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Abstract: 

Dispersal heterogeneity is an important process that can compensate for downstream advection, 

enabling aquatic organisms to persist or spread upstream. Our main focus was the effect of year-

to-year variation in larval dispersal on invasion spread rate. We used the green crab, Carcinus 

maenas, as a case study. This species was first introduced over 200 years ago to the east coast of 

North America, and once established has maintained a relatively consistent spread rate against 

the dominant current. We used a stage-structured, integro-difference equation model that couples 

a demographic matrix for population growth and dispersal kernels for spread of individuals 

within a season. The kernel describing larval dispersal, the main dispersive stage, was 

mechanistically modeled to include both drift and settlement rate components. It was 

parameterized using a 3-dimensional hydrodynamic model of the Gulf of St Lawrence, which 

enabled us to incorporate larval behavior, namely vertical swimming. Dispersal heterogeneity 

was modeled at two temporal scales: within the larval period (months) and over the adult 

lifespan (years). The kernel models variation within the larval period. To model the variation 

among years, we allowed the kernel parameters to vary by year. Results indicated that when 

dispersal parameters vary with time, knowledge of the time-averaged dispersal process is 

insufficient for determining the upstream spread rate of the population. Rather upstream spread is 

possible over a number of years when incorporating the yearly variation, even when there are 

only a few “good years” featured by some upstream dispersal among many “bad years” featured 

by only downstream dispersal. Accounting for annual variations in dispersal in population 

models is important to enhance understanding of spatial dynamics and population spread rates. 

Our developed model also provides a good platform to link the modeling of larval behavior and 

demography to large-scale hydrodynamic models.    
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Introduction 

Understanding the mechanisms used by invasive species to spread against a dominant 

current in an aquatic environment remains an interesting problem today despite more than two 

decades of research. Upstream spread is related to the “drift paradox”, whereby populations 

persist even when subjected to continuous advection [1]. One hypothesis is that variability in 

flow direction (e.g., due to turbulence or tides) coupled with high reproductive rates is sufficient 

to compensate for the downstream loss of individuals [2–4]. In marine systems, we see flow 

variability due to widely different phenomena [5]. These can be grouped broadly into two 

relevant time scales: (i) the dispersal period (typically the larval stage) and (ii) the adult lifespan.  

Even when variability on the shorter (within year) scale is not sufficient to resolve the drift 

paradox, longer-scale variability (year-to-year) may still allow persistence and upstream spread 

[3]. Byers and Pringle [3] showed that for several simple models, dispersal strategies in which an 

adult releases larvae either over several years or several times each year increase the likelihood 

of population retention and spread against a dominant current. In the present study, we more 

closely examine this idea using a stage-structured integro-difference equation (IDE) model 

whose dispersal kernel more explicitly models larval dispersal in currents and allows for year-to-

year fluctuations in both speed and variability of currents. We conclude that increased year-to-

year variability in currents leads to increased spread rates against the dominant current. 

Moreover, basing dispersal parameters on mean flows underestimates spread rates. 
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The green crab (Carcinus maenas) is a particularly interesting case study because it is a 

high impact invasive species and is an effective disperser [6–8]. On the coast of New England 

and Maritime Canada, the northward spread rate appears fairly consistent over a large temporal 

scale (e.g., 180 km per decade over 120 years) and spatial scale (along the Gulf of Maine, the 

Atlantic coast of Nova Scotia and the southern Gulf of St Lawrence) [8,9], despite spreading 

through water bodies with different characteristics and the occurrence of multiple introductions 

[10]. Further, this invasion occurred against the dominant (southwest) flow [11,12]. Note that on 

a short time scale (when yearly measurements are available), the spread rate appears more 

punctuated, with little spread in some years and large spread in other years (e.g., [13]).  

There is a need for more careful study of dispersal. Not only is it challenging to obtain 

good estimates of dispersal distances, past modeling studies have shown that spread rates are 

highly sensitive to the extent and frequency of the furthest dispersal distances [14] and that larval 

dispersal patterns can determine the population structure of an invasive species throughout its 

spatial domain [15]. In our context, we are focusing on dispersers moving through natural means 

against a dominant current. Note that accounting for anthropogenic movement could affect any 

model predictions. The multiple introductions of C. maenas in Newfoundland are an example of 

such movement [16]. In coastal marine species, the life stage with the greatest natural dispersal 

distances is typically the larval stage (or propagule stage for non-animal species) [17]. Therefore, 

it is important to determine the processes that influence larval dispersal, and incorporate them in 

a modeling framework (our work provides such a framework). These processes can be 

categorized into three groups [17]: (i) biological processes including production, growth, 

development, and survival of larvae; (ii) physical processes such as currents and turbulence; and 

(iii) behaviors, such as larval vertical swimming, that link the two.  
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In summary, the main goal of our paper was to examine the effect of year-to-year 

variability in dispersal on the spread rate of invasive species against a dominant flow, building 

on previous modeling studies [3,9,18,19]. Byers and Pringle [3] examined the importance of 

variability in water currents on retention and, based on the results of Pachepsky et al. [19], 

inferred that retention and spread were linked. We focused here on the effect of variability in the 

dispersal kernel (which incorporates advection, diffusion and larval behavior) on spread rate (and 

not only the likelihood of spread). We used a stage-structured IDE model extended from the 

model developed by Gharouni et al. [9] with the addition of a mechanistic and stochastic 

dispersal component to investigate the northward spread rate (i.e., against the dominant current) 

of the green crab on the east coast of North America. Gharouni et al. [9] investigated the 

compensatory relationship between demographic and dispersal parameters for a given spread rate 

using a linear and density-independent, deterministic, and stage-structured IDE model. Note that 

a compensatory relationship between dispersal and reproduction has been established since 

Fisher’s seminal work [18]. Here, we confirmed that a similar relationship persists in the IDE 

framework even when incorporating density dependence and more complex dispersal 

characterizations than previously done (see Discussion). Although we used the green crab 

invasion as a case study, our model can be modified for any aquatic species of interest. Our 

model has two components, a demographic projection matrix describing reproduction and 

transitions between life stages (first-year juvenile, second-year juvenile and adult), and 

probability distributions (kernels) modeling dispersal of each stage. For the larval dispersal 

kernel, we used a mechanistic and flexible approach following Pachepsky et al. [4]. We first used 

a deterministic version of the model to verify the relationship between the spread rate and the 

dispersal and demographic parameters (net rate of displacement, diffusion and recruitment). Note 
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that we used the term “net rate of displacement” rather than “advection”, because behavior and 

various other processes in addition to passive advection influence how far a disperser is 

displaced. We then allowed dispersal (specifically, the net rate of displacement and diffusion 

coefficient of larvae) to vary yearly by parameterizing the dispersal kernels using a 3-

dimensional hydrodynamic model of the Gulf of St Lawrence [20,21]. The same hydrodynamic 

model was used for several other biological dispersal studies [22–25]. Our IDE framework is 

well-suited to study the effect of heterogeneous dispersal on invasion spread rates. The within-

year variability in dispersal distances is reflected in the shape of the larval dispersal kernel, 

which incorporates components for drift and settlement rate and can be affected by larval 

behavior. Year-to-year variability is modeled by allowing the parameters of the kernel to vary 

stochastically.  

Methods 

Model framework  

Our model consists of a system of IDEs describing the population dynamics of three 

stages of female crabs: first-year female juveniles, second-year female juveniles, and mature 

female adults. This stage structure captures the important difference in time scales between the 

maturation of the juveniles and dispersal of larvae [9]. The larval stage, whose development and 

dispersal occurs offshore on a shorter time scale, is implicitly included in fecundity and dispersal 

components of the model [8]. The general form of the model is  

 

 (     )  ∫   (     )      (   )  

  

  

  (1) 
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where   (        ) denotes the vector of abundances of each stage at discrete time ( ) and 

continuous position (x). Bn and K denote, respectively, the population projection matrix and the 

dispersal matrix, and are defined as  

 

   [

      
    

 
       

            
    

],   [
      
   
   

]. (2) 

The projection matrix (Bn) contains the demographic components of the model. The 

parameters include the average number of female eggs produced per mature female per year ( ), 

the probability that a given egg survives to become a settled first-year juvenile (  ), the survival 

probabilities for first and second year juveniles (   and   , respectively) and the survival 

probability of adults (  ). The fraction of second-year female juveniles that survive to become 

adults (row 3, column 2 entry of Bn) is assumed to be density dependent. This density 

dependence is a refinement of the model developed by Gharouni et al. [9], which was based 

solely on the linearized model; the refinement was done to make the density dependence explicit, 

in the form of competition for space between year-two juveniles and adults. Specifically, we 

assumed that there are κ sites available for adults to occupy, that surviving female adults from 

the previous year, bAn3, continue to occupy their sites, and that second-year female juveniles then 

compete for the remaining spaces. Thus, a fraction, 
       

            
, of the b2n2 maturing year-two 

juveniles obtain sites. Note that if n2 is small relative to the number of remaining sites, then the 

number surviving approaches b2n2 and if n2 is large, the number of survivors approaches the 

number of remaining sites.   

Although our main interest is the effect of annual variations in dispersal distances, we 

first considered the case where the dispersal matrix, K, has no year-to-year variations. The larval 
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dispersal kernel,    , models the dispersal of the current year’s offspring that survive to become 

first-year juvenile recruits. The time scale of the larval dispersal process directed our 

characterization of time as being discrete and in having a model time-step of one year. We 

assumed that spread is driven by larval dispersal, so dispersal in other stages is modeled by the 

Dirac delta,  , which represents no movement. We used a mechanistic larval dispersal kernel for 

    following Pachepsky et al. [4]:  

 
   (   )  ∫  ( ) (     )  

  

 

  (3) 

where p(T) is the probability a given larva settles at time T, conditional on it having survived the 

dispersal process, and  (     ) is the probability distribution of positions of dispersing larvae 

at a time T following release. This approach enabled us to describe the dispersal process in more 

detail, incorporating known settlement windows and drift components, than using a simple 

Normal or Laplace distribution as in the model developed by Gharouni et al. [9]. For our paper, 

we assumed a uniform distribution of settling rates 
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That is, the duration of the larval pelagic period ranges from T1 (earliest settlement) to T2 (latest 

settlement).  We modeled larval drift as a normal distribution: 
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Such larval drift is a common assumption for marine species with a pelagic larval stage (e.g., 

[26,27]). More specifically, we assumed larvae drift with mean displacement      and 

standard deviation   √   , where v is the net rate of displacement and D is the diffusion 

coefficient. Note that the settlement rate and drift components could take a number of different 

shapes depending on the study organism, as discussed later. We refer to Eqs. (1-5) as our 

deterministic model. Below (in the section “Stochastic model spread rates”), we introduced a 

time dependence into the dispersal matrix K by allowing v and D to vary with year; we refer to 

Eqs. (1-5) with year-to-year varying v and D as our stochastic model.  

In Fig. 1, we illustrated the shape of kernel k13 and its dependence on v and D. The 

different curves were numerically computed using Eqs. (3-5) with different pairs of v (net rate of 

displacement) and D (diffusion coefficient). Note that for our choice of p and   (the settlement 

and drift components), k13 does not have an explicit representation in terms of basic functions. 

Also, note that we orient our coastline so that positive displacements are against the dominant 

current, and v is generally negative. Since the dominant current is southward in our selected 

study region, positive spread rates represent a northward invasion or range expansion. In Fig. 1, a 

small fraction of individuals move northward even with a southward net rate of displacement 

(negative v) [4]. The shape of the kernel changes with different values of v and D, because of the 

interplay between the modifying effect of the settling rate function and smoothing effect of the 

integration. Unlike the shifted Normal distribution, which is a rigid shift (no change in shape), 

this kernel shifts, flattens and appears to approach a uniform distribution as v increases. 

Fig. 1. Representations of the larval dispersal kernel k13 (Eqs. 3-5) with different values for 

the net rate of displacement v (km d
-1

) and diffusion coefficient D (km
2 

d
-1

).   
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For this graph, T1 = 50 d and T2 = 90 d. Note how the kernel shifts, flattens, and appears to 

approach uniform distribution as the magnitude of v increases. 

 

For deterministic models in the general form of Eq. (1), it is conjectured that solutions 

converge to a travelling wave solution with speed c* provided certain conditions are met [28], 

where c* is the speed of the stable travelling wave solution of the linearization of the model near 

the trivial equilibrium  (n = 0). The conditions of the conjecture are that (i) the initial conditions 

are bounded, positive and zero outside a closed interval, (ii) the leading eigenvalue of B0 is larger 

than one, (iii) 0 ≤ Bn n ≤ B0 n, and (iv) the entries of K have moment generating functions. We 

have verified that these conditions hold for our deterministic model. Linearization of our model, 

Eqs. (1-5), in the vicinity of n = 0 leads to using B0 in Eq. (1) in the analysis. Note that B0 here is 

identical to the demographic matrix, B, used in the linear (density independent) model developed 

by Gharouni et al. [9]. The computations of c* follow the procedures detailed in Gharouni et al. 

[9], with the addition that the moment generating function for k13 is computed numerically. 

Similar to the results found in Gharouni et al. [9], there is a threshold in the v-D parameter plane 

such that if v and D lie below this threshold, there is no northward travelling wave solution (c* < 

0; see Fig. 2). If v and D are above this threshold, c* ≥ 0 and there is a northward travelling wave 

solution. Thus, following the terminology introduced by Caswell et al. [29], we refer to a  pair of 

v and D as a “good-year” pair if they lie above the threshold and a “bad-year” pair otherwise. 

Fig. 2. Contours for spread rate c* against a dominant current.  

The solid line shows the threshold for northward spread, i.e., the relationship between net rate of 

displacement v and diffusion coefficient D suggested by our model (Eqs. 1-5) beyond which 

northward spread can occur (c* ≥ 0 km y
-1

). A pair of values of v and D is referred as a “good-

year” pair if it lies above this threshold, otherwise the pair is referred as a “bad-year” pair.   The 
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dash-dot line is the contour for c*=17.8 km y
-1

, which is the estimated northward spread rate of 

the northern lineage of the green crab in the Northumberland Strait, Canada [9]. The other model 

parameters were fixed as adult survival probability bA = 0.8, recruitment rate r = 23 adult female 

offspring per female adult per year, and the start and end of the larval settlement period T1 = 50 

and T2 = 90 days. 

 

Parameter estimation  

Estimates for all parameters (r, bA, T1, T2, v, D) were made using independent sources.  

Additionally, we also estimated the northward spread rate (see below) from another independent 

data set. Details of these estimates are discussed below, and sources and further details can be 

found in Gharouni et al. [9]. The annual survival rate of female adults was estimated as bA=0.8 

based on a total lifespan of 6 years [30]. Following [9], we defined the adult recruitment rate as 

r=ϕbLb1b2, and estimated it as r=23 adult female offspring per female adult per year. Without 

loss of generality, we assumed κ=1 in our simulations; this is equivalent to measuring 

populations as fractions of the available sites per km. Green crab larvae spend between 50 and 90 

days in coastal waters and then return inshore to settle [8]; thus, we used T1=50 d, T2=90 d for all 

calculations and simulations.  

We used an independently estimated northward spreading speed of c*=17.8 km y
-1

 for the 

northern lineage of green crabs throughout Northumberland Strait up to the Kouchibouguac 

Lagoon (New Brunswick) from 1994 to 2013 (data on green crab sightings from Fisheries and 

Oceans Canada; regression analysis of northern-most sighting in a given year, representing the 

invasion front, detailed in [9]). We chose the Northumberland Strait as the region for our case 

study because of the high quality of the field data for the green crab invasion. 
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To estimate values for the dispersal parameters (v and D in k13) for a given year, we used 

a hydrodynamic model consisting of (i) a particle-tracking, individual-based model run within 

(ii) an ocean circulation model based on the Nucleus for European Modeling of the Ocean 

(NEMO) system described in detail in Brickman and Drozdowski [20] and Lavoie et al. [21]. 

The modeling system is based on the ocean code OPA version 9.0 [31]. The domain of the ocean 

circulation model includes the Gulf of St. Lawrence, Scotian Shelf and Gulf of Maine. The 

horizontal resolution is 1/12° in latitude and longitude, and the vertical resolution has 46 layers 

of variable thickness (from near the water surface to about 250 m in depth). This ocean 

circulation model is prognostic, allowing for advection-diffusion of the temperature and salinity 

fields, which are only constrained through open boundary conditions, freshwater runoff and 

surface forcing. It also includes tidal forcing. This ocean circulation model drove a bio-physical 

model (the individual-based model) that can simulate advective dispersal of “particles” 

representing green crab larvae in nearshore flow and hydrodynamic fields. The particle-tracking 

model enabled us to virtually release and follow larvae that have behavior (such as vertical 

swimming) under variable environmental conditions. Because of data storage constraints, the 

physical velocity fields from the ocean model were outputted as daily averages, but they were 

interpolated to hourly values to drive the particle-tracking model offline. The small-scale 

diffusion coefficient in the particle tracking model was set at 25 m
2
 s

-1
 following the work of 

Chassé and Miller [32] and Hrycik et al. [33] to represent within-day variation such as tidal 

stirring, wind waves, tides, etc. The depths within which the larvae were virtually swimming was 

set between 20 m and 30 m in the Northumberland Strait; specifically, this represented larvae 

swimming up to 20 m at nighttime and down to 30 m in daytime [34,35]. 
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To obtain sample larval dispersal kernels, we simulated the release of cohorts of larvae 

from 8 selected locations along the mainland coast of the Northumberland Strait using the 

hydrodynamic model for each year from 2007 through to 2012 (Fig. S.1). The release dates of 

the larvae within a year were daily from July 1
st
 to 31

st
, and every hour during each day of the 

release period (to approximate the spawning period of green crabs in this region) [8]. The 

procedure of virtual releasing and tracking was repeated 5 times for a given location and year to 

better capture environmental variability. The trajectories of the particles were tracked for 90 days 

from the date they were released. Since, based on our settling rate function p(T)  (Eq. 4), 

particles can settle as early as 50 days after release, we recorded their location every day between 

day 50 and 90. The output locations (latitude and longitude) were projected onto a defined 1-

dimensional coastline. The coastline was modeled by a straight line (dashed line in Fig. S.1). The 

dispersal displacement for a given particle is defined as the distance between its projected 

locations at the release time and settling time. This represents the dispersal displacement of a 

larva from the source.  

For each of the 8 release locations and each of the 6 years, we obtained a frequency 

distribution of dispersal displacements of larvae (i.e., 48 simulated dispersal kernels; Fig. S.2.). 

We then used a maximum likelihood statistical procedure (fminsearch function in Matlab® [36]; 

Math Works) to fit our theoretical dispersal kernel (Eqs. 3-5) to each simulated dispersal kernel 

to estimate the dispersal parameters, v and D. Thus, we obtained a pair of v and D estimates for 

each release location-year combination, for a total of 48 estimated pairs of (v,D) (Fig. S.2 and 

Table S.1 in the online supplement).  These estimated pairs of dispersal parameters were used to 

study the effect of year-to-year larval dispersal variability on the spread rate.  

 Stochastic model spread rates  
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 The linear conjecture and accompanying spread rate formulae cannot be applied to our 

stochastic model. Hence, we used numerical simulations to determine the mean spread rates with 

year-to-year variations in dispersal. Simulations were carried out in Matlab® [36]: for each 

simulation, the model was run over 30 time-steps with initial conditions symmetric about the 

point x = 0 on the domain -3000 km ≤ x ≤ 3000 km. The integral in Eq. (1) was approximated by 

using the trapezoidal method (via the Matlab function trapz). The spatial domain was chosen 

sufficiently large so that a travelling wave developed before reaching the boundary. The location 

of the forward wave front (rightward in the 1-D spatial domain) was defined to be the right-most 

point for which the adult population density was above κ/2. The spread rate for a simulated 

solution to the stochastic model was then taken to be the slope of a linear regression of the wave-

front locations. 

To evaluate the effect of stochastic dispersal on the spread rate, c*, we did the following 

analysis. 

(i) We chose 100 sample time-sequences of size 30 by randomly sampling with 

replacement from the 48 estimated pairs of (v,D) (Table S.1).  

(ii) For each sample, we ran the model using the sequence of pairs of (v,D). This resulted 

in a sample-specific “stochastic spread rate” which is denoted by cs.  

(iii) We computed an “averaged (v,D)” for each sample by calculating the arithmetic 

mean of the 30 kernels corresponding to each time-sequence of pairs of (v,D) obtained in step (i), 

and fitting the theoretical dispersal kernel (Eqs. 3-5) to the result using the nlinfit() function in 

Matlab®. The spread rate resulting from this averaged (v,D) is referred to as the “averaged 

spread rate” and denoted by ca. 
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(iv) We computed a “grand-averaged” estimate of (v,D) from the 48 estimated pairs of 

(v,D) (Table S.1) by the same method of step (iii). The spread rate resulting from the grand-

averaged (v,D) is referred to as the “grand-averaged spread rate” and denoted by cg. 

The same initial conditions were used for all model runs. We used a developed travelling 

wave, because our focus is on the asymptotic spread rate and not the transient dynamics. To 

obtain the developed travelling wave, we ran the model for 20 time steps using the grand-

averaged estimate of (v,D) with an initial population density of zero for first-year and second-

year juveniles, n1(x,0)= n2(x,0)=0, and of one for the adults,  n3(x,0)=1 for x in [-2,2] and zero 

otherwise. 20 time-steps was observed to be sufficiently long for a travelling wave to develop. 

After doing (i) above, we found that all 48 pairs of (v,D) obtained from the hydrodynamic 

model for the Northumberland Strait between 2007 and 2012 were “good-year” pairs. Since we 

were interested in gaining insight for scenarios where northward spread did not occur every year, 

we obtained a second set of 100 samples by simply subtracting 3 km d
-1

 from v in each of the 

100 samples obtained in step (i) above. This resulted in a mixture of good and bad years in each 

time-sequence, to reflect scenarios of other coastlines (such as the Atlantic coast of Nova Scotia, 

based on our preliminary examination of other coastlines) (see also [12]). Then, we repeated 

steps (ii), (iii), and (iv) with these shifted (v,D) pairs. Spread rates resulting from the shifted pairs 

are denoted by s

sc , s

ac , and 
s

gc  for shifted stochastic, shifted averaged, and shifted grand-

averaged spread rates, respectively.  

Finally, we compared the stochastic, averaged and grand-averaged spread rates by 

computing the differences s gc c , 
s ac c , and a gc c  , as well as 

s s

s gc c , s s

s ac c , and 
s s

a gc c .  

Results 
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Using c*=17.8 km y
-1

 for an estimated mean spread rate against the dominant current for 

green crabs [9], our deterministic model (Eqs. 1-5) provided a set of feasible net rates of 

displacement, v, and diffusion coefficients, D, for a given recruitment rate,           (Fig. 2 

and 3). Moreover, setting c*=0 km y
-1

 (termed the critical spread rate) provided a threshold for 

dispersal parameters above which the population spreads northward and below which the 

population retreats southward (Fig. 2). When setting the recruitment rate to a reasonable estimate 

from field data for the green crab (r = 23 adult female offspring per female per year [9]) for these 

two situations (the observed and the critical spread rates), the curve representing the feasible set 

of v and D is concave and decreasing in the v-D plane (Fig. 2). This indicates a compensatory 

relationship between the diffusion coefficient and the net rate of displacement. Specifically, 

when a cohort of larvae experiences a southward net rate of displacement (v<0) increased 

diffusion can compensate, leading to spread against the current. In contrast, in years when 

currents are reversed, resulting in a northward net rate of displacement (v>0), the diffusion 

coefficient can be very low. When the recruitment rate, r, is increased, the feasible values of v 

and D can be reduced for a given spread rate (Fig. 3). Thus, in keeping with the theory developed 

by Fisher [18] and Byers and Pringle [3], high southward currents can be compensated for by 

either increased D, increased r, or a combination of the two.    

Fig. 3. Level curves at spread rate c*=17.8 km y
-1

 for different values of recruitment rate r.  

The dotted curve is the c*=17.8 contour for r = 23 (adult female offspring per female per year) 

and is the estimate for recruitment rate for green crabs Carcinus maenas on the northwest 

Atlantic coast (based on biological information compiled in Gharouni et al. [9]). If the values of 

v and D lie below one of these curves, then the deterministic model predicts slower or no 

northward spread (against the dominant current) for that particular value of r. The other model 
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parameters were fixed as bA = 0.8, and T1 = 50 and T2 = 90 days. Note that the dotted curve in this 

figure is the same as the dotted curve in Fig. 2. 

 

Environmental stochasticity can also lead to spread against the dominant current. The set 

of simulations seeded with both good years and bad years resulted in northward spread even 

when the averaged dispersal kernels did not support northward spread (Fig. 4c).  In these 

simulations, almost all spread rates using averaged kernels were smaller than spread rates using 

stochastic kernels (99 out of the 100 samples; middle boxplot in Fig. 4d). In addition, spread 

rates using averaged kernels were negative for all 100 samples, while spread rates using 

stochastic kernels were positive for 89 out of the 100 samples (Fig. 4c). Similarly, in simulations 

run with only good years, the spread rates from the model using stochastic kernels were all 

higher than those from the model using the averaged kernels (Fig. 4a and b). As expected, the 

comparison of the model using the sample-averaged kernel to that using the grand-averaged 

kernel (right boxplots in Fig. 4b and d) did not differ much, which is an indication that sampling 

(with replacement) 30 out of the 48 kernels is sufficient to adequately capture the variability 

among kernels. 

Fig. 4. Comparison of the spread rate for stochastic, sample-averaged, and grand-averaged 

dispersal kernels.  

Panels (a) and (b) are a scenario with only good years (featured by some northward dispersal), 

and panels (c) and (d) are a scenario with a mixture of good and bad years (the latter featured 

only southward dispersal). See text for explanation of the symbols associated with the spread rate 

c. Each point in the scatterplots in panels (a) and (c) represents a pair of simulated spread rates, 

averaged and stochastic, for a given random sample (a 30-year sequence of dispersal kernels or 
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parameters; see Fig. S.2 and Table S.1). If a point is above the solid line, then the stochastic 

spread rate is greater than the corresponding averaged rate. The dashed line indicates the spread 

rate resulting from the grand-averaged dispersal kernel (Fig. S.2), which has the value 21.5gc 

km y
-1

 in panel (a) and 8.2s

gc    km y
-1

 in panel (c). The box plots in panels (b) and (d) present 

the differences between the different types of modeled spread rates (stochastic, sample-averaged 

and grand-averaged). The other model parameters were fixed as bA = 0.8, r = 23 adult female 

offspring per female per year, T1 = 50 d and T2 = 90 d for all simulations.  

 

Discussion 

Analysis of our deterministic model (Eqs. 1-5) showed that spread and range expansion 

of marine organisms (such as aquatic invasive species) against a current can occur as a 

consequence of the compensatory relationship between the demographic parameter (recruitment 

rate,          ), the larval diffusion coefficient (D) and the larval net rate of displacement (v). 

The compensatory relationship, which implies that a higher recruitment rate or a higher diffusion 

can compensate for the negative effect of larval advection in the direction of a current, is known 

to hold in many similar models and is likely a general property of spread models [3,9,18]. Spread 

and range expansion can also be aided by year-to-year variations in dispersal [3]. As a second 

step in our modeling exercise (which was the main objective of our study), time-varying larval 

dispersal (using a hydrodynamic model) was estimated and incorporated into the population 

model, thereby converting it to a stochastic model. Our results indicated that when dispersal 

parameters vary with time, knowledge of the time-averaged dispersal process is insufficient for 

determining the spread rates of the population. Specifically, and as an example, we showed that 

for the green crab invasion along the east coast of North America, northward spread is possible 
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over a number of years, even when there are only a few “good years” featuring some northward 

dispersal among many “bad years” featuring only southward dispersal. In the following 

discussion, we compared our results to previous studies investigating effects of environmental 

stochasticity on population dynamics. We included an examination of the different ways that 

dispersal heterogeneity can be incorporated into a spatial model.  

Interplay between demography, dispersal and behavior  

The compensatory relationship we observed between recruitment (r), diffusion (D) and 

displacement (v) appears to be robust in a broad class of spatial ecological models. In a seminal 

paper, Fisher derived a hyperbolic relationship between diffusion and the intrinsic growth rate of 

a population using a single-stage partial differential equation [18]; the relationship was extended 

to a model with advection by Aronson and Weinberger [37]. Pringle and coauthors [3,38] also 

observed a similar relationship in a stochastic cellular automaton model. In a previous paper [9], 

we presented an example to support the generalization of this theory to structured IDEs (i.e., with 

multiple stages) with simple dispersal kernels (Gaussian and Laplace). Here, we demonstrated 

the compensatory relationship in a structured IDE with a mechanistically motivated dispersal 

kernel (Eqs. 3-5).  

Organisms can effectively increase D and decrease v through behavioral adaptations 

exploiting variations in currents. Thus, more caution should be taken when estimating dispersal 

parameters for organisms from oceanographic studies. For example, Bonardelli et al. [39] 

estimated advection in the Northumberland Strait between 2 and 8 km d
-1 

in a southeast 

direction; these estimates are similar to other estimates for the general Gulf of St. Lawrence 

region [40,41]. If this range of advection is used as an upper bound for the net rate of 

displacement of larvae, v, then our model suggests that for diffusion coefficients in the range of 
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10 to 100 km
2
 d

-1
, the recruitment rate, r, should range from 10,000 to 100,000 female recruits 

per female adult per year to maintain an upstream spread. This range of recruitment is not 

realistic for green crabs (literature suggests r = 23 female recruits per female adult per year; see 

[9]). Note that the estimate of 2-8 km d
-1

 is for passive particles drifting in surface currents. 

However, larvae can swim vertically to take advantage of different currents [34,42,43], which 

may result in a higher diffusion coefficient and/or lower net rate of displacement [44]. Indeed, to 

examine the effect of such behavior, we used the hydrodynamic model with vertically swimming 

larvae to estimate diffusion and drift parameters for the mechanistic kernel. The results led to 

realistic estimates of larval diffusion and, more importantly, showed high annual and spatial 

variability in diffusion and drift (Fig. S.2).  

Time-varying dispersal parameters in population IDEs 

In addition to exploiting the vertical structure in currents, organisms may also take 

advantage of temporal variability in currents, such as short-term reversals in current, and 

turbulence (e.g., [11,12]). Studying the effect of time-varying dispersal parameters on invasion 

spread rates in structured models has only recently received attention of theoretical ecologists. In 

a stochastic cellular automaton model, Pringle and coauthors [3,38] simulated a deterministic 

IDE with dispersing larvae and sessile adult stages. In their simulation, larval mean advection 

downstream was sampled from a Normal distribution in each generation. They concluded that 

year-to-year variability of larval dispersal can significantly aid retention of organisms that spawn 

for multiple years [3]. Caswell et al. [29] provided a stochastic version of an earlier deterministic 

model of invasion speed for stage-structured populations [28]. For populations structured by a 

continuous state variable, Ellner and Schreiber [45] similarly provided a stochastic version of an 

earlier deterministic model for invasion speed [46]. Both Caswell et al. [29] and Ellner and 
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Schreiber [45] found that year-to-year variability in dispersal accelerated population spread. Our 

work with stochastic dispersal kernels supports this, as it resulted in higher spread rates than 

using the corresponding time-averaged dispersal kernels.  

Dispersal heterogeneity can be incorporated into population models in various ways. In 

our work, the dispersal heterogeneity includes both variability at the level of individuals and 

from one year to the next. Specifically, the hydrodynamic model  that we used to simulate daily 

flow fields for a given year and coastal location included an individual-based particle tracking 

model [20,21,32,33] to obtain daily settler displacements within the larval settlement period. 

This is analogous to Stover et al.’s [47] “heterogeneity”, where the diffusivity of individuals is 

sampled from a probability distribution. They showed that intra-annual variation in dispersal 

leads to leptokurtic dispersal kernels, increases the population’s spread rate, and lowers the 

critical reproductive rate required for persistence in the face of advection. In our work, the 

hydrodynamic model also provided us with a set of realistic dispersal kernels (see Fig. S.2 and 

Table S.1 in the online supplement) that we sampled to represent year-to-year variability. This is 

somewhat analogous to Ellner and Schreiber’s [45] approach, which included an annual, random 

change in the importance (or weight) of two modes of dispersal, namely short-distance dispersal 

and long-distance dispersal. Other means of incorporating dispersal heterogeneity that we could 

explore include heterogeneity in larval behavior and development (for an example of a within 

year process) or randomly changing the order of “good” and “bad” years (for an example of a 

between year process). 

Population persistence in an advective environment is theoretically related to the ability 

to invade against a current: aspects such as dispersal heterogeneities which affect spread rates 

also affect persistence in similar ways [19]. For example, Williams and Hastings [48] considered 
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metapopulation persistence in a patchy marine coastal environment, where the unidirectional 

dispersal by larvae between patches is governed by a binomial random variable. This year-to-

year stochasticity in ocean flow patterns increases the long-run growth rate of the 

metapopulation and predicts persistence, compared to using a long-term average of ocean flow. 

Note that an opposite result has been observed in other modeling studies on persistence in 

metapopulations [49,50]. For example, Watson et al. [49] showed that growth rates calculated 

from a constant, averaged connectivity between populations rather than the time series 

(connectivity versus year) were typically higher and so overestimated the likelihood of 

persistence. Obviously, more modeling studies are needed to better understand when 

heterogeneities in dispersal lead to persistence and when they do not. 

Other considerations and future work 

Geometric versus arithmetic averaging of dispersal kernels has an effect on the spread 

rate of IDE models. Indeed, if the growth rate of a population varies over time, the total 

population size is described by the geometric average of annual growth rates [51]. Using the 

same logic, this geometric averaging also appeared in the computation of asymptotic spread rates 

for stochastic IDE models [29]. In our paper, we compared spread rates arising from arithmetic 

averages, which is a common averaging approach. Stover et al. [47] noted that the asymptotic 

spread rate resulting from arithmetic averaging is always higher than that from geometric 

averaging. Thus, had we used geometric averaging, the difference between the stochastic spread 

rate and that calculated from the averaged dispersal kernels would have been even larger (box 

plots in Fig. 4, panels b and d). Therefore, the type of averaging done in modeling or 

experimental studies needs to be considered carefully.  
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The simplification of a uniform settling rate of larvae in our model has also recently been 

used in modeling green crab population dynamics [52]. Other forms of probability distributions 

for settlement rate include Gaussian when settlement is normally distributed during the 

settlement period (i.e., with a main event in the middle of the period) [27], peaked when there is 

a one-time particularly strong settlement event at some point during the settlement period 

[53,54], decay when settlement is initially high and decreases over time [55], and, more 

generally, gamma when there is one main settlement event which could be modeled any time 

during the settlement period [56]. Such settlement probability distributions are useful 

approximations for various settlement temporal patterns and should be investigated further in the 

field as well as in modeling exercises. However, beyond this consideration on shape of the 

probability distribution for settlement rate, it is likely that dispersal and settlement should not be 

separated into two functions as is typically done (including in our study). The dispersal and 

settlement components of the kernel incorporate all sorts of physiological, behavioral and 

hydrodynamic processes, including larval developmental rates and behaviors (e.g., responding to 

differential currents, water temperatures and/or other cues) [57].  The interconnectedness among 

dispersal, development and settlement processes needs to be better understood and formally 

modeled. Our work provides a good platform from which to further refine the modeling 

component for larval behavior and demography (i.e., growth, development, survival, settlement) 

in large-scale hydrodynamic models.     

Schreiber and Ryan [58] emphasized the importance of stochastic models to address 

predictions of increased interannual variability as a result of climate change. Our model can be 

used to assess the effect of environmental stochasticity on rates of spread and range expansion of 

marine organisms. More specifically, rising sea temperatures across the globe could lead to the 
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appearance of anomalous flow patterns, with incidental effects on dispersal and population 

dynamics in many marine species [59]. Further, it has been documented that the increase in 

water temperature causes pelagic larval durations to be shortened and results in lower dispersal 

distances for marine organisms [60]. Decreased larval development times in warmer water could 

influence the dispersal kernel and spread rates [3]. Byers and Pringle suggested that increased 

temperatures would decrease spread, based solely on the shorter time spent in the water current 

[3]. However, the faster development may also increase settlement probability and decrease 

larval mortality, which may lead to increased spread rate. Our more detailed dispersal kernel 

(Eqs 3-5) is a first step in this direction to develop and provide tools that predict spread rates 

under various conditions and climate change scenarios (e.g., [61] for recent climate change 

scenarios). Such tools are essential to inform maps of range expansions and risk maps of areas 

prone to habitat degradation due to aquatic invasive species’ activities.       

Conclusion 

Population spread is a complex ecological phenomenon involving the interplay between a 

number of processes, including demography and dispersal of organisms, and variability in these 

processes. Our results showed that incorporating time-varying dispersal into population models 

is important to enhance understanding of spatial dynamics and population spread rates. We 

showed that spread against a dominant current is possible even when there are only a few “good” 

years (featuring dispersal against the dominant current) among many “bad” years (featuring only 

dispersal in the dominant direction). This enhanced understanding of dispersal patterns helps 

guide quantifications of connectivity among populations, explain measurements of genetic 

structure of populations, and untangle the past history of population and community dynamics 

that may not correspond to observed averaged current patterns. Furthermore, improved 
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estimation of spread rates is key to developing effective responses to biological invasions in 

marine systems. 
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Supporting Information:  

Figure S.1.  Release locations of particles (representing green crab larvae) in the 

Northumberland Strait, Canada.  

The locations are numbered from 1 to 8, from the southeast to the northwest. The dashed line is 

the modeled coastline used for calculating dispersal displacement of projected particles. 

Figure S.2. Simulated dispersal kernels 

Larval dispersal kernels obtained from simulations of the hydrodynamic model of the Gulf of St. 

Lawrence [20,21] for different locations in the Northumberland Strait (see Fig. S.1) and different 

years. For a given panel, the frequency distribution of the displacements of dispersing particles 

(representing green crab larvae) is in blue, and the fitted theoretical dispersal kernel (Eqs. 3-5) is 

in red. See Table S.1 for the estimated values of the pairs of v (net rate of displacement) and D 

(diffusion coefficient) corresponding to each simulated kernel. 

Table S.1. Estimated pairs of (v,D).  

Pairs of (v,D) for larval dispersal kernels simulated from the hydrodynamic model for the Gulf of 

St. Lawrence and then estimated using the fitted Eqs. 3-5 (see also Fig. S.1 and S.2). Units of the 

net rate of displacement v and diffusion coefficient D are km d
-1

 and km
2
 d

-1
, respectively.  
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Figures 

Fig. 1. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2017. ; https://doi.org/10.1101/188409doi: bioRxiv preprint 

https://doi.org/10.1101/188409
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

Fig. 3. 
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Fig. 4. 
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