). The genetic theory of adaptation: A brief history. NATURE686

REVIEWS GENETICS, 6(2):119–127.687

Pelletier, F., Garant, D., and Hendry, A. P. (2009). Eco-evolutionary dynam-688

ics. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY689

B-BIOLOGICAL SCIENCES, 364(1523):1483–1489.690

Plard, F., Bonenfant, C., Delorme, D., and Gaillard, J. (2012). Modeling691

reproductive trajectories of roe deer females: Fixed or dynamic hetero-692

geneity? Theoretical Population Biology, 82(4):317–328.693

Roze, D. and Rousset, F. (2008). Multilocus models in the infinite island694

model of population structure. THEORETICAL POPULATION BIOL-695

OGY, 73(4):529–542.696

Schweitzer, P. J. (1968). Perturbation Theory and Finite Markov Chains.697

Journal of Applied Probability, 5(2):401.698

Shannon, C. E. (1948). A mathematical theory of communication. Bell699

system technical journal, 27(3):379–423.700

Shefferson, R. (2010). Why are life histories so variable. Nature Education701

Knowledge, 1(12):1.702

Stearns, S. C. (1992). The evolution of life-histories. Oxford University Press,703

Oxford.704

Steiner, U. K. and Gaston, A. (2005). Reproductive consequences of natal705

dispersal in a highly philopatric seabird. Behavioral Ecology, 16(3):634–706

639.707

Steiner, U. K., Lenart, A., Ni, M., Chen, P., Song, X., Taddei, F., Lind-708

ner, A., and Vaupel, J. (2019). Two stochastic processes shape diverse709

senescence patterns in a single-cell organism. Evolution, page 105387.710

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/188276doi: bioRxiv preprint 

https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/


Steiner, U. K. and Tuljapurkar, S. (2012). Neutral theory for life histories and711

individual variability in fitness components. Proceedings of the National712

Academy of Sciences of the United States of America, 109(12):4684–9.713

Steiner, U. K., Tuljapurkar, S., Coulson, T., and Horvitz, C. (2012). Trading714

stages: life expectancies in structured populations. Experimental gerontol-715

ogy, 47(10):773–81.716

Tuljapurkar, S., Steiner, U. K., and Orzack, S. H. (2009). Dynamic hetero-717

geneity in life histories. Ecology letters, 12(1):93–106.718

Tuljapurkar, S. D. (1982). Why use population entropy? It determines the719

rate of convergence. Journal of Mathematical Biology, 13(3):325–337.720

Van Tienderen, P. H. (1995). Life cycle trade-offs in matrix population mod-721

els. Ecology, 76(8):2482–2489.722

Vuilleumier, S., Goudet, J., and Perrin, N. (2010). Evolution in heteroge-723

neous populations From migration models to fixation probabilities. THE-724

ORETICAL POPULATION BIOLOGY, 78(4):250–258.725

Walsh, B. (2001). Quantitative genetics in the age of genomics. THEORET-726

ICAL POPULATION BIOLOGY, 59(3):175–184.727

White, G. C. and Burnham, K. P. (1999). Program MARK: survival estima-728

tion from populations of marked animals. Bird Study, 46(sup1):S120–S139.729

36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2019. ; https://doi.org/10.1101/188276doi: bioRxiv preprint 

https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/

