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Abstract

Motivation: The structured coalescent is widely applied to study
demography within and migration between sub-populations from genetic
sequence data. Current methods are either exact but too computationally
inefficient to analyse large datasets with many states, or make strong
approximations leading to severe biases in inference. We recently intro-
duced an approximation based on weaker assumptions to the structured
coalescent enabling the analysis of larger datasets with many different
states. We showed that our approximation provides unbiased migration
rate and population size estimates across a wide parameter range.
Results: We here extend this approach by providing a new algorithm to
calculate the probability of the state of internal nodes that includes the
information from the full phylogenetic tree. We show that this algorithm
is able to increase the probability attributed to the true node states.
Furthermore we use improved integration techniques, such that our
method is now able to analyse larger datasets, including a H3N2 dataset
with 433 sequences sampled from 5 different locations.
Availability: The here presented methods are combined into
the BEAST2 package MASCOT, the Marginal Approximation
of the Structured COalescenT. This package can be downloaded
via the BEAUti package manager. The source code is available
at https://github.com/nicfel/Mascot.git.
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1 Introduction

Phylogenies obtained from a multiple sequence alignment, contain infor-
mation regarding the history of a population and can be used to quantify
demographic parameters. This has been widely done to study the spread
of pathogens (Pybus et al., 2001; Russell et al., 2008), the speciation dy-
namics of extant species or the migration pattern of humans to name but a
few. Forwards in time birth-death and backwards in time coalescent based
models allow us to elucidate population dynamics from trees by calculat-
ing the probability of a phylogeny T given a set of demographic param-
eters Θ. To do so they classically rely on the assumption of well mixed
populations, meaning that the probability of any two pairs of lineages to
share a common ancestor is the same. In most empirical applications this
assumption of well mixed populations is however violated.

To address this model violation, so-called structured methods have
been developed that consider birth-death processes in heterogeneous pop-
ulations (Stadler and Bonhoeffer, 2013). In the backward-in-time coales-
cent framework, the structured coalescent (Takahata, 1988; Hudson, 1990;
Notohara, 1990) describes a coalescent process in sub-populations between
which individuals can migrate. Such coalescent methods however typically
require the state (or location) of any ancestral lineage in the phylogeny
at any time to be inferred (Beerli and Felsenstein, 2001; Ewing et al.,
2004; Vaughan et al., 2014). Inferring lineage states is computationally
expensive, as it normally requires MCMC based sampling, and limits the
complexity of scenarios that can be analysed. As the number of different
states is increased, convergence of the MCMC chains becomes a severe is-
sue (De Maio et al., 2015). This essentially limits the number of different
states that can be accounted for to three or four.

We addressed this limitation recently by introducing a new approxi-
mation of the structured coalescent that avoids this MCMC sampling of
lineage states by integrating over all possible migration histories using a
set of ODEs (Müller et al., 2017). In contrast to previous approximations
that treat the movement of one lineage completely independently of all
other lineages (Volz, 2012; De Maio et al., 2015), we explicitly include
information about the location of other lineages and their probability of
coalescing when modelling the movement of a lineage. We showed that
this approximation is able to infer coalescent and migration rates well in
various scenarios. However, this approach currently lacks the possibility
to estimate the ancestral state of any internal nodes except the root.

Here, we introduce a new algorithm to calculate the probability of in-
ternal nodes being in any state that incorporates information from the
entire tree using a forwards/backwards approach (Pearl, 1982). We ad-
ditionally make improvements of the current BEAST2 (Bouckaert et al.,
2014) implementation of Müller et al. (2017) in terms of calculation speed,
allowing larger datasets to be analysed. We then show first on simulated
datasets how this new implementation performs in inferring migration
rates and effective population sizes in high dimensional parameter space.
Next, we show how our new algorithm can dramatically improve ances-
tral state inference. We then apply our new approach to a geographically
distributed samples of human Influenza A/H3N2 virus to demonstrate its
applicability to large datasets.
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2 Materials and Methods

2.1 The approximate structured coalescent

In (Müller et al., 2017), we introduced a new approximation to the struc-
tured coalescent that integrates over every possible migration history and
avoids the sampling of lineage states. This is done by calculating the
marginal probability of a lineage i being in any of m possible states,
jointly with the probability of having observed the coalescent history T
from the present backwards in time until time point t in the tree, with
time 0 being the time of the most recent sample with time increasing into
the past. To do so, we need to make the following approximation:

Pt(Li = li, Lj = lj , Lk = lk|T )

MASCO
=

Pt(Li = li|T )Pt(Lj = lj |T )Pt(Lk = lk|T )

In other words, we assume that lineages i, j and k and their states li, lj
and lk are pairwise independent.

2.2 The probability of a lineage being in a state

As described in (Müller et al., 2017), we seek to calculate the probability
of every lineage being in any state jointly with the probability of having
observed the coalescent history T up to time t. We previously denoted
this probability as Pt(Li = li, T ). Calculating these terms over time for
increasing t leads to ever smaller values, eventually causing numerical
issues. To avoid this, we can calculate Pt(Li = li|T ) = Pt(Li=li,T )

Pt(T )
instead.

The expression for d
dt
Pt(Li = li|T ) can be directly derived from d

dt
Pt(Li =

li, T ) (see Supplement) and can be written as:

d

dt
Pt(Li = li|T )

=

m∑
a=1

(
µaliPt(Li = a|T )− µliaPt(Li = li|T )

)

+ Pt(Li = li|T )

m∑
a=1

λaPt(Li = a|T )

n∑
k=1
k 6=i

Pt(Lk = a|T )

− Pt(Li = li|T )λli

n∑
k=1
k 6=i

Pt(Lk = li|T ) (1)

with µali denoting the backwards in time rate at which lineages migrate
from state a to state li and λa denoting the rate of coalescence in state a.
To calculate Pt(T ), i.e. the probability of having observed the coalescent
history T up to time t, the following differential equation has to be solved
(see supplement for derivation):

d

dt
Pt(T ) = −Pt(T )

m∑
a=1

n∑
i=1

n∑
j=1
j 6=i

λa

2
Pt(Li = a|T )Pt(Lj = a|T ) (2)
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At coalescent events, we update Pt(T ) by multiplication with the proba-
bility of the coalescent event:

P after
t (T ) = P before

t (T )
( m∑
a=1

λaPt(Li = a|T )Pt(Lj = a|T )
)

(3)

Integrating these equations from the present to the root of a phylogeny,
allows to calculate Proot(T ), that is the probability density of a phylogeny
T under the MASCO approximations of the structured coalescent.

2.3 The probability of a node being in a state
given the whole phylogeny

2.3.1 Backwards calculation of node states conditional on
the sub-trees

Integrating equation 1 allows to calculate the probability of each lineage
being in any state given the coalescent history between the lineage and the
present. However, for applications, it is much more interesting to calculate
the probability of each lineage at time t being in any state given the whole
phylogenetic tree between the time of root and the present. At coalescent
events between lineage i and j at time t, the probability of the parent
lineage p at time t being in state a can be calculated as follows:

P bw
t (Lp = a|T ) =

λaP
bw
t (Li = a|T )P bw

t (Lj = a|T )∑m
b=1 λbP bw

t (Li = b|T )P bw
t (Lj = b|T )

, (4)

with P bw
t (Li = a|T ) denoting the probability of the daughter lineage i be-

ing in state a just before the coalescent event at time t calculated in the
backwards step using equation 1. Since P bw

t (Lp = a|T ) denotes the prob-
ability of the parent node of lineages i and j calculated in the backwards
step at time t, it includes only information up to the time of coalescence
and does not include information from the full phylogeny. We introduce
the label ”bw” to differentiate from the forward probabilities introduced
below. To additionally incorporate information from the phylogeny be-
tween the time of the root and time t of the coalescent event, one has to
deploy a backwards/forwards approach that is related to Pearl (1982).

For convenience, we now change to vector notation. We define ~p bw
p (t)

as the vector for the parent lineage p with entries P bw
t (Lp = a|T ) in

position a that only includes information from time 0 up to time t. ~p bw
i (t)

is the vector with entries P bw
t (Li = a|T ).

2.3.2 Calculation of transition probabilities

Going through the tree backwards in time, we also seek to calculate the
probability that, given lineage i was in state a at the last coalescent event
lc were lineage i was the parent and given the tree T between 0 and time
t, the lineage i is ending up in state b at the time of the next coalescent
event nc involving lineage i. We denote this probability as Pt=nc(Li =
b|Li(t=lc) = a). The Matrix Mi with entries Pt=nc(Li = b|Li(t=lc) = a) in
positions (a, b) now denotes the matrix for which the following equation
holds:

~p bw
i (t = nc) = ~p b

i (t = lc)Mi, (5)

with ~p b
t=nc being the vector with the state probabilities of lineage i just

before its next coalescent event nc. To calculate the entries of the matrix
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Figure 1: Flow of information using the backwards/forwards algorithm. Going
backwards in the tree, we calculate the probability of each node being in any
state that includes information up to time t. The vector ~p bw

i (t = lc) has the
entries Pt=lc(Li = a|T ) in position a. At the root, the backwards probabilities

~p bw
root(t = root) are equal to the forwards probabilities ~p fw

root(t = root). To cal-

culate the downwards probabilities ~p fw
i (t = lc), we use the information from

all the other parts of the tree and the transition matrix Mi and the backwards
probabilities ~p bw

i (t = lc) (orange circle)
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Mi, we solve the following differential equation between the two coalescent
events lc and nc involving lineage i:

d

dt
Pt(Li = b|Li(t=lc) = a)

=

m∑
c=1

(
µcbPt(Li = c|Li(t=lc) = a)

− µbcPt(Li = b|Li(t=lc) = a)

)
+ Pt(Li = b|Li(t=lc) = a)

×
m∑

c=1

λcPt(Li = c|Li(t=lc) = a)

n∑
k=1
k 6=i

Pt(Lk = c|T )

− Pt(Li = b|Li(t=lc) = a)λli

n∑
k=1
k 6=i

Pt(Lk = b|T ), (6)

The entries in positions (a, b) of the Matrix Mi are then the solution of
the above differential equation at time nc with initial values 1 if b = a
and 0 otherwise. In other words, equation 6 describes solving equation 1
with lineage i starting in a (rather than in any state as in equation 1),
assuming that all other lineage 6= i evolve according to equation 1.

2.3.3 Forwards calculation of node states including all in-
formation in the phylogeny

Based on section 2.2, we know the probabilities of every internal node
being in any state. Based on Section 2.3.2, we know how these proba-
bilities change between coalescent events. Going backwards, we calculate
P bw
t (Li = a|T ), which only includes information up to time t. At the

root however P bw
t (Lroot = a|T ) includes information from the full phy-

logenetic tree from time 0 up to the time of the root. We hence write
P bw
t (Lroot = a|T ) = P fw

t (Lroot = a|T ), that is the forwards probability
of the root being in any state. The forwards probabilities denote the prob-
ability of a lineage being in a state that includes information from the full
phylogenetic tree. We use the forwards probability P fw

t (Lroot = a|T ) at
the root as a starting point to calculate P fw

t (Li = a|T ) for every lineage i.
From the root, we proceed forwards in the tree to calculate P fw

t (Li = a|T )
for every internal node at the time t of the coalescent event for which lin-
eage i was the parent lineage. P fw

t (Li = a|T ) could be calculated at other
times as well, we here however focus on the state of nodes. This we do as
follows:

~p fw
i (t = lc) =

( ~p fw
p (t=nc)

~p bw
i (t=nc)

Mᵀ
i

)
· ~p bw

i (t = lc)

||
( ~p fw

p (t=nc)

~p bw
i (t=nc)

Mᵀ
i

)
· ~p bw

i (t = lc)||1
(7)

with
~p fw
p (t=nc)

~p bw
i (t=nc)

denoting the element-wise division of ~p fw
p (t = nc), the

parent lineage of i at the time nc of the coalescent event with ~p bw
i (t = nc),

which is the daughter lineage at that time.
~p fw
p (t=nc)

~p bw
i (t=nc)

denotes the infor-

mation of the state of the parent lineage p that does not come from lineage
i. The multiplication with transposed matrix Mᵀ

i then denotes how much
these probabilities have change until the time of the last coalescent event
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lc, where lineage i was the parent lineage. The element-wise multiplication
with ~p bw

i (t = lc) then combines this information with the one from the
backwards step. After normalization to ensure that ||~p fw

i (t = lc)||1 = 1,
we get the forwards probability of lineage i being in any state at time lc.

2.4 Integration of the differential equations

To integrate equation 1, we use a second order Taylor method with third
order step size estimation. This integration technique is similar to the very
basic Euler integration, but makes use of the second derivative as well:

yt+1 = yt + y′t∆t+
1

2
y′′t ∆t2 +O(h) (8)

O(h) stands for derivatives higher than second order. The error that is
made by only considering the first and second derivative can be calculated
as follows:

yt+1 est − yt+1 true = O(h) = ε (9)

With yt+1 est being the updated term using equation 8 and yt+1 true being
the hypothetical true value if all derivatives would be considered. We now
assume that the Taylor term of every derivative higher than third are zero.
The error ε we introduce at every step can therefore be approximated as:

ε ≈ 1

6
y′′′t ∆t3 (10)

For every integration step, we now choose ∆t such that the absolute value
of ε is smaller than a specified value. While we calculate the second deriva-
tive exactly (see supplement), we approximate the third derivative, assum-
ing that the sum of probability mass in each state and that the sum of the
derivatives of lineage i coalescing in any state is constant (see supplement).

2.5 Software

The method above is implemented into our BEAST 2 package MASCOT
(Marginal Approximation of the Structured COalsescenT). Simulations
were performed using a backwards in time stochastic simulation algorithm
of the structured coalescent process using MASTER 5.0.2 (Vaughan and
Drummond, 2013) and BEAST 2.4.6 (Bouckaert et al., 2014). Script gen-
eration and post-processing were performed in Matlab R2015b. Plotting
was done in R 3.2.3 using ggplot2 (Wickham, 2009). Tree plotting and
tree height analyses were done using ape 3.4 (Paradis et al., 2004) and
phytools 0.5-10 (Revell, 2012). Effective sample sizes for MCMC runs were
calculated using coda 0.18-1 (Plummer et al., 2006).

2.6 Data availability

The source code of the BEAST 2 package MASCOT is available
at https://github.com/nicfel/Mascot.git. All scripts for performing
the simulations and analyses presented in this paper are available at
https://github.com/nicfel/Mascot-Material.git. Output files from these
analyses, which are not on the github folder, are available upon re-
quest from the authors. A tutorial is available through the Taming the
BEAST project (Barido-Sottani et al., 2017) on how to use MASCOT and
its BEAUti interface is available at https://github.com/nicfel/Mascot-
Tutorial.git.
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Figure 2: Inference of effective population sizes, migration rates and node states.
A Inferred migration rates on the y-axis vs. true migration rates on the x-
axis. The migration rates between states were sampled from an exponential
distribution with mean=0.5. B Inferred effective population sizes on the y-axis
vs. true effective population sizes on the x-axis. The effective population sizes
for the tree simulations were sampled from a lognormal (-0.125,0.5) distribution.
The coverage of migration rate estimates was 95% and for effective population
size estimates 95.5%. C Inferred effective population sizes and migration rates
using MASCOT with and without the backwards/forwards algorithm. D Mean
probability mass allocated to the wrong states of internal node (excluding the
root node) with and without the backwards/forwards algorithm

3 Results

3.1 Inference rates and internal node states

First, we want to test how well effective population sizes and migration
rates are inferred using MASCOT. We simulated 1000 trees with MAS-
TER (Vaughan and Drummond, 2013) using randomly sampled effective
population sizes from Log Normal Distribution(µ=-0.125 ,σ=0.5) and mi-
gration rates from an exponential distribution with mean=0.5. We used
1000 tips and 6 different states. The number of tips per state was randomly
sampled from a discrete uniform distribution, in order to have scenarios of
under- and over-sampling of states. We then inferred the effective popula-
tion size of every state and the migration rates between each state using
MASCOT. The results of these simulations are summarized in figure 2.

Both effective population sizes and migration rates are inferred well.
Population size estimates are however much more precise than estimates
of migration rates, see figure 2. This is expected since there are typically
much fewer migration events in a phylogeny than coalescent events. Addi-
tionally, the number of migration rate parameters estimated (30) is much
larger than the number of effective population size parameters (6). The
estimates are well correlated with the truth, only at lower migration rates
do estimates become worse. This is also to be expected since a low mi-
gration rate automatically means less events which will put the estimates
closer to the prior (exponential with mean 1). The coverage is 95% for
both migration rate estimates and effective population size estimates.

Additional to the inference of parameters, we inferred the state of each
internal node with and without the backwards/forwards algorithm. Using
the backwards/forwards algorithm reduces the probability mass that is
attributed to the wrong node states in this scenario.
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Figure 3: MASCOT analysis of globally sampled Influenza A/H3N2 viruses. A
Here we show the maximum clade credibility tree inferred from H3N2 sequences
from Australia, Hong Kong, New York, New Zealand and Japan. The colour of
each branch indicates the most likely state of its daughter node. The pie charts
indicate the probability of chosen nodes being in any of the possible states. The
left pie chart is the probability inferred using the backwards/forwards algorithm
and the right pie chart without using the backwards/forwards algorithm. Since
at the root, these probabilities are the same, only one chart is shown. The
node heights are the median node heights. B The median inferred backwards
in time migration rates between locations indicated by the width of the arrow.
The different colours of the arrow denote the different source locations, meaning
that a green arrow to the red dot shows the backwards in time median migration
rate from New Zealand to Hong Kong. The dot sizes are proportional to the
median inferred effective population sizes of that state.
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3.2 Application to H3N2

We then applied MASCOT to 433 Influenza A/H3N2 sequences sam-
pled between 2000 and 2003 from Australia, Hong Kong, New York, New
Zealand and Japan. We ran 3 independent chains each for 120 hours using
an HKY+Γ4 site model with a fixed clock rate of 5∗10−3 substitutions per
site and year. We fixed the clock rate due to a lack of temporal informa-
tion from the sequences collected for this short amount of time. We then
inferred the phylogenetic tree as well as the effective population sizes of
every location, the migration rates between them, as well as the additional
parameters from the HKY+Γ4 model.

Figure 3 shows the maximum clade credibility tree with the differ-
ent colors indicating the maximum posterior location estimate of each
node. The pie charts indicate the probability of the marked nodes being
in any possible location inferred with and without backwards/forwards
algorithm. These probabilities are the average over all the node state
probabilities for each tree in the posterior containing that clade. We in-
ferred New York to be a source location mainly for strains in Australia
and New Zealand. Strains from Japan were inferred to originate mainly
from Hong Kong and New York. The root of the phylogeny was inferred
to be most likely in New York. The lack of samples near the root however
makes the inference of its location unreliable.

4 Discussion

We provide a new algorithm to calculate the state of any node in a
phylogeny under the marginal approximation of the structured coales-
cent (Müller et al., 2017). This algorithm entirely avoids the sampling of
migration histories. Additionally, we improve the calculation time of our
previously introduced approximation to allow for the analysis of phyloge-
nies with more samples and more states.

The calculation time still causes challenges in the analysis of very
large datasets. These could be circumvented by a further approximation
of
∑n

k=1
k 6=i
≈
∑n

k=1
in equation 1 when many lineages are present. This

would allow every lineage to have the same transition probabilities and
would therefore reduce the number of ODEs that have to be solved.

We then show on simulated data that our approach is able to infer
migration rates and effective population sizes reliably even when many
different states (6) are present. This is a case where exact methods that
sample migration histories are currently not able to reach convergence.

Even though MASCOT is an approximation, we reach a coverage of
95% for migration rates and effective population size estimates. Since this
is however still an approximations, there likely are special cases when
parameter inference is biased, though we did not find such parameter
combinations yet.

We also showed on simulated data that adding an backwards/forwards
approach for the calculation of node states improves the inference of in-
ternal nodes. We use the backwards/forwards to calculate the state of
every internal nodes in a way that is consistent with the complete phy-
logeny, which is not given by the backwards step alone. In contrast to
other approaches (Vaughan et al., 2014; De Maio et al., 2015) we do not
explicitly sample nodes states using MCMC. To estimate the probabil-
ity of a node being in any possible state given a set of parameters we
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therefore do not need to average over many MCMC samples of migration
histories. Whereas for some nodes the difference between with and with-
out forwards/backwards is small, it is especially large for nodes where the
difference in where the node is inferred to be compared to the parent node
is large.

Finally, we applied MASCOT to a globally sampled H3N2 dataset
where we inferred the phylogenetic tree and associated parameters. Our
approach is able to reach convergence in the inference of migration rates
and effective population sizes, even when a large number of sequences and
different locations is present.

MASCOT still requires all migration rates and effective population
sizes to be inferred. Especially the number of migration rates (states ∗
(states − 1)) can become problematic relatively fast. Future additions
could however reduce the parameter space by for example deploying
Bayesian Search Variable Selection (Lemey et al., 2009) or by making
use of generalized linear models (Lemey et al., 2014) to describe migra-
tion rates as a combination of different covariates and hence only require
the parameters of the GLM model to be inferred.
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Müller, N. F., Pečerska, J., Rasmussen, D. A., Zhang, C., et al. (2017). Taming the

beast–a community teaching material resource for beast 2–. Systematic Biology.

Beerli, P. and Felsenstein, J. (2001). Maximum likelihood estimation of a migration

matrix and effective population sizes in n subpopulations by using a coalescent

approach. Proceedings of the National Academy of Sciences of the United States

of America, 98(8), 4563–8.
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