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A central aim of ecology is understanding the mechanisms of community as-

sembly. To address this problem, community assembly is often modeled as a

sampling process, in which species are selected from a pool of available species,

possibly with effects of interspecific interactions, habitat filtering, and other

ecological mechanisms. However, the fundamental stochastic sampling pro-

cess by which species are selected from the pool remains unexplored. Here we

demonstrate the distinctness of four canonical sampling processes, the Bernoulli,

Plackett-Luce, multinomial, and fractional multinomial processes. Each pro-

cess can be affected by ecological mechanisms or it can occur in their absence.

Although all four of the processes are a priori plausible and the first two are

widely used in ecological models, we show that the multinomial and fractional

multinomial processes broadly underlie community assembly.

Understanding how communities are structured and assembled constitutes a central aim of

community ecology (1–4). Over ecological timescales, community assembly is often consid-
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ered a sampling process, in which species are selected from a pool of species inhabiting the

surrounding areas (5, 6). This process may be affected by dispersal limitation, habitat filtering,

interspecific interactions, and other ecological mechanisms. Extensive research has focused on

assessing the relative roles of these mechanisms (7–10). However, a fundamental question is

which of the many possible general sampling processes govern the selection of species from

the pool. Remarkably, this question seems to have received no explicit attention. In this paper,

we systematically consider four canonical sampling processes of community assembly with re-

spect to phylogeny, and although all four are reasonable a priori, we show that two of them are

widely supported by data.

Assessing the fundamental sampling processes of community assembly has important im-

plications: it provides a key baseline for inferring effects of classical ecological mechanisms

(e.g., competition and facilitation) from non-experimental data, and it can allow perturbations

to communities to be detected and mitigated. Furthermore, an understanding of community

assembly processes is important for developing conservation strategies (11) and formulating

approaches for controlling infectious diseases (12).

Two of the sampling processes that we consider have implicitly been widely used in previous

models of community assembly: the Plackett-Luce process and a dependent Bernoulli process

(13, 14). They are not equivalent, although this seems not to have been noted previously. The

third process, the multinomial, is well known (15) but unused in community assembly, and the

last process, the fractional multinomial, was described recently (16). These latter two processes

are best supported by ecological data.

All four processes posit the existence of a species pool (the set of species that can poten-

tially colonize a community) and phylogenetic information about that pool (17, 18). In the first

process, the Plackett-Luce (19) process, (i) each species in the pool has an initial probability of

being selected, (ii) after the first species is selected, the probabilities of the remaining species
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are modified to reflect the fact that the first species can no longer be selected, and (iii) addi-

tional species are subsequently selected, with modifications to the probabilities at each step to

reflect that previously selected species are unavailable for selection (13). This process is analo-

gous to drawing marbles (species), possibly with unequal and dependent probabilities, without

replacement from an urn (the pool). Effects of habitat filtering are reflected in heterogeneous

probabilities (e.g., species A is twice as likely to colonize as species B), while effects of in-

terspecific interactions are reflected in the modifications of the probabilities (e.g., species A is

less likely to be drawn if species B is already drawn; an absence of interspecific interactions is

modeled by normalizing the remaining probabilities after each draw).

In the second process, the dependent Bernoulli process, each species in the pool has a prob-

ability of occurrence, and its outcome (occurs or does not occur) is a Bernoulli random vari-

able (14). This process is analogous to flipping biased coins, potentially non-independently, to

determine which species are present. Heterogeneous probabilities again reflect effects of habitat

filtering. Dependence among the random variables reflects effects of interspecific interactions;

an absence of interspecific interactions is modeled by independence of the random variables.

The third process, the multinomial process, has not been widely applied in community ecol-

ogy. Let a unit be an arbitrary taxonomic or functional grouping (e.g., genus or family). In the

multinomial process, (i) species are drawn sequentially and (ii) the probability of belonging to

each unit in the pool is specified on each draw. Effects of habitat filtering are reflected in the

probabilities for the initial draw. Absence of interspecific interactions is modeled by keeping

the unit probabilities constant for all draws as in sampling with replacement; while presence

of interactions is modeled by modifying the probabilities (e.g., the probability of drawing the

second species from unit A might decrease if the first species was drawn from that unit).

The fourth sampling process, until recently not previously considered in community ecol-

ogy, nor to our knowledge in any other context (16), will now be defined. Together with the
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multinomial, it explains remarkably well patterns observed in ecological data. Define 〈ij〉 as

the event that the ith and jth species to arrive in the community share the same unit and 〈ij〉′

as the event that they do not. For a community with three species, the absence of interspecific

interactions is modeled by

P (〈32〉 | 〈21〉) = P
(
〈32〉 | 〈21〉′

)
, (1)

P (〈32〉 | 〈31〉) = P
(
〈32〉 | 〈31〉′

)
, (2)

and

P (〈31〉 | 〈21〉) = P
(
〈31〉 | 〈21〉′

)
. (3)

This process is unchanged under effects of habitat filtering, but in the presence of effects of

competition or facilitation, each equivalence in (1) - (3) becomes “less than” or “greater than,”

respectively. For communities with more than three species, relations analogous to (1) - (3)

hold when interspecific interactions are absent, and competition or facilitation have analogous

effects on these relations. This process can be shown to be equivalent to a multinomial process

in which, by analogy to fractal dimensions, units are fractional. For this reason, we will refer to

this process as the fractional multinomial process. Examples of all four processes are given in

the Online Supplementary Material.

The four processes are non-equivalent. To demonstrate this, let I be a multiset that gives

the number of species in each unit in a community; i.e., I is an integer partition. For exam-

ple, if there are four species in a community, two sharing a unit and the third and fourth in

separate units, then I = {2, 1, 1} (the other possible partitions of four species are denoted

{4}, {3, 1},{2, 2},and {1, 1, 1, 1}). Given a species pool, the corresponding set of occurrence

probabilities, and the observed number of species, in the absence of interspecific interactions

it is straightforward to compute P (I) for each possible I for the Plackett-Luce, Bernoulli, and

multinomial processes. For the fractional multinomial process, it can be shown that (1), (2), and
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(3) are equivalent to

P (ψ) = ac−|ψ|
|ψ|−1∏
j=1

(1− ja), (4)

where c = 3, a ∈ [0, 1/2] ∪ {1}, and ψ is a set partition of species, as identified by order of

arrival, into units (16). Thus, P ({2, 1}) = 3a(1− a). This result generalizes to arbitrary c ∈ N,

where a ∈ [0, 1/(c − 1)] ∪ {1/(c − 2)} ∪ ... ∪ {1/2} ∪ {1}. Additionally, (4) implies that

conditional on c species occurring,

P (I) = f(I) ac−|I|
|I|−1∏
j=1

(1− ja), (5)

where f({i1, i2, ..., i|I|}) is the number of set partitions with units of sizes i1, i2, ..., i|I| (16).

Hence, for any pair of integer partitions I1 and I2, each process defines a function z(θ) ≡

(Pθ(I1), Pθ(I2)), where θ is a vector of possible parameter values (e.g., occurrence probabili-

ties). Examining the images of these functions reveals that all four of the processes are distinct

from one another (Figure 1).

A priori, theoretical considerations do not indicate which of the processes should occur in

ecological communities; assembly could follow any of the possible patterns specified by these

four models. To address this question, we investigated the consistency of the four processes

with two large data sets: the Barro Colorado Island 50Ha vegetation census (“BCI”) (20–22)

and the North American Breeding Bird Survey (“BBS”) (23). For the BCI data, we divided the

50Ha plot into 1.75m quadrats and treated each quadrat as a site. For the BBS data, we reasoned

that assembly processes may differ regionally, and that they should be most distinguishable in

communities that are close to equilibrium; i.e., communities of non-migratory species. Hence,

we considered separately the data from two representative bird conservation regions, and we

performed analyses for permanent resident species. We used data only from highly-rated routes,

treated each stop along each route as a site, and employed taxonomic information from the most

recent AOU checklist. For all data sets, we performed analyses at three taxonomic resolutions:
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order, family, and genus. For each data set and at each taxonomic resolution, we compared the

empirical distributions of I with fitted distributions derived from each sampling process (see

Online Supplementary Material).

In all cases, except when units were defined as orders for the BBS data, the multinomial

and fractional multinomial processes were most consistent with the data. They accounted for

a remarkable proportion of variation in the observed frequencies of I (median R2 > 0.999;

minimum R2 = 0.98), were strongly favored over the Plackett-Luce and Bernoulli processes in

an AIC analysis (24), and unlike these other two processes, were never rejected in likelihood

ratio goodness-of-fit tests (Table 1). The fractional multinomial process was favored over the

multinomial process in two out of seven cases by a likelihood ratio test; in the other cases, there

was insufficient power to distinguish between the processes. When units were defined as orders

for the BBS data, all models were inappropriate (R2 ≈ 0 in all cases, p < 0.0001 in goodness

of fit tests). This demonstrated that the aforementioned close fits were not a trivial artifact of

the fitting procedure.

Numerous studies have examined whether communities are consistent with “random” sam-

pling from species pools, with the intent to use deviations from “randomness” as a means for

assessing the effects of interspecific interactions, habitat filtering, and other ecological pro-

cesses (8, 17, 18). Unlike these studies, the present study evaluated which of four possible fun-

damental sampling processes governed community assembly. These sampling processes can

occur in both the presence and absence of the aforementioned ecological phenomena, and they

provide an overarching framework for modeling community assembly as a selection process

from species pools.

The analyses required three assumptions: first, that data from different sites were indepen-

dent; second, that data were identically distributed; and third, that interspecific interactions

did not affect the assembly processes. All of these assumptions were surely violated to some
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extent (25, 26), but the extremely close fits for the multinomial and fractional multinomial pro-

cesses suggest that these violations were negligible; we were able to clearly show that these two

processes governed community assembly from among the other two possibilities.

The analyses indicate that the fractional multinomial process, and potentially the multino-

mial process, underlie community assembly very broadly. The data sets that we examined were

at disparate spatial scales (101 to 103m) and for disparate taxa (plants and birds), yet they were

both highly consistent with the two processes. Analyses of other data sets, not presented here,

bolster this conclusion. Differing results are likely to provide important insight into ecological

phenomena, environmental heterogeneity, and new sampling processes.

Why might the multinomial and fractional multinomial process be so prevalent? The frac-

tional multinomial process specifies only general independence properties for the sampling pro-

cess [equations (1) to (3)], unlike the other processes, which posit different and more narrowly

specified properties. Although all of the processes are plausible, the unique generality of the

fractional multinomial process may account for its prevalence.

Sampling processes are of great practical importance. Most existing models of community

assembly assume either the Plackett-Luce or Bernoulli process, and these are used as if they

were interchangeable (13,14). However, the nature of the underlying process can have profound

implications: it can constrain the ecological phenomena that can be observed, as well as the

inferences and predictions that can be made. By explicitly considering sampling processes, it

will be possible to make more effective inferences in ecology (16).

Most research on community assembly has focused on specific “assembly rules” and the in-

fluence of ecological mechanisms on the assembly process (1,7,17,18). Until now, the sampling

process by which communities assemble has received no explicit attention; rather, in modeling

community assembly, sampling processes have been implicitly assumed. Our results indicate

that assembly occurs via two heretofore unconsidered processes: the multinomial and fractional
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multinomial processes. Further research on these sampling processes will elucidate additional

fundamental mechanisms of community assembly.

Online Supplementary Material

Example: Computing Distributions

This section presents an example of how to compute the distributions predicted by the four

sampling processes. A species pool of five species is assumed in the example. Species 1, 2, and

3 are in genus A, and species 4 and 5 are in genus B. A lack of interspecific interactions is also

assumed; that species are drawn independently. The Plackett-Luce process posits that species

are drawn sequentially, and that each species in the pool has a specified probability of being

selected on the first draw. Denoting the probability for species i by pi, we have the constraint

that p1 + p2 + p3 + p4 + p5 = 1 (one of the five species must be picked on the first draw). The

probability of observing the partition {2, 1} is given by

p1 ·
p2

1− p1

· p4

1− p1 − p2

+p2 ·
p1

1− p2

· p4

1− p1 − p2

+ p4 ·
p1

1− p4

· p2

1− p1 − p4

+ . . .

=
∑
x∈J

∑
(j1,j2,j3)∈S(x)

pj1 ·
pj2

1− pj1
· pj3

1− pj1 − pj2
(6)

where

J ≡ {{j1, j2, j3} : j1, j2, j3 distinct; j1, j2 ∈ A, j3 ∈ B or j1, j2 ∈ B, j3 ∈ A} (7)

and for any set E, S(E) is the set of all permutations of E. The Bernoulli process posits that

species i has a probability of occurring here denoted qi. Hence, 0 ≤ qi ≤ 1, and the probability

of {2, 1} is

q1q2(1− q3)q4(1− q5)+q1(1− q2)q3q4(1− q5) + (1− q1)q2q3q4(1− q5) + . . .

=
∑

{j1,j2,j3}∈J
{j4,j5}={j1,j2,j3}c

qj1qj2qj3(1− qj4)(1− qj5). (8)
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To compare the binomial process to the other processes, it is necessary to compute the prob-

ability of {2, 1} conditional on observing 3 species; i.e., dividing (8) by the probability of

observing 3 species. The multinomial process posits that species are drawn sequentially, and

that each species has a specified probability of belonging to each genus in the pool. Letting rj

denote the probabilities associated with genus j, we have the constraint rA + rB = 1 and the

probability of {2, 1} is (
3

2

)
rA

2rB +

(
3

2

)
rArB

2. (9)

The fractional multinomial has a single parameter a, and regardless of the composition of the

pool, P ({2, 1}) = 3a(1− a), with a ∈ [0, 1/2] ∪ {1}.

Process Non-equivalence

This section details how we plotted the images of z(θ) ≡ (Pθ(I1), Pθ(I2)) for each process,

where θ is a vector of parameter values, and I1 and I2 are integer partitions. The plots of these

images are shown in Figure 1. For the fractional multinomial process, the images are para-

metrically defined curves, which can be plotted routinely. For the other processes, our strategy

was to find boundary points, from which we could easily interpolate the shapes of the images.

For a given process and vector of parameter values θ (e.g., probabilities of species occurring

in the binomial process), let Pθ(I) give the probability of integer partition I , conditional on c

species occurring. Let Θ be the set of all possible parameter values; i.e., θ ∈ Θ. For any point

(x0, y0) ∈ [0, 1]2 and integer partitions I1 and I2, if θ ∈ Θ satisfies the following two conditions,

then (Pθ(I1), Pθ(I2)) is a boundary point:

θ = arg inf
θ∈Θ

[x0 − Pθ(I1)]2 + [y0 − Pθ(I2)]2 (10)

and

[x0 − Pθ(I1)]2 + [y0 − Pθ(I2)]2 > 0. (11)
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If 5 or fewer species are sampled from a pool of fewer than 11 species, closed form expressions

can be found for Pθ(I) on Θ. These are generally polynomials and quotients of polynomials

with several hundred to several thousand terms. We were able to programmatically generate

string expressions for these polynomials, and then minimize [x0 − Pθ(I1)]2 + [y0 − Pθ(I2)]2

for values of (x0, y0) using simulated annealing in Mathematica. We accepted (Pθ(I1), Pθ(I2))

as a boundary point only if [x0 − Pθ(I1)]2 + [y0 − Pθ(I2)]2 > 0.01. We considered values of

(x0, y0) along 0.01 increment (multinomial process) and 0.05 increment grids (Bernoulli and

Plackett-Luce processes). Code was written in Visual Basic 6.0 and Mathematica 6.0, and is

available from J.L.

Data Analysis

The primary aim of our data analyses was to assess which sampling process (Plackett-Luce,

Bernoulli, multinomial, or fractional multinomial) was most consistent with the data. We used

four measures for making this assessment: The first measure wasR2, the proportion of variation

in the observed frequencies of I attributable to the process. Following (27), we defined R2 as

1−
∑
j


∑
i

(fij − f̂ij)2∑
i

[fij − f·j/φ(j)]2

, (12)

where fij is the observed frequency of partition i given the presence of j species, f̂ij is the

frequency predicted by the maximum likelihood fit of the model, f·j is the total number of

partitions observed with j species, and φ(j) gives the number of partitions of j species. We used

R2 as a general measure of goodness of fit: if R2 was less than 0.5, we took this as evidence

that assumptions of site independence and similarity were violated or that the sampling process

was inappropriate. The second measure that we used was a likelihood ratio goodness-of-fit test.

A significant result from this test also provided evidence that assumptions were violated or the

sampling process was inappropriate. We primarily employed the third and fourth measures to
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distinguish which of the four processes was most appropriate. When the processes had different

numbers of parameters, we used AIC; when they had the same number of parameters, we used

a likelihood ratio test.

All of these measures require maximizing the likelihood function for each process. In our

analyses, we assumed that the observations at different sites were independent and identically

distributed. (As discussed in the text, the analyses were robust to this assumption.) Under

this assumption, the Plackett-Luce and Bernoulli model have as many parameters as there are

species in the pool (≈ 100 to 1000). The multinomial process has as many parameters as there

are units in the pool (≈ 25), and the fractional multinomial has one parameter.

Because of the complexity of the first three models, we were unable to maximize the like-

lihood functions reliably, despite extensive efforts. Hence, we pursued two alternative ap-

proaches. The first approach was to find an upper bound for the likelihood functions. The

upper bound that we used is given by:

∏
i,j

(
fij
f·j

)fij
. (13)

This bound is useful for comparing AIC values, but not for computing values of R2 or perform-

ing goodness-of-fit tests. Specifically, for the AIC, if a model has k parameters and the upper

bound for the likelihood function is λ?, then a lower bound on the AIC value is−2 log(λ?)+2k.

The second approach was to find maximum likelihood estimates for simpler versions of the

processes. The simpler versions that we considered were:

1. The Plackett-Luce process, assuming that all species are equally likely to be selected. The

numbers of species in the units in the pool were free parameters.

2. The Bernoulli process, assuming that all species are equally likely to occur. As above,

the numbers of species in the units in the pool were free parameters.
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3. The multinomial process, assuming that species are equally likely to be drawn from each

unit. The number of units is a free parameter.

For these simpler models, we were able to calculateR2 and p-values from likelihood ratio good-

ness of fit tests. We also calculated upper bounds on AIC. If a simplified model fit extremely

poorly (e.g., R2 ≈ 0 and p ≈ 0), we judged that the full model was likely to fit poorly too.

Detailed Results

Tables 2 and 3 list the results when units were defined as genera and orders; Table 1 (printed

text) gives the results for families. For the Barro Colorado Island data (n = 85059), all of the

simplified processes fit well, having high values of R2 and never being rejected in goodness-

of-fit tests. However, the full multinomial and fractional multinomial processes were clearly

favored over the full Plackett-Luce and Bernoulli processes: the upper bound for the AIC value

of the full multinomial model was less than the lower bound for the Plackett-Luce and Bernoulli

processes, and the exact AIC value for the fractional multinomial was less than the lower bound

for the Plackett-Luce and Bernoulli processes. Despite having only one parameter, the fractional

multinomial always had the highest R2 values. For the Breeding Bird Survey data (n = 4249

and 3707 for bird conservation regions 5 and 16, respectively), the simplified Plackett-Luce

and Bernoulli processes were always rejected in goodness-of-fit tests. When units were defined

as orders, the multinomial and fractional multinomial processes were also rejected, and all

processes had very low values of R2, indicating that none were appropriate. In the other cases,

the full multinomial and fractional multinomial models were again favored by AIC, and the

fractional multinomial had the highest values of R2. Overall, the multinomial and fractional

multinomial processes were generally favored by the data.
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Tables and Figures

Data Process AIC R2 Marginal R2 P

Plackett-Luce/Bernoulli ≥ 50252.11 ≥ 0.99 0 1
BCI Multinomial ≤ 49696.32 ≥ 0.99 0.97 1

Fractional Multinomial 49696.32 0.99 0.97 1

Plackett-Luce/Bernoulli ≥ 4091.09 ≥ 0.91 0 ≥ 0
BBS 5 Multinomial ≤ 4024.32 ≥ 0.99 0.99 ≥ 0.99

Fractional Multinomial 4023.99 0.99 0.99 0.99

Plackett-Luce/Bernoulli ≥ 4661.93 ≥ 0.34 0 ≥ 0
BBS 16 Multinomial ≤ 4622.23 ≥ 0.98 0.97 ≥ 0.13

Fractional Multinomial 4606.09 0.99 0.99 0.13

Table 1: Goodness-of-fit for the sampling processes. BCI and BBS refer to the 50Ha Barro
Colorado Island Vegetation census and the North American Breeding Bird Survey, respectively.
BBS 5 and 16 refer to bird conservation regions 5 and 16. Units were defined as families for the
results presented here; see Online Supplementary Material for the results using genera and or-
ders. MarginalR2 is the proportion of variation left unexplained by the Plackett-Luce/Bernoulli
processes that the Multinomial and Fractional Multinomial processes explained. P is the p-
value from a likelihood ratio goodness-of-fit test. Some of the reported values are bounds or
approximations; see Online Supplementary Material for details. Overall, the data are most
consistent with the multinomial and fractional multinomial processes.
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Data Process AIC R2 Marginal R2 P

Plackett-Luce/Bernoulli ≥ 6902.91 ≥ 0.99 0 1
BCI Multinomial ≤ 6289.07 ≥ 0.99 0.99 1

Fractional Multinomial 6289.07 0.99 0.99 1

Plackett-Luce/Bernoulli ≥ 1713.37 ≥ 0.99 0 > 0
BBS 5 Multinomial ≤ 1660.88 ≥ 0.99 0.13 ≥ 0.66

Fractional Multinomial 1660.86 0.99 0.18 0.66

Plackett-Luce/Bernoulli ≥ 783.18 ≥ 0.99 0 ≥ 0.01
BBS 16 Multinomial ≤ 693.73 ≥ 0.99 0.83 1

Fractional Multinomial 693.73 0.99 0.83 0.99

Table 2: [Online Supplementary Material] Goodness-of-fit for the sampling processes, with
units defined as genera. BCI and BBS refer to the 50Ha Barro Colorado Island Vegetation
census and the North American Breeding Bird Survey, respectively. BBS 5 and 16 refer to bird
conservation regions 5 and 16. MarginalR2 is the proportion of variation left unexplained by the
Plackett-Luce/Bernoulli processes that the Multinomial and Fractional Multinomial processes
explained. P is the p-value from a likelihood ratio goodness-of-fit test. Overall, the data are
most consistent with the multinomial and fractional multinomial processes.

Data Process AIC R2 Marginal R2 P

Plackett-Luce/Bernoulli ≥ 66360.65 ≥ 0.99 0 1
BCI Multinomial ≤ 65821.49 ≥ 0.99 0.92 1

Fractional Multinomial 65811.92 0.99 0.97 1

Plackett-Luce/Bernoulli ≥ 6328.03 ≥ 0 0 > 0
BBS 5 Multinomial ≤ 9457.77 ≥ 0 0.59 > 0

Fractional Multinomial 9457.77 0 0.59 < 0.0001

Plackett-Luce/Bernoulli ≥ 3784.01 ≥ 0 0 > 0
BBS 16 Multinomial ≤ 8280.44 ≥ 0 0.6 > 0

Fractional Multinomial 8280.44 0 0.6 < 0.0001

Table 3: [Online Supplementary Material] Goodness-of-fit for the sampling processes, with
units defined as orders. See Table 2 for a full description.
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Figure 1: Plots showing that the four sampling processes are distinct. {i, j, k, ...} is a multiset
giving the observed partition of species into units (e.g., {2, 1}means that 3 species are observed,
2 in the same unit and 1 in a different unit). Probabilities are conditional on the observed number
of species (e.g., P ({2, 1}) is conditional on 3 species being observed). (A) Plot showing that the
multinomial, fractional multinomial, and Bernoulli/Plackett-Luce processes are non-equivalent.
Sampling is from a pool of 10 species with partition {8, 1, 1}. (B) Expanded view of plot A,
showing that the Bernoulli and Plackett-Luce processes are distinct. (C) Plot for sampling from
a pool of 10 species with partition {4, 2, 1, 1, 1, 1}. (D) Expanded view of plot C, showing the
that the multinomial, fractional multinomial, and Bernoulli/Plackett-Luce processes are distinct.
See Online Supplementary Materials for additional details.
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