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s Abstract

1 Individuals differ in their life courses, but how this diversity is generated,
15 how it has evolved and how maintained is less understood. However, this
16 understanding is crucial to comprehend evolutionary and ecological popula-
7 tion dynamics. In structured populations, individual life courses represent
18 sequences of stages that end in death. These sequences can be described by a
19 Markov chain and individuals diversify over the course of their lives by tran-
20 sitioning through diverse discrete stages. The rate at which stage sequences
a1 diversify with age can be quantified by the population entropy of a Markov
2 chain. Here, we derive sensitivities of the population entropy of a Markov
23 chain to identify which stage transitions generate—or contribute—most to
a  diversification in stage sequences, i.e. life courses. We then use these sen-
25 sitivities to reveal potential selective forces on the dynamics of life courses.
26 To do so we correlated the sensitivity of each matrix element (stage transi-

2 tion) with respect to the population entropy, to its sensitivity with respect
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s to fitness A, the population growth rate. Positive correlation between the
2 two sensitivities would suggest that the stage transitions that selection has
» acted most strongly on (sensitivities with respect to ) are also those that
s contributed most to the diversification of life courses. Using an illustrative
3 example on a seabird population, the Thick-billed Murres on Coats Island,
;3 that is structured by reproductive stages, we show that the most influential
u  stage transitions for diversification of life courses are not correlated with the
55 most influential transitions for population growth. Our finding suggests that
s observed diversification in life courses is neutral rather than adaptive. We
;7 are at an early stage of understanding how individual level dynamics shape

s ecological and evolutionary dynamics, and many discoveries await.

» Introduction

» In any population we observe great diversity in phenotypes and life courses
a among individuals (Tuljapurkar et al., 2009; Steiner and Tuljapurkar, 2012).
2 How such diversity is generated, how it has evolved and how maintained is of
s interest to population biologists, biodemographers, evolutionary biologists,
s and ecologists, because such knowledge furthers understanding of ecological
»s and evolutionary change (Endler, 1986; Hartl and Clark, 2007). This interest
s has propelled analyses of how genetic variability, environmental variability
s and their interaction generate individual differences in phenotypes and life
s courses. Population genetic models focus on mutations, drift, and so on to
w0 explain genotype frequencies and their dynamics (Hartl and Clark, 2007; Bar-
o ton and Keightley, 2002; Mackay et al., 2009; Orr, 2005; Der et al., 2011). A
51 challenge not fully mastered, is how these mechanisms lead to stable popula-
2 tions that show the kind of variability observed in natural populations (Evans
53 and Steinsaltz, 2007; Roze and Rousset, 2008). Quantitative genetics circum-

s« vents some of these challenges by investigating phenotypic trait distributions
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55 and their changes within populations (Walsh, 2001; Barton et al., 2017).
ss Environmental variation leads to changes in the phenotype, and genotype-
s7 environment interaction further adds to the complexity in understanding
s observed diversity in phenotypes and life courses (Champagnat et al., 2006).
s Phenotypic plasticity investigates these genotype-environment interactions,
s and processes such as niche construction and eco-evolutionary feedback em-
&1 phasize that the population’s environment is not fixed, but interacts with and
2 can be altered by the organism (Diekmann et al., 2003; Vuilleumier et al.,
3 2010; Pelletier et al., 2009). Ideas about neutral variability and epigenetics
s« have also been used to explain the observed diversity of genotypes, pheno-
s types, and life histories (Ohta and Gillespie, 1996; Steiner and Tuljapurkar,
6 2012; Geoghegan and Spencer, 2012). Neutral concepts include non-adaptive
&7 phenotypic variation due, e.g., to spandrels—phenotypes as byproducts of se-
s lection on other traits, or genetic hitchhiking (Evans and Steinsaltz, 2007;
oo GOULD and LEWONTIN, 1979). Most of the above concepts are consid-
7 ered to be generally applicable across biological systems. However, these
n concepts are challenged to explain the surprising diversity in life courses
22 of even isoclonal individuals raised under highly controlled environmental
72 conditions (Lande et al., 2003; Finch and Kirkwood, 2000; Melbourne and
72 Hastings, 2008; Steiner and Tuljapurkar, 2012; Jouvet et al., 2018; Steiner
s et al., 2019). The challenges arise because these concepts do not consider the
7 underlying individual level dynamics that contribute substantially to the di-
77 versity in individual life courses. Besides the lack of understanding of drivers
7z of individual level dynamics, we often do not know to what degree these
79 drivers are adaptive, maladaptive or neutral (Lenormand et al., 2009).

80 Whatever the actual mechanisms may be, the diversity in life courses
&1 in any structured population can be characterized by differences among stage
&2 trajectories—sequences of stages that individuals go through over their life
g3 course and that end in death (Caswell, 2001; Tuljapurkar et al., 2009). Here
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sa  Wwe assume stages are discrete (this is just binning). Individuals are born
s into one, or one of several, discrete stages and subsequently transition to one
s of several discrete stages at each observation. If the transition probability
&7 only depends on the current stage, these trajectories can be described by a
ss Markov chain. Over L observations—think of one observation per year—with
s s stages there are a maximum of s’ possible trajectories, i.e. trajectories di-
o versify with increasing length L. The larger the uncertainty at each step,
o the larger is the diversity of life course trajectories (Tuljapurkar et al., 2009).
e Stages include developmental stages including levels of breeding success, mor-
o3 phological stages such as size, behavioral stages such as feeding or mating
w activity, physiological stages such as condition, gene expression stages such as
s transcription factor expression, epigenetic stages such as methylation stage,
s or spatial location.

o7 In this paper, individual trajectories are described by a Markov
s chain, i.e., there is a probability p;; > 0 that an individual changes its stage
o from stage j to stage 7, for every possible pair of stages. The notation here
wo is similar to Caswell (2001); Hill et al. (2004). In many systems the stage
i  distribution at birth is centered on one or a few stages. With increasing
102 age, individuals transition through stages described by the Markov chain
s and individual stage trajectories diversify. We can quantify the rate of diver-
s sification of these trajectories by the entropy of the Markov chain (Shannon,
s 1948). This entropy has been termed population entropy (Tuljapurkar et al.,
s 2009). The process of diversification of life courses by Markovian (stochas-
107 tic) stage transitions has been called dynamic heterogeneity with its outcome
s of individual differences (Tuljapurkar et al., 2009; Steiner and Tuljapurkar,
o 2012; Caswell, 2009). This process, based on transitions with identical prob-
uo abilities but different outcomes, contrasts with fixed differences in transition
w rates. With fixed differences, each genotype is described by its own matrix

112 of transition rates.
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113 Here we focus on the sensitivity of population entropy to the under-
us lying set of transition probabilities. These sensitivities should reveal which
us transitions generate the most diversification among life courses. These sensi-
ue tivities of the population entropy, however do not provide any understanding
w7 whether such diversification might be under selection, i.e. whether it is adap-
us tive, maladaptive, or neutral. To investigate potential adaptive features, we
no conider each transition rate and compare the sensitivity of the population
120 entropy to the sensitivity of the population growth rate, A. This latter sensi-
2 tivity to A is linked to the evolutionary forces acting on these transition prob-
122 abilities, because population growth rate quantifies fitness (Caswell, 2001). A
123 positive correlation between sensitivities suggests that diversification should
124 be adaptive; diversification is neutral if we do not see any relationship be-
s tween the sensitivities; and diversification may be maladaptive if the sensi-
126 tivities are negatively correlated.

127 We describe sensitivities for ergodic Markov chains, and Markov
s chains with absorbing stages. In most applied cases the absorbing stage is
120 the death stage. Classical population projection matrix models that include
130 reproduction (e.g. Lefkovitch or Leslie population matrix models) first need
1 to be transformed into a Markov chain before we can estimate the popula-
12 tion entropy. We can achieve this transformation as described by Tuljapurkar
33 (1982) (Appendix). We illustrate our results for a seabird population, the
13« Thick-billed Murre on Coats Island, Canada (Gaston et al., 1994; Steiner and
135 Gaston, 2005). This population is structured by reproductive stages, defined
16 as breeding outcomes.

137 Our results have the virtue that they only require the dominant
s eigenvalue and corresponding eigenvectors of non-negative matrices—these
130 are numerically straightforward and well-conditioned, unlike the computation
1o of all subdominant eigenvalues. Our approach is therefore applicable to many

- structured populations.
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2 Population entropy and Matrix of a Markov chain

When the population is ergodic (actually, irreducible and aperiodic) there
is a stationary (or equivalently, equilibrium) frequency distribution over the
possible stages: a vector w whose elements w; are the frequencies of stages
1=1,...,s. A stage’s equilibrium frequency also equals the fraction of times
that an individual is expected to be in that stage, if we make many repeated
observations. Population entropy H (P) quantifies the diversity in individual

trajectories described by the Markov chain:

H(P) = —Z W Z pij log pij, (1)
= —el'(Polog(P))w. (2)

s Here P is a matrix of the Markov chain transition probabilities p;;, with
s individuals transitioning from column j to row i. The second line above is
us useful numerically and analytically: the superscript T" indicates a transpose;
us € is a vector whose entries all equal 1; the Hadamard product (o) is element-
w  wise so that for matrices P,log(P) of equal size with elements p;;, log(p;;)
s respectively the matrix P o log(P) is of same size and has ij element equal
uo  to pijlog(pij)-

150 We start with deriving sensitivities for an ergodic chain (irreducible,
151 non-absorbing), by asking what happens if we make a small change in the
152 transition probabilities so that P becomes P + ¢ B (for small positive ¢).
153 Throughout this paper, we consider only perturbations that leave unchanged
15+ the signature of the Markov chain: i.e., whenever p;; = 0 we keep b;; = 0.
155 Then the population entropy must change from H(P) to say H(P) + € H;.
1ss  Then Hp is the sensitivity of the population entropy. We obtain here an
157 exact analytical expression for this sensitivity.

158 Thereafter, we answer the analogous question for a Markov chain


https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/188276; this version posted August 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

159 that has at least one “absorbing” stage. To see why this is different, suppose
1o death is the absorbing stage so that an individual wanders among the non-
11 absorbing stages until it dies. Conditional on being alive, we expect that
12 there is a quasi-stationary distribution over the non-absorbing stages, if we
13 can find appropriate conditional Markov transition probabilities. Darroch
16« and Seneta (1967) show that we can, providing that absorption takes a long
165 time; see also Matthews (1970). The entropy of this conditional Markov chain
166 measures the rate of individual trajectory diversification until death. Our
17 contributions are an exact result for the sensitivity of the population entropy
18 of an ergodic chain and absorbing Markov chains. Comparing the sensitivities
160 between the two types of Markov chains (ergodic and absorbing) from the
o same system can then be used to evaluate the contribution of individuals
i surviving to different ages on the diversity of stage trajectories, as has been

iz done before (Hernandez-Pacheco and Steiner, 2017).

= Sensitivity of Entropy: Ergodic Chains

i Changing Transition Probabilities

s The starting point is a population described by a matrix P of transition
176 probabilities; we assume the chain is irreducible and aperiodic, hence ergodic.
w7 An ergodic population is characterized by its asymptotic dynamics being
s independent of the starting conditions. Here, we are mainly interested in such
9 ergodicity since our focus is on revealing underlying processes, i.e. the drivers
1o of diversity in life courses, than on initial conditions a population starts at.
1 For such ergodic models the stationary frequency is an right eigenvector,
w2 Pw = w. Transition probabilities out of each stage sum to unity, so e’ P =

s el. We compute the fundamental matrix, which has also been described as
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e the stage duration matrix (Steiner et al., 2012).

Z=[1-(P-we)] ", (3)
1ss where I is the identity matrix, and ~! indicates the inverse of the function.
186 Now perturb the transition probabilities to P+¢ B, so that transition

1e7  probability p;; changes to p;; + €b;;. Clearly we must have

e’ B = 07, i.c., the perturbations balance each other and columns sum to zero.
(4)
188 This means that changes in the transition probabilities are necessarily con-
180 strained, we cannot simply perturb only a single p;;; some biologically dis-
o tinct ways of achieving this constraint are discussed by Caswell (2001), pages
0 218-220.
Following Schweitzer (1968) the stationary frequencies change to w+
€y + €%ys + O(e®) where ey = €Ty, =0

y=ZBw, (5)
k=1 m=1

102 The more involved expression for y, is found in Kato (1966). So the vector
103y from equation (5) comprises, first, the time an individual spends in each
e stage given its current stage (i.e. the fundamental or stage duration matrix,
s 7Z), second, the product with the perturbation matrix B then determines the
s change in time each individual spends in each stage given its current stage,
17 and finally, the multiplication with the stable stage distribution w quantifies
s how many individuals (or more precisely what proportion of individuals)
1o are affected by the change in time they spent in each stage. That is the

200 final multiplication with the stable stage distribution w quantifies how many
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20 individuals are affected by how much time they spend in each stage due to
202 the perturbation, which is exactly how much change in the stationary stage

203 distribution is caused by the perturbation.

0 Sensitivity of Entropy

From equation (1) (and the Appendix) the entropy of the perturbed Markov

chain is
HP +eB)=H(P)+eH, + e Hy+ O(e%), (7)
Hy =— i i [w; bi; log pi; + y; pij 1og pijl (8)
=1 j=1
= —e’ [Bolog(P)w + P olog(P)y], 9)
Hy,=—e" [(1/2)BoBw +Bolog(P)y +Polog(P)y, +PoBy].

(10)

2s Here H;p is the sensitivity to the population entropy we seek. The second-
206 order change in entropy (essentially the second derivative) is Hs. For equa-
207 tion (8) we have the stage distribution element w; (how many individuals
205 are affected), by the amount of perturbation b;;, and the change in stage dis-
200 tribution y;. An illustration for the special case of perturbing a Maximum

20 Entropy chain is given in the Appendix.
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a Sensitivity of Entropy: Chains with Absorbing

2 Stages

23 Transition Probabilities with Absorption

24 We consider just one absorbing stage—multiple absorbing stages are easily
25 dealt with (Matthews, 1970). Let us say the absorbing stage (think “death”)
26 is the last stage of s stages, so that stages 1 to (s — 1) are the transient (i.e.,

x7 “alive”) stages. The transition probability matrix must have the form

P:<Q 0), )
p" o1

with absorption (death) probabilities given by the elements p; of vector pw:

(s=1) (s—1)
pi =1-— Z pij =1- Z i
=1 =1

218 Matrix Q, describes the transition probabilities among the life stages,
210 summing over the columns of Q gives the survival probability of each stage.
20 Conditional on non-absorption (i.e., being alive), the transition probabilities
21 among the (s —1) transient stages (Darroch and Seneta, 1967) are the entries

22 in the (s — 1) x (s — 1) matrix

R=-vQv ', (12)

DI

where 0 < p < 1 is the dominant eigenvalue of Q, v with elements v; is the

corresponding left eigenvector,

viQ=pv’,

10
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and the diagonal matrix
v = diag(v).

23 The ij element of matrix R is v;q;;/(pv;); clearly, the columns of R sum to
24 1, so this is a Markov matrix, while matrix Q is not. So what we have done
»s in (12) is to transform the transient (absorbing stage transition) matrix Q
26 to a Markov chain R. Let w be the right eigenvector of Q corresponding
»7  to its dominant eigenvalue, normalized so that (vI'w) = 1. The equilibrium
28 frequency distribution of the conditional process governed by R is given by
29 the products (w;v;),1=1...(s—1).
We can measure the diversification of individual trajectories with
increasing age while they are still alive by the population entropy of the

conditional process (see Appendix),

H(P) = H(Q),
(s—1)
= — Z w; v; Z ri; logrij,
(s— 1)
=logp— - Z Z v; W; ¢ 10g gij. (13)
=1 j=1

» Perturbing an Absorbing Chain

2 We now want the effect on the population entropy of small changes in the
2 transition probabilities of the Markov chain. In (11), consider simple changes
213 in the transient matrix Q to Q + ¢ B. It is easy to see how this changes the
20 full matrix P. These changes will alter p, v, and w to p+ev, v+ ex, w + €y,
235 respectively. Here we give explicit formulas to compute these changes and in
23 the next subsection show how these are used to compute the sensitivity of
237 entropy we seek.

238 Recalling that (vi'w) = 1, we have the well-known (see e.g., Caswell

11


https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/188276; this version posted August 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

239 (2001)) fact that
v=v' Bw. (14)

We define two new matrices:

D, :I—WVT, (15)

wif @)

Then we have (see Appendix) the less well-known results,

y=72,D,Bw, (17)
x' =vI'BD, Z,. (18)
240 The interpretation of y in (17) is similar to the one in equation (5),

21 i.e. how many individuals are affected by how much (more or less) time they
22 spend in each stage due to the perturbation, which equals how much change
23 in the stationary stage distribution is caused by the perturbation, except

24 here (17) this change is based on the absorbing (transient) transition matrix.

xs Sensitivity of Entropy for an Absorbing Chain

us  The last step is to compute the difference between the entropy of the per-
27 turbed chain (H(Q)) and the original chain,

HQ+¢eB)=H(Q)+cH,;. (19)

12
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23 The sensitivity H; is given (see Appendix) by

Hi=v (5) 10+ 1ogp - H(Q)

1 (s—1) (20>
- (;) Z [(ziw; + viy;) gij log gij + viw; by log gi] -
ij=1

« Illustrative example sensitivity of population

= entropy: The Thick-billed Murre

1 Toillustrate our exact result for the sensitivity of the population entropy of a
2 Markov chain, we first built a stage-structured matrix population model using
23 longitudinal mark-recapture data on a highly philopatric and colonial seabird
2 species, the Thick-billed Murre (Uria lomvia) (Gaston et al., 1994; Steiner
»5  and Gaston, 2005). After parameterizing the population projection matrix
s based on the longitudinal data, we transformed this matrix to a Markov
257 chain, as described by Tuljapurkar (1982) (Appendix, see also equation (12)).
»s Here we present the results on population entropy (ergodic chain) of the

9 resulting Markov chain and discuss its implications.

x Structured population model of the Thick-billed Murre

%1 To parameterize the stage-structured matrix model, we used data on 1984
%2 individual seabirds, Thick-billed Murres, banded between 1981 and 2010, on
23 Coats Island, Nunavut, Canada (62°30'N, 83°00'W). Band readings have
x4 been made between 1991 and 2011 in the colony over each breeding season.
265 For each bird for which a band was read its breeding status (breeding out-
26 come) for that season was recorded as a) I, immature, birds prior to any
27 breeding attempt; b) E, egg laid, bird laid an egg but the egg did not hatch;
28 ¢) H, hatch, bird managed to hatch a chick but the chick did not fledge; d)

13
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w0 F, fledged, the bird’s chick fledged, i.e. chick disappeared >=10 days after
20 hatching; or e) U, unknown, when the breeding outcome of the bird was not
on known. Birds are born into the immature stage (I) and they remain in that
o2 stage until they are three years old (only 3 out of the 1128 individuals banded
213 as chicks, i.e. known aged birds, recruited at age two into the breeding co-
2 hort). After the third year, individuals can stay as immatures, or transition
o5 to and then among one of the other breeding outcome stages, E, H, and F.
276 Since some birds had unknown breeding stages, we corrected the estimated
27 survival and transition probabilities among the observed breeding stages (E,
zs  H, F) for the unknown events by weighting probabilities according to survival
2o and transition rates (Appendix).

280 Our resulting stage structured matrix projection model included the
21 four stages (ILE,H,F), with stage F being the only stage contributing to re-
222 production. Since sex determination for Thick-billed Murres is challenging,
23 we used data on both sexes for estimating survival, recapture (sighting), and
24 transition probabilities (assuming same survival and transitioning for both
25 sexes). We assumed 50% of chicks to be female, and we included only fe-
26 males for the fertility of the projection model (Table 1). Further detail on
27 estimating resighting, survival and transition probabilities, for which we used
s program MARK (White and Burnham, 1999), is provided in the Appendix.
20 The corresponding transformed Markov chain (see equation (12)) is shown
200 in Table 2.

- Demographic parameters of the stage structured Thick-

» billed Murre population model

23 We estimated the population growth rate for the projection model at A=1.041
20¢  (dominant eigenvalue of matrix shown in Table 1), which might be a slight

205 overestimation compared to the observed population growth; accounting for

14
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206 stochastic environmental variation would lower the expected growth rate
207 slightly. The quasi stable stage distribution of the projection model was
208 1=0.33, E=0.25, H=0.07, F=0.36 (scaled corresponding right eigenvalue w)
200 and the corresponding reproductive values are 1=1.0, E=2.2, H=2.1, F=2.7
20 (corresponding left eigenvalue v, scaled for I=1). The sensitivities with re-
;1 spect to A of the population projection model (Table 1) are given in Table 3
22 and estimated according to Caswell (2001) (page 209ff). They show that
33 population growth rate is most sensitive to transitions from the immature
s to the fledging stage, as well as remaining in the fledging stage, the only
w05 stage that contributes to fertility. Moving from population growth—and its
306 sensitivity—to evaluating diversification, the population shows a high rate of
w7 diversification with an population entropy (H=0.98%) close to the maximum

s entropy for the Markov chain matrix (Table 2).

w Integrated sensitivities and selective forces

s The sensitivities with respect to A of the population projection model, as
su we estimate for instance in Table 3, imply that a realized perturbation in
sz a transition probability p;; alters the survival rate of that stage j. That
a3 is, if we increase a transition rate, p;;, in a given stage j, we automati-
sie cally increase the column sum across transitions in the given stage j by
a5 the same amount; the column sum determines the survival rate of a stage.
36 Here we are not interested in relationships between reproduction and sur-
sz vival, but in changes among stage dynamics without changing stage sur-
sis vival. We therefore need to keep the column sum of the stage constant
si9 - when we perturb a transition probability. This constraint implies, if we per-
w0 turb one transition probability we have to compensate this perturbation by
;1 one or more matrix elements in the same column, i.e. transition rates in

12 the same stage. The biological implications of such constraints in chang-
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»3 ing the transition probabilities for stage structured models are discussed
2 by Caswell (2001) (pages 2018-2019). There are many solutions to fulfill
»s these constraints, here, we reduced (perturbed) the transition probability of
w6 one matrix parameter by 0.01 and increased at the same time the transi-
w7 tion probabilities of the remaining stage parameters by equal amounts as to
2s  perturbations e’ B = 07, i.e., columns sum of the perturbations equal zero
20 (see also equation (4)). We call these sensitivities integrated sensitivities fol-
30 lowing Van Tienderen (1995); these integrated sensitivities comprise changes
s in multiple transition rates and we sum weighted sensitivities according to
sz the perturbations described in B. These constraints on the perturbations
5 (el B = 07) ascertain the assumption (requirement) of ergodicity of the
s matrix model (Markov chain). We estimated such an integrated sensitivity
135 related to a reduction in each transition probability (note we consider only
136 perturbations that leave unchanged the signature of the Markov chain: i.e.,
137 whenever p;; = 0 we keep b;; = 0). Each change in a transition probabil-
13 ity changes the population entropy (diversification in life courses) and the
339 population growth (\), but perturbations now having signs, and resulting
s changes on population entropy or population growth can be positive or neg-
sa  ative. Classical sensitivities, as illustrated for instance in Table 3, hold only
2 positive values; any increase in a transition rate also increases survival and
s3  therefore has to increase population growth. Classical sensitivities do not
as  evaluate changes among stage dynamics as we do here.

s In Table 4 we show results for the integrated sensitivities of pop-
us ulation entropy for the Thick-billed Murre example. Table 5 shows the
s corresponding integrated sensitivities with respect to A. If we reduce the
1 transition rate of remaining as immatures (I to I, b;1) by 0.01, and at the
10 same time increase the remaining three transition probabilities (from I to
0 EH &F, by to byq) by 0.01/3 = 0.003333, population entropy increases by
31 0.0034 (first element Table 4), while the population growth rate, A, increases

16


https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/188276; this version posted August 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

32 by 0.00219 (first element Table 5). A reduction in the probability of birds
353 successfully fledging a chick in two consecutive years (transition stage F to
3 F, pgg) and at the same time increasing fecundity and the probability of
35 birds transitioning from having a successful fledging event (F) to failing to
16 fledge a chick (stage E, or H) increases population entropy most (Table 4).
37 Reducing the transition between F and H (ps 4, and increasing fecundity, py 4,
3 the transitions to stage E, pa4 and stasis of stage F, py 4) reduces population
30 entropy most (Table 4).

360 These integrated sensitivities of population entropy are distinct from
1 integrated sensitivities with respect to A. Sensitivities of population entropy
32 quantifies the change in diversification among life course trajectories (Ta-
33 ble 4), while sensitivities of population growth quantify the change in fitness
3¢ (Table 5). Reducing the probability of staying in stage I in consecutive years
s (I to I transition, p; ) and increasing the chance of recruiting to the breed-
36 ing cohort (I to E,H,F transitions, ps; to ps;) increases population growth
37 rate most strongly (Table 5), but is not as influential on diversification of life
s courses (Table 4). Reducing fecundity (F to I transitions, p;4) also leads to
0 a strong increase in population growth when at the same time transitions be-
s tween F and E, H, F (pa4 to ps4) are increased (Table 5). The most negative
sn  effect for population growth rates are achieved if transitions between I and
sz F (psq1), and F and F (py4) are reduced (and at the same time transitions to
w3 the other stages are increased, Table 5). This latter observation is not sur-
s prising given that we find the highest classical (non-integrated) sensitivities
w5 with respect to A for the same transitions (ps; and py 4, Table 3).

376 The integrated sensitivities with respect to population entropy (Ta-
sz ble 4), show which transitions are most critical for generating diversity among
ss  life course trajectories, but they do not provide information on whether such
so - diversity might be adaptive or neutral. This understanding, whether diver-

;0 sification of life courses is adaptive or neutral, might not only be informative
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ss1 on a fundamental question in biology, how heterogeneity among individuals
2 evolves and can be maintained, it might also inform on adaptive strategies
;3 of niche differentiation expressed as diversification in life courses. The inte-
;s grated sensitivities with respect to A (Table 5) provide us with information
;s how changes in transitions affect population growth and fitness. Sensitivities
3 with respect to A\ (Table 3) have been used to quantify forces of selection
37 acting on transition probabilities (Caswell, 2001). The higher the sensitivity
;s With respect to A, the stronger selection should have acted on these transition
;0 rates. The integrated sensitivities with respect to A we compute in Table 5,
s0 do not inform us on diversity among life courses. Therefore, to approach the
s question whether the diversification in life course trajectories measured as
;2 the population entropy, might be adaptive, we correlated the two measures
33 of integrated sensitivities for each matrix element. As we see in Fig. 1, the
s two measures of sensitivity are not correlated and hence the elements that
35 contribute most to diversification of life courses are not those that are under
w6 the strongest selection. We also do not find evidence for negative correlation,
57 that is, selections seems not to act against diversification. This suggests that
38 the resulting diversity among life courses might rather be neutral. Such in-
10 terpretation supports neutral theories of life history evolution (Tuljapurkar
wo et al., 2009; Steiner and Tuljapurkar, 2012), and challenges adaptive theories
w1 arguing that variability in life courses is adaptive, an interpretation found
w2 in various evolutionary ecological studies (Stearns, 1992). However, our in-
w3 terpretation must be approached with caution since we only explored one of
w¢  many solutions for the constraints among transition probabilities.

405 Our example on the Thick-billed Murre, illustrates how sensitivities
w6 of population entropy can be used to approach questions about adaptive di-
w7 versification in individuals life courses, but our example is only limited to
w8 one population. For a more general understanding more species and more

w0 solutions to constraints among transition probabilities should be explored.
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a0 Population entropy varies substantially among populations and species (Tul-
s japurkar et al., 2009). Within populations population entropy varies among
a2 years, i.e. with varying environments, but the selective forces that shape
a3 heterogeneity among individual life courses do not correlate with well-known
s classical ecological selective forces such as population density (Hernandez-
a5 Pacheco and Steiner, 2017). Population entropy also changes with age within
a6 a population, indicating changes in transition probabilities with age (Plard
ar et al.; 2012). This knowledge on other species and populations show that en-
ais  tropy, as well as fitness varies among populations and conditions experienced
a0 by populations. In our example we averaged across environments and across
w0 age for simplification and better illustration of the method, but such addi-
a1 tional environmental and demographic dimensions can easily be explored.
222 Our motivation to derive the sensitivity with respect to population entropy
»3  was mainly to explore the potential evolution of individual stage dynamics,
24 and its effect beyond genotypic, environmental and gene-by-environment in-
w5 teractions. One could ask a different question with a simpler approach: are
»6s  populations that diversify fast in their life courses more fit? To answer this
a7 question one could simply correlate the population entropy to the population
w8 growth rate, A, i.e. one would not use the derivatives (sensitivities to each
»29 matrix element) but the population level measure of entropy and growth.
a0 These population level demographic parameters do not reveal the influence
a1 of the individual stage transitions and which stage transitions contribute
sz most to diversification and fitness. However, the latter information might
a3 be crucial to better understand and infer on the underlying mechanisms and
s allow to go beyond decomposing variance explained by genotypes, environ-
a5 ments and their interactions. These insights might also be informative for
136 managing populations and species conservation.

437 We also like to highlight that neutral and adaptive processes have

a3 shaped the transition rates in the stage structured matrix. From a theo-
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30 retical perspective two matrices with the same population growth rate, can
ao differ vastly in their population entropy, from complete determinism of life
w1 courses to maximum entropy (all transition probabilities are equal). Simi-
w2 larly, we can construct matrices that have the same population entropy but
a3 differ substantially in their fitness, A\. Such differences are also observed
ss in nature — though perhaps not to the same extreme. For instance, in a
us  free-living monkey population where individuals are closely tracked, hetero-
ws  geneous trajectories with individuals frequently changing among stages can
a7 lead to very similar population structure as can a few trajectories with low
us level of dynamics, only depending on the environment (Hernandez-Pacheco
so and Steiner, 2017). The population level stage frequencies do not reveal
ss0 the underlying differences in individual level stage dynamics. We believe it
ss1 therefore to be crucial to explore individual level dynamics to understand

2 how diversity in phenotypes and life courses is generated and maintained.

s Conclusions

sss  The sensitivities of the population entropy we derived reveal the transitions
5 among life stages that contribute most to the diversification in life course
s6  trajectories (Table 4). We can use these sensitivities of the population en-
ss7  tropy in combination with sensitivities on fitness to inform a larger debate
s on potential selective forces acting on the dynamics and diversification of life
9 courses (Shefferson, 2010). Our example on the Thick-billed Murres illus-
wo trates that we only have a limited understanding about changes that generate
w1 differences between individuals. In our example the transitions that generate
w2 diversity in life courses are not linked to the most sensitive transitions influ-
w3 encing population growth and hence suggest that observed diversification in
we life courses are neutral rather than adaptive. We have to be cautious about

w5 over interpretation of this result, since many solutions for the constraints
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w6 among transition probabilities exist (Caswell, 2001) and we only have ex-
w7 plored one, that seemed to us biologically plausible. Identifying influential
w8 stage transitions may not directly reveal the underlying mechanisms that
wo generate diversification but may nonetheless be useful. Mechanistic insights
a0 should be easier for populations in which individual stages are closely asso-
an  ciated with known underlying mechanisms, for instance via gene expression
a2 or methylation. If stages are defined as geographic location, identifying the
w3 transitions (migration among locations) that generate most diversification
aa  (sensitivity with respect to population entropy) and those that are associ-
w5 ated with the highest increase of fitness (sensitivity with respect to A), might
as inform niche differentiation and dynamics in metapopulations, and so guide

47 conservation decisions.

« Acknowledgement

s We thank Hal Caswell and Troy Day for helpful comments on an early draft.

21


https://doi.org/10.1101/188276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/188276; this version posted August 19, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Table 1: Projection matrix model
I E H F

I 10494 0 0 0.5

E | 022 0465 0.231 0.161
H | 0.006 0.116 0.094 0.088
F 002 0378 055 0.657

Table 2: Tranformed Markov chain matrix
‘ 1 E H F

I 10474 0 0 0.178
E | 0.462 0.446 0.231 0.125
H | 0.012 0.107 0.09 0.066
F | 0.446 0.446 0.679 0.63

«» A Appendix

@ A.1 The Ergodic Case

w2 The perturbation matrix B satisfies (1) of the main text. Writing
D=P-wel,

43 see also that
el Z=¢e" [I+D+D2+...] =el,

Table 3: Sensitivity to A
I E H F

0.165 0 0 0.181
0.361 0.277 0.073 0.396
0.346 0.266 0.07 0.379
0.445 0.342 0.09 0.487

e lasilcs iy
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Table 4: Integrated sensitivity to entropy

I E H F
I |0.0034 0 0 0.00062
E | 0.0031 0.00192  -0.00006 -0.0024
H | -0.00461 -0.00352 -0.00093 -0.0058
F | -0.00189 0.0016 0.00099  0.00758

Table 5: Integrated sensitivity to A

I E H F
I |0.00219 0 0 0.0024
E | -0.00043 0.00026 0.00007 -0.00047
H | -0.00022 0.00044 0.00012 -0.00024
F | -0.00154 -0.0007 -0.00019 -0.00169

ss¢  so finally, from (5),
ely=e'ZBw=e'Bw =0.
The perturbation of the entropy in (1) uses the expansion
plog(p + eb) = plogp +pe(b/p) + O(*) = plogp + eb+ € (b*/p) + O(&?).

Keeping terms to O(e) yield three terms (omitting the summations over i
and j),
wjbij + ’LUj bij logpz-j + yj pij logpz»j.

w5 Recall that ) b;; = 0 for every j to see that the first term is zero, leaving

6 us with equation (8).
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w A.2 Conditional Entropy
we A.2.1 Simplifying the Entropy

10 The entropy is defined by the middle line of (13). Insert (12) to obtain

1 (s—1) (s—1)

—— Z Z w; v; ¢ [log gi; + logv; — logv; —log p] .

e j=1

w0 Now use the facts Zj qijw; = pw;, > . V;q;; = pvj to see that the two middle
s terms cancel, and to see that the last term (with sums) is just log p. This

42 yields the last line of equation (13).

w3 A.2.2 Perturbing Eigenvectors

We derive (17); proceed similarly to get (18). Now the perturbed right

eigenvector of Q satisfies the usual equation
(Q+eB)(w+ey)=(p+ev)(wey).
sa  The order € terms here are:

Qy +Bw = (vw + ply). (A-21)

Now note that w v’

is a matrix that projects any vector onto w.
When we perturb the matrix Q, the change y must be orthogonal to w (oth-
erwise we are just making a proportional change in every matrix element).
Hence we must have

Dy = (I- WVT)Y =Y.

Also
D\Q=(I-wv)Q=Q-wv'Q=Q— p(wv?).
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Using these facts, multiply all terms of (A-21) by matrix D1 to get,
first,

D:Qy + D;Bw = py,

and then
DiBw = (p—[Q—p(wv')])y.

w5 Using the inverse of the matrix on the right (guaranteed to exist because p

w6 is the dominant eigenvalue) leads to (17).

w7 A.2.3 Sensitivity of Entropy

We examine separately the two terms of (13) and find perturbations to order

€. The first term changes to

log(p + ev) =log(p) + € (%) .
The second term of (13) has the form

1
- F
p

w8 say, where I’ stands for the double sum.

Now (much as in Section A.1) the perturbation of the double sum
in (13) is

(s—1)

Py = Z [(ziw; + viy;) @ij log gij + viw; bij log qi] -
ij=1

Thus the effect of the perturbation on the second term of (13) is to

produce
1

1
(F+6F1):—F+€|:——I/—2
p PP
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So the total perturbation is

Ok-2

w0 Using (13) to express I'/p in terms of the entropy H(Q) yields (20).

0 A.3 Transforming projection matrix to Markov chain

so0'To transform a population projection model into a Markov chain, we follow
so Tuljapurkar’s approach (Tuljapurkar, 1982). Note, Tuljapurkar’s projection
sos matrix describes transitions from row to column, whereas our matrix P de-
soa  Scribes transitions from columns to rows, hence the transformation for our

sos  matrix is as follows:

1
Py = W 'PpW

506 with Py, being the Markov chain (Table 2), Pp being the population
o7 projection matrix (Table 1), A being the population growth rate (dominant
ss eigenvalue of Pp), and W being a matrix of zeros except for the diagonal
s0 elements of (w;), which are the normalized stable stage distribution values
s.0  (normalized right eigenvector corresponding to dominant eigenvalue of matrix

su Pp). Wlis the inverse of matrix W.

52 Special Case: Perturbing a Maximum Entropy chain

s3 A chain with maximum entropy has transition matrix elements p;; = (1/s)
s where, as before, s is the number of stages (Tuljapurkar et al., 2009). Clearly

sis W has every element equal to (1/s) and we can write

P=we’. (A-22)
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sisThe entropy of this chain is just H = log s (see also Tuljapurkar et al. (2009)).
sz The chain’s fundamental matrix (see (3)) is just Z = I, which means that
sis when we perturb the chain to P + ¢ B the eigenvector w becomes (see (5))
s.0 just w 4 ey with y = Bw. The second-order perturbation of w is zero (i.e.,
50 yo =0).

The sensitivity of this chain is zero! To see that this is true in our

equations, observe that in (9) we have

Bolog(P) =log(1/s) B,
Polog(P)y = (1/s) log(1/s) o Ey = (1/s) log(1/s) c EBw,  (A-23)

s where E is a matrix with all elements equal 1. Hence both terms in H; (9)
s» are proportional to e’ B — but this has to be zero for any possible perturba-
3 tion (recall the column sums of B equal zero), so H; = 0. More generally,
s2¢  sensitivity is just a (complicated) derivative of entropy and since we start
s with maximum entropy it must be true that any derivative of the entropy is
s zero (that’s what defines a maximum).

527 So what about Hy in (10)? Note that here by, = 0 , and that the
s arguments in (A-23) imply that the only surviving term in (10) is

Hy=—e"[(1/2)BoBw] = —% Z Z B} (A-24)

Thus perturbing a maximum entropy chain with transition matrix P by the

constrained matrix ¢ B always yields a reduced entropy
2
_ 27 _ € 2
H(P +€B) = H(P) + ¢ Hy = log s — Z Z B2,
i

s to order 2.
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50 A.4 The thick-billed Murre, population projection model

s We used data from a total of 1984 individuals, of which 1128 individuals
s22 where banded as chicks (immatures), and 856 were banded as adults (left
s33 censored). In the breeding colony on Coats Island, these birds were observed
s over a breeding season and many sightings of uniquely banded bird were made
s35  each year. Birds are highly philopatric to their breeding sites which makes
s it relatively easy to record the breeding outcome for a given year (Steiner
s and Gaston, 2005). We used 5956 records of annual breeding outcomes of
s33 which 1313 were birds laid an egg but not manage to hatch a chick, E; 518
s3  hatch a chick but did not manage to fledge the chick, H, 3031 birds that
sa0  successfully fledged a chick, F, and 1094 unknown events, U. Since birds
s are highly philopatric to their breeding site we could assign each bird to
s2 a breeding plot. For a few birds that switched a breeding plot within their
sa3  lifetime, we assigned them to the breeding plot they spent most time breeding
sa4  atb.

545 The colony on Coats Island is divided into different study plots, and
s.6 we only included data from six study plots (D, J, K, N, Q, S) that had
se7 longitudinal data on a larger number of individuals. For the 1128 immature
sss  individuals that were banded as chicks in the colony and then later recruited
sa0  as breeders, we assumed that they would stay as immatures for the first three
ss0  years, before they would be allowed to start transitioning to and among the
ss1 breeding stages (E, H, F, U). Only three of these 1128 birds recruited at
ss2 age two into the breeding cohort, for these three birds we considered their
53 observed breeding status at age three. Once a bird left the immature stage
ss« 1t was not allowed to transition back to the immature stage. Entering the
55 immature stage from a breeding stage (E, H, F, U) was only possible as a
sss  newborn, that is through fertility (Table 1).

557 Recapture (sighting) effort varied among study plots and years. We

sss  therefore accounted for this varying effort among plots and years when we
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ss0 estimated the stage-specific survival and transition probabilities for which
se0  we used program MARK (White and Burnham, 1999). This means we ac-
se. - counted for plot and year specific recapture probabilities (mean= 0.41 4+ 0.17
52 Stdev) but not stage-specific recapture probabilities (i.e. we assumed that
s3I, H,F stages are equally likely being sighted). Accounting for these biases
se« ascertained that the probability of a bird surviving or transitioning among
ses  stages did not depend on the study plot it bred at, but on its current stage.
566 Banding of chicks started in 1981 but band reading (sightings) only
ssv  began in 1991, so all recapture (sighting) probabilities for all plots prior to
see 1991 were set to 0. Similarly no sighting effort was made for plot D in 2001;
seo  for plot J prior to 1995, and in 2000, 2005-2008, 2010, 2011; for plot K in
st 2001, 2003-2006, and 2011; for plot N in 2001, 2003-2006, and 2011; for plot
s S in 2000-2002, 2004, 2006, and 2011. In those years for these plots sighting
s2 probabilities for the breeding stages (E, H, F, U) were set to 0. For plot Q
s3 we had sighting records for each year between 1991 and 2011 and estimated
s plot specific sighting rates for each year. We did not estimate stage-specific
sis - sighting probabilities, but only plot- and year-specific sighting probabilities,
s since the sighting probability should not depend on the breeding stage (recall
s7 - we have many observation of each individual within a breeding season).

578 The data only included birds that recruited as breeders (or attempted
s, breeders) to the colony, we therefore adjusted the immature survival for the
ss0  population projection model using a previously described estimate of 40.5%
ss1  of fledglings survival to age three, the age when many individuals started to
s recruit as breeders (Gaston et al., 1994). This resulted in an annual imma-
ss3 ture survival of 0.74. Survival rates of the other stages (after correcting for
s the unknown events) equalled 0.96 for E, 0.87 for H, and 0.91 for F. Table 1
sss  shows the population projection matrix, summarizing the stage transition
sss and survival rates (column sums). The corresponding transformed Markov

ss7 chain is shown in Table 2.
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588 When we estimated the stage specific transition parameters, using
ss0  program MARK, we used a multinomial logit function to assure that the
so0 transition rates of a given stage sum to 1. This estimation of the survival and
s1 transition probabilities included unknown breeding outcomes, U. To account
sz for these unknown breeding outcomes we corrected the survival and transition
s3 probabilities of the known breeding stages (E, H, F). We did this by first
s0 estimating the fractions of the known breeding outcomes (1313 E, 518 H,
ss 3031 F; ie. 0.27% E, 0.11% H; and 0.62% F). The expected number of
s unknown events and their associated survival rates compared to the known
sov events was then taken into account to correct the survival rates of the known
s stages.

599 Transition rates to the unknown stage were added to the transition
0 rates of the known stages (E, H, F). We did this by taking the estimated
01 transition probability of a given stage to the unknown stage, and increased
o2 each stage transition of the observed stages by its relative weight. This
s03 correction was done for each stage (I, E, H, F) and provided the four by four
s matrix that contributes to Table( 1).

605 Survival estimates of the immature stage, I, based on the MARK
s model was very close to 1 (if we forced it to be exactly one we had convergence
eor issues). Such a high survival rate is expected since only birds entered the
sz data base if they were recorded as breeders (or attempted breeders), i.e. they
00 all needed to survive the immature stage. In order to get a more realistic
s10 population projection model, we reduced annual immature survival to 0.74
s which leads to a survival between fledging and age three of 40.5 %; a survival
sz rate reported by Gaston et al. (1994) for this population.

613 Murres lay a single egg and do not have multiple broods, for that
e any successful fledgling (stage F event) contributed to fertility. We did only
a5 consider female fledglings, assuming that 50% of all fledglings are females. So

16 our resulting population projection model can be seen as a one sex (female)
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sz model even though we used male and female observations for estimating
18 survival, transition and sighting probabilities. Other than a slight delay in
s10 onset of breeding for males, transition and survival rates have been estimated
620 to be very similar in this species (Gaston et al., 1994). If we only had used
e21  data from known females the amount of data would have been much lower

sz and parameter estimations less accurate.
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Figure 1: Correlation between sensitivity of entropy and sensitivity of A
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