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Abstract

Background:
Genomic islands play an important role in microbial genome evolution,

providing a mechanism for strains to adapt to new ecological conditions. A
variety of computational methods, both genome-composition based and
comparative have been developed to identify them. Some of these methods are
explicitly designed to work in single strains, while others make use of multiple
strains. In general, existing methods do not identify islands in the context of the
phylogeny in which they evolved. Even multiple strain approaches are best suited
to identifying genomic islands that are present in one strain but absent in others.
They do not automatically recognize islands which are shared between some
strains in the clade or determine the branch on which these islands inserted
within the phylogenetic tree.

Results:
We have developed a software package, xenoGI, that identifies genomic islands

and maps their origin within a clade of closely related bacteria, determining
which branch they inserted on. It takes as input a set of sequenced genomes and
a tree specifying their phylogenetic relationships. Making heavy use of synteny
information, the package builds gene families in a species-tree-aware way, and
then attempts to combine into islands those families whose members are adjacent
and whose most recent common ancestor is shared. The package provides a
variety of text-based analysis functions, as well as the ability to export genomic
islands into formats suitable for viewing in a genome browser. We demonstrate
the capabilities of the package with several examples from enteric bacteria,
including an examination of the evolution of the acid fitness island in the genus
Escherichia. In addition we use output from simulations and a set of known
genomic islands from the literature to show that xenoGI can accurately identify
genomic islands and place them on a phylogenetic tree.

Conclusions:
xenoGI is an effective tool for studying the history of genomic island insertions

in a clade of microbes. It identifies genomic islands, and determines which branch
they inserted on within the phylogenetic tree for the clade. Such information is
valuable because it helps us understand the adaptive path that has produced
living species. Given the large and growing number of sequenced microbial
genomes, this sort of analysis will become increasingly useful in the future.
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Background
Genomic islands (GI) are clusters of genes that have entered a genome via horizontal

gene transfer, that is, outside the normal process of parent-offspring inheritance.

Early observations were made in the context of bacterial pathogenicity, where it

was found that the difference between pathogenic and non-pathogenic strains often

depended on the presence of one or more genomic islands [1]. It soon became clear

however, that the function of genomic islands is not restricted to pathogenicity, and

that they play a broad role in microbial genome evolution [2, 3, 4].

Because of their importance, a significant number of computational methods have

been developed for finding GIs. These are distinct from, but fit into a larger liter-

ature on finding individual horizontally transferred genes. GI-finding methods can

be broadly divided into those that operate on a genome from a single species, and

comparative genomics methods that operate on genomes from several species [5, 6].

Many single genome methods are compositional, making use of various attributes

of sequence composition such as GC content, oligonucleotide frequency or codon

bias. Because genomes differ in these compositional characteristics, when a foreign

piece of DNA arrives into a genome, it may differ in some of these characteristics

from the genome it is entering. For insertion events that are sufficiently recent, this

can be a mechanism to identify foreign DNA. Such methods have been developed

to try to take advantage of many compositional features, including GC content [7],

oligonucleotide frequencies [8, 9, 10, 11, 12, 13, 14], and codon bias [15, 16]. Single

genome methods also sometimes target specific sequence features that are associated

with GI insertion such as tRNA genes [17]. And a number of such methods use

combinations of multiple attributes including composition and/or specific sequence

features [18, 19, 20, 21, 22, 23, 24, 25, 26].

The basic idea of comparative genomics methods is to compare related genomes to

identify regions that are unique to certain genomes and likely result from horizontal

transfer. These methods are closely related to methods for identifying the core and

pan genomes of a set of species or reconstructing ancestral gene order [27, 28,

29, 30, 31, 32]. Comparative methods typically involve whole genome or protein

alignments and then some methods built on top of this to identify orthologs and

recognize events such as horizontal transfer, deletion, and so on.

Several automated comparative genomics methods for finding GIs have been de-

veloped to date. The tRNAcc package combines comparative genomics with a fea-

ture specific search [33]. It identifies islands that have inserted near tRNA genes by

creating alignments between closely related species using MAUVE [34], and then

looking for regions of DNA that are unique to one species near tRNA genes. This

approach is good at finding those GIs that insert near tRNA genes, but will miss

others. It is included in the web-based MobilomeFINDER service [21].

Another widely used method is IslandPick [35] which has been incorporated into

the web service IslandViewer [36, 37, 38]. IslandPick is provided with a single input

genome where the user desires to find genomic islands. It first identifies a set of com-

parison genomes, then creates pairwise whole genome alignments using MAUVE,

and finally analyzes the alignments to identify regions that are unique in the in-

put genome. This comparative approach allows accurate identification of GIs that

are unique to the input genome, and is widely used as a part of the IslandViewer

website.
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Given continuing reductions in the cost of sequencing, in the future comparative

genomics methods are likely to be increasingly important for finding GIs. However

existing methods have one important limitation: they are not able to automatically

place GIs in the context of a phylogenetic tree. Existing methods such as tRNAcc

and IslandPick make use of multiple genomes, but they are best at identifying

regions which are unique to one genome compared with others. If we want to study

the history of genomic island insertions in a clade of microbes, these methods allow

us to find islands that are unique to various strains of the clade. But they do not

automatically identify genomic islands which are shared between some strains in

the clade, and they do not determine the branch on which those islands inserted

within the phylogenetic tree.

Here we describe xenoGI, a system that identifies genomic islands, and maps their

origin within a clade of closely related bacteria. Every gene present in a clade has

one of two possible origins. Either it originated in the most recent common ancestor

of the clade, or it originated in a subsequent horizontal transfer event. The goal of

xenoGI is to group genes by origin, identifying islands of genes that entered via

common horizontal transfer events, and mapping those events onto the phyloge-

netic tree. Such information is often of interest because it helps us understand the

adaptive path that has produced living species.

Implementation
xenoGI is a command line program implemented in Python. It can be downloaded

from https://github.com/ecbush/xenoGI.

Input, output, basic structure

Input consists of a set of sequenced genomes in GenBank format, and a tree speci-

fying their phylogenetic relationships. The GenBank files provide protein sequences

and their genomic order in each strain. Because the algorithm makes use of synteny

information, the genomes need to come from a clade of bacteria that are closely

related enough to preserve gene order. For the same reason, the genome assemblies

should be at the scaffold level or better. The algorithm is not suitable for analyzing

plasmid sequences because of the rapid rate of change of gene content and order

on plasmids. Typically the set of input genomes would include a focal clade that

we wish to study, and one or two outgroups (Figure 1). These outgroups help us to

better recognize core genes given the possibility of deletion in some lineages. xenoGI

also includes optional scripts to help users obtain multiple alignments. These can

then be used with existing methods to reconstruct a phylogenetic tree for a set of

strains, if that tree is unknown.

Every gene in the input genomes must have one of two origins. Either it is a core

gene present in the most recent common ancestor of the strains, or it arrived via

a horizontal transfer event. The goal of the algorithm is to determine this origin

for each gene, grouping genes that arrived together in the same horizontal transfer

events as islands. The output is a text file specifying these islands. The output can

be visualized further with several text-based visualization functions included in the

package, and can also be exported for visualization in a genome browser.

There are three basic steps the algorithm takes. It first calculates a set of scores

between genes in the input genomes based on their protein sequences. This includes
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scores based on sequence similarity and scores based on synteny. It next groups

genes into families in a tree-aware way. Finally it groups these families into islands

where the families in an island are interpreted to have a common origin (they either

arrived in the same horizontal transfer event or are core genes).

Every gene family thus formed has a most recent common ancestor that falls on

some node in the input tree.

Calculating scores between genes

The first step is to calculate a set of similarity and synteny scores between genes in

the input data set. We initially run protein BLAST between every gene and genes

in all the other strains. For those pairs of genes above a certain E-value threshold,

we calculate a number of other types of scores.

A raw score is a similarity score between a pair of proteins. We take the global

alignment score and scale it to be between 0 and 1, using the following formula:

raw score =
g − a

b− a

where g is the global alignment score between two proteins. a is a floor value

for the alignment score between these two proteins based on what we would get if

they were aligned with all gaps (among the pairs we look at, which have significant

BLAST hits, there will be nothing lower than this). b is a ceiling value for the

alignment score (the score of the shorter aligned against itself).

The global alignment is calculated using Parasail [39]. The use of global alignment

here reflects the fact that we are operating in a clade of closely related strains and

the gene families we build consist of closely related genes. Because of this, we expect

alignments between homologs within families to span entire proteins making global

alignment preferable to local.

The calculation of raw scores can be run in parallel on multiple processors.

We also calculate a normalized similarity score, which normalizes for the average

level of protein distance between a pair of species. Such scores make it easier to set

thresholds based on similarity in family formation.

To begin, we identify sets of orthologs where there is exactly one copy in each

strain. We do this with the all around best reciprocal hit method, identifying sets

of orthologs where every gene is a best reciprocal hit with every other gene, and

has one copy in each strain. These sets of orthologs are very conservative and high

confidence. We’ll refer to them below as conservative core genes.

Then for each pair of strains we calculate the mean and standard deviation of

raw scores between all pairs of orthologs in these sets of conservative core genes.

Using this, we take a raw score comparing proteins in two strains and normalize it

as follows:

norm score =
raw score −m

s

where m is the mean and s is the standard deviation of raw scores from the

conservative core genes for that pair of strains.
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We calculate two kinds of synteny scores based on similarity in the neighborhood

of genes.

Our core synteny score makes use of the conservative core genes just discussed.

To calculate this score, we define a neighborhood for each gene consisting of a user

specified window of conservative core genes in either direction. For example, the

neighborhood might be a region encompassing 20 conservative core genes, the first

10 in either direction. To compare a gene A from one strain with a gene B from

another, we determine how many conservative core genes from the neighborhood

of A are also found in the neighborhood of B, and divide this by the number of

conservative core genes in the neighborhood (twenty in the example above). This

core-gene synteny score is then:

core synteny score =
number of shared genes

number of core genes in neighborhood

and is thus a value between 0 and 1.

Because the conservative core gene neighborhoods tend to be large, this measure

of synteny looks at a comparatively large region around a gene.

To calculate synteny in a more local region, we also calculate a synteny score

based on all genes, including non-core genes.

To compare a gene A from one strain with a gene B from another, we obtain lists

of neighboring genes for each. Let Na be the set of neighboring genes for gene A,

taken from within a window of size W measured in number of genes, and including

both core and non-core genes. Let Nb be the same for gene B. Our local synteny

score is calculated as follows. We find the pair of genes with the highest norm score

between Na and Nb and keep it. We remove those genes from Na and Nb, find the

next highest pair between them and so on. The local synteny score for gene A and

gene B is the average of the T highest scoring pairs.

local synteny score =

∑
T highest norm scores from Na, Nb

T

The calculation of synteny scores can be run in parallel on multiple processors.

Forming gene families in a tree-aware way

We wish to build gene families that fit into the known species tree.

For our purposes, a gene family is a set of genes that have descended from a

single ancestor gene that existed within that species tree. The most recent common

ancestor (MRCA) in such a gene family will fall on the species tree, and its location

there will reflect the origin of the family. Gene families whose MRCA falls outside

the focal clade are core genes relative to that clade. Gene families whose MRCA falls

within the focal clade have arrived via horizontal transfer. This implies that genes

that share a deeper homology predating the root of the species tree, will be placed

in different families. In cases where the same gene has entered our clade multiple

times as a part of distinct transfer events, we want each insertion to correspond to

a different gene family.

Our approach is to use a version of the PHiGs algorithm [40] which we have

modified to consider synteny information. The PhIGs algorithm operates on the
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species tree beginning at the root node and moving successively to descendant

nodes. At each node, we group all genes descending from species on the left branch

(call this group 1), and also group all genes descending from species on the right

branch (call this group 2). For nodes other than the root, there are also genes in

outgroup species, which we ignore. For every gene in one group, we find the most

similar gene in the other, e.g. for all genes in group 1 we find the closest gene in

group 2. A pair identified in this way constitutes a seed upon which we build a larger

family via single linkage clustering. Because order matters for this approach, the

seeds are processed in order of similarity, so that the most similar seeds are worked

on first. To build a family from a seed, we identify all previously unclustered genes

in either group 1 or group 2 that are closer to a member of the growing family then

the original seeds in 1 and 2 were to each other. In our implementation, similarity

is measured by the raw score.

We have modified the original algorithm in several ways. In order to add a gene

to a family, the basic algorithm requires that it be more similar to some family

member than the similarity level of the seed. We have added an absolute threshold

for similarity measured using the norm score. This is typically set low, and is a sanity

check to make sure we’re not clustering very distantly related proteins together

into a family. We also incorporate synteny in a number of ways. We have synteny

thresholds for both core and local synteny. Below these thresholds, we do not add

a gene to a family. We also use high synteny on the other end, to increase the raw

score between a pair of genes we’re considering, potentially helping them get over

the bar of seed similarity set by the basic algorithm.

This step runs on a single processor.

Grouping families into islands

Our goal is to group gene families that arrived together as a part of the same

horizontal transfer event. We refer to such groups as islands.

We first sort families according to their MRCA because families that belong in

the same island will have the same MRCA. We then build islands using a greedy

approach that progressively adds families that are inferred to be adjacent to each

other in the MRCA.

We identify genes to add using a parsimony-based metric. Our metric uses a very

simple notion of evolutionary changes in gene order. If a pair of genes were adjacent,

but due to rearrangements move apart, we assess a cost of one. Similarly if two genes

were non-adjacent, but due to rearrangements move to be adjacent, we also assess

a cost of one. Consider two gene families with the same MRCA, for example i0 in

Figure 1. We have adjacency information for those families in species A and species

B. Our approach is to calculate a rearrangement cost for these families under two

cases: either assuming they were adjacent at their MRCA, or assuming they were

not. We define the rearrangement score for the families as follows:

rearrangement score = cost starting non-adjacent − cost starting adjacent

This score can range between -2 and 2 with more positive values indicating families

that are more likely to have been adjacent in the common ancestor.
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We begin by creating a set of one-family islands for all families with a particular

MRCA. We then calculate the rearrangement score for every pair of islands and

identify the pair with the highest score, arbitrarily breaking ties. Then we merge

this pair into a two-family island and recalculate its rearrangement score with other

islands. Note that because multi-family islands have a gene order (the inferred order

in the MRCA), to calculate rearrangement scores for them, we consider adjacency

on each of their two ends. The algorithm continues merging islands until all the

rearrangement scores are below a certain threshold. It then repeats the procedure

relaxing the criterion for adjacency (e.g. we can count as adjacent genes that are one

gene away from each other). When all the rearrangement scores are below threshold,

the algorithm terminates.

The island-making step runs on multiple processors.

Analysis tools

Included in the package are command line tools for identifying and visualizing

islands at particular nodes, for finding islands associated with particular genes and

for examining gene families. Also included are scripts for exporting xenoGI island

output to bed or gff format for visualization in a genome browser such as IGB [41].

Results
Validation via simulation

We assessed the effectiveness of xenoGI in two ways: using simulations, and detect-

ing known genomic islands.

We used simulations to produce test data sets where the location of GI insertions

within a phylogenetic tree was known. To do this we implemented a custom sim-

ulator that evolved sequences over a user provided phylogenetic tree, allowing for

horizontal transfer of novel genes (from outside the clade) as well as for genomic

scale deletions, duplications and inversions, and amino acid level sequence change.

The latter was done using the pyvolve module [42].

Figure 2 shows the results of a simulation on a tree with 11 species. The simulation

was run on a tree matching the branch lengths and topology of a tree from the

enteric bacteria, discussed below. Species A-I form the focal clade, with J and K as

outgroups. The simulation contained a total of 495 horizontal transfer events which

mapped onto the various branches. These ranged in size from 2 to 51 genes. There

were also 1009 deletions (from 1 to 50 genes in size), 494 duplications (from 1 to 48

genes in size), and 125 inversions (from 5 to 147 genes in size).

xenoGI achieved a base-wise true positive rate of 0.85 and a positive predictive

value of 0.51 over the whole tree. What we mean by base-wise, taking the example

of the true positive rate, is that among all nucleotides that were truly in genomic

islands, xenoGI correctly identified (and placed on the correct branch) 0.85 of them.

The majority of islands (0.83) had just a single xenoGI predicted island overlapping

them. As can be seen from the figure, xenoGI’s accuracy is best for GIs inserting

on tips, and declines as we move to internal branches.

Validation via GIs from the literature

Simulations have the advantage of providing a situation where ground truth is

known. However they are necessarily simplified, and may not adequately capture
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the features of real genome evolution. For this reason, we also examined how well

xenoGI identified genomic islands that have been reported in the literature.

Wei et al. compiled a list of known genomic islands from 13 bacterial strains for

the purposes of validation [26]. We used six of these for training and development,

and saved five for the validation which we report here. For each of the five strains,

we identified four or more closely related species with genomes in genbank. We

reconstructed the history of genomic island insertions in the resulting clade using

the default parameters we had developed working with the first six. A listing of

the strains and trees used here can be found in Additional File 1. We note that

there were not many cases where these known islands were shared among multiple

already sequenced genomes. Thus most of the cases we look at here, the islands

are on the tips of the phylogenies we created. In the section below we give several

examples of cases where islands can be identified on internal branches of a tree.

The islands in this validation set were reported in genome papers for their re-

spective strains [43, 44, 45, 46, 47]. They are chiefly based on comparative work

involving human curation, and in some cases on experimental evidence as well.

They are likely to represent true islands. However we cannot be sure that these

represent exhaustive lists of all genomic islands in a strain. For this reason, it does

not make sense to calculate a true positive rate or positive predictive value here.

The validation ranges are given in nucleotide positions, whereas xenoGI identifies

genes that are part of an island. For the purposes of comparison, we consider the

nucleotides of a xenoGI island to be those between the beginning of the first gene

and the end of the last gene.

Table 1 shows our results for this analysis. As can be seen from the table, the

base coverage, that is the proportion of validation island bases that are covered

by a xenoGI island, is in the upper 90 percent range for 4/5 strains, and 88% for

Cronobacter. In addition, in the majority of cases, xenoGI identified a single island

corresponding to each validation island. And in most cases (6/11) where a validation

island was broken into more than one xenoGI island, this was actually correct, due

to the fact that the validation island had genes with a most recent common ancestor

at different times on the tree, and likely resulted from multiple horizontal transfer

events.

Additional file 1 contains a more detailed description of our comparison between

xenoGI islands and validation islands. One of the measures included is extra cover-

age, which refers to cases where a xenoGI island extends beyond the range of the

validation island. There were 21 cases where the extra coverage was more than 10%

of the length of the island. In the majority of these (16/21) further examination

suggested that in fact xenoGI was correct to extend the range of the island.

Reconstructing the timing of GI insertions: several examples from enteric bacteria

We look at two examples of genomic islands from the enteric bacteria with the goal

of demonstrating the sort of analysis one can do with xenoGI. We do this on a tree

of eleven enteric species (Figure 3 A).

The first example is Salmonella pathogenicity island 2 (SPI-2), from Salmonella

enterica [48, 49]. This island is essential for virulence in S. enterica and contains

a type-III secretion system that is expressed while the bacterial cell is inside host
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cells [50]. The island was originally defined as lying between the genes ydhE and

pykF [51]. It is known to consist of several components with different evolutionary

origins [52].

xenoGI’s results are consistent with what we would expect from the literature.

The largest part of SPI-2 is colored dark green in Figure 3 B. It includes the type

III secretion system and is shared between Salmonella enterica strains (LT2 and

Arizoniae in our sample), but is not present in Salmonella bongori. xenoGI puts this

region in one island, reflecting the common origin of the genes. All the genes in the

region are included, with the exception of one gene specific to S. enterica LT2 which

is shown in red. xenoGI identifies another island (shown in pink) corresponding to a

second part of SPI-2. This region contains the tetrathionate reductase gene cluster.

Consistent with the literature, xenoGI identifies this region as being shared between

S. enterica and S. bongori [52]. The final part of SPI-2, shown in brown in Figure 3

B, contains genes that are present in S. enterica LT2, but not S. enterica arizoniae.

Our second example is the acid fitness island (AFI) in E. coli [53]. This island

runs from slp to gadA (Figure 3C) in E. coli K12 and is about 15 kb long [54]. It

encodes a number of genes involved in resistance to acid stress including a glutamate

decarboxylase enzyme (coded for by gadA) and its regulators. xenoGI identified the

island between slp and gadA, and placed it on the branch after the divergence of

E. fergusonii, but before the divergence of E. albertii. One internal gene which is

part of the island, yhiD, was left out because it is not present in E. albertii.

Further exploration reveals some additional features of the evolution of acid fitness

genes in Escherichia. The acid fitness island was originally described in E. coli K12

[53], and contains 12 genes in that strain. However the island in both E. coli O157H7

and E. albertii contains an additional 8 genes. As it turns out, these additional

genes, which are involved in the scavenging of iron from hosts, have been identified

and studied previously. They were identified first in Shigella dysenteriae, but were

found to also be present in a number of E. coli strains [55]. (It’s worth noting that

Shigella strains nest within the E. coli clade.) This so-called heme transport locus

falls in the middle of the AFI, but because the AFI has mostly been studied in E.

coli K12, and that strain lacks the heme transport locus, it was never recognized

that the two are co-localized. xenoGI places them in the same island because they

have the same most recent common ancestor, being present in some E. coli strains

and E. albertii. It is possible that these two sets of genes with seemingly distinct

functions arrived as a part of a single event.

A second question relates to the time of arrival of the AFI. xenoGI places it on

the branch before E. albertii diverged (Figure 3 A). However, an analysis of AFI

homologs in other strains using several functions included in the package reveals

that E. fergusonii contains a nearly complete copy of the AFI (missing only the

heme transport genes and gadA), but in a non-syntenic location. The question then

is whether this island in E. fergusonii represents an independent insertion. Alter-

natively, it may have resulted from the same insertion as in the other Escherichia

strains, but have been moved to a different location via some rearrangement or

translocational process. It has been observed that E. fergusonii has undergone a

large number of genome rearrangements since the time of its divergence from E. coli

[27]. That notwithstanding, the complete lack of synteny here favors an independent

insertion, and is the reason xenoGI placed E. fergusonii’s AFI in a separate island.
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Another issue is the phylogenetic distribution of the heme transport genes. The

original paper on these genes observed a puzzling phylogenetic distribution in E.

coli [55]. We observe something similar in our enteric species. The heme transport

locus is not present in E. coli K12 and E. fergusonii, but is present in E. coli

O157H7 and E. albertii. This distribution would require an insertion into and then

a clean deletion from the AFI, or else some process involving horizontal transfer

and perhaps gene conversion.

The status of another set of genes can also shed light on the evolution of acid toler-

ance in Escherichia. Escherichia genomes contain a second glutamate decarboxylase

enzyme, gadB. gadB has typically been seen as the result of a gene duplication, the

idea being that the AFI was inserted, and then gadB arose by duplication [56].

However xenoGI finds that the gadB gene lies in an island consisting of 8 genes

that is shared by the entire Escherichia clade (Figure 3 D), including E. fergusonii,

but is not found outside that group. That is, it appears to have arisen on the branch

leading to Escherichia before the divergence of E. fergusonii. This fact raises the

question as to whether gadB is really a duplication or the result of an independent

insertion event (albeit one that may have been followed by gene conversion events

between gadA and gadB [56]). The other genes in the island surrounding gadB do

not have close paralogs in other parts of the genome, a fact which may favor the

idea of an independent insertion via horizontal transfer.

Acid tolerance has often been seen as a feature unique to E. coli [56], however

our results show that this is in fact a characteristic of the whole Escherichia clade.

This fact does have some practical significance, as AFI genes have been the basis

for assays attempting to identify E. coli in samples [57, 58]. Beyond this our data

suggest that the evolution of acid fitness in this group was more complicated than

previously appreciated, likely involving multiple insertion events.

Resource usage

We have run xenoGI on up to 115 strains. There is a trade off between time and

RAM usage, because using more processors requires more RAM. Additional file 2

shows plots of RAM usage, user time and wall clock time for up to 40 strains running

on 50 processors. On our machine, 40 strains required approximately 500GB of ram

and around 20 hours from start to finish.

Discussion
The results presented above show that xenoGI can effectively reconstruct genomic

islands. In the validation using simulations, xenoGI’s true positive rate and positive

predictive value were high, and most insertions were recognized as a single island.

We did observe that xenoGI’s effectiveness declined as we moved to more internal

branches. This trend is not surprising. Internal branches are older, and in the ex-

tra time that has passed, events may have occurred that obscure the evidence for

a horizontal transfer event. xenoGI also correctly identified most of the previously

identified validation islands in real genomes (Table 1). Often in cases where it seem-

ingly made a mistake, e.g. split a single validation range into several islands, upon

closer examination we found that its result was correct (Additional File 1).

It is worth reflecting briefly on some of the assumptions and limitations of our

approach. xenoGI makes extensive use of synteny information. This means that it
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will be ineffective in situations where gene order or composition is changing rapidly,

for example on plasmids which typically lack conservative core genes as a result of

rapid evolution. In such cases, xenoGI will find large islands of seemingly unique

genes. However these are not really unique, but only seem so because they lack

enough synteny with their true homologs to be put together in families.

Along similar lines, in genomes where there has been an unusual amount of genome

rearrangement, the resulting reduction in synteny makes it more challenging to use

xenoGI. It is possible to adjust the parameters to compensate for this to some

extent, e.g. by shrinking the synteny window sizes.

A third caveat has to do with genomic island insertion hotspots. It has been ob-

served that certain regions are more likely than others to receive insertions [27].

When there are multiple insertions of the same or very similar GIs, xenoGI dis-

tinguishes these insertions using synteny. However if similar islands insert multiple

times in the same region, it will not be able to recognize those events as distinct.

Future work might attempt to use additional information such as that available in

gene trees to supplement decisions we are currently making based on synteny. This

could potentially enable us to better recognize cases where related islands inserted

in the same location multiple times.

More generally, the problem of making tree-aware families is one that might be

aided with machine learning approaches. The creation of such families involves

integrating multiple pieces of information. However it is challenging to create a

single set of rules that captures what we want to do. It may be easier for a human

to annotate a clade of bacterial genomes, creating a set of gene families, and then let

a machine learning algorithm learn from that. The algorithm would be using similar

information to our current algorithm, but would have learned the rules based on a

training set.

Finally, there are a number of examples of genomic islands which have inserted

multiple times in different strains. The AFI discussed above is a potential example.

It would be helpful to have a more systematic way to identify this. We could po-

tentially add an additional step which involves comparing all the islands found in

a clade against each other.

Conclusions
As more and more microbial genomes are sequenced, it becomes desirable to analyze

genomic adaptation in the context of phylogenetic trees. Here we have presented

xenoGI, a software package that takes a clade of closely related microbes and iden-

tifies islands of genes that entered via common horizontal transfer events, placing

those events on the phylogenetic tree for the clade.
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Figures

Figure 1 Example species tree. An input tree consisting of a focal clade and several outgroups.

Tables
Additional Files
Additional file 1 — A more detailed description of the correspondence between xenoGI islands and validation islands.

A tab-delimited text file containing each validation range used in the five species we looked at. Includes the

assemblies used to compare with each strain and the tree. For each validation range gives the base-wise coverage,

the amount of extra coverage, the number of overlapping xenoGI islands and any comments.

Additional file 2 — Resource usage of xenoGI

Plots of RAM usage, user time and wall clock time for up to 40 strains running on 50 processors.
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Figure 2 Phylogenetic tree used in genome simulations. We ran xenoGI on simulated genomes
that were generated on the tree shown. On each branch we show the true positive rate (red) and
the positive predictive value (blue) for xenoGI on that branch.

Table 1 Summary of xenoGI results on validation cases in several strains. Each row corresponds to a
strain. Num. islands represents the number of validation islands and total bases represents the total
number of nucleotides in those islands. Base coverage is the proportion of all bases in the validation
islands that xenoGI correctly recognized as an island. In single island indicates the proportion of
validation islands that xenoGI captured as a single island.

Num. islands Total bases Base coverage In single island
Burkholderia cenocepacia J2315 13 530,772 0.977 0.917
Corynebacterium diphtheriae NCTC 13129 13 249,918 0.983 0.769
Cronobacter sakazakii ATCC BAA-894 14 305,124 0.879 0.643
Streptococcus equi 4047 7 243,337 0.951 0.857
Vibrio cholerae O1 biovar eltor str. N16961 6 295,096 0.970 0.833
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Figure 3 Examples from enteric bacteria. A. Phylogenetic tree of 11 enteric species. Symbols
indicate the branches of insertion of GIs in B-D. The images in B-D were made by outputting
xenoGI islands and then displaying in the IGB genome browser. Note that the scale for the three is
not exactly the same. In the figures, different islands are given different colors. All islands with an
mrca at or before the point where C. rodentium diverges are colored black. B. Salmonella
pathogenicity island 2 shown in three Salmonella species. C. The acid fitness island as
reconstructed by xenoGI in two E. coli species and E. albertii. D. The island around gadB in our
four Escherichia species.
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